Commit 7098e585 by Luc Maisonobe

### Typo.

parent 056e774d
 ... @@ -87,7 +87,7 @@ import org.orekit.utils.TimeSpanMap; ... @@ -87,7 +87,7 @@ import org.orekit.utils.TimeSpanMap; * $$m = m_0 - q (t - t_s)$$, where $$m$$ is current mass, $$m_0$$ is initial mass and $$t_s$$ is * $$m = m_0 - q (t - t_s)$$, where $$m$$ is current mass, $$m_0$$ is initial mass and $$t_s$$ is * maneuver trigger time. A delay $$dt_s$$ on trigger time induces delaying mass depletion. * maneuver trigger time. A delay $$dt_s$$ on trigger time induces delaying mass depletion. * We get: * We get: * $d\vec{\Gamma} = \frac{-\vec{F}}{m^2}} dm = \frac{-\vec{F}}{m^2} q dt_s = -\vec{Gamma}\frac{q}{m} dt_s$ * $d\vec{\Gamma} = \frac{-\vec{F}}{m^2} dm = \frac{-\vec{F}}{m^2} q dt_s = -\vec{Gamma}\frac{q}{m} dt_s$ * From this total differential, we extract the partial derivative of the acceleration * From this total differential, we extract the partial derivative of the acceleration * $\frac{\partial\vec{\Gamma}}{\partial t_s} = -\vec{Gamma}\frac{q}{m}$ * $\frac{\partial\vec{\Gamma}}{\partial t_s} = -\vec{Gamma}\frac{q}{m}$ *

*

... ...
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!