Commit e74b8a59 authored by Luc Maisonobe's avatar Luc Maisonobe
Browse files


parent 6c2266ae
......@@ -27,7 +27,7 @@ import org.orekit.forces.maneuvers.trigger.ManeuverTriggersResetter;
/** Generator for one column of a Jacobian matrix for special case of trigger dates.
* <p>
* Typical use cases for this are estimation of maneuver start and stop date during
* either orbit determination or maneuver optimisation.
* either orbit determination or maneuver optimization.
* </p>
* <p>
* Let \((t_0, y_0)\) be the state at propagation start, \((t_1, y_1)\) be the state at
......@@ -49,7 +49,7 @@ import org.orekit.forces.maneuvers.trigger.ManeuverTriggersResetter;
* respect to intermediate time \(t_1\):
* \[\frac{\partial y_t}{\partial y_0} = \frac{\partial y_t}{\partial y_1} \frac{\partial y_1}{\partial y_0}\]
* We deduce
* \[\frac{\partial y_t}{\partial y_1} = \frac{\partial y_t}{\partial y_0} \left(\frac{\partial y_1}{\partial y_0}\right)^{-1}\].
* \[\frac{\partial y_t}{\partial y_1} = \frac{\partial y_t}{\partial y_0} \left(\frac{\partial y_1}{\partial y_0}\right)^{-1}\]
* </p>
* <p>
* The Jacobian column can therefore be computed using the following closed-form expression:
......@@ -62,7 +62,7 @@ import org.orekit.forces.maneuvers.trigger.ManeuverTriggersResetter;
* <p>
* As the column is generated using a closed-form expression, this generator implements
* the {@link AdditionalStateProvider} interface and stores the column directly
* in the premiary state during propagation.
* in the primary state during propagation.
* </p>
* <p>
* The implementation takes care to <em>not</em> resetting anything at propagation start.
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment