diff --git a/.gitignore b/.gitignore
index f170d56751873d3c09f04e45045944a22b893460..9c626dadcb94566472dcfe6751ae0c6478589a08 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1,3 +1,4 @@
 orekit-data-master
 output
 resources
+examples/.ipynb_checkpoints/
\ No newline at end of file
diff --git a/conda-lock.yml b/conda-lock.yml
index 134fb6ecabdcffbc043aca2df073a4fd0527b0cc..f5e4e68f3466dd4316ecbcda95d34de104ae1463 100644
--- a/conda-lock.yml
+++ b/conda-lock.yml
@@ -1,4 +1,4 @@
-# This lock file was generated by conda-lock (https://github.com/conda-incubator/conda-lock). DO NOT EDIT!
+# This lock file was generated by conda-lock (https://github.com/conda/conda-lock). DO NOT EDIT!
 #
 # A "lock file" contains a concrete list of package versions (with checksums) to be installed. Unlike
 # e.g. `conda env create`, the resulting environment will not change as new package versions become
@@ -9,1133 +9,1150 @@
 # To update a single package to the latest version compatible with the version constraints in the source:
 #     conda-lock lock  --lockfile conda-lock.yml --update PACKAGE
 # To re-solve the entire environment, e.g. after changing a version constraint in the source file:
-#     conda-lock -f /home/sepehy/Development/Orekit/python-wrapper/environment.yml --lockfile conda-lock.yml
+#     conda-lock -f /home/sepehy/Development/Orekit/python-wrapper/environment.yml -f environment.yml --lockfile conda-lock.yml
+version: 1
 metadata:
+  content_hash:
+    linux-64: a609a046c54bec4a64481b4a6e82cfb1063629d22380cdb57b1c4470c75120a6
+    osx-64: adce302411ad9613236f2b0c5af010895bf2d385865e690eea5b83bd53a0480f
+    win-64: fbb8e5300f8ecbe382d23e0df228e336ba423ae7714059c46ef03d347cacd19f
   channels:
   - url: conda-forge
     used_env_vars: []
-  content_hash:
-    linux-64: 451879eca328c0a96b4cb09c7742f9c32ba56b7f62e2a8f4b1c2764e60df42f3
-    osx-64: 4633ece673ab14dceaab0dbf6b0e0be6d46882c6a1f4f501386c4dca462750ce
-    win-64: ecfb423f81fe2ad5b318964287b36eb5896d1e5e505afe85fbfcf38560077c5f
   platforms:
-  - osx-64
   - linux-64
+  - osx-64
   - win-64
   sources:
   - /home/sepehy/Development/Orekit/python-wrapper/environment.yml
+  - environment.yml
 package:
-- category: main
+- name: _libgcc_mutex
+  version: '0.1'
+  manager: conda
+  platform: linux-64
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2
   hash:
     md5: d7c89558ba9fa0495403155b64376d81
     sha256: fe51de6107f9edc7aa4f786a70f4a883943bc9d39b3bb7307c04c41410990726
-  manager: conda
-  name: _libgcc_mutex
+  category: main
   optional: false
+- name: ca-certificates
+  version: 2024.2.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2
-  version: '0.1'
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.2.2-hbcca054_0.conda
   hash:
-    md5: a73ecd2988327ad4c8f2c331482917f2
-    sha256: 525b7b6b5135b952ec1808de84e5eca57c7c7ff144e29ef3e96ae4040ff432c1
-  manager: conda
-  name: ca-certificates
+    md5: 2f4327a1cbe7f022401b236e915a5fef
+    sha256: 91d81bfecdbb142c15066df70cc952590ae8991670198f92c66b62019b251aeb
+  category: main
   optional: false
+- name: font-ttf-dejavu-sans-mono
+  version: '2.37'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2023.7.22-hbcca054_0.conda
-  version: 2023.7.22
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2
   hash:
     md5: 0c96522c6bdaed4b1566d11387caaf45
     sha256: 58d7f40d2940dd0a8aa28651239adbf5613254df0f75789919c4e6762054403b
-  manager: conda
-  name: font-ttf-dejavu-sans-mono
+  category: main
   optional: false
+- name: font-ttf-inconsolata
+  version: '3.000'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2
-  version: '2.37'
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2
   hash:
     md5: 34893075a5c9e55cdafac56607368fc6
     sha256: c52a29fdac682c20d252facc50f01e7c2e7ceac52aa9817aaf0bb83f7559ec5c
-  manager: conda
-  name: font-ttf-inconsolata
+  category: main
   optional: false
+- name: font-ttf-source-code-pro
+  version: '2.038'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2
-  version: '3.000'
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2
   hash:
     md5: 4d59c254e01d9cde7957100457e2d5fb
     sha256: 00925c8c055a2275614b4d983e1df637245e19058d79fc7dd1a93b8d9fb4b139
-  manager: conda
-  name: font-ttf-source-code-pro
+  category: main
   optional: false
+- name: font-ttf-ubuntu
+  version: '0.83'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2
-  version: '2.038'
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_1.conda
   hash:
-    md5: 19410c3df09dfb12d1206132a1d357c5
-    sha256: 470d5db54102bd51dbb0c5990324a2f4a0bc976faa493b22193338adb9882e2e
-  manager: conda
-  name: font-ttf-ubuntu
+    md5: 6185f640c43843e5ad6fd1c5372c3f80
+    sha256: 056c85b482d58faab5fd4670b6c1f5df0986314cca3bc831d458b22e4ef2c792
+  category: main
   optional: false
+- name: ld_impl_linux-64
+  version: '2.40'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-hab24e00_0.tar.bz2
-  version: '0.83'
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.40-h41732ed_0.conda
   hash:
     md5: 7aca3059a1729aa76c597603f10b0dd3
     sha256: f6cc89d887555912d6c61b295d398cff9ec982a3417d38025c45d5dd9b9e79cd
-  manager: conda
-  name: ld_impl_linux-64
+  category: main
   optional: false
+- name: libstdcxx-ng
+  version: 13.2.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.40-h41732ed_0.conda
-  version: '2.40'
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-h7e041cc_5.conda
   hash:
-    md5: 9172c297304f2a20134fc56c97fbe229
-    sha256: ab22ecdc974cdbe148874ea876d9c564294d5eafa760f403ed4fd495307b4243
-  manager: conda
-  name: libstdcxx-ng
+    md5: f6f6600d18a4047b54f803cf708b868a
+    sha256: a56c5b11f1e73a86e120e6141a42d9e935a99a2098491ac9e15347a1476ce777
+  category: main
   optional: false
+- name: openjdk
+  version: 8.0.382
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-h7e041cc_2.conda
-  version: 13.2.0
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/linux-64/openjdk-8.0.382-hd590300_0.conda
   hash:
     md5: 2a09fe16a737145f5eea3b282b368bbf
     sha256: a44fd5adcdbbac4f820be1d6648eb7a649fcc6322702860d504dfc95db118c16
-  manager: conda
-  name: openjdk
+  category: main
   optional: false
+- name: python_abi
+  version: '3.12'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/openjdk-8.0.382-hd590300_0.conda
-  version: 8.0.382
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.12-4_cp312.conda
   hash:
-    md5: d786502c97404c94d7d58d258a445a65
-    sha256: 0be3ac1bf852d64f553220c7e6457e9c047dfb7412da9d22fbaa67e60858b3cf
-  manager: conda
-  name: python_abi
+    md5: dccc2d142812964fcc6abdc97b672dff
+    sha256: 182a329de10a4165f6e8a3804caf751f918f6ea6176dd4e5abcdae1ed3095bf6
+  category: main
   optional: false
+- name: tzdata
+  version: 2024a
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.11-4_cp311.conda
-  version: '3.11'
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024a-h0c530f3_0.conda
   hash:
-    md5: 939e3e74d8be4dac89ce83b20de2492a
-    sha256: 0449138224adfa125b220154408419ec37c06b0b49f63c5954724325903ecf55
-  manager: conda
-  name: tzdata
+    md5: 161081fc7cec0bfda0d86d7cb595f8d8
+    sha256: 7b2b69c54ec62a243eb6fba2391b5e443421608c3ae5dbff938ad33ca8db5122
+  category: main
   optional: false
+- name: fonts-conda-forge
+  version: '1'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/tzdata-2023c-h71feb2d_0.conda
-  version: 2023c
-- category: main
   dependencies:
     font-ttf-dejavu-sans-mono: ''
     font-ttf-inconsolata: ''
     font-ttf-source-code-pro: ''
     font-ttf-ubuntu: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2
   hash:
     md5: f766549260d6815b0c52253f1fb1bb29
     sha256: 53f23a3319466053818540bcdf2091f253cbdbab1e0e9ae7b9e509dcaa2a5e38
-  manager: conda
-  name: fonts-conda-forge
+  category: main
   optional: false
+- name: libgomp
+  version: 13.2.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2
-  version: '1'
-- category: main
   dependencies:
-    _libgcc_mutex: 0.1 conda_forge
+    _libgcc_mutex: '0.1'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h807b86a_5.conda
   hash:
-    md5: e2042154faafe61969556f28bade94b9
-    sha256: e1e82348f8296abfe344162b3b5f0ddc2f504759ebeb8b337ba99beaae583b15
-  manager: conda
-  name: libgomp
+    md5: d211c42b9ce49aee3734fdc828731689
+    sha256: 0d3d4b1b0134283ea02d58e8eb5accf3655464cf7159abf098cc694002f8d34e
+  category: main
   optional: false
+- name: _openmp_mutex
+  version: '4.5'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h807b86a_2.conda
-  version: 13.2.0
-- category: main
   dependencies:
-    _libgcc_mutex: 0.1 conda_forge
+    _libgcc_mutex: '0.1'
     libgomp: '>=7.5.0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2
   hash:
     md5: 73aaf86a425cc6e73fcf236a5a46396d
     sha256: fbe2c5e56a653bebb982eda4876a9178aedfc2b545f25d0ce9c4c0b508253d22
-  manager: conda
-  name: _openmp_mutex
+  category: main
   optional: false
+- name: fonts-conda-ecosystem
+  version: '1'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2
-  version: '4.5'
-- category: main
   dependencies:
     fonts-conda-forge: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2
   hash:
     md5: fee5683a3f04bd15cbd8318b096a27ab
     sha256: a997f2f1921bb9c9d76e6fa2f6b408b7fa549edd349a77639c9fe7a23ea93e61
-  manager: conda
-  name: fonts-conda-ecosystem
+  category: main
   optional: false
+- name: libgcc-ng
+  version: 13.2.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2
-  version: '1'
-- category: main
   dependencies:
-    _libgcc_mutex: 0.1 conda_forge
+    _libgcc_mutex: '0.1'
     _openmp_mutex: '>=4.5'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h807b86a_5.conda
   hash:
-    md5: c28003b0be0494f9a7664389146716ff
-    sha256: d361d3c87c376642b99c1fc25cddec4b9905d3d9b9203c1c545b8c8c1b04539a
-  manager: conda
-  name: libgcc-ng
+    md5: d4ff227c46917d3b4565302a2bbb276b
+    sha256: d32f78bfaac282cfe5205f46d558704ad737b8dbf71f9227788a5ca80facaba4
+  category: main
   optional: false
+- name: alsa-lib
+  version: 1.2.10
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h807b86a_2.conda
-  version: 13.2.0
-- category: main
   dependencies:
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.10-hd590300_0.conda
   hash:
     md5: 75dae9a4201732aa78a530b826ee5fe0
     sha256: 51147922bad9d3176e780eb26f748f380cd3184896a9f9125d8ac64fe330158b
-  manager: conda
-  name: alsa-lib
+  category: main
   optional: false
+- name: attr
+  version: 2.5.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.10-hd590300_0.conda
-  version: 1.2.10
-- category: main
   dependencies:
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.1-h166bdaf_1.tar.bz2
   hash:
     md5: d9c69a24ad678ffce24c6543a0176b00
     sha256: 82c13b1772c21fc4a17441734de471d3aabf82b61db9b11f4a1bd04a9c4ac324
-  manager: conda
-  name: attr
+  category: main
   optional: false
+- name: bzip2
+  version: 1.0.8
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.1-h166bdaf_1.tar.bz2
-  version: 2.5.1
-- category: main
   dependencies:
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-hd590300_5.conda
   hash:
     md5: 69b8b6202a07720f448be700e300ccf4
     sha256: 242c0c324507ee172c0e0dd2045814e746bb303d1eb78870d182ceb0abc726a8
-  manager: conda
-  name: bzip2
+  category: main
   optional: false
+- name: c-ares
+  version: 1.26.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-hd590300_5.conda
-  version: 1.0.8
-- category: main
   dependencies:
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.26.0-hd590300_0.conda
   hash:
-    md5: c06fa0440048270817b9e3142cc661bf
-    sha256: dfe0e81d5462fced79fd0f99edeec94c9b27268cb04238638180981af2f889f1
-  manager: conda
-  name: c-ares
+    md5: a86d90025198fd411845fc245ebc06c8
+    sha256: 3771589a91303710a59d1d40bbcdca43743969fe993ea576538ba375ac8ab0fa
+  category: main
   optional: false
+- name: geos
+  version: 3.12.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.21.0-hd590300_0.conda
-  version: 1.21.0
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/geos-3.12.1-h59595ed_0.conda
   hash:
-    md5: 3fdf79ef322c8379ae83be491d805369
-    sha256: c80ff0ed71db0d56567ee87df28bc442b596330ac241ab86f488e3139f0e2cae
-  manager: conda
-  name: geos
+    md5: 8c0f4f71f5a59ceb0c6fa9f51501066d
+    sha256: 2593b255cb9c4639d6ea261c47aaed1380216a366546f0468e95c36c2afd1c1a
+  category: main
   optional: false
+- name: gettext
+  version: 0.21.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/geos-3.12.0-h59595ed_0.conda
-  version: 3.12.0
-- category: main
   dependencies:
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/gettext-0.21.1-h27087fc_0.tar.bz2
   hash:
     md5: 14947d8770185e5153fdd04d4673ed37
     sha256: 4fcfedc44e4c9a053f0416f9fc6ab6ed50644fca3a761126dbd00d09db1f546a
-  manager: conda
-  name: gettext
+  category: main
   optional: false
+- name: graphite2
+  version: 1.3.13
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/gettext-0.21.1-h27087fc_0.tar.bz2
-  version: 0.21.1
-- category: main
   dependencies:
     libgcc-ng: '>=7.5.0'
     libstdcxx-ng: '>=7.5.0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/graphite2-1.3.13-h58526e2_1001.tar.bz2
   hash:
     md5: 8c54672728e8ec6aa6db90cf2806d220
     sha256: 65da967f3101b737b08222de6a6a14e20e480e7d523a5d1e19ace7b960b5d6b1
-  manager: conda
-  name: graphite2
+  category: main
   optional: false
+- name: icu
+  version: '73.2'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/graphite2-1.3.13-h58526e2_1001.tar.bz2
-  version: 1.3.13
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/icu-73.2-h59595ed_0.conda
   hash:
     md5: cc47e1facc155f91abd89b11e48e72ff
     sha256: e12fd90ef6601da2875ebc432452590bc82a893041473bc1c13ef29001a73ea8
-  manager: conda
-  name: icu
+  category: main
   optional: false
+- name: keyutils
+  version: 1.6.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/icu-73.2-h59595ed_0.conda
-  version: '73.2'
-- category: main
   dependencies:
     libgcc-ng: '>=10.3.0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2
   hash:
     md5: 30186d27e2c9fa62b45fb1476b7200e3
     sha256: 150c05a6e538610ca7c43beb3a40d65c90537497a4f6a5f4d15ec0451b6f5ebb
-  manager: conda
-  name: keyutils
+  category: main
   optional: false
+- name: lame
+  version: '3.100'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2
-  version: 1.6.1
-- category: main
   dependencies:
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/lame-3.100-h166bdaf_1003.tar.bz2
   hash:
     md5: a8832b479f93521a9e7b5b743803be51
     sha256: aad2a703b9d7b038c0f745b853c6bb5f122988fe1a7a096e0e606d9cbec4eaab
-  manager: conda
-  name: lame
+  category: main
   optional: false
+- name: lerc
+  version: 4.0.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/lame-3.100-h166bdaf_1003.tar.bz2
-  version: '3.100'
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2
   hash:
     md5: 76bbff344f0134279f225174e9064c8f
     sha256: cb55f36dcd898203927133280ae1dc643368af041a48bcf7c026acb7c47b0c12
-  manager: conda
-  name: lerc
+  category: main
   optional: false
+- name: libbrotlicommon
+  version: 1.1.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2
-  version: 4.0.0
-- category: main
   dependencies:
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hd590300_1.conda
   hash:
     md5: aec6c91c7371c26392a06708a73c70e5
     sha256: 40f29d1fab92c847b083739af86ad2f36d8154008cf99b64194e4705a1725d78
-  manager: conda
-  name: libbrotlicommon
+  category: main
   optional: false
+- name: libdeflate
+  version: '1.19'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hd590300_1.conda
-  version: 1.1.0
-- category: main
   dependencies:
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.19-hd590300_0.conda
   hash:
-    md5: 6aa9c9de5542ecb07fdda9ca626252d8
-    sha256: 949d84ceea543802c1e085b2aa58f1d6cb5dd8cec5a9abaaf4e8ac65d6094b3a
-  manager: conda
-  name: libdeflate
+    md5: 1635570038840ee3f9c71d22aa5b8b6d
+    sha256: 985ad27aa0ba7aad82afa88a8ede6a1aacb0aaca950d710f15d85360451e72fd
+  category: main
   optional: false
+- name: libev
+  version: '4.33'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.18-h0b41bf4_0.conda
-  version: '1.18'
-- category: main
   dependencies:
-    libgcc-ng: '>=7.5.0'
+    libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libev-4.33-hd590300_2.conda
   hash:
-    md5: 6f8720dff19e17ce5d48cfe7f3d2f0a3
-    sha256: 8c9635aa0ea28922877dc96358f9547f6a55fc7e2eb75a556b05f1725496baf9
-  manager: conda
-  name: libev
+    md5: 172bf1cd1ff8629f2b1179945ed45055
+    sha256: 1cd6048169fa0395af74ed5d8f1716e22c19a81a8a36f934c110ca3ad4dd27b4
+  category: main
   optional: false
+- name: libexpat
+  version: 2.5.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libev-4.33-h516909a_1.tar.bz2
-  version: '4.33'
-- category: main
   dependencies:
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.5.0-hcb278e6_1.conda
   hash:
     md5: 6305a3dd2752c76335295da4e581f2fd
     sha256: 74c98a563777ae2ad71f1f74d458a8ab043cee4a513467c159ccf159d0e461f3
-  manager: conda
-  name: libexpat
+  category: main
   optional: false
+- name: libffi
+  version: 3.4.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.5.0-hcb278e6_1.conda
-  version: 2.5.0
-- category: main
   dependencies:
     libgcc-ng: '>=9.4.0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2
   hash:
     md5: d645c6d2ac96843a2bfaccd2d62b3ac3
     sha256: ab6e9856c21709b7b517e940ae7028ae0737546122f83c2aa5d692860c3b149e
-  manager: conda
-  name: libffi
+  category: main
   optional: false
+- name: libgfortran5
+  version: 13.2.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2
-  version: 3.4.2
-- category: main
   dependencies:
     libgcc-ng: '>=13.2.0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-ha4646dd_5.conda
   hash:
-    md5: 78fdab09d9138851dde2b5fe2a11019e
-    sha256: 55ecf5c46c05a98b4822a041d6e1cb196a7b0606126eb96b24131b7d2c8ca561
-  manager: conda
-  name: libgfortran5
+    md5: 7a6bd7a12a4bd359e2afe6c0fa1acace
+    sha256: ba8d94e8493222ce155bb264d9de4200e41498a458e866fedf444de809bde8b6
+  category: main
   optional: false
+- name: libiconv
+  version: '1.17'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-ha4646dd_2.conda
-  version: 13.2.0
-- category: main
   dependencies:
-    libgcc-ng: '>=10.3.0'
+    libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda
   hash:
-    md5: b62b52da46c39ee2bc3c162ac7f1804d
-    sha256: 6a81ebac9f1aacdf2b4f945c87ad62b972f0f69c8e0981d68e111739e6720fd7
-  manager: conda
-  name: libiconv
+    md5: d66573916ffcf376178462f1b61c941e
+    sha256: 8ac2f6a9f186e76539439e50505d98581472fedb347a20e7d1f36429849f05c9
+  category: main
   optional: false
+- name: libjpeg-turbo
+  version: 3.0.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-h166bdaf_0.tar.bz2
-  version: '1.17'
-- category: main
   dependencies:
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda
   hash:
-    md5: 323e90742f0f48fc22bea908735f55e6
-    sha256: 0ef7378818c6d5b407692d02556c32e2f6af31c7542bca5160d0b92a59427fb5
-  manager: conda
-  name: libjpeg-turbo
+    md5: ea25936bb4080d843790b586850f82b8
+    sha256: b954e09b7e49c2f2433d6f3bb73868eda5e378278b0f8c1dd10a7ef090e14f2f
+  category: main
   optional: false
+- name: libnsl
+  version: 2.0.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-2.1.5.1-hd590300_1.conda
-  version: 2.1.5.1
-- category: main
   dependencies:
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda
   hash:
     md5: 30fd6e37fe21f86f4bd26d6ee73eeec7
     sha256: 26d77a3bb4dceeedc2a41bd688564fe71bf2d149fdcf117049970bc02ff1add6
-  manager: conda
-  name: libnsl
+  category: main
   optional: false
+- name: libogg
+  version: 1.3.4
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda
-  version: 2.0.1
-- category: main
   dependencies:
     libgcc-ng: '>=9.3.0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libogg-1.3.4-h7f98852_1.tar.bz2
   hash:
     md5: 6e8cc2173440d77708196c5b93771680
     sha256: b88afeb30620b11bed54dac4295aa57252321446ba4e6babd7dce4b9ffde9b25
-  manager: conda
-  name: libogg
+  category: main
   optional: false
+- name: libopus
+  version: 1.3.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libogg-1.3.4-h7f98852_1.tar.bz2
-  version: 1.3.4
-- category: main
   dependencies:
     libgcc-ng: '>=9.3.0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libopus-1.3.1-h7f98852_1.tar.bz2
   hash:
     md5: 15345e56d527b330e1cacbdf58676e8f
     sha256: 0e1c2740ebd1c93226dc5387461bbcf8142c518f2092f3ea7551f77755decc8f
-  manager: conda
-  name: libopus
+  category: main
   optional: false
+- name: libsodium
+  version: 1.0.18
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libopus-1.3.1-h7f98852_1.tar.bz2
-  version: 1.3.1
-- category: main
   dependencies:
     libgcc-ng: '>=7.5.0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.18-h36c2ea0_1.tar.bz2
   hash:
     md5: c3788462a6fbddafdb413a9f9053e58d
     sha256: 53da0c8b79659df7b53eebdb80783503ce72fb4b10ed6e9e05cc0e9e4207a130
-  manager: conda
-  name: libsodium
+  category: main
   optional: false
+- name: libuuid
+  version: 2.38.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.18-h36c2ea0_1.tar.bz2
-  version: 1.0.18
-- category: main
   dependencies:
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda
   hash:
     md5: 40b61aab5c7ba9ff276c41cfffe6b80b
     sha256: 787eb542f055a2b3de553614b25f09eefb0a0931b0c87dbcce6efdfd92f04f18
-  manager: conda
-  name: libuuid
+  category: main
   optional: false
+- name: libuv
+  version: 1.46.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda
-  version: 2.38.1
-- category: main
   dependencies:
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libuv-1.46.0-hd590300_0.conda
   hash:
     md5: d23c76f7e6dcd6243d1b6ef5e62d17d2
     sha256: 4bc4c946e9a532c066442714eeeeb1ffbd03cd89789c4047293f5e782b5fedd7
-  manager: conda
-  name: libuv
+  category: main
   optional: false
+- name: libwebp-base
+  version: 1.3.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libuv-1.46.0-hd590300_0.conda
-  version: 1.46.0
-- category: main
   dependencies:
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.3.2-hd590300_0.conda
   hash:
     md5: 30de3fd9b3b602f7473f30e684eeea8c
     sha256: 68764a760fa81ef35dacb067fe8ace452bbb41476536a4a147a1051df29525f0
+  category: main
+  optional: false
+- name: libxcrypt
+  version: 4.4.36
   manager: conda
-  name: libwebp-base
+  platform: linux-64
+  dependencies:
+    libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda
+  hash:
+    md5: 5aa797f8787fe7a17d1b0821485b5adc
+    sha256: 6ae68e0b86423ef188196fff6207ed0c8195dd84273cb5623b85aa08033a410c
+  category: main
   optional: false
+- name: libzlib
+  version: 1.2.13
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.3.2-hd590300_0.conda
-  version: 1.3.2
-- category: main
   dependencies:
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.2.13-hd590300_5.conda
   hash:
     md5: f36c115f1ee199da648e0597ec2047ad
     sha256: 370c7c5893b737596fd6ca0d9190c9715d89d888b8c88537ae1ef168c25e82e4
-  manager: conda
-  name: libzlib
+  category: main
   optional: false
+- name: lz4-c
+  version: 1.9.4
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.2.13-hd590300_5.conda
-  version: 1.2.13
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda
   hash:
     md5: 318b08df404f9c9be5712aaa5a6f0bb0
     sha256: 1b4c105a887f9b2041219d57036f72c4739ab9e9fe5a1486f094e58c76b31f5f
-  manager: conda
-  name: lz4-c
+  category: main
   optional: false
+- name: mpg123
+  version: 1.32.4
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda
-  version: 1.9.4
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.4-h59595ed_0.conda
   hash:
-    md5: bdadff838d5437aea83607ced8b37f75
-    sha256: f02b8ed16b3a488938b5f9453d19ea315ce6ed0d46cc389ecfaa28f2a4c3cb16
-  manager: conda
-  name: mpg123
+    md5: 3f1017b4141e943d9bc8739237f749e8
+    sha256: 512f4ad7eda3b2c9a1cc9f7931932aefa6e79567e35b76de03895e769cb3b43c
+  category: main
   optional: false
+- name: ncurses
+  version: '6.4'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.3-h59595ed_0.conda
-  version: 1.32.3
-- category: main
   dependencies:
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.4-h59595ed_2.conda
   hash:
     md5: 7dbaa197d7ba6032caf7ae7f32c1efa0
     sha256: 91cc03f14caf96243cead96c76fe91ab5925a695d892e83285461fb927dece5e
-  manager: conda
-  name: ncurses
+  category: main
   optional: false
+- name: nspr
+  version: '4.35'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.4-h59595ed_2.conda
-  version: '6.4'
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/nspr-4.35-h27087fc_0.conda
   hash:
     md5: da0ec11a6454ae19bff5b02ed881a2b1
     sha256: 8fadeebb2b7369a4f3b2c039a980d419f65c7b18267ba0c62588f9f894396d0c
-  manager: conda
-  name: nspr
+  category: main
   optional: false
+- name: openssl
+  version: 3.2.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/nspr-4.35-h27087fc_0.conda
-  version: '4.35'
-- category: main
   dependencies:
     ca-certificates: ''
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.2.1-hd590300_0.conda
   hash:
-    md5: 412ba6938c3e2abaca8b1129ea82e238
-    sha256: d15b3e83ce66c6f6fbb4707f2f5c53337124c01fb03bfda1cf25c5b41123efc7
-  manager: conda
-  name: openssl
+    md5: 51a753e64a3027bd7e23a189b1f6e91e
+    sha256: c02c12bdb898daacf7eb3d09859f93ea8f285fd1a6132ff6ff0493ab52c7fe57
+  category: main
   optional: false
+- name: pixman
+  version: 0.43.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.1.4-hd590300_0.conda
-  version: 3.1.4
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda
   hash:
-    md5: 700edd63ccd5fc66b70b1c028cea9a68
-    sha256: ae917851474eb3b08812b02c9e945d040808523ec53f828aa74a90b0cdf15f57
-  manager: conda
-  name: pixman
+    md5: 71004cbf7924e19c02746ccde9fd7123
+    sha256: 366d28e2a0a191d6c535e234741e0cd1d94d713f76073d8af4a5ccb2a266121e
+  category: main
   optional: false
+- name: pthread-stubs
+  version: '0.4'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/pixman-0.42.2-h59595ed_0.conda
-  version: 0.42.2
-- category: main
   dependencies:
     libgcc-ng: '>=7.5.0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-h36c2ea0_1001.tar.bz2
   hash:
     md5: 22dad4df6e8630e8dff2428f6f6a7036
     sha256: 67c84822f87b641d89df09758da498b2d4558d47b920fd1d3fe6d3a871e000ff
-  manager: conda
-  name: pthread-stubs
+  category: main
   optional: false
+- name: xorg-kbproto
+  version: 1.0.7
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-h36c2ea0_1001.tar.bz2
-  version: '0.4'
-- category: main
   dependencies:
     libgcc-ng: '>=9.3.0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-kbproto-1.0.7-h7f98852_1002.tar.bz2
   hash:
     md5: 4b230e8381279d76131116660f5a241a
     sha256: e90b0a6a5d41776f11add74aa030f789faf4efd3875c31964d6f9cfa63a10dd1
-  manager: conda
-  name: xorg-kbproto
+  category: main
   optional: false
+- name: xorg-libice
+  version: 1.1.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-kbproto-1.0.7-h7f98852_1002.tar.bz2
-  version: 1.0.7
-- category: main
   dependencies:
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hd590300_0.conda
   hash:
     md5: b462a33c0be1421532f28bfe8f4a7514
     sha256: 5aa9b3682285bb2bf1a8adc064cb63aff76ef9178769740d855abb42b0d24236
-  manager: conda
-  name: xorg-libice
+  category: main
   optional: false
+- name: xorg-libxau
+  version: 1.0.11
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hd590300_0.conda
-  version: 1.1.1
-- category: main
   dependencies:
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hd590300_0.conda
   hash:
     md5: 2c80dc38fface310c9bd81b17037fee5
     sha256: 309751371d525ce50af7c87811b435c176915239fc9e132b99a25d5e1703f2d4
-  manager: conda
-  name: xorg-libxau
+  category: main
   optional: false
+- name: xorg-libxdmcp
+  version: 1.1.3
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hd590300_0.conda
-  version: 1.0.11
-- category: main
   dependencies:
     libgcc-ng: '>=9.3.0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.3-h7f98852_0.tar.bz2
   hash:
     md5: be93aabceefa2fac576e971aef407908
     sha256: 4df7c5ee11b8686d3453e7f3f4aa20ceef441262b49860733066c52cfd0e4a77
-  manager: conda
-  name: xorg-libxdmcp
+  category: main
   optional: false
+- name: xorg-renderproto
+  version: 0.11.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.3-h7f98852_0.tar.bz2
-  version: 1.1.3
-- category: main
   dependencies:
     libgcc-ng: '>=9.3.0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-renderproto-0.11.1-h7f98852_1002.tar.bz2
   hash:
     md5: 06feff3d2634e3097ce2fe681474b534
     sha256: 38942930f233d1898594dd9edf4b0c0786f3dbc12065a0c308634c37fd936034
-  manager: conda
-  name: xorg-renderproto
+  category: main
   optional: false
+- name: xorg-xextproto
+  version: 7.3.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-renderproto-0.11.1-h7f98852_1002.tar.bz2
-  version: 0.11.1
-- category: main
   dependencies:
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-xextproto-7.3.0-h0b41bf4_1003.conda
   hash:
     md5: bce9f945da8ad2ae9b1d7165a64d0f87
     sha256: b8dda3b560e8a7830fe23be1c58cc41f407b2e20ae2f3b6901eb5842ba62b743
-  manager: conda
-  name: xorg-xextproto
+  category: main
   optional: false
+- name: xorg-xf86vidmodeproto
+  version: 2.3.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-xextproto-7.3.0-h0b41bf4_1003.conda
-  version: 7.3.0
-- category: main
   dependencies:
     libgcc-ng: '>=9.3.0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-xf86vidmodeproto-2.3.1-h7f98852_1002.tar.bz2
   hash:
     md5: 3ceea9668625c18f19530de98b15d5b0
     sha256: 43398aeacad5b8753b7a1c12cb6bca36124e0c842330372635879c350c430791
-  manager: conda
-  name: xorg-xf86vidmodeproto
+  category: main
   optional: false
+- name: xorg-xproto
+  version: 7.0.31
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-xf86vidmodeproto-2.3.1-h7f98852_1002.tar.bz2
-  version: 2.3.1
-- category: main
   dependencies:
     libgcc-ng: '>=9.3.0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-xproto-7.0.31-h7f98852_1007.tar.bz2
   hash:
     md5: b4a4381d54784606820704f7b5f05a15
     sha256: f197bb742a17c78234c24605ad1fe2d88b1d25f332b75d73e5ba8cf8fbc2a10d
-  manager: conda
-  name: xorg-xproto
+  category: main
   optional: false
+- name: xz
+  version: 5.2.6
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-xproto-7.0.31-h7f98852_1007.tar.bz2
-  version: 7.0.31
-- category: main
   dependencies:
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2
   hash:
     md5: 2161070d867d1b1204ea749c8eec4ef0
     sha256: 03a6d28ded42af8a347345f82f3eebdd6807a08526d47899a42d62d319609162
-  manager: conda
-  name: xz
+  category: main
   optional: false
+- name: yaml
+  version: 0.2.5
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2
-  version: 5.2.6
-- category: main
   dependencies:
     libgcc-ng: '>=9.4.0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2
   hash:
     md5: 4cb3ad778ec2d5a7acbdf254eb1c42ae
     sha256: a4e34c710eeb26945bdbdaba82d3d74f60a78f54a874ec10d373811a5d217535
-  manager: conda
-  name: yaml
+  category: main
   optional: false
+- name: expat
+  version: 2.5.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2
-  version: 0.2.5
-- category: main
   dependencies:
-    libexpat: 2.5.0 hcb278e6_1
+    libexpat: 2.5.0
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/expat-2.5.0-hcb278e6_1.conda
   hash:
     md5: 8b9b5aca60558d02ddaa09d599e55920
     sha256: 36dfeb4375059b3bba75ce9b38c29c69fd257342a79e6cf20e9f25c1523f785f
-  manager: conda
-  name: expat
+  category: main
   optional: false
+- name: libbrotlidec
+  version: 1.1.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/expat-2.5.0-hcb278e6_1.conda
-  version: 2.5.0
-- category: main
   dependencies:
-    libbrotlicommon: 1.1.0 hd590300_1
+    libbrotlicommon: 1.1.0
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hd590300_1.conda
   hash:
     md5: f07002e225d7a60a694d42a7bf5ff53f
     sha256: 86fc861246fbe5ad85c1b6b3882aaffc89590a48b42d794d3d5c8e6d99e5f926
-  manager: conda
-  name: libbrotlidec
+  category: main
   optional: false
-  platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hd590300_1.conda
+- name: libbrotlienc
   version: 1.1.0
-- category: main
+  manager: conda
+  platform: linux-64
   dependencies:
-    libbrotlicommon: 1.1.0 hd590300_1
+    libbrotlicommon: 1.1.0
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hd590300_1.conda
   hash:
     md5: 5fc11c6020d421960607d821310fcd4d
     sha256: f751b8b1c4754a2a8dfdc3b4040fa7818f35bbf6b10e905a47d3a194b746b071
-  manager: conda
-  name: libbrotlienc
+  category: main
   optional: false
+- name: libcap
+  version: '2.69'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hd590300_1.conda
-  version: 1.1.0
-- category: main
   dependencies:
     attr: '>=2.5.1,<2.6.0a0'
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libcap-2.69-h0f662aa_0.conda
   hash:
     md5: 25cb5999faa414e5ccb2c1388f62d3d5
     sha256: 942f9564b4228609f017b6617425d29a74c43b8a030e12239fa4458e5cb6323c
-  manager: conda
-  name: libcap
+  category: main
   optional: false
+- name: libedit
+  version: 3.1.20191231
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libcap-2.69-h0f662aa_0.conda
-  version: '2.69'
-- category: main
   dependencies:
     libgcc-ng: '>=7.5.0'
     ncurses: '>=6.2,<7.0.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2
   hash:
     md5: 4d331e44109e3f0e19b4cb8f9b82f3e1
     sha256: a57d37c236d8f7c886e01656f4949d9dcca131d2a0728609c6f7fa338b65f1cf
-  manager: conda
-  name: libedit
+  category: main
   optional: false
+- name: libevent
+  version: 2.1.12
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2
-  version: 3.1.20191231
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     openssl: '>=3.1.1,<4.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda
   hash:
     md5: a1cfcc585f0c42bf8d5546bb1dfb668d
     sha256: 2e14399d81fb348e9d231a82ca4d816bf855206923759b69ad006ba482764131
-  manager: conda
-  name: libevent
+  category: main
   optional: false
+- name: libflac
+  version: 1.4.3
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda
-  version: 2.1.12
-- category: main
   dependencies:
     gettext: '>=0.21.1,<1.0a0'
     libgcc-ng: '>=12'
     libogg: '>=1.3.4,<1.4.0a0'
     libstdcxx-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda
   hash:
     md5: ee48bf17cc83a00f59ca1494d5646869
     sha256: 65908b75fa7003167b8a8f0001e11e58ed5b1ef5e98b96ab2ba66d7c1b822c7d
-  manager: conda
-  name: libflac
+  category: main
   optional: false
+- name: libgfortran-ng
+  version: 13.2.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda
-  version: 1.4.3
-- category: main
   dependencies:
-    libgfortran5: 13.2.0 ha4646dd_2
+    libgfortran5: 13.2.0
+  url: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_5.conda
   hash:
-    md5: e75a75a6eaf6f318dae2631158c46575
-    sha256: 767d71999e5386210fe2acaf1b67073e7943c2af538efa85c101e3401e94ff62
-  manager: conda
-  name: libgfortran-ng
+    md5: e73e9cfd1191783392131e6238bdb3e9
+    sha256: 238c16c84124d58307376715839aa152bd4a1bf5a043052938ad6c3137d30245
+  category: main
   optional: false
+- name: libgpg-error
+  version: '1.47'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_2.conda
-  version: 13.2.0
-- category: main
   dependencies:
     gettext: '>=0.21.1,<1.0a0'
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.47-h71f35ed_0.conda
   hash:
     md5: c2097d0b46367996f09b4e8e4920384a
     sha256: 0306b3c2d65863048983a50bd8b86f6f26e457ef55d1da745a5796af25093f5a
-  manager: conda
-  name: libgpg-error
+  category: main
   optional: false
+- name: libnghttp2
+  version: 1.58.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.47-h71f35ed_0.conda
-  version: '1.47'
-- category: main
   dependencies:
-    c-ares: '>=1.21.0,<2.0a0'
-    libev: '>=4.33,<4.34.0a0'
+    c-ares: '>=1.23.0,<2.0a0'
+    libev: '>=4.33,<5.0a0'
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
     libzlib: '>=1.2.13,<1.3.0a0'
-    openssl: '>=3.1.4,<4.0a0'
+    openssl: '>=3.2.0,<4.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.58.0-h47da74e_1.conda
   hash:
-    md5: 9b13d5ee90fc9f09d54fd403247342b4
-    sha256: 151b18e4f92dcca263a6d23e4beb0c4e2287aa1c7d0587ff71ef50035ed34aca
-  manager: conda
-  name: libnghttp2
+    md5: 700ac6ea6d53d5510591c4344d5c989a
+    sha256: 1910c5306c6aa5bcbd623c3c930c440e9c77a5a019008e1487810e3c1d3716cb
+  category: main
   optional: false
+- name: libpng
+  version: 1.6.42
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.58.0-h47da74e_0.conda
-  version: 1.58.0
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libzlib: '>=1.2.13,<1.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.42-h2797004_0.conda
   hash:
-    md5: e1c890aebdebbfbf87e2c917187b4416
-    sha256: a32b36d34e4f2490b99bddbc77d01a674d304f667f0e62c89e02c961addef462
-  manager: conda
-  name: libpng
+    md5: d67729828dc6ff7ba44a61062ad79880
+    sha256: 1a0c3a4b7fd1e101cb37dd6d2f8b5ec93409c8cae422f04470fe39a01ef59024
+  category: main
   optional: false
+- name: libsqlite
+  version: 3.45.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.39-h753d276_0.conda
-  version: 1.6.39
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libzlib: '>=1.2.13,<1.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.45.1-h2797004_0.conda
   hash:
-    md5: b58e6816d137f3aabf77d341dd5d732b
-    sha256: 74ef5dcb900c38bec53140036e5e2a9cc7ffcd806da479ea2305f962a358a259
-  manager: conda
-  name: libsqlite
+    md5: fc4ccadfbf6d4784de88c41704792562
+    sha256: 1b379d1c652b25d0540251d422ef767472e768fd36b77261045e97f9ba6d3faa
+  category: main
   optional: false
+- name: libssh2
+  version: 1.11.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.44.0-h2797004_0.conda
-  version: 3.44.0
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libzlib: '>=1.2.13,<1.3.0a0'
     openssl: '>=3.1.1,<4.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.0-h0841786_0.conda
   hash:
     md5: 1f5a58e686b13bcfde88b93f547d23fe
     sha256: 50e47fd9c4f7bf841a11647ae7486f65220cfc988ec422a4475fe8d5a823824d
-  manager: conda
-  name: libssh2
+  category: main
   optional: false
+- name: libvorbis
+  version: 1.3.7
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.0-h0841786_0.conda
-  version: 1.11.0
-- category: main
   dependencies:
     libgcc-ng: '>=9.3.0'
     libogg: '>=1.3.4,<1.4.0a0'
     libstdcxx-ng: '>=9.3.0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libvorbis-1.3.7-h9c3ff4c_0.tar.bz2
   hash:
     md5: 309dec04b70a3cc0f1e84a4013683bc0
     sha256: 53080d72388a57b3c31ad5805c93a7328e46ff22fab7c44ad2a86d712740af33
-  manager: conda
-  name: libvorbis
+  category: main
   optional: false
+- name: libxcb
+  version: '1.15'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libvorbis-1.3.7-h9c3ff4c_0.tar.bz2
-  version: 1.3.7
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     pthread-stubs: ''
     xorg-libxau: ''
     xorg-libxdmcp: ''
+  url: https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.15-h0b41bf4_0.conda
   hash:
     md5: 33277193f5b92bad9fdd230eb700929c
     sha256: a670902f0a3173a466c058d2ac22ca1dd0df0453d3a80e0212815c20a16b0485
-  manager: conda
-  name: libxcb
+  category: main
   optional: false
+- name: libxml2
+  version: 2.12.5
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.15-h0b41bf4_0.conda
-  version: '1.15'
-- category: main
   dependencies:
     icu: '>=73.2,<74.0a0'
     libgcc-ng: '>=12'
     libiconv: '>=1.17,<2.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
     xz: '>=5.2.6,<6.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.12.5-h232c23b_0.conda
   hash:
-    md5: f3858448893839820d4bcfb14ad3ecdf
-    sha256: 1b3cb6864de1a558ea5fb144c780121d52507837d15df0600491d8ed92cff90c
-  manager: conda
-  name: libxml2
+    md5: c442ebfda7a475f5e78f1c8e45f1e919
+    sha256: db9bf97e9e367985204331b58a059ebd5a4e0cb9e1c8754e9ecb23046b7b7bc1
+  category: main
   optional: false
+- name: mysql-common
+  version: 8.0.33
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.11.5-h232c23b_1.conda
-  version: 2.11.5
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
     openssl: '>=3.1.4,<4.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/mysql-common-8.0.33-hf1915f5_6.conda
   hash:
     md5: 80bf3b277c120dd294b51d404b931a75
     sha256: c8b2c5c9d0d013a4f6ef96cb4b339bfdc53a74232d8c61ed08178e5b1ec4eb63
-  manager: conda
-  name: mysql-common
+  category: main
   optional: false
+- name: pcre2
+  version: '10.42'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/mysql-common-8.0.33-hf1915f5_6.conda
-  version: 8.0.33
-- category: main
   dependencies:
     bzip2: '>=1.0.8,<2.0a0'
     libgcc-ng: '>=12'
-    libzlib: '>=1.2.12,<1.3.0a0'
+    libzlib: '>=1.2.13,<1.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.42-hcad00b1_0.conda
   hash:
-    md5: 69e2c796349cd9b273890bee0febfe1b
-    sha256: 7a29ec847556eed4faa1646010baae371ced69059a4ade43851367a076d6108a
-  manager: conda
-  name: pcre2
+    md5: 679c8961826aa4b50653bce17ee52abe
+    sha256: 3ca54ff0abcda964af7d4724d389ae20d931159ae1881cfe57ad4b0ab9e6a380
+  category: main
   optional: false
+- name: readline
+  version: '8.2'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.40-hc3806b6_0.tar.bz2
-  version: '10.40'
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     ncurses: '>=6.3,<7.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda
   hash:
     md5: 47d31b792659ce70f470b5c82fdfb7a4
     sha256: 5435cf39d039387fbdc977b0a762357ea909a7694d9528ab40f005e9208744d7
-  manager: conda
-  name: readline
+  category: main
   optional: false
+- name: tk
+  version: 8.6.13
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda
-  version: '8.2'
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libzlib: '>=1.2.13,<1.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda
   hash:
     md5: d453b98d9c83e71da0741bb0ff4d76bc
     sha256: e0569c9caa68bf476bead1bed3d79650bb080b532c64a4af7d8ca286c08dea4e
-  manager: conda
-  name: tk
+  category: main
   optional: false
+- name: xorg-libsm
+  version: 1.2.4
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda
-  version: 8.6.13
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libuuid: '>=2.38.1,<3.0a0'
     xorg-libice: '>=1.1.1,<2.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-h7391055_0.conda
   hash:
     md5: 93ee23f12bc2e684548181256edd2cf6
     sha256: 089ad5f0453c604e18985480218a84b27009e9e6de9a0fa5f4a20b8778ede1f1
-  manager: conda
-  name: xorg-libsm
+  category: main
   optional: false
+- name: zeromq
+  version: 4.3.5
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-h7391055_0.conda
-  version: 1.2.4
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libsodium: '>=1.0.18,<1.0.19.0a0'
     libstdcxx-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h59595ed_0.conda
   hash:
     md5: 8851084c192dbc56215ac4e3c9aa30fa
     sha256: 53bf2a18224406e9806adb3b270a2c8a028aca0c89bd40114a85d6446f5c98d1
-  manager: conda
-  name: zeromq
+  category: main
   optional: false
+- name: zlib
+  version: 1.2.13
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h59595ed_0.conda
-  version: 4.3.5
-- category: main
   dependencies:
     libgcc-ng: '>=12'
-    libzlib: 1.2.13 hd590300_5
+    libzlib: 1.2.13
+  url: https://conda.anaconda.org/conda-forge/linux-64/zlib-1.2.13-hd590300_5.conda
   hash:
     md5: 68c34ec6149623be41a1933ab996a209
     sha256: 9887a04d7e7cb14bd2b52fa01858f05a6d7f002c890f618d9fcd864adbfecb1b
-  manager: conda
-  name: zlib
+  category: main
   optional: false
+- name: zstd
+  version: 1.5.5
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/zlib-1.2.13-hd590300_5.conda
-  version: 1.2.13
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
     libzlib: '>=1.2.13,<1.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.5-hfc55251_0.conda
   hash:
     md5: 04b88013080254850d6c01ed54810589
     sha256: 607cbeb1a533be98ba96cf5cdf0ddbb101c78019f1fda063261871dad6248609
-  manager: conda
-  name: zstd
+  category: main
   optional: false
+- name: brotli-bin
+  version: 1.1.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.5-hfc55251_0.conda
-  version: 1.5.5
-- category: main
   dependencies:
-    libbrotlidec: 1.1.0 hd590300_1
-    libbrotlienc: 1.1.0 hd590300_1
+    libbrotlidec: 1.1.0
+    libbrotlienc: 1.1.0
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hd590300_1.conda
   hash:
     md5: 39f910d205726805a958da408ca194ba
     sha256: a641abfbaec54f454c8434061fffa7fdaa9c695e8a5a400ed96b4f07c0c00677
-  manager: conda
-  name: brotli-bin
+  category: main
   optional: false
+- name: freetype
+  version: 2.12.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hd590300_1.conda
-  version: 1.1.0
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libpng: '>=1.6.39,<1.7.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda
   hash:
     md5: 9ae35c3d96db2c94ce0cef86efdfa2cb
     sha256: b2e3c449ec9d907dd4656cb0dc93e140f447175b125a3824b31368b06c666bb6
-  manager: conda
-  name: freetype
+  category: main
   optional: false
+- name: krb5
+  version: 1.21.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda
-  version: 2.12.1
-- category: main
   dependencies:
     keyutils: '>=1.6.1,<2.0a0'
     libedit: '>=3.1.20191231,<4.0a0'
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
     openssl: '>=3.1.2,<4.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.2-h659d440_0.conda
   hash:
     md5: cd95826dbd331ed1be26bdf401432844
     sha256: 259bfaae731989b252b7d2228c1330ef91b641c9d68ff87dae02cbae682cb3e4
-  manager: conda
-  name: krb5
+  category: main
   optional: false
+- name: libgcrypt
+  version: 1.10.3
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.2-h659d440_0.conda
-  version: 1.21.2
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libgpg-error: '>=1.47,<2.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.10.3-hd590300_0.conda
   hash:
-    md5: 3d7d5e5cebf8af5aadb040732860f1b6
-    sha256: 21053a00af8e648d58bafc856167dc2c35a9e927a6aff3030d50e01b113265a3
-  manager: conda
-  name: libgcrypt
+    md5: 32d16ad533c59bb0a3c5ffaf16110829
+    sha256: d1bd47faa29fec7288c7b212198432b07f890d3d6f646078da93b059c2e9daff
+  category: main
   optional: false
+- name: libglib
+  version: 2.78.4
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.10.2-hd590300_0.conda
-  version: 1.10.2
-- category: main
   dependencies:
     gettext: '>=0.21.1,<1.0a0'
     libffi: '>=3.4,<4.0a0'
@@ -1143,47 +1160,47 @@ package:
     libiconv: '>=1.17,<2.0a0'
     libstdcxx-ng: '>=12'
     libzlib: '>=1.2.13,<1.3.0a0'
-    pcre2: '>=10.40,<10.41.0a0'
+    pcre2: '>=10.42,<10.43.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libglib-2.78.4-h783c2da_0.conda
   hash:
-    md5: ddd09e8904fde46b85f41896621803e6
-    sha256: 44c5f58593b074886436db7d13fdfcba2fe3731867ea52237f049b8400341a2b
-  manager: conda
-  name: libglib
+    md5: d86baf8740d1a906b9716f2a0bac2f2d
+    sha256: 3a03a5254d2fd29c1e0ffda7250e22991dfbf2c854301fd56c408d97a647cfbd
+  category: main
   optional: false
+- name: libllvm15
+  version: 15.0.7
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libglib-2.78.1-hebfc3b9_0.conda
-  version: 2.78.1
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
-    libxml2: '>=2.11.4,<2.12.0a0'
+    libxml2: '>=2.12.1,<3.0.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
-    zstd: '>=1.5.2,<1.6.0a0'
+    zstd: '>=1.5.5,<1.6.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libllvm15-15.0.7-hb3ce162_4.conda
   hash:
-    md5: 9efe82d44b76a7529a1d702e5a37752e
-    sha256: bb94e7535a309c2a8d58585cb82bac954ed59f473eef2cac6ea677d6f576a3b6
-  manager: conda
-  name: libllvm15
+    md5: 8a35df3cbc0c8b12cc8af9473ae75eef
+    sha256: e71584c0f910140630580fdd0a013029a52fd31e435192aea2aa8d29005262d1
+  category: main
   optional: false
+- name: libopenblas
+  version: 0.3.26
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libllvm15-15.0.7-h5cf9203_3.conda
-  version: 15.0.7
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libgfortran-ng: ''
     libgfortran5: '>=12.3.0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.26-pthreads_h413a1c8_0.conda
   hash:
-    md5: 6e4ef6ca28655124dcde9bd500e44c32
-    sha256: c8e080ae4d57506238023e98869928ae93564e6407ef5b0c4d3a337e8c2b7662
-  manager: conda
-  name: libopenblas
+    md5: 760ae35415f5ba8b15d09df5afe8b23a
+    sha256: b626954b5a1113dafec8df89fa8bf18ce9b4701464d9f084ddd7fc9fac404bbd
+  category: main
   optional: false
+- name: libsndfile
+  version: 1.2.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.24-pthreads_h413a1c8_0.conda
-  version: 0.3.24
-- category: main
   dependencies:
     lame: '>=3.100,<3.101.0a0'
     libflac: '>=1.4.3,<1.5.0a0'
@@ -1193,53 +1210,53 @@ package:
     libstdcxx-ng: '>=12'
     libvorbis: '>=1.3.7,<1.4.0a0'
     mpg123: '>=1.32.1,<1.33.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libsndfile-1.2.2-hc60ed4a_1.conda
   hash:
     md5: ef1910918dd895516a769ed36b5b3a4e
     sha256: f709cbede3d4f3aee4e2f8d60bd9e256057f410bd60b8964cb8cf82ec1457573
-  manager: conda
-  name: libsndfile
+  category: main
   optional: false
+- name: libtiff
+  version: 4.6.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libsndfile-1.2.2-hc60ed4a_1.conda
-  version: 1.2.2
-- category: main
   dependencies:
     lerc: '>=4.0.0,<5.0a0'
-    libdeflate: '>=1.18,<1.19.0a0'
+    libdeflate: '>=1.19,<1.20.0a0'
     libgcc-ng: '>=12'
-    libjpeg-turbo: '>=2.1.5.1,<3.0a0'
+    libjpeg-turbo: '>=3.0.0,<4.0a0'
     libstdcxx-ng: '>=12'
-    libwebp-base: '>=1.3.1,<2.0a0'
+    libwebp-base: '>=1.3.2,<2.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
     xz: '>=5.2.6,<6.0a0'
-    zstd: '>=1.5.2,<1.6.0a0'
+    zstd: '>=1.5.5,<1.6.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-ha9c0a0a_2.conda
   hash:
-    md5: 5b09e13d732dda1a2bc9adc711164f4d
-    sha256: 631ccfdd460eda9661b6371aa459fe5ce174816365873deb5af955c9e10bf8c2
-  manager: conda
-  name: libtiff
+    md5: 55ed21669b2015f77c180feb1dd41930
+    sha256: 45158f5fbee7ee3e257e6b9f51b9f1c919ed5518a94a9973fe7fa4764330473e
+  category: main
   optional: false
+- name: mysql-libs
+  version: 8.0.33
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.5.1-h8b53f26_1.conda
-  version: 4.5.1
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
     libzlib: '>=1.2.13,<1.3.0a0'
-    mysql-common: 8.0.33 hf1915f5_6
+    mysql-common: 8.0.33
     openssl: '>=3.1.4,<4.0a0'
     zstd: '>=1.5.5,<1.6.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-8.0.33-hca2cd23_6.conda
   hash:
     md5: e87530d1b12dd7f4e0f856dc07358d60
     sha256: 78c905637dac79b197395065c169d452b8ca2a39773b58e45e23114f1cb6dcdb
-  manager: conda
-  name: mysql-libs
+  category: main
   optional: false
+- name: nodejs
+  version: 20.9.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-8.0.33-hca2cd23_6.conda
-  version: 8.0.33
-- category: main
   dependencies:
     __glibc: '>=2.17,<3.0.a0'
     icu: '>=73.2,<74.0a0'
@@ -1247,1293 +1264,1341 @@ package:
     libstdcxx-ng: '>=12'
     libuv: '>=1.46.0,<1.47.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
-    openssl: '>=3.1.3,<4.0a0'
+    openssl: '>=3.1.4,<4.0a0'
     zlib: ''
+  url: https://conda.anaconda.org/conda-forge/linux-64/nodejs-20.9.0-hb753e55_0.conda
   hash:
-    md5: 05b928e13df9548a47568d581fdfa8a1
-    sha256: a5491430566384933bd330571147f490bc4c5a01e312157a0d426fdeaf37b44f
-  manager: conda
-  name: nodejs
+    md5: ddfcb003b0a6804fabe7dfbf1be16651
+    sha256: 4d35f8151f83bc561e4bcb41b46dcf77ec708c88eb333d1376f37371288f46ad
+  category: main
   optional: false
+- name: nss
+  version: '3.98'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/nodejs-20.8.1-h1990674_0.conda
-  version: 20.8.1
-- category: main
   dependencies:
     __glibc: '>=2.17,<3.0.a0'
     libgcc-ng: '>=12'
-    libsqlite: '>=3.43.0,<4.0a0'
+    libsqlite: '>=3.45.1,<4.0a0'
     libstdcxx-ng: '>=12'
     libzlib: '>=1.2.13,<1.3.0a0'
     nspr: '>=4.35,<5.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/nss-3.98-h1d7d5a4_0.conda
   hash:
-    md5: 7caef74bbfa730e014b20f0852068509
-    sha256: c9b7910fc554c6550905b9150f4c8230e973ca63f41b42f2c18a49e8aa458e78
-  manager: conda
-  name: nss
+    md5: 54b56c2fdf973656b748e0378900ec13
+    sha256: a9bc94d03df48014011cf6caaf447f2ef86a5edf7c70d70002ec4b59f5a4e198
+  category: main
   optional: false
+- name: python
+  version: 3.12.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/nss-3.94-h1d7d5a4_0.conda
-  version: '3.94'
-- category: main
   dependencies:
     bzip2: '>=1.0.8,<2.0a0'
     ld_impl_linux-64: '>=2.36.1'
     libexpat: '>=2.5.0,<3.0a0'
     libffi: '>=3.4,<4.0a0'
     libgcc-ng: '>=12'
-    libnsl: '>=2.0.0,<2.1.0a0'
-    libsqlite: '>=3.43.0,<4.0a0'
+    libnsl: '>=2.0.1,<2.1.0a0'
+    libsqlite: '>=3.45.1,<4.0a0'
     libuuid: '>=2.38.1,<3.0a0'
+    libxcrypt: '>=4.4.36'
     libzlib: '>=1.2.13,<1.3.0a0'
     ncurses: '>=6.4,<7.0a0'
-    openssl: '>=3.1.3,<4.0a0'
+    openssl: '>=3.2.1,<4.0a0'
     readline: '>=8.2,<9.0a0'
     tk: '>=8.6.13,<8.7.0a0'
     tzdata: ''
     xz: '>=5.2.6,<6.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/python-3.12.2-hab00c5b_0_cpython.conda
   hash:
-    md5: b0dfbe2fcbfdb097d321bfd50ecddab1
-    sha256: 84f13bd70cff5dcdaee19263b2d4291d5793856a718efc1b63a9cfa9eb6e2ca1
-  manager: conda
-  name: python
+    md5: ad7b68400f3a6ebe72b00be093c7f301
+    sha256: ddb7a2d8d78046bda5d7631e6814f9468d2eb054e10f86f4648c9d1fdaa30c0f
+  category: main
   optional: false
+- name: sqlite
+  version: 3.45.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/python-3.11.6-hab00c5b_0_cpython.conda
-  version: 3.11.6
-- category: main
   dependencies:
     libgcc-ng: '>=12'
-    libsqlite: 3.44.0 h2797004_0
+    libsqlite: 3.45.1
     libzlib: '>=1.2.13,<1.3.0a0'
     ncurses: '>=6.4,<7.0a0'
     readline: '>=8.2,<9.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/sqlite-3.45.1-h2c6b66d_0.conda
   hash:
-    md5: df56c636df4a98990462d66ac7be2330
-    sha256: ae7031a471868c7057cc16eded7bb58fa3723d9c1650c9d3eb8de1ff65d89dbb
-  manager: conda
-  name: sqlite
+    md5: 93acf31b379acebada263b9bce3dc6ed
+    sha256: a7cbde68eff5d2ec9bb1b5f2604a523949048a9b5335588eac2d893fd0dd5200
+  category: main
   optional: false
+- name: xcb-util
+  version: 0.4.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/sqlite-3.44.0-h2c6b66d_0.conda
-  version: 3.44.0
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libxcb: '>=1.15,<1.16.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.0-hd590300_1.conda
   hash:
     md5: 9bfac7ccd94d54fd21a0501296d60424
     sha256: 0c91d87f0efdaadd4e56a5f024f8aab20ec30f90aa2ce9e4ebea05fbc20f71ad
-  manager: conda
-  name: xcb-util
+  category: main
   optional: false
-  platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.0-hd590300_1.conda
+- name: xcb-util-keysyms
   version: 0.4.0
-- category: main
+  manager: conda
+  platform: linux-64
   dependencies:
     libgcc-ng: '>=12'
     libxcb: '>=1.15,<1.16.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.0-h8ee46fc_1.conda
   hash:
     md5: 632413adcd8bc16b515cab87a2932913
     sha256: 8451d92f25d6054a941b962179180728c48c62aab5bf20ac10fef713d5da6a9a
-  manager: conda
-  name: xcb-util-keysyms
+  category: main
   optional: false
+- name: xcb-util-renderutil
+  version: 0.3.9
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.0-h8ee46fc_1.conda
-  version: 0.4.0
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libxcb: '>=1.15,<1.16.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/xcb-util-renderutil-0.3.9-hd590300_1.conda
   hash:
     md5: e995b155d938b6779da6ace6c6b13816
     sha256: 6987588e6fff5892056021c2ea52f7a0deefb2c7348e70d24750e2d60dabf009
-  manager: conda
-  name: xcb-util-renderutil
+  category: main
   optional: false
+- name: xcb-util-wm
+  version: 0.4.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/xcb-util-renderutil-0.3.9-hd590300_1.conda
-  version: 0.3.9
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libxcb: '>=1.15,<1.16.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.1-h8ee46fc_1.conda
   hash:
     md5: 90108a432fb5c6150ccfee3f03388656
     sha256: 08ba7147c7579249b6efd33397dc1a8c2404278053165aaecd39280fee705724
-  manager: conda
-  name: xcb-util-wm
+  category: main
   optional: false
+- name: xorg-libx11
+  version: 1.8.7
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.1-h8ee46fc_1.conda
-  version: 0.4.1
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libxcb: '>=1.15,<1.16.0a0'
     xorg-kbproto: ''
     xorg-xextproto: '>=7.3.0,<8.0a0'
     xorg-xproto: ''
+  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.7-h8ee46fc_0.conda
   hash:
     md5: 49e482d882669206653b095f5206c05b
     sha256: 7a02a7beac472ae2759498550b5fc5261bf5be7a9a2b4648a3f67818a7bfefcf
-  manager: conda
-  name: xorg-libx11
+  category: main
   optional: false
+- name: attrs
+  version: 23.2.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.7-h8ee46fc_0.conda
-  version: 1.8.7
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/attrs-23.2.0-pyh71513ae_0.conda
   hash:
-    md5: 3edfead7cedd1ab4400a6c588f3e75f8
-    sha256: 063639cd568f5c7a557b0fb1cc27f098598c0d8ff869088bfeb82934674f8821
-  manager: conda
-  name: attrs
+    md5: 5e4c0743c70186509d1412e03c2d8dfa
+    sha256: 77c7d03bdb243a048fff398cedc74327b7dc79169ebe3b4c8448b0331ea55fea
+  category: main
   optional: false
+- name: backports
+  version: '1.0'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/attrs-23.1.0-pyh71513ae_1.conda
-  version: 23.1.0
-- category: main
   dependencies:
     python: '>=2.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/backports-1.0-pyhd8ed1ab_3.conda
   hash:
     md5: 54ca2e08b3220c148a1d8329c2678e02
     sha256: 711602276ae39276cb0faaca6fd0ac851fff0ca17151917569174841ef830bbd
-  manager: conda
-  name: backports
+  category: main
   optional: false
+- name: basemap-data
+  version: 1.3.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/backports-1.0-pyhd8ed1ab_3.conda
-  version: '1.0'
-- category: main
   dependencies:
     python: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/basemap-data-1.3.2-pyhd8ed1ab_3.conda
   hash:
     md5: 0cf2bde421530ef9f2dad055de9ba099
     sha256: d7ada152f0eed21cec35e9a0c355f66fa2803e1342a32738499fbce07823ea71
-  manager: conda
-  name: basemap-data
+  category: main
   optional: false
+- name: brotli
+  version: 1.1.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/basemap-data-1.3.2-pyhd8ed1ab_3.conda
-  version: 1.3.2
-- category: main
   dependencies:
-    brotli-bin: 1.1.0 hd590300_1
-    libbrotlidec: 1.1.0 hd590300_1
-    libbrotlienc: 1.1.0 hd590300_1
+    brotli-bin: 1.1.0
+    libbrotlidec: 1.1.0
+    libbrotlienc: 1.1.0
     libgcc-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hd590300_1.conda
   hash:
     md5: f27a24d46e3ea7b70a1f98e50c62508f
     sha256: f2d918d351edd06c55a6c2d84b488fe392f85ea018ff227daac07db22b408f6b
-  manager: conda
-  name: brotli
+  category: main
   optional: false
-  platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hd590300_1.conda
+- name: brotli-python
   version: 1.1.0
-- category: main
+  manager: conda
+  platform: linux-64
   dependencies:
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12.0rc3,<3.13.0a0'
+    python_abi: 3.12.*
+  url: https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py312h30efb56_1.conda
   hash:
-    md5: cce9e7c3f1c307f2a5fb08a2922d6164
-    sha256: 559093679e9fdb6061b7b80ca0f9a31fe6ffc213f1dae65bc5c82e2cd1a94107
-  manager: conda
-  name: brotli-python
+    md5: 45801a89533d3336a365284d93298e36
+    sha256: b68706698b6ac0d31196a8bcb061f0d1f35264bcd967ea45e03e108149a74c6f
+  category: main
   optional: false
+- name: cached_property
+  version: 1.5.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py311hb755f60_1.conda
-  version: 1.1.0
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/cached_property-1.5.2-pyha770c72_1.tar.bz2
   hash:
     md5: 576d629e47797577ab0f1b351297ef4a
     sha256: 6dbf7a5070cc43d90a1e4c2ec0c541c69d8e30a0e25f50ce9f6e4a432e42c5d7
-  manager: conda
-  name: cached_property
+  category: main
   optional: false
+- name: certifi
+  version: 2024.2.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/cached_property-1.5.2-pyha770c72_1.tar.bz2
-  version: 1.5.2
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.2.2-pyhd8ed1ab_0.conda
   hash:
-    md5: 7f3dbc9179b4dde7da98dfb151d0ad22
-    sha256: db66e31866ff4250c190788769e3a8a1709237c3e9c38d7143aae95ab75fcb31
-  manager: conda
-  name: certifi
+    md5: 0876280e409658fc6f9e75d035960333
+    sha256: f1faca020f988696e6b6ee47c82524c7806380b37cfdd1def32f92c326caca54
+  category: main
   optional: false
+- name: charset-normalizer
+  version: 3.3.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/certifi-2023.7.22-pyhd8ed1ab_0.conda
-  version: 2023.7.22
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.3.2-pyhd8ed1ab_0.conda
   hash:
     md5: 7f4a9e3fcff3f6356ae99244a014da6a
     sha256: 20cae47d31fdd58d99c4d2e65fbdcefa0b0de0c84e455ba9d6356a4bdbc4b5b9
-  manager: conda
-  name: charset-normalizer
+  category: main
   optional: false
+- name: cycler
+  version: 0.12.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.3.2-pyhd8ed1ab_0.conda
-  version: 3.3.2
-- category: main
   dependencies:
     python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda
   hash:
     md5: 5cd86562580f274031ede6aa6aa24441
     sha256: f221233f21b1d06971792d491445fd548224641af9443739b4b7b6d5d72954a8
-  manager: conda
-  name: cycler
+  category: main
   optional: false
+- name: dbus
+  version: 1.13.6
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda
-  version: 0.12.1
-- category: main
   dependencies:
     expat: '>=2.4.2,<3.0a0'
     libgcc-ng: '>=9.4.0'
     libglib: '>=2.70.2,<3.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/dbus-1.13.6-h5008d03_3.tar.bz2
   hash:
     md5: ecfff944ba3960ecb334b9a2663d708d
     sha256: 8f5f995699a2d9dbdd62c61385bfeeb57c82a681a7c8c5313c395aa0ccab68a5
-  manager: conda
-  name: dbus
+  category: main
   optional: false
+- name: debugpy
+  version: 1.8.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/dbus-1.13.6-h5008d03_3.tar.bz2
-  version: 1.13.6
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
+  url: https://conda.anaconda.org/conda-forge/linux-64/debugpy-1.8.1-py312h30efb56_0.conda
   hash:
-    md5: 2c241533b8eafe8028442d46ef41eb13
-    sha256: f18492ebfaea54bbbeaec0ae207851f711ff589f60f2cc9b8a689f88b2442171
-  manager: conda
-  name: debugpy
+    md5: bdd639417094ace2fb1ce10b20d68d5d
+    sha256: 8a8bd15c7a8435991649ab334816d4d64970c5b0d016f59806bc45f54f31a924
+  category: main
   optional: false
+- name: decorator
+  version: 5.1.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/debugpy-1.8.0-py311hb755f60_1.conda
-  version: 1.8.0
-- category: main
   dependencies:
     python: '>=3.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 43afe5ab04e35e17ba28649471dd7364
     sha256: 328a6a379f9bdfd0230e51de291ce858e6479411ea4b0545fb377c71662ef3e2
-  manager: conda
-  name: decorator
+  category: main
   optional: false
+- name: defusedxml
+  version: 0.7.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_0.tar.bz2
-  version: 5.1.1
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/defusedxml-0.7.1-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 961b3a227b437d82ad7054484cfa71b2
     sha256: 9717a059677553562a8f38ff07f3b9f61727bd614f505658b0a5ecbcf8df89be
-  manager: conda
-  name: defusedxml
+  category: main
   optional: false
+- name: entrypoints
+  version: '0.4'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/defusedxml-0.7.1-pyhd8ed1ab_0.tar.bz2
-  version: 0.7.1
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/entrypoints-0.4-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 3cf04868fee0a029769bd41f4b2fbf2d
     sha256: 2ec4a0900a4a9f42615fc04d0fb3286b796abe56590e8e042f6ec25e102dd5af
-  manager: conda
-  name: entrypoints
+  category: main
   optional: false
+- name: exceptiongroup
+  version: 1.2.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/entrypoints-0.4-pyhd8ed1ab_0.tar.bz2
-  version: '0.4'
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.0-pyhd8ed1ab_2.conda
   hash:
-    md5: e6518222753f519e911e83136d2158d9
-    sha256: c28f715e049fe0f09785660bcbffa175ffb438720e5bc5a60d56d4b08364b315
-  manager: conda
-  name: exceptiongroup
+    md5: 8d652ea2ee8eaee02ed8dc820bc794aa
+    sha256: a6ae416383bda0e3ed14eaa187c653e22bec94ff2aa3b56970cdf0032761e80d
+  category: main
   optional: false
+- name: executing
+  version: 2.0.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.1.3-pyhd8ed1ab_0.conda
-  version: 1.1.3
-- category: main
   dependencies:
     python: '>=2.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/executing-2.0.1-pyhd8ed1ab_0.conda
   hash:
     md5: e16be50e378d8a4533b989035b196ab8
     sha256: c738804ab1e6376f8ea63372229a04c8d658dc90fd5a218c6273a2eaf02f4057
-  manager: conda
-  name: executing
+  category: main
   optional: false
+- name: fontconfig
+  version: 2.14.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/executing-2.0.1-pyhd8ed1ab_0.conda
-  version: 2.0.1
-- category: main
   dependencies:
     expat: '>=2.5.0,<3.0a0'
     freetype: '>=2.12.1,<3.0a0'
     libgcc-ng: '>=12'
     libuuid: '>=2.32.1,<3.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.14.2-h14ed4e7_0.conda
   hash:
     md5: 0f69b688f52ff6da70bccb7ff7001d1d
     sha256: 155d534c9037347ea7439a2c6da7c24ffec8e5dd278889b4c57274a1d91e0a83
-  manager: conda
-  name: fontconfig
+  category: main
   optional: false
+- name: glib-tools
+  version: 2.78.4
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.14.2-h14ed4e7_0.conda
-  version: 2.14.2
-- category: main
   dependencies:
     libgcc-ng: '>=12'
-    libglib: 2.78.1 hebfc3b9_0
+    libglib: 2.78.4
     libstdcxx-ng: '>=12'
     libzlib: '>=1.2.13,<1.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.78.4-hfc55251_0.conda
   hash:
-    md5: 5b4fe75a68cbb95350f47bb9a707b53b
-    sha256: b1514f0372ff4d7bd2d87001c881c7ee7fc9e28e4e8444ff17dbbea60dd8c9a6
+    md5: d184ba1bf15a2bbb3be6118c90fd487d
+    sha256: e94494b895f77ba54922ffb1dcfb7f1a987591b823eb5ce608afb2e2391d7d82
+  category: main
+  optional: false
+- name: hpack
+  version: 4.0.0
   manager: conda
-  name: glib-tools
+  platform: linux-64
+  dependencies:
+    python: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2
+  hash:
+    md5: 914d6646c4dbb1fd3ff539830a12fd71
+    sha256: 5dec948932c4f740674b1afb551223ada0c55103f4c7bf86a110454da3d27cb8
+  category: main
   optional: false
+- name: hyperframe
+  version: 6.0.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.78.1-hfc55251_0.conda
-  version: 2.78.1
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2
   hash:
-    md5: 34272b248891bddccc64479f9a7fffed
-    sha256: 9887c35c374ec1847f167292d3fde023cb4c994a4ceeec283072b95440131f09
+    md5: 9f765cbfab6870c8435b9eefecd7a1f4
+    sha256: e374a9d0f53149328134a8d86f5d72bca4c6dcebed3c0ecfa968c02996289330
+  category: main
+  optional: false
+- name: idna
+  version: '3.6'
   manager: conda
-  name: idna
+  platform: linux-64
+  dependencies:
+    python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/idna-3.6-pyhd8ed1ab_0.conda
+  hash:
+    md5: 1a76f09108576397c41c0b0c5bd84134
+    sha256: 6ee4c986d69ce61e60a20b2459b6f2027baeba153f0a64995fd3cb47c2cc7e07
+  category: main
   optional: false
+- name: json5
+  version: 0.9.17
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/idna-3.4-pyhd8ed1ab_0.tar.bz2
-  version: '3.4'
-- category: main
   dependencies:
     python: '>=3.7,<4.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/json5-0.9.17-pyhd8ed1ab_0.conda
   hash:
-    md5: dac1dabba2b5a9d1aee175c5fcc7b436
-    sha256: 41514104208c092959bef0713cbd795e72c535f2f939b7903d8c97809f2adaa7
-  manager: conda
-  name: json5
+    md5: 0e1b14ff0f0762acca0f87c26c9b75ad
+    sha256: e01ee861d57b748874f4b4f4392b82d9341f61819a35095b4f68fbdfc93041a1
+  category: main
   optional: false
+- name: jsonpointer
+  version: '2.4'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/json5-0.9.14-pyhd8ed1ab_0.conda
-  version: 0.9.14
-- category: main
   dependencies:
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12.0rc3,<3.13.0a0'
+    python_abi: 3.12.*
+  url: https://conda.anaconda.org/conda-forge/linux-64/jsonpointer-2.4-py312h7900ff3_3.conda
   hash:
-    md5: 41d52d822edf991bf0e6b08c1921a8ec
-    sha256: 976f7bf3c3a49c3066f36b67c12ae06b31542e53b843bb4362f31c9e449c6c46
-  manager: conda
-  name: jsonpointer
+    md5: 50f62bdb9b60b13c2f6ae69957342e4d
+    sha256: c211a79cff8aa001a6e14e923c37278231dca7f0970d8db155c4b9e48ac87a5a
+  category: main
   optional: false
+- name: kiwisolver
+  version: 1.4.5
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/jsonpointer-2.4-py311h38be061_3.conda
-  version: '2.4'
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12.0rc3,<3.13.0a0'
+    python_abi: 3.12.*
+  url: https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.5-py312h8572e83_1.conda
   hash:
-    md5: 2c65bdf442b0d37aad080c8a4e0d452f
-    sha256: 723b0894d2d2b05a38f9c5a285d5a0a5baa27235ceab6531dbf262ba7c6955c1
-  manager: conda
-  name: kiwisolver
+    md5: c1e71f2bc05d8e8e033aefac2c490d05
+    sha256: 2ffd3f6726392591c6794ab130f6701f5ffba0ec8658ef40db5a95ec8d583143
+  category: main
   optional: false
+- name: lcms2
+  version: '2.16'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.5-py311h9547e67_1.conda
-  version: 1.4.5
-- category: main
   dependencies:
     libgcc-ng: '>=12'
-    libjpeg-turbo: '>=2.1.5.1,<3.0a0'
-    libtiff: '>=4.5.0,<4.6.0a0'
+    libjpeg-turbo: '>=3.0.0,<4.0a0'
+    libtiff: '>=4.6.0,<4.7.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda
   hash:
-    md5: 980d8aca0bc23ca73fa8caa3e7c84c28
-    sha256: 0d88e0e7f8dbf8f01788e21dd63dd49b89433ce7dfd10f53839441396f6481cd
-  manager: conda
-  name: lcms2
+    md5: 51bb7010fc86f70eee639b4bb7a894f5
+    sha256: 5c878d104b461b7ef922abe6320711c0d01772f4cd55de18b674f88547870041
+  category: main
   optional: false
+- name: libblas
+  version: 3.9.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.15-haa2dc70_1.conda
-  version: '2.15'
-- category: main
   dependencies:
-    libopenblas: '>=0.3.24,<1.0a0'
+    libopenblas: '>=0.3.26,<1.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-21_linux64_openblas.conda
   hash:
-    md5: 420f4e9be59d0dc9133a0f43f7bab3f3
-    sha256: b1311b9414559c5760b08a32e0382ca27fa302c967968aa6f78e042519f728ce
-  manager: conda
-  name: libblas
+    md5: 0ac9f44fc096772b0aa092119b00c3ca
+    sha256: ebd5c91f029f779fb88a1fcbd1e499559a9c258e3674ff58a2fbb4e375ae56d9
+  category: main
   optional: false
+- name: libclang13
+  version: 15.0.7
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-19_linux64_openblas.conda
-  version: 3.9.0
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libllvm15: '>=15.0.7,<15.1.0a0'
     libstdcxx-ng: '>=12'
-    libzlib: '>=1.2.13,<1.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libclang13-15.0.7-default_ha2b6cf4_4.conda
   hash:
-    md5: 1720df000b48e31842500323cb7be18c
-    sha256: df1221a9a05b9bb3bd9b43c08a7e2fe57a0e15a0010ef26065f7ed7666083f45
-  manager: conda
-  name: libclang13
+    md5: 898e0dd993afbed0d871b60c2eb33b83
+    sha256: e1d34d415160b69a401dc0662bf1b5378655193ed1364bf7dd14f055e76e4b60
+  category: main
   optional: false
+- name: libcups
+  version: 2.3.3
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libclang13-15.0.7-default_h9986a30_3.conda
-  version: 15.0.7
-- category: main
   dependencies:
     krb5: '>=1.21.1,<1.22.0a0'
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
     libzlib: '>=1.2.13,<1.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda
   hash:
     md5: d4529f4dff3057982a7617c7ac58fde3
     sha256: bc67b9b21078c99c6bd8595fe7e1ed6da1f721007726e717f0449de7032798c4
-  manager: conda
-  name: libcups
+  category: main
   optional: false
+- name: libcurl
+  version: 8.5.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda
-  version: 2.3.3
-- category: main
   dependencies:
     krb5: '>=1.21.2,<1.22.0a0'
     libgcc-ng: '>=12'
-    libnghttp2: '>=1.52.0,<2.0a0'
+    libnghttp2: '>=1.58.0,<2.0a0'
     libssh2: '>=1.11.0,<2.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
-    openssl: '>=3.1.3,<4.0a0'
+    openssl: '>=3.2.0,<4.0a0'
     zstd: '>=1.5.5,<1.6.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.5.0-hca28451_0.conda
   hash:
-    md5: 1158ac1d2613b28685644931f11ee807
-    sha256: 25f4b6a8827d7b17a66e0bd9b5d194bf9a9e4a46fb14e2ef472fdad4b39426a6
-  manager: conda
-  name: libcurl
+    md5: 7144d5a828e2cae218e0e3c98d8a0aeb
+    sha256: 00a6bea5ff90ca58eeb15ebc98e08ffb88bddaff27396bb62640064f59d29cf0
+  category: main
   optional: false
+- name: libpq
+  version: '16.2'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.4.0-hca28451_0.conda
-  version: 8.4.0
-- category: main
   dependencies:
     krb5: '>=1.21.2,<1.22.0a0'
     libgcc-ng: '>=12'
-    libzlib: '>=1.2.13,<1.3.0a0'
-    openssl: '>=3.1.3,<4.0a0'
+    openssl: '>=3.2.1,<4.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libpq-16.2-h33b98f1_0.conda
   hash:
-    md5: 4a180ab68881a86be49858c9baf4581d
-    sha256: f537ad28c083585e7c40e8a05f6febad8b9e649a48a1f2f497add3fc0947800b
-  manager: conda
-  name: libpq
+    md5: fe0e297faf462ee579c95071a5211665
+    sha256: 352748b0499a22e2a8e103f071b8d9357e1fb710c0aec0f79895d3ba03dccb03
+  category: main
   optional: false
+- name: libsystemd0
+  version: '255'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libpq-15.4-hfc447b1_2.conda
-  version: '15.4'
-- category: main
   dependencies:
     __glibc: '>=2.17,<3.0.a0'
     libcap: '>=2.69,<2.70.0a0'
     libgcc-ng: '>=12'
-    libgcrypt: '>=1.10.1,<2.0a0'
+    libgcrypt: '>=1.10.3,<2.0a0'
     lz4-c: '>=1.9.3,<1.10.0a0'
     xz: '>=5.2.6,<6.0a0'
-    zstd: '>=1.5.2,<1.6.0a0'
+    zstd: '>=1.5.5,<1.6.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-255-h3516f8a_0.conda
   hash:
-    md5: df4b1cd0c91b4234fb02b5701a4cdddc
-    sha256: e4732b9bc6acbdd3308cd0abd0860c9ea44e37127cd78acb797c996c20e4f42f
-  manager: conda
-  name: libsystemd0
+    md5: 24e2649ebd432e652aa72cfd05f23a8e
+    sha256: 9306eafe761a758e0c2efa92025bfc0684c66ef500efdea4fbe4687b59e8099e
+  category: main
   optional: false
+- name: markupsafe
+  version: 2.1.5
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-254-h3516f8a_0.conda
-  version: '254'
-- category: main
   dependencies:
     libgcc-ng: '>=12'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
+  url: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-2.1.5-py312h98912ed_0.conda
   hash:
-    md5: 71120b5155a0c500826cf81536721a15
-    sha256: e1a9930f35e39bf65bc293e24160b83ebf9f800f02749f65358e1c04882ee6b0
-  manager: conda
-  name: markupsafe
+    md5: 6ff0b9582da2d4a74a1f9ae1f9ce2af6
+    sha256: 273d8efd6c089c534ccbede566394c0ac1e265bfe5d89fe76e80332f3d75a636
+  category: main
   optional: false
+- name: mistune
+  version: 3.0.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-2.1.3-py311h459d7ec_1.conda
-  version: 2.1.3
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/mistune-3.0.2-pyhd8ed1ab_0.conda
   hash:
     md5: 5cbee699846772cc939bef23a0d524ed
     sha256: f95cb70007e3cc2ba44e17c29a056b499e6dadf08746706d0c817c8e2f47e05c
-  manager: conda
-  name: mistune
+  category: main
   optional: false
+- name: munkres
+  version: 1.1.4
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/mistune-3.0.2-pyhd8ed1ab_0.conda
-  version: 3.0.2
-- category: main
   dependencies:
     python: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2
   hash:
     md5: 2ba8498c1018c1e9c61eb99b973dfe19
     sha256: f86fb22b58e93d04b6f25e0d811b56797689d598788b59dcb47f59045b568306
-  manager: conda
-  name: munkres
+  category: main
   optional: false
+- name: nest-asyncio
+  version: 1.6.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2
-  version: 1.1.4
-- category: main
   dependencies:
     python: '>=3.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda
   hash:
-    md5: a4f0e4519bc50eee4f53f689be9607f7
-    sha256: d7b795b4e754136841c6da3f9fa1a0f7ec37bc7167e7dd68c5b45e657133e008
-  manager: conda
-  name: nest-asyncio
+    md5: 6598c056f64dc8800d40add25e4e2c34
+    sha256: 30db21d1f7e59b3408b831a7e0417b83b53ee6223afae56482c5f26da3ceb49a
+  category: main
   optional: false
+- name: openjpeg
+  version: 2.5.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.5.8-pyhd8ed1ab_0.conda
-  version: 1.5.8
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libpng: '>=1.6.39,<1.7.0a0'
     libstdcxx-ng: '>=12'
-    libtiff: '>=4.5.0,<4.6.0a0'
+    libtiff: '>=4.6.0,<4.7.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.0-h488ebb8_3.conda
   hash:
-    md5: 5ce6a42505c6e9e6151c54c3ec8d68ea
-    sha256: 3cbfb1fe9bb492dcb672f98f0ddc7b4e029f51f77101d9c301caa3acaea8cba2
-  manager: conda
-  name: openjpeg
+    md5: 128c25b7fe6a25286a48f3a6a9b5b6f3
+    sha256: 9fe91b67289267de68fda485975bb48f0605ac503414dc663b50d8b5f29bc82a
+  category: main
   optional: false
+- name: orekit
+  version: 12.0.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.0-hfec8fc6_2.conda
-  version: 2.5.0
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
     openjdk: 8.*
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
+  url: https://conda.anaconda.org/conda-forge/linux-64/orekit-12.0.1-py312h30efb56_2.conda
   hash:
-    md5: c1e5044a7de1f81a84a22d07ad697c24
-    sha256: f4fc022bf97579536c885401cd2a089d2a3f3d019acae7a59ae073c3b9b0fd1e
-  manager: conda
-  name: orekit
+    md5: 594621fa0b18d1335e38c56b17d71cde
+    sha256: 39664067dd2e0ce2ce21a089066cfed068e7264daff9f1fc4f46cb7328e6f433
+  category: main
   optional: false
+- name: packaging
+  version: '23.2'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/orekit-12.0-py311hb755f60_0.conda
-  version: '12.0'
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/packaging-23.2-pyhd8ed1ab_0.conda
   hash:
     md5: 79002079284aa895f883c6b7f3f88fd6
     sha256: 69b3ace6cca2dab9047b2c24926077d81d236bef45329d264b394001e3c3e52f
-  manager: conda
-  name: packaging
+  category: main
   optional: false
+- name: pandocfilters
+  version: 1.5.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/packaging-23.2-pyhd8ed1ab_0.conda
-  version: '23.2'
-- category: main
   dependencies:
     python: '!=3.0,!=3.1,!=3.2,!=3.3'
+  url: https://conda.anaconda.org/conda-forge/noarch/pandocfilters-1.5.0-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 457c2c8c08e54905d6954e79cb5b5db9
     sha256: 2bb9ba9857f4774b85900c2562f7e711d08dd48e2add9bee4e1612fbee27e16f
-  manager: conda
-  name: pandocfilters
+  category: main
   optional: false
+- name: parso
+  version: 0.8.3
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pandocfilters-1.5.0-pyhd8ed1ab_0.tar.bz2
-  version: 1.5.0
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.3-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 17a565a0c3899244e938cdf417e7b094
     sha256: 4e26d5daf5de0e31aa5e74ac56386a361b202433b83f024fdadbf07d4a244da4
-  manager: conda
-  name: parso
+  category: main
   optional: false
+- name: pickleshare
+  version: 0.7.5
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.3-pyhd8ed1ab_0.tar.bz2
-  version: 0.8.3
-- category: main
   dependencies:
     python: '>=3'
+  url: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2
   hash:
     md5: 415f0ebb6198cc2801c73438a9fb5761
     sha256: a1ed1a094dd0d1b94a09ed85c283a0eb28943f2e6f22161fb45e128d35229738
-  manager: conda
-  name: pickleshare
+  category: main
   optional: false
+- name: pkgutil-resolve-name
+  version: 1.3.10
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2
-  version: 0.7.5
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_1.conda
   hash:
     md5: 405678b942f2481cecdb3e010f4925d9
     sha256: fecf95377134b0e8944762d92ecf7b0149c07d8186fb5db583125a2705c7ea0a
+  category: main
+  optional: false
+- name: platformdirs
+  version: 4.2.0
   manager: conda
-  name: pkgutil-resolve-name
+  platform: linux-64
+  dependencies:
+    python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.2.0-pyhd8ed1ab_0.conda
+  hash:
+    md5: a0bc3eec34b0fab84be6b2da94e98e20
+    sha256: 2ebfb971236ab825dd79dd6086ea742a9901008ffb9c6222c1f2b5172a8039d3
+  category: main
   optional: false
+- name: ply
+  version: '3.11'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_1.conda
-  version: 1.3.10
-- category: main
   dependencies:
     python: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/ply-3.11-py_1.tar.bz2
   hash:
     md5: 7205635cd71531943440fbfe3b6b5727
     sha256: 2cd6fae8f9cbc806b7f828f006ae4a83c23fac917cacfd73c37ce322d4324e53
-  manager: conda
-  name: ply
+  category: main
   optional: false
+- name: prometheus_client
+  version: 0.20.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/ply-3.11-py_1.tar.bz2
-  version: '3.11'
-- category: main
   dependencies:
-    python: '>=3.6'
+    python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.20.0-pyhd8ed1ab_0.conda
   hash:
-    md5: ade903cbe0b4440ca6bed64932d124b5
-    sha256: 0e0257eee11d3e0b3f73566283fd6c705b1b2a5dbc7d9a609fa885519a62913e
-  manager: conda
-  name: prometheus_client
+    md5: 9a19b94034dd3abb2b348c8b93388035
+    sha256: 757cd91d01c2e0b64fadf6bc9a11f558cf7638d897dfbaf7415ddf324d5405c9
+  category: main
   optional: false
+- name: psutil
+  version: 5.9.8
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.18.0-pyhd8ed1ab_0.conda
-  version: 0.18.0
-- category: main
   dependencies:
     libgcc-ng: '>=12'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
+  url: https://conda.anaconda.org/conda-forge/linux-64/psutil-5.9.8-py312h98912ed_0.conda
   hash:
-    md5: 490d7fa8675afd1aa6f1b2332d156a45
-    sha256: e92d2120fc4b98fe838b3d52d4907fae97808bdd504fb84aa33aea8c4be7bc61
-  manager: conda
-  name: psutil
+    md5: 3facaca6cc0f7988df3250efccd32da3
+    sha256: 27e7f8f5d30c74439f39d61e21ac14c0cd03b5d55f7bf9f946fb619016f73c61
+  category: main
   optional: false
+- name: ptyprocess
+  version: 0.7.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/psutil-5.9.5-py311h459d7ec_1.conda
-  version: 5.9.5
-- category: main
   dependencies:
     python: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd3deb0d_0.tar.bz2
   hash:
     md5: 359eeb6536da0e687af562ed265ec263
     sha256: fb31e006a25eb2e18f3440eb8d17be44c8ccfae559499199f73584566d0a444a
-  manager: conda
-  name: ptyprocess
+  category: main
   optional: false
+- name: pure_eval
+  version: 0.2.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd3deb0d_0.tar.bz2
-  version: 0.7.0
-- category: main
   dependencies:
     python: '>=3.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.2-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 6784285c7e55cb7212efabc79e4c2883
     sha256: 72792f9fc2b1820e37cc57f84a27bc819c71088c3002ca6db05a2e56404f9d44
-  manager: conda
-  name: pure_eval
+  category: main
   optional: false
+- name: pycparser
+  version: '2.21'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.2-pyhd8ed1ab_0.tar.bz2
-  version: 0.2.2
-- category: main
   dependencies:
     python: 2.7.*|>=3.4
+  url: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.21-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 076becd9e05608f8dc72757d5f3a91ff
     sha256: 74c63fd03f1f1ea2b54e8bc529fd1a600aaafb24027b738d0db87909ee3a33dc
-  manager: conda
-  name: pycparser
+  category: main
   optional: false
+- name: pygments
+  version: 2.17.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.21-pyhd8ed1ab_0.tar.bz2
-  version: '2.21'
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/pygments-2.17.2-pyhd8ed1ab_0.conda
   hash:
-    md5: 40e5cb18165466773619e5c963f00a7b
-    sha256: 3f0f0fadc6084960ec8cc00a32a03529c562ffea3b527eb73b1653183daad389
-  manager: conda
-  name: pygments
+    md5: 140a7f159396547e9799aa98f9f0742e
+    sha256: af5f8867450dc292f98ea387d4d8945fc574284677c8f60eaa9846ede7387257
+  category: main
   optional: false
+- name: pyparsing
+  version: 3.1.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pygments-2.16.1-pyhd8ed1ab_0.conda
-  version: 2.16.1
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.1-pyhd8ed1ab_0.conda
   hash:
     md5: 176f7d56f0cfe9008bdf1bccd7de02fb
     sha256: 4a1332d634b6c2501a973655d68f08c9c42c0bd509c349239127b10572b8354b
-  manager: conda
-  name: pyparsing
+  category: main
   optional: false
+- name: pyshp
+  version: 2.3.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.1-pyhd8ed1ab_0.conda
-  version: 3.1.1
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/pyshp-2.3.1-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 92a889dc236a5197612bc85bee6d7174
     sha256: 41eced0d5e855bc52018f200b239d627daa38ad78a655ffa2f1efd95b07b6bce
-  manager: conda
-  name: pyshp
+  category: main
   optional: false
+- name: pysocks
+  version: 1.7.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pyshp-2.3.1-pyhd8ed1ab_0.tar.bz2
-  version: 2.3.1
-- category: main
   dependencies:
     __unix: ''
     python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2
   hash:
     md5: 2a7de29fb590ca14b5243c4c812c8025
     sha256: a42f826e958a8d22e65b3394f437af7332610e43ee313393d1cf143f0a2d274b
-  manager: conda
-  name: pysocks
+  category: main
   optional: false
+- name: python-fastjsonschema
+  version: 2.19.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2
-  version: 1.7.1
-- category: main
   dependencies:
     python: '>=3.3'
+  url: https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.19.1-pyhd8ed1ab_0.conda
   hash:
-    md5: 305141cff54af2f90e089d868fffce28
-    sha256: 3fb1af1ac7525072c46e111bc4e96ddf971f792ab049ca3aa25dbebbaffb6f7d
-  manager: conda
-  name: python-fastjsonschema
+    md5: 4d3ceee3af4b0f9a1f48f57176bf8625
+    sha256: 38b2db169d65cc5595e3ce63294c4fdb6a242ecf71f70b3ad8cad3bd4230d82f
+  category: main
   optional: false
+- name: python-json-logger
+  version: 2.0.7
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.18.1-pyhd8ed1ab_0.conda
-  version: 2.18.1
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda
   hash:
     md5: a61bf9ec79426938ff785eb69dbb1960
     sha256: 4790787fe1f4e8da616edca4acf6a4f8ed4e7c6967aa31b920208fc8f95efcca
-  manager: conda
-  name: python-json-logger
+  category: main
   optional: false
+- name: python-tzdata
+  version: '2024.1'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda
-  version: 2.0.7
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.1-pyhd8ed1ab_0.conda
   hash:
-    md5: 2590495f608a63625e165915fb4e2e34
-    sha256: 0108888507014fb24573c31e4deceb61c99e63d37776dddcadd7c89b2ecae0b6
-  manager: conda
-  name: python-tzdata
+    md5: 98206ea9954216ee7540f0c773f2104d
+    sha256: 9da9a849d53705dee450b83507df1ca8ffea5f83bd21a215202221f1c492f8ad
+  category: main
   optional: false
+- name: pytz
+  version: '2024.1'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2023.3-pyhd8ed1ab_0.conda
-  version: '2023.3'
-- category: main
   dependencies:
-    python: '>=3.6'
+    python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda
   hash:
-    md5: c93346b446cd08c169d843ae5fc0da97
-    sha256: 6b680e63d69aaf087cd43ca765a23838723ef59b0a328799e6363eb13f52c49e
-  manager: conda
-  name: pytz
+    md5: 3eeeeb9e4827ace8c0c1419c85d590ad
+    sha256: 1a7d6b233f7e6e3bbcbad054c8fd51e690a67b129a899a056a5e45dd9f00cb41
+  category: main
   optional: false
+- name: pyyaml
+  version: 6.0.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pytz-2023.3.post1-pyhd8ed1ab_0.conda
-  version: 2023.3.post1
-- category: main
   dependencies:
     libgcc-ng: '>=12'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12.0rc3,<3.13.0a0'
+    python_abi: 3.12.*
     yaml: '>=0.2.5,<0.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.1-py312h98912ed_1.conda
   hash:
-    md5: 52719a74ad130de8fb5d047dc91f247a
-    sha256: 28729ef1ffa7f6f9dfd54345a47c7faac5d34296d66a2b9891fb147f4efe1348
-  manager: conda
-  name: pyyaml
+    md5: e3fd78d8d490af1d84763b9fe3f2e552
+    sha256: 7f347a10a7121b08d79d21cd4f438c07c23479ea0c74dfb89d6dc416f791bb7f
+  category: main
   optional: false
+- name: pyzmq
+  version: 25.1.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.1-py311h459d7ec_1.conda
-  version: 6.0.1
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libsodium: '>=1.0.18,<1.0.19.0a0'
     libstdcxx-ng: '>=12'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
     zeromq: '>=4.3.5,<4.4.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/pyzmq-25.1.2-py312h886d080_0.conda
   hash:
-    md5: ea365280db99687905b4d76cf6a3568c
-    sha256: a5ed6592f32b0caf3883a2f863e8a6258845310d4eebeab2eaf1c5abed04d6b8
-  manager: conda
-  name: pyzmq
+    md5: cc2cdf8f1792d29d21e17024745813d8
+    sha256: 5aa0ba1f67e2b25ede34a713df6655e519211a96ea109857768930d96bcd0ca0
+  category: main
   optional: false
+- name: rfc3986-validator
+  version: 0.1.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/pyzmq-25.1.1-py311h34ded2d_2.conda
-  version: 25.1.1
-- category: main
   dependencies:
     python: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/rfc3986-validator-0.1.1-pyh9f0ad1d_0.tar.bz2
   hash:
     md5: 912a71cc01012ee38e6b90ddd561e36f
     sha256: 2a5b495a1de0f60f24d8a74578ebc23b24aa53279b1ad583755f223097c41c37
-  manager: conda
-  name: rfc3986-validator
+  category: main
   optional: false
+- name: rpds-py
+  version: 0.18.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/rfc3986-validator-0.1.1-pyh9f0ad1d_0.tar.bz2
-  version: 0.1.1
-- category: main
   dependencies:
     libgcc-ng: '>=12'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
+  url: https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.18.0-py312h4b3b743_0.conda
   hash:
-    md5: 1de71b7a1bef273d49132ffd90101b8d
-    sha256: d0c5f6cd0f4540541df4b32dff345f368ee398c48abc3d44309ab8e948f70c45
-  manager: conda
-  name: rpds-py
+    md5: cc8165b34bdb002ade83b068f44e5774
+    sha256: 7d8ca38e56db7f803dbc42240bd1918d6084f01cfd56e252a7121c5cdf850191
+  category: main
   optional: false
+- name: send2trash
+  version: 1.8.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.12.0-py311h46250e7_0.conda
-  version: 0.12.0
-- category: main
   dependencies:
     __linux: ''
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.2-pyh41d4057_0.conda
   hash:
     md5: ada5a17adcd10be4fc7e37e4166ba0e2
     sha256: e74d3faf51a6cc429898da0209d95b209270160f3edbf2f6d8b61a99428301cd
-  manager: conda
-  name: send2trash
+  category: main
   optional: false
+- name: setuptools
+  version: 69.1.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.2-pyh41d4057_0.conda
-  version: 1.8.2
-- category: main
   dependencies:
-    python: '>=3.7'
+    python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/setuptools-69.1.0-pyhd8ed1ab_1.conda
   hash:
-    md5: fc2166155db840c634a1291a5c35a709
-    sha256: 851901b1f8f2049edb36a675f0c3f9a98e1495ef4eb214761b048c6f696a06f7
-  manager: conda
-  name: setuptools
+    md5: d76a248ad1b9d4a79c2ce39ee41d626c
+    sha256: d233a0dc17d452324a4aa1f633c18ca562820c90cd08240c99e4b2f4f27a8692
+  category: main
   optional: false
+- name: six
+  version: 1.16.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/setuptools-68.2.2-pyhd8ed1ab_0.conda
-  version: 68.2.2
-- category: main
   dependencies:
     python: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2
   hash:
     md5: e5f25f8dbc060e9a8d912e432202afc2
     sha256: a85c38227b446f42c5b90d9b642f2c0567880c15d72492d8da074a59c8f91dd6
-  manager: conda
-  name: six
+  category: main
   optional: false
+- name: sniffio
+  version: 1.3.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2
-  version: 1.16.0
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.0-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: dd6cbc539e74cb1f430efbd4575b9303
     sha256: a3fd30754c20ddb28b777db38345ea00d958f46701f0decd6291a81c0f4eee78
-  manager: conda
-  name: sniffio
+  category: main
   optional: false
+- name: soupsieve
+  version: '2.5'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.0-pyhd8ed1ab_0.tar.bz2
-  version: 1.3.0
-- category: main
   dependencies:
     python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda
   hash:
     md5: 3f144b2c34f8cb5a9abd9ed23a39c561
     sha256: 54ae221033db8fbcd4998ccb07f3c3828b4d77e73b0c72b18c1d6a507059059c
-  manager: conda
-  name: soupsieve
+  category: main
   optional: false
+- name: tenacity
+  version: 8.2.3
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda
-  version: '2.5'
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/tenacity-8.2.3-pyhd8ed1ab_0.conda
   hash:
     md5: 1482e77f87c6a702a7e05ef22c9b197b
     sha256: 860c11e7369d6a86fcc9c6cbca49d5c457f6c0a27faeacca4d46267f9dd10d78
-  manager: conda
-  name: tenacity
+  category: main
   optional: false
+- name: toml
+  version: 0.10.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/tenacity-8.2.3-pyhd8ed1ab_0.conda
-  version: 8.2.3
-- category: main
   dependencies:
     python: '>=2.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: f832c45a477c78bebd107098db465095
     sha256: f0f3d697349d6580e4c2f35ba9ce05c65dc34f9f049e85e45da03800b46139c1
-  manager: conda
-  name: toml
+  category: main
   optional: false
+- name: tomli
+  version: 2.0.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2
-  version: 0.10.2
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.1-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 5844808ffab9ebdb694585b50ba02a96
     sha256: 4cd48aba7cd026d17e86886af48d0d2ebc67ed36f87f6534f4b67138f5a5a58f
-  manager: conda
-  name: tomli
+  category: main
   optional: false
+- name: tornado
+  version: '6.4'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.1-pyhd8ed1ab_0.tar.bz2
-  version: 2.0.1
-- category: main
   dependencies:
     libgcc-ng: '>=12'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
+  url: https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4-py312h98912ed_0.conda
   hash:
-    md5: a700fcb5cedd3e72d0c75d095c7a6eda
-    sha256: 3f0640415c6f50c6b31b5ce41a870ac48c130fda8921aae11afea84c54a6ba84
-  manager: conda
-  name: tornado
+    md5: e8332e534dca8c5c12c8352e0a23501c
+    sha256: 5764795df60bd9fdbe54ec6df20ef2a94507b2a22b29be899b78745383bafab3
+  category: main
   optional: false
+- name: traitlets
+  version: 5.14.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/tornado-6.3.3-py311h459d7ec_1.conda
-  version: 6.3.3
-- category: main
   dependencies:
     python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.1-pyhd8ed1ab_0.conda
   hash:
-    md5: 8a9953c15e1e5a7c1baddbbf4511a567
-    sha256: 7ac67960ba2e8c16818043cc65ac6190fa4fd95f5b24357df58e4f73d5e60a10
-  manager: conda
-  name: traitlets
+    md5: 1c6acfdc7ecbfe09954c4216da99c146
+    sha256: fa78d68f74ec8aae5c93f135140bfdbbf0ab60a79c6062b55d73c316068545ec
+  category: main
   optional: false
+- name: types-python-dateutil
+  version: 2.8.19.20240106
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.13.0-pyhd8ed1ab_0.conda
-  version: 5.13.0
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/types-python-dateutil-2.8.19.20240106-pyhd8ed1ab_0.conda
   hash:
-    md5: 4df15c51a543e806d439490b862be1c6
-    sha256: 7b0129c72d371fa7a06ed5dd1d701844c20d03bb4641a38a88a982b347d087e2
-  manager: conda
-  name: types-python-dateutil
+    md5: c9096a546660b9079dce531c0039e074
+    sha256: 09ef8cc587bdea80a83b6f820dbae24daadcf82be088fb0a9f6495781653e300
+  category: main
   optional: false
+- name: typing_extensions
+  version: 4.9.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/types-python-dateutil-2.8.19.14-pyhd8ed1ab_0.conda
-  version: 2.8.19.14
-- category: main
   dependencies:
     python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.9.0-pyha770c72_0.conda
   hash:
-    md5: 5b1be40a26d10a06f6d4f1f9e19fa0c7
-    sha256: 38d16b5c53ec1af845d37d22e7bb0e6c934c7f19499123507c5a470f6f8b7dde
-  manager: conda
-  name: typing_extensions
+    md5: a92a6440c3fe7052d63244f3aba2a4a7
+    sha256: f3c5be8673bfd905c4665efcb27fa50192f24f84fa8eff2f19cba5d09753d905
+  category: main
   optional: false
+- name: typing_utils
+  version: 0.1.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.8.0-pyha770c72_0.conda
-  version: 4.8.0
-- category: main
   dependencies:
     python: '>=3.6.1'
+  url: https://conda.anaconda.org/conda-forge/noarch/typing_utils-0.1.0-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: eb67e3cace64c66233e2d35949e20f92
     sha256: 9e3758b620397f56fb709f796969de436d63b7117897159619b87938e1f78739
-  manager: conda
-  name: typing_utils
+  category: main
   optional: false
+- name: uri-template
+  version: 1.3.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/typing_utils-0.1.0-pyhd8ed1ab_0.tar.bz2
-  version: 0.1.0
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/uri-template-1.3.0-pyhd8ed1ab_0.conda
   hash:
     md5: 0944dc65cb4a9b5b68522c3bb585d41c
     sha256: b76904b53721dc88a46352324c79d2b077c2f74a9f7208ad2c4249892669ae94
+  category: main
+  optional: false
+- name: wcwidth
+  version: 0.2.13
   manager: conda
-  name: uri-template
+  platform: linux-64
+  dependencies:
+    python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.13-pyhd8ed1ab_0.conda
+  hash:
+    md5: 68f0738df502a14213624b288c60c9ad
+    sha256: b6cd2fee7e728e620ec736d8dfee29c6c9e2adbd4e695a31f1d8f834a83e57e3
+  category: main
   optional: false
+- name: webcolors
+  version: '1.13'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/uri-template-1.3.0-pyhd8ed1ab_0.conda
-  version: 1.3.0
-- category: main
   dependencies:
     python: '>=3.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/webcolors-1.13-pyhd8ed1ab_0.conda
   hash:
     md5: 166212fe82dad8735550030488a01d03
     sha256: 6e097d5fe92849ad3af2c2a313771ad2fbf1cadd4dc4afd552303b2bf3f85211
-  manager: conda
-  name: webcolors
+  category: main
   optional: false
+- name: webencodings
+  version: 0.5.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/webcolors-1.13-pyhd8ed1ab_0.conda
-  version: '1.13'
-- category: main
   dependencies:
     python: '>=2.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda
   hash:
     md5: daf5160ff9cde3a468556965329085b9
     sha256: 2adf9bd5482802837bc8814cbe28d7b2a4cbd2e2c52e381329eaa283b3ed1944
-  manager: conda
-  name: webencodings
+  category: main
   optional: false
+- name: websocket-client
+  version: 1.7.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda
-  version: 0.5.1
-- category: main
   dependencies:
     python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/websocket-client-1.7.0-pyhd8ed1ab_0.conda
   hash:
-    md5: bdb77b28cf16deac0eef431a068320e8
-    sha256: df45b89862edcd7cd5180ec7b8c0c0ca9fb4d3f7d49ddafccdc76afcf50d8da6
-  manager: conda
-  name: websocket-client
+    md5: 50ad31e07d706aae88b14a4ac9c73f23
+    sha256: d9b537d5b7c5aa7a02a4ce4c6b755e458bd8083b67752a73c92d113ccec6c10f
+  category: main
   optional: false
+- name: xcb-util-image
+  version: 0.4.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/websocket-client-1.6.4-pyhd8ed1ab_0.conda
-  version: 1.6.4
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libxcb: '>=1.15,<1.16.0a0'
     xcb-util: '>=0.4.0,<0.5.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-h8ee46fc_1.conda
   hash:
     md5: 9d7bcddf49cbf727730af10e71022c73
     sha256: 92ffd68d2801dbc27afe223e04ae7e78ef605fc8575f107113c93c7bafbd15b0
-  manager: conda
-  name: xcb-util-image
+  category: main
   optional: false
+- name: xkeyboard-config
+  version: '2.41'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-h8ee46fc_1.conda
-  version: 0.4.0
-- category: main
   dependencies:
     libgcc-ng: '>=12'
-    xorg-libx11: '>=1.8.6,<2.0a0'
+    xorg-libx11: '>=1.8.7,<2.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.41-hd590300_0.conda
   hash:
-    md5: 07c15d846a2e4d673da22cbd85fdb6d2
-    sha256: a01fcb9c3346ee08aa24b3900a08896f2e8f80c891378a57d71764e16bbd6141
-  manager: conda
-  name: xkeyboard-config
+    md5: 81f740407b45e3f9047b3174fa94eb9e
+    sha256: 56955610c0747ea7cb026bb8aa9ef165ff41d616e89894538173b8b7dd2ee49a
+  category: main
   optional: false
+- name: xorg-libxext
+  version: 1.3.4
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.40-hd590300_0.conda
-  version: '2.40'
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     xorg-libx11: '>=1.7.2,<2.0a0'
     xorg-xextproto: ''
+  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.4-h0b41bf4_2.conda
   hash:
     md5: 82b6df12252e6f32402b96dacc656fec
     sha256: 73e5cfbdff41ef8a844441f884412aa5a585a0f0632ec901da035a03e1fe1249
-  manager: conda
-  name: xorg-libxext
+  category: main
   optional: false
+- name: xorg-libxrender
+  version: 0.9.11
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.4-h0b41bf4_2.conda
-  version: 1.3.4
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     xorg-libx11: '>=1.8.6,<2.0a0'
     xorg-renderproto: ''
+  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hd590300_0.conda
   hash:
     md5: ed67c36f215b310412b2af935bf3e530
     sha256: 26da4d1911473c965c32ce2b4ff7572349719eaacb88a066db8d968a4132c3f7
-  manager: conda
-  name: xorg-libxrender
+  category: main
   optional: false
+- name: zipp
+  version: 3.17.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hd590300_0.conda
-  version: 0.9.11
-- category: main
   dependencies:
     python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/zipp-3.17.0-pyhd8ed1ab_0.conda
   hash:
     md5: 2e4d6bc0b14e10f895fc6791a7d9b26a
     sha256: bced1423fdbf77bca0a735187d05d9b9812d2163f60ab426fc10f11f92ecbe26
-  manager: conda
-  name: zipp
+  category: main
   optional: false
+- name: anyio
+  version: 4.3.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/zipp-3.17.0-pyhd8ed1ab_0.conda
-  version: 3.17.0
-- category: main
   dependencies:
-    exceptiongroup: ''
+    exceptiongroup: '>=1.0.2'
     idna: '>=2.8'
     python: '>=3.8'
     sniffio: '>=1.1'
+    typing_extensions: '>=4.1'
+  url: https://conda.anaconda.org/conda-forge/noarch/anyio-4.3.0-pyhd8ed1ab_0.conda
   hash:
-    md5: 3c4e99d3ae4ec033d4dd99fb5220e540
-    sha256: 64125775b2e724db5c72e431dd180495d5d509d0a2d1228a122e6af9f1b60e33
-  manager: conda
-  name: anyio
+    md5: ac95aa8ed65adfdde51132595c79aade
+    sha256: 86aca4a31c09f9b4dbdb332cd9a6a7dbab62ca734d3f832651c0ab59c6a7f52e
+  category: main
   optional: false
+- name: asttokens
+  version: 2.4.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/anyio-4.0.0-pyhd8ed1ab_0.conda
-  version: 4.0.0
-- category: main
   dependencies:
     python: '>=3.5'
     six: '>=1.12.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/asttokens-2.4.1-pyhd8ed1ab_0.conda
   hash:
     md5: 5f25798dcefd8252ce5f9dc494d5f571
     sha256: 708168f026df19a0344983754d27d1f7b28bb21afc7b97a82f02c4798a3d2111
-  manager: conda
-  name: asttokens
+  category: main
   optional: false
+- name: async-lru
+  version: 2.0.4
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/asttokens-2.4.1-pyhd8ed1ab_0.conda
-  version: 2.4.1
-- category: main
   dependencies:
     python: '>=3.8'
     typing_extensions: '>=4.0.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/async-lru-2.0.4-pyhd8ed1ab_0.conda
   hash:
     md5: 3d081de3a6ea9f894bbb585e8e3a4dcb
     sha256: 7ed83731979fe5b046c157730e50af0e24454468bbba1ed8fc1a3107db5d7518
-  manager: conda
-  name: async-lru
+  category: main
   optional: false
+- name: babel
+  version: 2.14.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/async-lru-2.0.4-pyhd8ed1ab_0.conda
-  version: 2.0.4
-- category: main
   dependencies:
     python: '>=3.7'
     pytz: ''
     setuptools: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/babel-2.14.0-pyhd8ed1ab_0.conda
   hash:
-    md5: 3ccff479c246692468f604df9c85ef26
-    sha256: 1f955c700db16f65b16c9e9c1613436480d5497970b8030b7a9ebe1620cc2147
-  manager: conda
-  name: babel
+    md5: 9669586875baeced8fc30c0826c3270e
+    sha256: 8584e3da58e92b72641c89ff9b98c51f0d5dbe76e527867804cbdf03ac91d8e6
+  category: main
   optional: false
+- name: backports.functools_lru_cache
+  version: 1.6.5
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/babel-2.13.1-pyhd8ed1ab_0.conda
-  version: 2.13.1
-- category: main
   dependencies:
     backports: ''
     python: '>=3.6'
     setuptools: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/backports.functools_lru_cache-1.6.5-pyhd8ed1ab_0.conda
   hash:
     md5: 6b1b907661838a75d067a22f87996b2e
     sha256: 7027bb689dd4ca4a08e3b25805de9d04239be6b31125993558f21f102a9d2700
-  manager: conda
-  name: backports.functools_lru_cache
+  category: main
   optional: false
+- name: beautifulsoup4
+  version: 4.12.3
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/backports.functools_lru_cache-1.6.5-pyhd8ed1ab_0.conda
-  version: 1.6.5
-- category: main
   dependencies:
     python: '>=3.6'
     soupsieve: '>=1.2'
+  url: https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda
   hash:
-    md5: a362ff7d976217f8fa78c0f1c4f59717
-    sha256: 52d3e6bcd442537e22699cd227d8fdcfd54b708eeb8ee5b4c671a6a9b9cd74da
-  manager: conda
-  name: beautifulsoup4
+    md5: 332493000404d8411859539a5a630865
+    sha256: 7b05b2d0669029326c623b9df7a29fa49d1982a9e7e31b2fea34b4c9a4a72317
+  category: main
   optional: false
+- name: bleach
+  version: 6.1.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.2-pyha770c72_0.conda
-  version: 4.12.2
-- category: main
   dependencies:
     packaging: ''
     python: '>=3.6'
     setuptools: ''
     six: '>=1.9.0'
     webencodings: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/bleach-6.1.0-pyhd8ed1ab_0.conda
   hash:
     md5: 0ed9d7c0e9afa7c025807a9a8136ea3e
     sha256: 845e77ef495376c5c3c328ccfd746ca0ef1978150cae8eae61a300fe7755fb08
-  manager: conda
-  name: bleach
+  category: main
   optional: false
+- name: cached-property
+  version: 1.5.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/bleach-6.1.0-pyhd8ed1ab_0.conda
-  version: 6.1.0
-- category: main
   dependencies:
     cached_property: '>=1.5.2,<1.5.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/noarch/cached-property-1.5.2-hd8ed1ab_1.tar.bz2
   hash:
     md5: 9b347a7ec10940d3f7941ff6c460b551
     sha256: 561e6660f26c35d137ee150187d89767c988413c978e1b712d53f27ddf70ea17
-  manager: conda
-  name: cached-property
+  category: main
   optional: false
+- name: cairo
+  version: 1.18.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/cached-property-1.5.2-hd8ed1ab_1.tar.bz2
-  version: 1.5.2
-- category: main
   dependencies:
     fontconfig: '>=2.14.2,<3.0a0'
     fonts-conda-ecosystem: ''
@@ -2552,686 +2617,743 @@ package:
     xorg-libxext: '>=1.3.4,<2.0a0'
     xorg-libxrender: '>=0.9.11,<0.10.0a0'
     zlib: ''
+  url: https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-h3faef2a_0.conda
   hash:
     md5: f907bb958910dc404647326ca80c263e
     sha256: 142e2639a5bc0e99c44d76f4cc8dce9c6a2d87330c4beeabb128832cd871a86e
-  manager: conda
-  name: cairo
+  category: main
   optional: false
+- name: cffi
+  version: 1.16.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-h3faef2a_0.conda
-  version: 1.18.0
-- category: main
   dependencies:
     libffi: '>=3.4,<4.0a0'
     libgcc-ng: '>=12'
     pycparser: ''
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12.0rc3,<3.13.0a0'
+    python_abi: 3.12.*
+  url: https://conda.anaconda.org/conda-forge/linux-64/cffi-1.16.0-py312hf06ca03_0.conda
   hash:
-    md5: b3469563ac5e808b0cd92810d0697043
-    sha256: b71c94528ca0c35133da4b7ef69b51a0b55eeee570376057f3d2ad60c3ab1444
-  manager: conda
-  name: cffi
+    md5: 56b0ca764ce23cc54f3f7e2a7b970f6d
+    sha256: 5a36e2c254603c367d26378fa3a205bd92263e30acf195f488749562b4c44251
+  category: main
   optional: false
+- name: comm
+  version: 0.2.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/cffi-1.16.0-py311hb3a22ac_0.conda
-  version: 1.16.0
-- category: main
   dependencies:
     python: '>=3.6'
     traitlets: '>=5.3'
+  url: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.1-pyhd8ed1ab_0.conda
   hash:
-    md5: c8eaca39e2b6abae1fc96acc929ae939
-    sha256: 11057745946a95ee7cc4c98900a60c7362266a4cb28bc97d96cd88e3056eb701
-  manager: conda
-  name: comm
+    md5: f4385072f4909bc974f6675a36e76796
+    sha256: bd90a200e6f7092a89f02c4800729a4a6d2b2de49d70a9706aeb083a635308c1
+  category: main
   optional: false
+- name: fonttools
+  version: 4.49.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/comm-0.1.4-pyhd8ed1ab_0.conda
-  version: 0.1.4
-- category: main
   dependencies:
     brotli: ''
     libgcc-ng: '>=12'
     munkres: ''
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
+  url: https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.49.0-py312h98912ed_0.conda
   hash:
-    md5: f12f4d7361178f94df1052d6b63fd868
-    sha256: d1a0023bc0a35b9e3f9be10b6fe5f305a0e14fe4e956d688304413f4234ae286
-  manager: conda
-  name: fonttools
+    md5: b0d9bd8d89f85d031783e497e6e3bbad
+    sha256: df21c2a070b576e4b930a95a58780ec3d0fa2ff586b40e3d9fe7953cdf1ea456
+  category: main
   optional: false
+- name: glib
+  version: 2.78.4
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.44.0-py311h459d7ec_0.conda
-  version: 4.44.0
-- category: main
   dependencies:
     gettext: '>=0.21.1,<1.0a0'
-    glib-tools: 2.78.1 hfc55251_0
+    glib-tools: 2.78.4
     libgcc-ng: '>=12'
-    libglib: 2.78.1 hebfc3b9_0
+    libglib: 2.78.4
     libstdcxx-ng: '>=12'
     libzlib: '>=1.2.13,<1.3.0a0'
     python: '*'
+  url: https://conda.anaconda.org/conda-forge/linux-64/glib-2.78.4-hfc55251_0.conda
   hash:
-    md5: 43c633c015a361610ee4db2e95f8a517
-    sha256: fc052d470898ce222d1087815f3c16a8d32a3ef1afec06c39b892bea2d4b164a
+    md5: f36a7b2420c3fc3c48a3d609841d8fee
+    sha256: 316c95dcbde46b7418d2b667a7e0c1d05101b673cd8c691d78d8699600a07a5b
+  category: main
+  optional: false
+- name: h11
+  version: 0.14.0
+  manager: conda
+  platform: linux-64
+  dependencies:
+    python: '>=3'
+    typing_extensions: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2
+  hash:
+    md5: b21ed0883505ba1910994f1df031a428
+    sha256: 817d2c77d53afe3f3d9cf7f6eb8745cdd8ea76c7adaa9d7ced75c455a2c2c085
+  category: main
+  optional: false
+- name: h2
+  version: 4.1.0
   manager: conda
-  name: glib
+  platform: linux-64
+  dependencies:
+    hpack: '>=4.0,<5'
+    hyperframe: '>=6.0,<7'
+    python: '>=3.6.1'
+  url: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2
+  hash:
+    md5: b748fbf7060927a6e82df7cb5ee8f097
+    sha256: bfc6a23849953647f4e255c782e74a0e18fe16f7e25c7bb0bc57b83bb6762c7a
+  category: main
   optional: false
+- name: importlib-metadata
+  version: 7.0.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/glib-2.78.1-hfc55251_0.conda
-  version: 2.78.1
-- category: main
   dependencies:
     python: '>=3.8'
     zipp: '>=0.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.0.1-pyha770c72_0.conda
   hash:
-    md5: 4e9f59a060c3be52bc4ddc46ee9b6946
-    sha256: 2797ed927d65324309b6c630190d917b9f2111e0c217b721f80429aeb57f9fcf
-  manager: conda
-  name: importlib-metadata
+    md5: 746623a787e06191d80a2133e5daff17
+    sha256: e72d05f171f4567004c9360a838e9d5df21e23dcfeb945066b53a6e5f754b861
+  category: main
   optional: false
+- name: importlib_resources
+  version: 6.1.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-6.8.0-pyha770c72_0.conda
-  version: 6.8.0
-- category: main
   dependencies:
     python: '>=3.8'
     zipp: '>=3.1.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.1.1-pyhd8ed1ab_0.conda
   hash:
     md5: 3d5fa25cf42f3f32a12b2d874ace8574
     sha256: e584f9ae08fb2d242af0ce7e19e3cd2f85f362d8523119e08f99edb962db99ed
-  manager: conda
-  name: importlib_resources
+  category: main
   optional: false
+- name: jedi
+  version: 0.19.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.1.1-pyhd8ed1ab_0.conda
-  version: 6.1.1
-- category: main
   dependencies:
     parso: '>=0.8.3,<0.9.0'
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.1-pyhd8ed1ab_0.conda
   hash:
     md5: 81a3be0b2023e1ea8555781f0ad904a2
     sha256: 362f0936ef37dfd1eaa860190e42a6ebf8faa094eaa3be6aa4d9ace95f40047a
-  manager: conda
-  name: jedi
+  category: main
   optional: false
+- name: jinja2
+  version: 3.1.3
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.1-pyhd8ed1ab_0.conda
-  version: 0.19.1
-- category: main
   dependencies:
     markupsafe: '>=2.0'
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.3-pyhd8ed1ab_0.conda
   hash:
-    md5: c8490ed5c70966d232fdd389d0dbed37
-    sha256: b045faba7130ab263db6a8fdc96b1a3de5fcf85c4a607c5f11a49e76851500b5
+    md5: e7d8df6509ba635247ff9aea31134262
+    sha256: fd517b7dd3a61eca34f8a6f9f92f306397149cae1204fce72ac3d227107dafdc
+  category: main
+  optional: false
+- name: jupyter_core
+  version: 5.7.1
   manager: conda
-  name: jinja2
+  platform: linux-64
+  dependencies:
+    platformdirs: '>=2.5'
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
+    traitlets: '>=5.3'
+  url: https://conda.anaconda.org/conda-forge/linux-64/jupyter_core-5.7.1-py312h7900ff3_0.conda
+  hash:
+    md5: a26a2c80b748744dafb642a9a729e119
+    sha256: ce667e4829f934ace4437474ad4775bbd5ac53a597529afebfd8533dec1e697c
+  category: main
   optional: false
+- name: jupyterlab_pygments
+  version: 0.3.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.2-pyhd8ed1ab_1.tar.bz2
-  version: 3.1.2
-- category: main
   dependencies:
     pygments: '>=2.4.1,<3'
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_1.conda
   hash:
-    md5: 243f63592c8e449f40cd42eb5cf32f40
-    sha256: 08453e09d5a6bbaeeca839553a5dfd7a377a97550efab96019c334a8042f54f5
-  manager: conda
-  name: jupyterlab_pygments
+    md5: afcd1b53bcac8844540358e33f33d28f
+    sha256: 4aa622bbcf97e44cd1adf0100b7ff71b7e20268f043bdf6feae4d16152f1f242
+  category: main
   optional: false
+- name: libcblas
+  version: 3.9.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.2.2-pyhd8ed1ab_0.tar.bz2
-  version: 0.2.2
-- category: main
   dependencies:
-    libblas: 3.9.0 19_linux64_openblas
+    libblas: 3.9.0
+  url: https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-21_linux64_openblas.conda
   hash:
-    md5: d12374af44575413fbbd4a217d46ea33
-    sha256: 84fddccaf58f42b07af7fb42512bd617efcb072f17bdef27f4c1884dbd33c86a
-  manager: conda
-  name: libcblas
+    md5: 4a3816d06451c4946e2db26b86472cb6
+    sha256: 467bbfbfe1a1aeb8b1f9f6485eedd8ed1b6318941bf3702da72336ccf4dc25a6
+  category: main
   optional: false
-  platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-19_linux64_openblas.conda
-  version: 3.9.0
-- category: main
+- name: libclang
+  version: 15.0.7
+  manager: conda
+  platform: linux-64
   dependencies:
-    libclang13: 15.0.7 default_h9986a30_3
+    libclang13: 15.0.7
     libgcc-ng: '>=12'
     libllvm15: '>=15.0.7,<15.1.0a0'
     libstdcxx-ng: '>=12'
-    libzlib: '>=1.2.13,<1.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libclang-15.0.7-default_hb11cfb5_4.conda
   hash:
-    md5: 0922208521c0463e690bbaebba7eb551
-    sha256: c2b0c8dd675e30d86bad410679f258820bc36723fbadffc13c2f60249be91815
-  manager: conda
-  name: libclang
+    md5: c90f4cbb57839c98fef8f830e4b9972f
+    sha256: 0b80441f222a91074d0e5edb0fbc3b1ce16ca2cdf6ab899721afdcc3a3ff6302
+  category: main
   optional: false
+- name: liblapack
+  version: 3.9.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libclang-15.0.7-default_h7634d5b_3.conda
-  version: 15.0.7
-- category: main
   dependencies:
-    libblas: 3.9.0 19_linux64_openblas
+    libblas: 3.9.0
+  url: https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-21_linux64_openblas.conda
   hash:
-    md5: 9f100edf65436e3eabc2a51fc00b2c37
-    sha256: 58f402aae605ebd0932e1cbbf855cd49dcdfa2fcb6aab790a4f6068ec5937878
-  manager: conda
-  name: liblapack
+    md5: 1a42f305615c3867684e049e85927531
+    sha256: 64b5c35dce00dd6f9f53178b2fe87116282e00967970bd6551a5a42923806ded
+  category: main
   optional: false
+- name: libxkbcommon
+  version: 1.6.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-19_linux64_openblas.conda
-  version: 3.9.0
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
     libxcb: '>=1.15,<1.16.0a0'
-    libxml2: '>=2.11.5,<2.12.0a0'
+    libxml2: '>=2.12.1,<3.0.0a0'
     xkeyboard-config: ''
     xorg-libxau: '>=1.0.11,<2.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.6.0-hd429924_1.conda
   hash:
-    md5: d8edd0e29db6fb6b6988e1a28d35d994
-    sha256: 6cd22602fe1517af411cfbf65babf1d6aad276100c2bce90d5e316214a602bbb
-  manager: conda
-  name: libxkbcommon
+    md5: 1dbcc04604fdf1e526e6d1b0b6938396
+    sha256: 213a4c927618198fd5fb5e7b0a76b89310a9c04a3ea025d59771754ee8a89451
+  category: main
   optional: false
+- name: matplotlib-inline
+  version: 0.1.6
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.6.0-h5d7e998_0.conda
-  version: 1.6.0
-- category: main
   dependencies:
     python: '>=3.6'
     traitlets: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.6-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: b21613793fcc81d944c76c9f2864a7de
     sha256: aa091b88aec55bfa2d9207028d8cdc689b9efb090ae27b99557e93c675be2f3c
-  manager: conda
-  name: matplotlib-inline
+  category: main
   optional: false
+- name: overrides
+  version: 7.7.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.6-pyhd8ed1ab_0.tar.bz2
-  version: 0.1.6
-- category: main
   dependencies:
     python: '>=3.6'
     typing_utils: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/overrides-7.7.0-pyhd8ed1ab_0.conda
   hash:
-    md5: 4625b7b01d7f4ac9c96300a5515acfaa
-    sha256: 29db8c3b521d261bf71897ba3cfbebc81cd61e581b30fcb984b5a713f02fe1ff
-  manager: conda
-  name: overrides
+    md5: 24fba5a9d161ad8103d4e84c0e1a3ed4
+    sha256: 5e238e5e646414d517a13f6786c7227206ace58271e3ef63f6adca4d6a4c2839
+  category: main
   optional: false
+- name: pexpect
+  version: 4.9.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/overrides-7.4.0-pyhd8ed1ab_0.conda
-  version: 7.4.0
-- category: main
   dependencies:
     ptyprocess: '>=0.5'
-    python: ''
+    python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_0.conda
   hash:
-    md5: 330448ce4403cc74990ac07c555942a1
-    sha256: 07706c0417ead94f359ca7278f65452d3c396448777aba1da6a11fc351bdca9a
-  manager: conda
-  name: pexpect
+    md5: 629f3203c99b32e0988910c93e77f3b6
+    sha256: 90a09d134a4a43911b716d4d6eb9d169238aff2349056f7323d9db613812667e
+  category: main
   optional: false
+- name: pillow
+  version: 10.2.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pexpect-4.8.0-pyh1a96a4e_2.tar.bz2
-  version: 4.8.0
-- category: main
   dependencies:
     freetype: '>=2.12.1,<3.0a0'
-    lcms2: '>=2.15,<3.0a0'
+    lcms2: '>=2.16,<3.0a0'
     libgcc-ng: '>=12'
-    libjpeg-turbo: '>=2.1.5.1,<3.0a0'
-    libtiff: '>=4.5.1,<4.6.0a0'
-    libwebp-base: '>=1.3.1,<2.0a0'
+    libjpeg-turbo: '>=3.0.0,<4.0a0'
+    libtiff: '>=4.6.0,<4.7.0a0'
+    libwebp-base: '>=1.3.2,<2.0a0'
     libxcb: '>=1.15,<1.16.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
     openjpeg: '>=2.5.0,<3.0a0'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
-    tk: '>=8.6.12,<8.7.0a0'
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
+    tk: '>=8.6.13,<8.7.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/pillow-10.2.0-py312hf3581a9_0.conda
   hash:
-    md5: 4b24acdc1fbbae9da03147e7d2cf8c8a
-    sha256: 20b0a2fcdc5fee405fe3ef8d18f737863c58a5209ebf0211dec1f820c2c640c2
-  manager: conda
-  name: pillow
+    md5: f35cb852483290b40b5a47e117e80a1d
+    sha256: 27f589c316efae5b57b9fea207757574b7b455addf470929099c4bab93aaa1d2
+  category: main
   optional: false
+- name: plotly
+  version: 5.19.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/pillow-10.0.0-py311h0b84326_0.conda
-  version: 10.0.0
-- category: main
   dependencies:
     packaging: ''
     python: '>=3.6'
     tenacity: '>=6.2.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/plotly-5.19.0-pyhd8ed1ab_0.conda
   hash:
-    md5: 9f6a8664f1fe752f79473eeb9bf33a60
-    sha256: 1e812d896897a4d58d520bb51072d91d477faf7697e2b724b8ce59040989e8be
-  manager: conda
-  name: plotly
+    md5: 669cd7065794633b9e64e6a9612ec700
+    sha256: fa9ae81e1f304f1480378ea25d559748e061c5b8d55b3ade433c3bc483dbae9e
+  category: main
   optional: false
+- name: proj
+  version: 9.3.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/plotly-5.18.0-pyhd8ed1ab_0.conda
-  version: 5.18.0
-- category: main
   dependencies:
-    libcurl: '>=7.88.1,<9.0a0'
+    libcurl: '>=8.4.0,<9.0a0'
     libgcc-ng: '>=12'
-    libsqlite: '>=3.40.0,<4.0a0'
+    libsqlite: '>=3.44.2,<4.0a0'
     libstdcxx-ng: '>=12'
-    libtiff: '>=4.5.0,<4.6.0a0'
+    libtiff: '>=4.6.0,<4.7.0a0'
     sqlite: ''
+  url: https://conda.anaconda.org/conda-forge/linux-64/proj-9.3.1-h1d62c97_0.conda
   hash:
-    md5: 8b9dcfabec5c6bcac98e89889fffa64e
-    sha256: 45f890044e773d3fd9a1a4ef0d2fc42a82921a4bd65db541667d04dcd29294aa
+    md5: 44ec51d0857d9be26158bb85caa74fdb
+    sha256: 234f8f7b255dc9036812ec30d097c0725047f3fc7e8e0bc7944e4e17d242ab99
+  category: main
+  optional: false
+- name: prompt-toolkit
+  version: 3.0.42
   manager: conda
-  name: proj
+  platform: linux-64
+  dependencies:
+    python: '>=3.7'
+    wcwidth: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.42-pyha770c72_0.conda
+  hash:
+    md5: 0bf64bf10eee21f46ac83c161917fa86
+    sha256: 58525b2a9305fb154b2b0d43a48b9a6495441b80e4fbea44f2a34a597d2cef16
+  category: main
   optional: false
+- name: pulseaudio-client
+  version: '16.1'
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/proj-9.2.0-h8ffa02c_0.conda
-  version: 9.2.0
-- category: main
   dependencies:
     dbus: '>=1.13.6,<2.0a0'
     libgcc-ng: '>=12'
     libglib: '>=2.76.4,<3.0a0'
     libsndfile: '>=1.2.2,<1.3.0a0'
     libsystemd0: '>=254'
+  url: https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-16.1-hb77b528_5.conda
   hash:
     md5: ac902ff3c1c6d750dd0dfc93a974ab74
     sha256: 9981c70893d95c8cac02e7edd1a9af87f2c8745b772d529f08b7f9dafbe98606
-  manager: conda
-  name: pulseaudio-client
+  category: main
   optional: false
+- name: python-dateutil
+  version: 2.8.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-16.1-hb77b528_5.conda
-  version: '16.1'
-- category: main
   dependencies:
     python: '>=3.6'
     six: '>=1.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.8.2-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: dd999d1cc9f79e67dbb855c8924c7984
     sha256: 54d7785c7678166aa45adeaccfc1d2b8c3c799ca2dc05d4a82bb39b1968bd7da
-  manager: conda
-  name: python-dateutil
+  category: main
   optional: false
+- name: referencing
+  version: 0.33.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.8.2-pyhd8ed1ab_0.tar.bz2
-  version: 2.8.2
-- category: main
   dependencies:
     attrs: '>=22.2.0'
     python: '>=3.8'
     rpds-py: '>=0.7.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/referencing-0.33.0-pyhd8ed1ab_0.conda
   hash:
-    md5: a33161b983172ba6ef69d5fc850650cd
-    sha256: a6768fabc12f1eed87fec68c5c65439e908655cded1e458d70a164abbce13287
-  manager: conda
-  name: referencing
+    md5: bc415a1c6cf049166215d6b596e0fcbe
+    sha256: 5707eb9ee2c7cfcc56a5223b24ab3133ff61aaa796931f3b22068e0a43ea6ecf
+  category: main
   optional: false
+- name: rfc3339-validator
+  version: 0.1.4
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/referencing-0.30.2-pyhd8ed1ab_0.conda
-  version: 0.30.2
-- category: main
   dependencies:
     python: '>=3.5'
     six: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/rfc3339-validator-0.1.4-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: fed45fc5ea0813240707998abe49f520
     sha256: 7c7052b51de0b5c558f890bb11f8b5edbb9934a653d76be086b1182b9f54185d
-  manager: conda
-  name: rfc3339-validator
+  category: main
   optional: false
+- name: sip
+  version: 6.7.12
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/rfc3339-validator-0.1.4-pyhd8ed1ab_0.tar.bz2
-  version: 0.1.4
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
     packaging: ''
     ply: ''
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
     tomli: ''
+  url: https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py312h30efb56_0.conda
   hash:
-    md5: 02336abab4cb5dd794010ef53c54bd09
-    sha256: 71a0ee22522b232bf50d4d03d012e53cd5d1251d09dffc1c72d7c33a1086fe6f
-  manager: conda
-  name: sip
+    md5: 32633871002ee9902f747d2236e0d122
+    sha256: baf6e63e213bb11e369a51e511b44217546a11f8470242bbaa8fac45cb4a39c3
+  category: main
   optional: false
+- name: terminado
+  version: 0.18.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py311hb755f60_0.conda
-  version: 6.7.12
-- category: main
   dependencies:
     __linux: ''
     ptyprocess: ''
-    python: '>=3.7'
+    python: '>=3.8'
     tornado: '>=6.1.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/terminado-0.18.0-pyh0d859eb_0.conda
   hash:
-    md5: 3788984d535770cad699efaeb6cb3037
-    sha256: bce252eb53330a8ba9617caa7a1dc75ce602c8808cf547a8f4d48285901f47c3
-  manager: conda
-  name: terminado
+    md5: e463f348b8b0eb62c9f7c6fbc780286c
+    sha256: e90139ef15ea9d75a69cd6b6302c29ed5b01c03ddfa717b71acb32b60af74269
+  category: main
   optional: false
+- name: tinycss2
+  version: 1.2.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/terminado-0.17.1-pyh41d4057_0.conda
-  version: 0.17.1
-- category: main
   dependencies:
     python: '>=3.5'
     webencodings: '>=0.4'
+  url: https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.2.1-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 7234c9eefff659501cd2fe0d2ede4d48
     sha256: f0db1a2298a5e10e30f4b947566c7229442834702f549dded40a73ecdea7502d
-  manager: conda
-  name: tinycss2
+  category: main
   optional: false
+- name: typing-extensions
+  version: 4.9.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.2.1-pyhd8ed1ab_0.tar.bz2
-  version: 1.2.1
-- category: main
   dependencies:
-    typing_extensions: 4.8.0 pyha770c72_0
+    typing_extensions: 4.9.0
+  url: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.9.0-hd8ed1ab_0.conda
   hash:
-    md5: 384462e63262a527bda564fa2d9126c0
-    sha256: d6e1dddd0c372218ef15912383d351ac8c73465cbf16238017f0269813cafe2d
-  manager: conda
-  name: typing-extensions
+    md5: c16524c1b7227dc80b36b4fa6f77cc86
+    sha256: d795c1eb1db4ea147f01ece74e5a504d7c2e8d5ee8c11ec987884967dd938f9c
+  category: main
   optional: false
+- name: urllib3
+  version: 2.2.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.8.0-hd8ed1ab_0.conda
-  version: 4.8.0
-- category: main
   dependencies:
     brotli-python: '>=1.0.9'
     pysocks: '>=1.5.6,<2.0,!=1.5.7'
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.1-pyhd8ed1ab_0.conda
   hash:
-    md5: 270e71c14d37074b1d066ee21cf0c4a6
-    sha256: 9fe14735dde74278c6f1710cbe883d5710fc98501a96031dec6849a8d8a1bb11
-  manager: conda
-  name: urllib3
+    md5: 08807a87fa7af10754d46f63b368e016
+    sha256: d4009dcc9327684d6409706ce17656afbeae690d8522d3c9bc4df57649a352cd
+  category: main
   optional: false
+- name: argon2-cffi-bindings
+  version: 21.2.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.0.7-pyhd8ed1ab_0.conda
-  version: 2.0.7
-- category: main
   dependencies:
     cffi: '>=1.0.1'
     libgcc-ng: '>=12'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12.0rc3,<3.13.0a0'
+    python_abi: 3.12.*
+  url: https://conda.anaconda.org/conda-forge/linux-64/argon2-cffi-bindings-21.2.0-py312h98912ed_4.conda
   hash:
-    md5: de5b16869a430949b02161b04b844a30
-    sha256: 104194af519b4e667aa5341068b94b521a791aaaa05ec0091f8f0bdba43a60ac
-  manager: conda
-  name: argon2-cffi-bindings
+    md5: 00536e0a1734dcde9815fe227f32fc5a
+    sha256: 8ddb4a586bc128f1b9484f82c5cb0226340527fbfe093adf3b76b7e755e11477
+  category: main
   optional: false
+- name: arrow
+  version: 1.3.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/argon2-cffi-bindings-21.2.0-py311h459d7ec_4.conda
-  version: 21.2.0
-- category: main
   dependencies:
     python: '>=3.8'
     python-dateutil: '>=2.7.0'
     types-python-dateutil: '>=2.8.10'
+  url: https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_0.conda
   hash:
     md5: b77d8c2313158e6e461ca0efb1c2c508
     sha256: ff49825c7f9e29e09afa6284300810e7a8640d621740efb47c4541f4dc4969db
-  manager: conda
-  name: arrow
+  category: main
   optional: false
+- name: fqdn
+  version: 1.5.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_0.conda
-  version: 1.3.0
-- category: main
   dependencies:
     cached-property: '>=1.3.0'
     python: '>=2.7,<4'
+  url: https://conda.anaconda.org/conda-forge/noarch/fqdn-1.5.1-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 642d35437078749ef23a5dca2c9bb1f3
     sha256: 6cfd1f9bcd2358a69fb571f4b3af049b630d52647d906822dbedac03e84e4f63
-  manager: conda
-  name: fqdn
+  category: main
   optional: false
+- name: gstreamer
+  version: 1.22.9
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/fqdn-1.5.1-pyhd8ed1ab_0.tar.bz2
-  version: 1.5.1
-- category: main
   dependencies:
     __glibc: '>=2.17,<3.0.a0'
     gettext: '>=0.21.1,<1.0a0'
-    glib: '>=2.78.0,<3.0a0'
+    glib: '>=2.78.3,<3.0a0'
     libgcc-ng: '>=12'
-    libglib: '>=2.78.0,<3.0a0'
+    libglib: '>=2.78.3,<3.0a0'
     libiconv: '>=1.17,<2.0a0'
     libstdcxx-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.22.9-h98fc4e7_0.conda
   hash:
-    md5: 1c95f7c612f9121353c4ef764678113e
-    sha256: 5578119cec4e86b7b607678781026ebe1170cb851b4f784c49b09bed1c92566c
-  manager: conda
-  name: gstreamer
+    md5: bcc7157b06fce7f5e055402a8135dfd8
+    sha256: aa2395bf1790f72d2706bac77430f765ec1318ca22e60e791c13ae452c045263
+  category: main
   optional: false
+- name: harfbuzz
+  version: 8.3.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.22.6-h98fc4e7_2.conda
-  version: 1.22.6
-- category: main
   dependencies:
-    cairo: '>=1.16.0,<2.0a0'
+    cairo: '>=1.18.0,<2.0a0'
     freetype: '>=2.12.1,<3.0a0'
     graphite2: ''
     icu: '>=73.2,<74.0a0'
     libgcc-ng: '>=12'
-    libglib: '>=2.78.0,<3.0a0'
+    libglib: '>=2.78.1,<3.0a0'
     libstdcxx-ng: '>=12'
+  url: https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-8.3.0-h3d44ed6_0.conda
   hash:
-    md5: 98db5f8813f45e2b29766aff0e4a499c
-    sha256: 5ca6585e6a4348bcbe214d57f5d6f560d15d23a6650770a2909475848b214edb
-  manager: conda
-  name: harfbuzz
+    md5: 5a6f6c00ef982a9bc83558d9ac8f64a0
+    sha256: 4b55aea03b18a4084b750eee531ad978d4a3690f63019132c26c6ad26bbe3aed
+  category: main
   optional: false
+- name: httpcore
+  version: 1.0.4
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-8.2.1-h3d44ed6_0.conda
-  version: 8.2.1
-- category: main
   dependencies:
-    importlib-metadata: '>=6.8.0,<6.8.1.0a0'
+    anyio: '>=3.0,<5.0'
+    certifi: ''
+    h11: '>=0.13,<0.15'
+    h2: '>=3,<5'
+    python: '>=3.8'
+    sniffio: 1.*
+  url: https://conda.anaconda.org/conda-forge/noarch/httpcore-1.0.4-pyhd8ed1ab_0.conda
   hash:
-    md5: b279b07ce18058034e5b3606ba103a8b
-    sha256: b96e01dc42d547d6d9ceb1c5b52a5232cc04e40153534350f702c3e0418a6b3f
+    md5: 20f047662cf4fa8b97836111df87dbb4
+    sha256: dec07ca00223d52433e7c20c71d5e645a7828b3e50206d855ad7a540869341f2
+  category: main
+  optional: false
+- name: importlib_metadata
+  version: 7.0.1
   manager: conda
-  name: importlib_metadata
+  platform: linux-64
+  dependencies:
+    importlib-metadata: '>=7.0.1,<7.0.2.0a0'
+  url: https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-7.0.1-hd8ed1ab_0.conda
+  hash:
+    md5: 4a2f43a20fa404b998859c6a470ba316
+    sha256: bc362df1d4f5a04c38dff29cd9c2d0ac584f9c4b45d3e4683ee090944a38fba4
+  category: main
   optional: false
+- name: jsonschema-specifications
+  version: 2023.12.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-6.8.0-hd8ed1ab_0.conda
-  version: 6.8.0
-- category: main
   dependencies:
     importlib_resources: '>=1.4.0'
     python: '>=3.8'
-    referencing: '>=0.25.0'
+    referencing: '>=0.31.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2023.12.1-pyhd8ed1ab_0.conda
   hash:
-    md5: 7c27ea1bdbe520bb830dcadd59f55cbf
-    sha256: 7b0061e106674f27cc718f79a095e90a5667a3635ec6626dd23b3be0fd2bfbdc
-  manager: conda
-  name: jsonschema-specifications
+    md5: a0e4efb5f35786a05af4809a2fb1f855
+    sha256: a9630556ddc3121c0be32f4cbf792dd9102bd380d5cd81d57759d172cf0c2da2
+  category: main
   optional: false
+- name: jupyter_server_terminals
+  version: 0.5.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2023.7.1-pyhd8ed1ab_0.conda
-  version: 2023.7.1
-- category: main
   dependencies:
     python: '>=3.8'
     terminado: '>=0.8.3'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_server_terminals-0.5.2-pyhd8ed1ab_0.conda
   hash:
-    md5: 7c0965e1d4a0ee1529e8eaa03a78a5b3
-    sha256: 9f4c5fef9beef9fceed628db7a10b888f3308b37ae257ad3d50046088317ebf1
-  manager: conda
-  name: jupyter_server_terminals
+    md5: a0152d13c9deb13639fc84df884d50b6
+    sha256: a625150744fdffb646fb4451edc68b3eff56eeace4e86b83dc4a860479c9857c
+  category: main
   optional: false
+- name: numpy
+  version: 1.26.4
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_server_terminals-0.4.4-pyhd8ed1ab_1.conda
-  version: 0.4.4
-- category: main
   dependencies:
     libblas: '>=3.9.0,<4.0a0'
     libcblas: '>=3.9.0,<4.0a0'
     libgcc-ng: '>=12'
     liblapack: '>=3.9.0,<4.0a0'
     libstdcxx-ng: '>=12'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
+  url: https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.4-py312heda63a1_0.conda
   hash:
-    md5: bf16a9f625126e378302f08e7ed67517
-    sha256: 0aab5cef67cc2a1cd584f6e9cc6f2065c7a28c142d7defcb8096e8f719d9b3bf
-  manager: conda
-  name: numpy
+    md5: d8285bea2a350f63fab23bf460221f3f
+    sha256: fe3459c75cf84dcef6ef14efcc4adb0ade66038ddd27cadb894f34f4797687d8
+  category: main
   optional: false
+- name: prompt_toolkit
+  version: 3.0.39
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.0-py311h64a7726_0.conda
-  version: 1.26.0
-- category: main
   dependencies:
-    python: '>=3.7'
-    typing-extensions: '>=4.6.3'
+    prompt-toolkit: '>=3.0.39,<3.0.40.0a0'
+  url: https://conda.anaconda.org/conda-forge/noarch/prompt_toolkit-3.0.39-hd8ed1ab_0.conda
   hash:
-    md5: 8f567c0a74aa44cf732f15773b4083b0
-    sha256: b3d809ff5a18ee8514bba8bc05a23b4cdf1758090a18a2cf742af38aed405144
-  manager: conda
-  name: platformdirs
+    md5: 4bbbe67d5df19db30f04b8e344dc9976
+    sha256: 89f7fecc7355181dbc2ab851e668a2fce6aa4830b336a34c93b59bda93206270
+  category: main
   optional: false
+- name: pyproj
+  version: 3.6.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/platformdirs-3.11.0-pyhd8ed1ab_0.conda
-  version: 3.11.0
-- category: main
   dependencies:
     certifi: ''
     libgcc-ng: '>=12'
-    proj: '>=9.2.0,<9.2.1.0a0'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    proj: '>=9.3.1,<9.3.2.0a0'
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
+  url: https://conda.anaconda.org/conda-forge/linux-64/pyproj-3.6.1-py312h38f1c37_5.conda
   hash:
-    md5: 572159a946b809df471b11db4995c708
-    sha256: 37844287f704c821e75c094cf48d9ce358197958822e47873819e0d1ecd16a36
-  manager: conda
-  name: pyproj
+    md5: 867baf2a7c5c6147e05ecc90f6c52a0c
+    sha256: cecb339a20ed336e1d91c603852bcd061cad84a10ac5b23f88d6c8c177da4f2d
+  category: main
   optional: false
+- name: pyqt5-sip
+  version: 12.12.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/pyproj-3.5.0-py311h1850bce_1.conda
-  version: 3.5.0
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
     packaging: ''
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12.0rc3,<3.13.0a0'
+    python_abi: 3.12.*
     sip: ''
     toml: ''
+  url: https://conda.anaconda.org/conda-forge/linux-64/pyqt5-sip-12.12.2-py312h30efb56_5.conda
   hash:
-    md5: e4d262cc3600e70b505a6761d29f6207
-    sha256: cf6936273d92e5213b085bfd9ce1a37defb46b317b6ee991f2712bf4a25b8456
-  manager: conda
-  name: pyqt5-sip
+    md5: 8a2a122dc4fe14d8cff38f1cf426381f
+    sha256: c7154e1933360881b99687d580c4b941fb0cc6ad9574762d409a28196ef5e240
+  category: main
   optional: false
+- name: requests
+  version: 2.31.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/pyqt5-sip-12.12.2-py311hb755f60_5.conda
-  version: 12.12.2
-- category: main
   dependencies:
     certifi: '>=2017.4.17'
     charset-normalizer: '>=2,<4'
     idna: '>=2.5,<4'
     python: '>=3.7'
     urllib3: '>=1.21.1,<3'
+  url: https://conda.anaconda.org/conda-forge/noarch/requests-2.31.0-pyhd8ed1ab_0.conda
   hash:
     md5: a30144e4156cdbb236f99ebb49828f8b
     sha256: 9f629d6fd3c8ac5f2a198639fe7af87c4db2ac9235279164bfe0fcb49d8c4bad
-  manager: conda
-  name: requests
+  category: main
   optional: false
+- name: stack_data
+  version: 0.6.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/requests-2.31.0-pyhd8ed1ab_0.conda
-  version: 2.31.0
-- category: main
   dependencies:
     asttokens: ''
     executing: ''
     pure_eval: ''
     python: '>=3.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.2-pyhd8ed1ab_0.conda
   hash:
     md5: e7df0fdd404616638df5ece6e69ba7af
     sha256: a58433e75229bec39f3be50c02efbe9b7083e53a1f31d8ee247564f370191eec
-  manager: conda
-  name: stack_data
+  category: main
   optional: false
-  platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.2-pyhd8ed1ab_0.conda
-  version: 0.6.2
-- category: main
-  dependencies:
-    backports.functools_lru_cache: ''
-    python: '>=3.6'
-  hash:
-    md5: 8e8280dec091763dfdc29e066de52270
-    sha256: 7552f6545ed212b9ae5d023870481fc377c7f18b4854b63160699b95a420c42e
+- name: argon2-cffi
+  version: 23.1.0
   manager: conda
-  name: wcwidth
-  optional: false
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.9-pyhd8ed1ab_0.conda
-  version: 0.2.9
-- category: main
   dependencies:
     argon2-cffi-bindings: ''
     python: '>=3.7'
     typing-extensions: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/argon2-cffi-23.1.0-pyhd8ed1ab_0.conda
   hash:
     md5: 3afef1f55a1366b4d3b6a0d92e2235e4
     sha256: 130766446f5507bd44df957b6b5c898a8bd98f024bb426ed6cb9ff1ad67fc677
-  manager: conda
-  name: argon2-cffi
+  category: main
   optional: false
+- name: contourpy
+  version: 1.2.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/argon2-cffi-23.1.0-pyhd8ed1ab_0.conda
-  version: 23.1.0
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
     numpy: '>=1.20,<2'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
+  url: https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.0-py312h8572e83_0.conda
   hash:
-    md5: 40828c5b36ef52433e21f89943e09f33
-    sha256: 2c76e2a970b74eef92ef9460aa705dbdc506dd59b7382bfbedce39d9c189d7f4
-  manager: conda
-  name: contourpy
+    md5: b6249daaaf4577e6f72d95fc4ab767c6
+    sha256: 80fa469e2f027eb8ae95965d796ffa5457a5a1f7063e99d6aa54b19a21227b4e
+  category: main
   optional: false
+- name: gst-plugins-base
+  version: 1.22.9
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.0-py311h9547e67_0.conda
-  version: 1.2.0
-- category: main
   dependencies:
     __glibc: '>=2.17,<3.0.a0'
     alsa-lib: '>=1.2.10,<1.2.11.0a0'
     gettext: '>=0.21.1,<1.0a0'
-    gstreamer: 1.22.6 h98fc4e7_2
+    gstreamer: 1.22.9
     libexpat: '>=2.5.0,<3.0a0'
     libgcc-ng: '>=12'
-    libglib: '>=2.78.0,<3.0a0'
+    libglib: '>=2.78.3,<3.0a0'
     libogg: '>=1.3.4,<1.4.0a0'
     libopus: '>=1.3.1,<2.0a0'
     libpng: '>=1.6.39,<1.7.0a0'
@@ -3239,33 +3361,74 @@ package:
     libvorbis: '>=1.3.7,<1.4.0a0'
     libxcb: '>=1.15,<1.16.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
-    xorg-libx11: '>=1.8.6,<2.0a0'
+    xorg-libx11: '>=1.8.7,<2.0a0'
     xorg-libxau: '>=1.0.11,<2.0a0'
     xorg-libxext: '>=1.3.4,<2.0a0'
     xorg-libxrender: '>=0.9.11,<0.10.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.22.9-h8e1006c_0.conda
+  hash:
+    md5: 614b81f8ed66c56b640faee7076ad14a
+    sha256: a4312c96a670fdbf9ff0c3efd935e42fa4b655ff33dcc52c309b76a2afaf03f0
+  category: main
+  optional: false
+- name: httpx
+  version: 0.27.0
+  manager: conda
+  platform: linux-64
+  dependencies:
+    anyio: ''
+    certifi: ''
+    httpcore: 1.*
+    idna: ''
+    python: '>=3.8'
+    sniffio: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/httpx-0.27.0-pyhd8ed1ab_0.conda
   hash:
-    md5: 3d8e98279bad55287f2ef9047996f33c
-    sha256: 07e71ef8ad4d1516695132ed142ef6bc6393243fee54f950aa0944561f2f277f
+    md5: 9f359af5a886fd6ca6b2b6ea02e58332
+    sha256: fdaf341fb2630b7afe8238315448fc93947f77ebfa4da68bb349e1bcf820af58
+  category: main
+  optional: false
+- name: ipython
+  version: 8.21.0
   manager: conda
-  name: gst-plugins-base
+  platform: linux-64
+  dependencies:
+    __unix: ''
+    decorator: ''
+    exceptiongroup: ''
+    jedi: '>=0.16'
+    matplotlib-inline: ''
+    pexpect: '>4.3'
+    pickleshare: ''
+    prompt-toolkit: '>=3.0.41,<3.1.0'
+    pygments: '>=2.4.0'
+    python: '>=3.10'
+    stack_data: ''
+    traitlets: '>=5'
+    typing_extensions: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/ipython-8.21.0-pyh707e725_0.conda
+  hash:
+    md5: 371344fdbdf9c70cfe9adb512a8cbca6
+    sha256: 521291dd15bf09fbb3ecea1c27536742d8e434c2e539b06776e734ee729bdead
+  category: main
   optional: false
+- name: isoduration
+  version: 20.11.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.22.6-h8e1006c_2.conda
-  version: 1.22.6
-- category: main
   dependencies:
     arrow: '>=0.15.0'
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/isoduration-20.11.0-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 4cb68948e0b8429534380243d063a27a
     sha256: 7bb5c4d994361022f47a807b5e7d101b3dce16f7dd8a0af6ffad9f479d346493
-  manager: conda
-  name: isoduration
+  category: main
   optional: false
+- name: jsonschema
+  version: 4.21.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/isoduration-20.11.0-pyhd8ed1ab_0.tar.bz2
-  version: 20.11.0
-- category: main
   dependencies:
     attrs: '>=22.2.0'
     importlib_resources: '>=1.4.0'
@@ -3274,63 +3437,53 @@ package:
     python: '>=3.8'
     referencing: '>=0.28.4'
     rpds-py: '>=0.7.1'
+  url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.21.1-pyhd8ed1ab_0.conda
   hash:
-    md5: 24d41c2f9cc199d0a180ecf7ef54739c
-    sha256: 07e5d395d83c4b12a7abe3989fb42abdcd3b1c51cd27549e5eab390bb8c7bf0f
-  manager: conda
-  name: jsonschema
+    md5: 8a3a3d01629da20befa340919e3dd2c4
+    sha256: c5c1b4e08e91fdd697289015be1a176409b4e63942899a43b276f1f250be8129
+  category: main
   optional: false
+- name: jupyter_client
+  version: 8.6.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.19.2-pyhd8ed1ab_0.conda
-  version: 4.19.2
-- category: main
   dependencies:
-    platformdirs: '>=2.5'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    importlib_metadata: '>=4.8.3'
+    jupyter_core: '>=4.12,!=5.0.*'
+    python: '>=3.8'
+    python-dateutil: '>=2.8.2'
+    pyzmq: '>=23.0'
+    tornado: '>=6.2'
     traitlets: '>=5.3'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.0-pyhd8ed1ab_0.conda
   hash:
-    md5: cee83be29258275f75029125e186ab6d
-    sha256: 60bfaec278b3ea4462abd8321b47412864c54bd63575e2698da81c5755e617c1
-  manager: conda
-  name: jupyter_core
+    md5: 6bd3f1069cdebb44c7ae9efb900e312d
+    sha256: 86cbb9070862cf23a245451efce539ca214e610849d0950bb8ac90c545bd158d
+  category: main
   optional: false
+- name: pandas
+  version: 2.2.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/jupyter_core-5.5.0-py311h38be061_0.conda
-  version: 5.5.0
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
-    numpy: '>=1.23.5,<2.0a0'
-    python: '>=3.11,<3.12.0a0'
+    numpy: '>=1.26.3,<2.0a0'
+    python: '>=3.12,<3.13.0a0'
     python-dateutil: '>=2.8.1'
     python-tzdata: '>=2022a'
-    python_abi: 3.11.* *_cp311
+    python_abi: 3.12.*
     pytz: '>=2020.1'
+  url: https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.0-py312hfb8ada1_0.conda
   hash:
-    md5: c36a53056129665b34db419b6af3d230
-    sha256: 7e21fef8bf9492c9e39daa21f82204672bd87e8ae16a95964f41052b71e562e3
-  manager: conda
-  name: pandas
+    md5: 07dc8151dda37002f69a95cec87f0526
+    sha256: 4f0fdce898e94d5c5b7970ac8c39497949af86e5985c9094f325f696bc2cea9a
+  category: main
   optional: false
-  platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/pandas-2.1.2-py311h320fe9a_0.conda
-  version: 2.1.2
-- category: main
-  dependencies:
-    python: '>=3.7'
-    wcwidth: ''
-  hash:
-    md5: a4986c6bb5b0d05a38855b0880a5f425
-    sha256: 10e7fdc75d4b85633be6b12a70b857053987127a808caa0f88b2cba4b3ce6359
+- name: scipy
+  version: 1.12.0
   manager: conda
-  name: prompt-toolkit
-  optional: false
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.39-pyha770c72_0.conda
-  version: 3.0.39
-- category: main
   dependencies:
     libblas: '>=3.9.0,<4.0a0'
     libcblas: '>=3.9.0,<4.0a0'
@@ -3339,129 +3492,124 @@ package:
     libgfortran5: '>=12.3.0'
     liblapack: '>=3.9.0,<4.0a0'
     libstdcxx-ng: '>=12'
-    numpy: '>=1.23.5,<2.0a0'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    numpy: '>=1.26.3,<2.0a0'
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
+  url: https://conda.anaconda.org/conda-forge/linux-64/scipy-1.12.0-py312heda63a1_2.conda
   hash:
-    md5: e4b4d3b764e2d029477d0db88248a8b5
-    sha256: 13ea70afe49a3c92fb9b82a6efcfa23a05ca8f24ec2dff22597d651e0e2b4767
-  manager: conda
-  name: scipy
+    md5: 17729ab9bbb780e93458c7857afffcab
+    sha256: ec8a9d8699d4d42a6c190596a5e2757206328803cee2a00bb11d0e36decb9a37
+  category: main
   optional: false
+- name: shapely
+  version: 2.0.3
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/scipy-1.11.3-py311h64a7726_1.conda
-  version: 1.11.3
-- category: main
   dependencies:
-    geos: '>=3.12.0,<3.12.1.0a0'
+    geos: '>=3.12.1,<3.12.2.0a0'
     libgcc-ng: '>=12'
-    numpy: '>=1.23.5,<2.0a0'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    numpy: '>=1.26.4,<2.0a0'
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
+  url: https://conda.anaconda.org/conda-forge/linux-64/shapely-2.0.3-py312h9e6bd2c_0.conda
   hash:
-    md5: c90e2469d7512f3bba893533a82d7a02
-    sha256: 2a02e516c57a2122cf9acaec54b75a821ad5f959a7702b17cb8df2c3fe31ef20
+    md5: 5e0580a84d702cda52c8b0245e4c14d2
+    sha256: 780c1f964f99454ed6034156deedd9b67373d54295434f77623ab884ce6b0f97
+  category: main
+  optional: false
+- name: ipykernel
+  version: 6.29.2
   manager: conda
-  name: shapely
+  platform: linux-64
+  dependencies:
+    __linux: ''
+    comm: '>=0.1.1'
+    debugpy: '>=1.6.5'
+    ipython: '>=7.23.1'
+    jupyter_client: '>=6.1.12'
+    jupyter_core: '>=4.12,!=5.0.*'
+    matplotlib-inline: '>=0.1'
+    nest-asyncio: ''
+    packaging: ''
+    psutil: ''
+    python: '>=3.8'
+    pyzmq: '>=24'
+    tornado: '>=6.1'
+    traitlets: '>=5.4.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.29.2-pyhd33586a_0.conda
+  hash:
+    md5: c0e0eaceb52b50f1971295fe4546e8ed
+    sha256: 6cd66445c6a287623d02fe5fad0d67f8194ac582a7147ce092920fa20a8e3eec
+  category: main
   optional: false
+- name: jsonschema-with-format-nongpl
+  version: 4.21.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/shapely-2.0.2-py311he06c224_0.conda
-  version: 2.0.2
-- category: main
   dependencies:
     fqdn: ''
     idna: ''
     isoduration: ''
     jsonpointer: '>1.13'
-    jsonschema: '>=4.19.2,<4.19.3.0a0'
+    jsonschema: '>=4.21.1,<4.21.2.0a0'
     python: ''
     rfc3339-validator: ''
     rfc3986-validator: '>0.1.0'
     uri-template: ''
     webcolors: '>=1.11'
+  url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-with-format-nongpl-4.21.1-pyhd8ed1ab_0.conda
   hash:
-    md5: c447b7c28ad6bb3306f0015f1195c721
-    sha256: b06681b4499635f0ed901f4879122bfd3ff6ef28de1797367769a4ba6b990b0d
-  manager: conda
-  name: jsonschema-with-format-nongpl
+    md5: 26bce4b5405738c09304d4f4796b2c2a
+    sha256: 6e458c325c097956ac4605ef386f0d67bad5223041cedd66819892988b72f83a
+  category: main
   optional: false
+- name: matplotlib-base
+  version: 3.8.3
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-with-format-nongpl-4.19.2-pyhd8ed1ab_0.conda
-  version: 4.19.2
-- category: main
-  dependencies:
-    importlib_metadata: '>=4.8.3'
-    jupyter_core: '>=4.12,!=5.0.*'
-    python: '>=3.8'
-    python-dateutil: '>=2.8.2'
-    pyzmq: '>=23.0'
-    tornado: '>=6.2'
-    traitlets: '>=5.3'
-  hash:
-    md5: 6bd3f1069cdebb44c7ae9efb900e312d
-    sha256: 86cbb9070862cf23a245451efce539ca214e610849d0950bb8ac90c545bd158d
-  manager: conda
-  name: jupyter_client
-  optional: false
-  platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.0-pyhd8ed1ab_0.conda
-  version: 8.6.0
-- category: main
   dependencies:
     certifi: '>=2020.06.20'
     contourpy: '>=1.0.1'
     cycler: '>=0.10'
     fonttools: '>=4.22.0'
     freetype: '>=2.12.1,<3.0a0'
-    kiwisolver: '>=1.0.1'
+    kiwisolver: '>=1.3.1'
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
-    numpy: '>=1.23.5,<2.0a0'
+    numpy: '>=1.26.4,<2.0a0'
     packaging: '>=20.0'
-    pillow: '>=6.2.0'
+    pillow: '>=8'
     pyparsing: '>=2.3.1'
-    python: '>=3.11,<3.12.0a0'
+    python: '>=3.12,<3.13.0a0'
     python-dateutil: '>=2.7'
-    python_abi: 3.11.* *_cp311
-    tk: '>=8.6.12,<8.7.0a0'
+    python_abi: 3.12.*
+    tk: '>=8.6.13,<8.7.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.8.3-py312he5832f3_0.conda
   hash:
-    md5: 98fc063c60f74777ec6149b99494a442
-    sha256: fe392e89274edcf1b20ea466b311176a25c855bb38c872ef6751bc13535cad1c
-  manager: conda
-  name: matplotlib-base
+    md5: 3b0545901b09b1376b9c0e0ec72409de
+    sha256: d6e01e76397a750db8de24591411fa9daa057948b327966bf2cc0c9fc03f1451
+  category: main
   optional: false
+- name: nbformat
+  version: 5.9.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.7.3-py311h54ef318_0.conda
-  version: 3.7.3
-- category: main
   dependencies:
     jsonschema: '>=2.6'
     jupyter_core: ''
     python: '>=3.8'
     python-fastjsonschema: ''
     traitlets: '>=5.1'
+  url: https://conda.anaconda.org/conda-forge/noarch/nbformat-5.9.2-pyhd8ed1ab_0.conda
   hash:
     md5: 61ba076de6530d9301a0053b02f093d2
     sha256: fc82c5a9116820757b03ffb836b36f0f50e4cd390018024dbadb0ee0217f6992
-  manager: conda
-  name: nbformat
+  category: main
   optional: false
-  platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/nbformat-5.9.2-pyhd8ed1ab_0.conda
-  version: 5.9.2
-- category: main
-  dependencies:
-    prompt-toolkit: '>=3.0.39,<3.0.40.0a0'
-  hash:
-    md5: 4bbbe67d5df19db30f04b8e344dc9976
-    sha256: 89f7fecc7355181dbc2ab851e668a2fce6aa4830b336a34c93b59bda93206270
+- name: qt-main
+  version: 5.15.8
   manager: conda
-  name: prompt_toolkit
-  optional: false
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/prompt_toolkit-3.0.39-hd8ed1ab_0.conda
-  version: 3.0.39
-- category: main
   dependencies:
     __glibc: '>=2.17,<3.0.a0'
     alsa-lib: '>=1.2.10,<1.2.11.0a0'
@@ -3469,9 +3617,9 @@ package:
     fontconfig: '>=2.14.2,<3.0a0'
     fonts-conda-ecosystem: ''
     freetype: '>=2.12.1,<3.0a0'
-    gst-plugins-base: '>=1.22.5,<1.23.0a0'
-    gstreamer: '>=1.22.5,<1.23.0a0'
-    harfbuzz: '>=8.2.0,<9.0a0'
+    gst-plugins-base: '>=1.22.9,<1.23.0a0'
+    gstreamer: '>=1.22.9,<1.23.0a0'
+    harfbuzz: '>=8.3.0,<9.0a0'
     icu: '>=73.2,<74.0a0'
     krb5: '>=1.21.2,<1.22.0a0'
     libclang: '>=15.0.7,<16.0a0'
@@ -3480,20 +3628,20 @@ package:
     libevent: '>=2.1.12,<2.1.13.0a0'
     libexpat: '>=2.5.0,<3.0a0'
     libgcc-ng: '>=12'
-    libglib: '>=2.78.0,<3.0a0'
-    libjpeg-turbo: '>=2.1.5.1,<3.0a0'
-    libpng: '>=1.6.39,<1.7.0a0'
-    libpq: '>=15.4,<16.0a0'
-    libsqlite: '>=3.43.0,<4.0a0'
+    libglib: '>=2.78.3,<3.0a0'
+    libjpeg-turbo: '>=3.0.0,<4.0a0'
+    libpng: '>=1.6.42,<1.7.0a0'
+    libpq: '>=16.2,<17.0a0'
+    libsqlite: '>=3.45.1,<4.0a0'
     libstdcxx-ng: '>=12'
     libxcb: '>=1.15,<1.16.0a0'
-    libxkbcommon: '>=1.5.0,<2.0a0'
-    libxml2: '>=2.11.5,<2.12.0a0'
+    libxkbcommon: '>=1.6.0,<2.0a0'
+    libxml2: '>=2.12.5,<3.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
     mysql-libs: '>=8.0.33,<8.1.0a0'
     nspr: '>=4.35,<5.0a0'
-    nss: '>=3.92,<4.0a0'
-    openssl: '>=3.1.2,<4.0a0'
+    nss: '>=3.97,<4.0a0'
+    openssl: '>=3.2.1,<4.0a0'
     pulseaudio-client: '>=16.1,<16.2.0a0'
     xcb-util: '>=0.4.0,<0.5.0a0'
     xcb-util-image: '>=0.4.0,<0.5.0a0'
@@ -3502,86 +3650,62 @@ package:
     xcb-util-wm: '>=0.4.1,<0.5.0a0'
     xorg-libice: '>=1.1.1,<2.0a0'
     xorg-libsm: '>=1.2.4,<2.0a0'
-    xorg-libx11: '>=1.8.6,<2.0a0'
+    xorg-libx11: '>=1.8.7,<2.0a0'
     xorg-libxext: '>=1.3.4,<2.0a0'
     xorg-xf86vidmodeproto: ''
     zstd: '>=1.5.5,<1.6.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.8-h5810be5_19.conda
   hash:
-    md5: a8dd2dfcd570e3965c73be6c5e03e74f
-    sha256: 18dc29e725b620ec857368b40f07c41fd360b6c4071f83b67112eabfc087e8f1
-  manager: conda
-  name: qt-main
+    md5: 54866f708d43002a514d0b9b0f84bc11
+    sha256: 41228ec12346d640ef1f549885d8438e98b1be0fdeb68cd1dd3938f255cbd719
+  category: main
   optional: false
+- name: basemap
+  version: 1.4.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.8-hc47bfe8_16.conda
-  version: 5.15.8
-- category: main
   dependencies:
-    basemap-data: '>=1.3.2,<2.0a0'
-    geos: '>=3.12.0,<4.0a0'
+    basemap-data: ''
+    geos: '>=3.12.1,<3.12.2.0a0'
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
-    matplotlib-base: '>=1.5,<3.8'
-    numpy: '>=1.25.2,<2.0a0'
-    pyproj: '>=1.9.3,<3.6'
-    pyshp: '>=1.2.0,<2.4'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
-  hash:
-    md5: 07580770727cc0380d0764ed4d241d5e
-    sha256: 3da7d15eed0b8ea72be6fb58146168477c342ad05902ef584f3fd3b73c29e81b
+    matplotlib-base: '>=1.5,<3.9'
+    numpy: '>=1.26.4,<2.0a0'
+    pyproj: '>=1.9.3,<3.7.0'
+    pyshp: '>=1.2.0,<2.4.0'
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
+  url: https://conda.anaconda.org/conda-forge/linux-64/basemap-1.4.1-np126py312h745efaa_0.conda
+  hash:
+    md5: 202297dcda58bd1e307062f465927ce5
+    sha256: 37550339f891b018e03e075de7820ee61e32045fcb3308c689735834e9ae02d2
+  category: main
+  optional: false
+- name: cartopy
+  version: 0.22.0
   manager: conda
-  name: basemap
-  optional: false
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/basemap-1.3.8-py311h8fe22c9_0.conda
-  version: 1.3.8
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
     matplotlib-base: '>=3.4'
-    numpy: '>=1.23.5,<2.0a0'
+    numpy: '>=1.26.0,<2.0a0'
     packaging: '>=20'
     pyproj: '>=3.1.0'
     pyshp: '>=2.1'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
     shapely: '>=1.7'
+  url: https://conda.anaconda.org/conda-forge/linux-64/cartopy-0.22.0-py312hfb8ada1_1.conda
   hash:
-    md5: 10d1806e20da040c58c36deddf51c70c
-    sha256: ff2d3bc5c8d7e6b4db5bbfde7e69045298e8233182e11ce96b1a2af9d5bfa2f8
-  manager: conda
-  name: cartopy
+    md5: 17e09fffccc807ef2d2644f21883d64f
+    sha256: ce7797a12c0e39ef65ffe8ebdee284de76daac3dce8ea48438a7904df8e5ea45
+  category: main
   optional: false
-  platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/cartopy-0.22.0-py311h320fe9a_1.conda
-  version: 0.22.0
-- category: main
-  dependencies:
-    __linux: ''
-    decorator: ''
-    exceptiongroup: ''
-    jedi: '>=0.16'
-    matplotlib-inline: ''
-    pexpect: '>4.3'
-    pickleshare: ''
-    prompt_toolkit: '>=3.0.30,<3.1.0,!=3.0.37'
-    pygments: '>=2.4.0'
-    python: '>=3.9'
-    stack_data: ''
-    traitlets: '>=5'
-    typing_extensions: ''
-  hash:
-    md5: f39d0b60e268fe547f1367edbab457d4
-    sha256: 31322d58f412787f5beeb01db4d16f10f8ae4e0cc2ec99fafef1e690374fe298
+- name: jupyter_events
+  version: 0.9.0
   manager: conda
-  name: ipython
-  optional: false
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/ipython-8.17.2-pyh41d4057_0.conda
-  version: 8.17.2
-- category: main
   dependencies:
     jsonschema-with-format-nongpl: '>=4.18.0'
     python: '>=3.8'
@@ -3591,91 +3715,66 @@ package:
     rfc3339-validator: ''
     rfc3986-validator: '>=0.1.1'
     traitlets: '>=5.3'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_events-0.9.0-pyhd8ed1ab_0.conda
   hash:
     md5: 00ba25993f0dba38cf72a7224e33289f
     sha256: 713f0cc927a862862a6d35bfb29c4114f987e4f59e2a8a14f71f23fcd7edfec3
-  manager: conda
-  name: jupyter_events
+  category: main
   optional: false
+- name: nbclient
+  version: 0.8.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_events-0.9.0-pyhd8ed1ab_0.conda
-  version: 0.9.0
-- category: main
   dependencies:
     jupyter_client: '>=6.1.12'
     jupyter_core: '>=4.12,!=5.0.*'
     nbformat: '>=5.1'
     python: '>=3.8'
     traitlets: '>=5.4'
+  url: https://conda.anaconda.org/conda-forge/noarch/nbclient-0.8.0-pyhd8ed1ab_0.conda
   hash:
     md5: e78da91cf428faaf05701ce8cc8f2f9b
     sha256: 4ebd237cdf4bfa5226f92d2ae78fab8dba27696909391884dc6594ca6f9df5ff
-  manager: conda
-  name: nbclient
+  category: main
   optional: false
+- name: pyqt
+  version: 5.15.9
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/nbclient-0.8.0-pyhd8ed1ab_0.conda
-  version: 0.8.0
-- category: main
   dependencies:
     libgcc-ng: '>=12'
     libstdcxx-ng: '>=12'
-    pyqt5-sip: 12.12.2 py311hb755f60_5
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    pyqt5-sip: 12.12.2
+    python: '>=3.12.0rc3,<3.13.0a0'
+    python_abi: 3.12.*
     qt-main: '>=5.15.8,<5.16.0a0'
     sip: '>=6.7.11,<6.8.0a0'
+  url: https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py312h949fe66_5.conda
   hash:
-    md5: ec7e45bc76d9d0b69a74a2075932b8e8
-    sha256: 74fcdb8772c7eaf654b32922f77d9a8a1350b3446111c69a32ba4d15be74905a
-  manager: conda
-  name: pyqt
+    md5: f6548a564e2d01b2a42020259503945b
+    sha256: 22ccc59c03872fc680be597a1783d2c77e6b2d16953e2ec67df91f073820bebe
+  category: main
   optional: false
-  platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py311hf0fb5b6_5.conda
-  version: 5.15.9
-- category: main
-  dependencies:
-    __linux: ''
-    comm: '>=0.1.1'
-    debugpy: '>=1.6.5'
-    ipython: '>=7.23.1'
-    jupyter_client: '>=6.1.12'
-    jupyter_core: '>=4.12,!=5.0.*'
-    matplotlib-inline: '>=0.1'
-    nest-asyncio: ''
-    packaging: ''
-    psutil: ''
-    python: '>=3.8'
-    pyzmq: '>=20'
-    tornado: '>=6.1'
-    traitlets: '>=5.4.0'
-  hash:
-    md5: 2307f71f5f0896d4b91b93e6b468abff
-    sha256: 9e647454f7572101657a07820ebed294df9a6a527b041cd5e4dd98b8aa3db625
+- name: matplotlib
+  version: 3.8.3
   manager: conda
-  name: ipykernel
-  optional: false
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.26.0-pyhf8b6a83_0.conda
-  version: 6.26.0
-- category: main
   dependencies:
-    matplotlib-base: '>=3.7.3,<3.7.4.0a0'
+    matplotlib-base: '>=3.8.3,<3.8.4.0a0'
     pyqt: '>=5.10'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
     tornado: '>=5'
+  url: https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.8.3-py312h7900ff3_0.conda
   hash:
-    md5: b6b9fd7ffb837affea2587ecd00dd0ff
-    sha256: 80d2a82f7e39fc0f66c8428d25174a60880312803d42f605e043e13d980c559b
-  manager: conda
-  name: matplotlib
+    md5: 7bdc5e2a07d2e387c3b456da8ec6e6d0
+    sha256: 4c85b3b8d12f3e72076a8fdaec297ea8b25fe8a60fa39feddf30725e0ab91a27
+  category: main
   optional: false
+- name: nbconvert-core
+  version: 7.16.1
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.7.3-py311h38be061_0.conda
-  version: 3.7.3
-- category: main
   dependencies:
     beautifulsoup4: ''
     bleach: ''
@@ -3694,23 +3793,23 @@ package:
     python: '>=3.8'
     tinycss2: ''
     traitlets: '>=5.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.1-pyhd8ed1ab_0.conda
   hash:
-    md5: d59e0cb1ca993f8f910cfdf393232acf
-    sha256: 81732e083c4c85a52248e20ff0e40a14b0b49db9cc7ce414e8aa7d6f8980dad0
-  manager: conda
-  name: nbconvert-core
+    md5: 2537745e9bc0e9bfcf66a27f113ae0e5
+    sha256: 684e0710abd6477ed9df743506edecb4b53d1c9deeaf8d6d7fdbb82e58f43090
+  category: main
   optional: false
+- name: jupyter_server
+  version: 2.12.5
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.11.0-pyhd8ed1ab_0.conda
-  version: 7.11.0
-- category: main
   dependencies:
     anyio: '>=3.1.0'
     argon2-cffi: ''
     jinja2: ''
     jupyter_client: '>=7.4.4'
     jupyter_core: '>=4.12,!=5.0.*'
-    jupyter_events: '>=0.6.0'
+    jupyter_events: '>=0.9.0'
     jupyter_server_terminals: ''
     nbconvert-core: '>=6.4.4'
     nbformat: '>=5.3.0'
@@ -3724,30 +3823,30 @@ package:
     tornado: '>=6.2.0'
     traitlets: '>=5.6.0'
     websocket-client: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_server-2.12.5-pyhd8ed1ab_0.conda
   hash:
-    md5: 016d56f5d81b9364d1da5f4895a2a9f8
-    sha256: 0b9a72f28ff8a12e6ea0ae43d3ea93e288074d29348c5fc6fbb3a5e5e18b2ecd
-  manager: conda
-  name: jupyter_server
+    md5: 755177a956fa6dd90d5cfcbbb5084de2
+    sha256: 43dcd238c656c7ecf3228be8735def530cad5181f990c042ba202b9e383d2b1f
+  category: main
   optional: false
+- name: jupyter-lsp
+  version: 2.2.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_server-2.10.0-pyhd8ed1ab_0.conda
-  version: 2.10.0
-- category: main
   dependencies:
     importlib-metadata: '>=4.8.3'
     jupyter_server: '>=1.1.2'
     python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyter-lsp-2.2.2-pyhd8ed1ab_0.conda
   hash:
-    md5: 38589f4104d11f2a59ff01a9f4e3bfb3
-    sha256: 16fc7b40024adece716ba7227e5c123a2deccc13f946a10d9a3270493908d11c
-  manager: conda
-  name: jupyter-lsp
+    md5: ed56b103cac2db68f22909e9f5cca6b6
+    sha256: d8ab253be3df67be1b31fe040a8386e071ff065ef4442b94a722a45fa3562fbe
+  category: main
   optional: false
+- name: jupyterlab_server
+  version: 2.25.3
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyter-lsp-2.2.0-pyhd8ed1ab_0.conda
-  version: 2.2.0
-- category: main
   dependencies:
     babel: '>=2.10'
     importlib-metadata: '>=4.8.3'
@@ -3758,31 +3857,32 @@ package:
     packaging: '>=21.3'
     python: '>=3.8'
     requests: '>=2.31'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_server-2.25.3-pyhd8ed1ab_0.conda
   hash:
-    md5: 5cf15f8fd42c77af4eb1611fe614df2f
-    sha256: 5f373d9adc11b6d49bee06a4c6bea9623fff1d2a0b798edc2e3f594680aa18f3
-  manager: conda
-  name: jupyterlab_server
+    md5: 78f28bcd22aadca6ec8eaff4319e6610
+    sha256: 30269e4ab0e67935b15b012e5e97f5c5c72111d0f02e03b3c644e556fe1a5275
+  category: main
   optional: false
+- name: notebook-shim
+  version: 0.2.4
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_server-2.25.1-pyhd8ed1ab_0.conda
-  version: 2.25.1
-- category: main
   dependencies:
     jupyter_server: '>=1.8,<3'
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_0.conda
   hash:
-    md5: 67e0fe74c156267d9159e9133df7fd37
-    sha256: f028d7ad1f2175cde307db08b60d07e371b9d6f035cfae6c81ea94b4c408c538
-  manager: conda
-  name: notebook-shim
+    md5: 3d85618e2c97ab896b5b5e298d32b5b3
+    sha256: 9b5fdef9ebe89222baa9da2796ebe7bc02ec6c5a1f61327b651d6b92cf9a0230
+  category: main
   optional: false
+- name: jupyterlab
+  version: 4.1.2
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.3-pyhd8ed1ab_0.conda
-  version: 0.2.3
-- category: main
   dependencies:
     async-lru: '>=1.0.0'
+    httpx: '>=0.25.0'
     importlib_metadata: '>=4.8.3'
     importlib_resources: '>=1.4'
     ipykernel: ''
@@ -3797,524 +3897,524 @@ package:
     tomli: ''
     tornado: '>=6.2.0'
     traitlets: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.1.2-pyhd8ed1ab_0.conda
   hash:
-    md5: 299796efa08ad91c602fa4d0c5ecc86f
-    sha256: fe5ca6c8bbda69af332593d7f9592aa19d9ab98d34c647ed0d8fbbae88b29a95
-  manager: conda
-  name: jupyterlab
+    md5: ffcabe653273b2b81a30c82d625bd5e8
+    sha256: d4be2239d93c7db7db911b0e992bde6110f50cd705c23ac7e43483ded90a57ed
+  category: main
   optional: false
+- name: jupyterlab-plotly-extension
+  version: 1.0.0
+  manager: conda
   platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.0.8-pyhd8ed1ab_0.conda
-  version: 4.0.8
-- category: main
   dependencies:
     jupyterlab: ''
     nodejs: ''
     python: '>=3.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-plotly-extension-1.0.0-py_0.tar.bz2
   hash:
     md5: 0996a9698037d8a707168956e3abba16
     sha256: 8ef5b70f61d995093db82d0bb5f770426d4f270848b2cfd826b8d3df34a060e4
-  manager: conda
-  name: jupyterlab-plotly-extension
+  category: main
   optional: false
-  platform: linux-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-plotly-extension-1.0.0-py_0.tar.bz2
-  version: 1.0.0
-- category: main
+- name: bzip2
+  version: 1.0.8
+  manager: conda
+  platform: osx-64
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/osx-64/bzip2-1.0.8-h10d778d_5.conda
   hash:
     md5: 6097a6ca9ada32699b5fc4312dd6ef18
     sha256: 61fb2b488928a54d9472113e1280b468a309561caa54f33825a3593da390b242
-  manager: conda
-  name: bzip2
+  category: main
   optional: false
+- name: c-ares
+  version: 1.26.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/bzip2-1.0.8-h10d778d_5.conda
-  version: 1.0.8
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/osx-64/c-ares-1.26.0-h10d778d_0.conda
   hash:
-    md5: 88426162f781739069a6bd178841ed5d
-    sha256: 7450d861c07e74b10dfcf3ba680b384cf22f1c2dd34c3eba763ab5920376bf79
-  manager: conda
-  name: c-ares
+    md5: 04a8ab3d4f9a9446b286c4a90f665148
+    sha256: 4b01708ed02f3e2cf9e8919a6fc1d3116cdf84c1a771294031e880f54235f47c
+  category: main
   optional: false
+- name: ca-certificates
+  version: 2024.2.2
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/c-ares-1.21.0-h10d778d_0.conda
-  version: 1.21.0
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/osx-64/ca-certificates-2024.2.2-h8857fd0_0.conda
   hash:
-    md5: bf2c54c18997bf3542af074c10191771
-    sha256: 27de15e18a12117e83ac1eb8a8e52eb65731cc7f0b607a7922206a15e2460c7b
-  manager: conda
-  name: ca-certificates
+    md5: f2eacee8c33c43692f1ccfd33d0f50b1
+    sha256: 54a794aedbb4796afeabdf54287b06b1d27f7b13b3814520925f4c2c80f58ca9
+  category: main
   optional: false
+- name: icu
+  version: '73.2'
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/ca-certificates-2023.7.22-h8857fd0_0.conda
-  version: 2023.7.22
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/osx-64/icu-73.2-hf5e326d_0.conda
   hash:
     md5: 5cc301d759ec03f28328428e28f65591
     sha256: f66362dc36178ac9b7c7a9b012948a9d2d050b3debec24bbd94aadbc44854185
-  manager: conda
-  name: icu
+  category: main
   optional: false
+- name: libbrotlicommon
+  version: 1.1.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/icu-73.2-hf5e326d_0.conda
-  version: '73.2'
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/osx-64/libbrotlicommon-1.1.0-h0dc2134_1.conda
   hash:
     md5: 9e6c31441c9aa24e41ace40d6151aab6
     sha256: f57c57c442ef371982619f82af8735f93a4f50293022cfd1ffaf2ff89c2e0b2a
-  manager: conda
-  name: libbrotlicommon
+  category: main
   optional: false
+- name: libcxx
+  version: 16.0.6
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libbrotlicommon-1.1.0-h0dc2134_1.conda
-  version: 1.1.0
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/osx-64/libcxx-16.0.6-hd57cbcb_0.conda
   hash:
     md5: 7d6972792161077908b62971802f289a
     sha256: 9063271847cf05f3a6cc6cae3e7f0ced032ab5f3a3c9d3f943f876f39c5c2549
-  manager: conda
-  name: libcxx
+  category: main
   optional: false
+- name: libdeflate
+  version: '1.18'
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libcxx-16.0.6-hd57cbcb_0.conda
-  version: 16.0.6
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/osx-64/libdeflate-1.18-hac1461d_0.conda
   hash:
     md5: 3d131584456b277ce0871e6481fde49b
     sha256: b985178bc45f83259c99026d988448277e17171801945769396e2577ce59778c
-  manager: conda
-  name: libdeflate
+  category: main
   optional: false
+- name: libev
+  version: '4.33'
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libdeflate-1.18-hac1461d_0.conda
-  version: '1.18'
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/osx-64/libev-4.33-h10d778d_2.conda
   hash:
-    md5: 79dc2be110b2a3d1e97ec21f691c50ad
-    sha256: c4154d424431898d84d6afb8b32e3ba749fe5d270d322bb0af74571a3cb09c6b
-  manager: conda
-  name: libev
+    md5: 899db79329439820b7e8f8de41bca902
+    sha256: 0d238488564a7992942aa165ff994eca540f687753b4f0998b29b4e4d030ff43
+  category: main
   optional: false
+- name: libffi
+  version: 3.4.2
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libev-4.33-haf1e3a3_1.tar.bz2
-  version: '4.33'
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/osx-64/libffi-3.4.2-h0d85af4_5.tar.bz2
   hash:
     md5: ccb34fb14960ad8b125962d3d79b31a9
     sha256: 7a2d27a936ceee6942ea4d397f9c7d136f12549d86f7617e8b6bad51e01a941f
-  manager: conda
-  name: libffi
+  category: main
   optional: false
+- name: libjpeg-turbo
+  version: 2.1.5.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libffi-3.4.2-h0d85af4_5.tar.bz2
-  version: 3.4.2
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/osx-64/libjpeg-turbo-2.1.5.1-h0dc2134_1.conda
   hash:
     md5: 5ae57a9afae4bc5c7409e1fc4f47bbc6
     sha256: 503e6ca1089c83b3648db9bf39855678505de865bf48b86863b3dcdeb8f55822
-  manager: conda
-  name: libjpeg-turbo
+  category: main
   optional: false
+- name: libsodium
+  version: 1.0.18
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libjpeg-turbo-2.1.5.1-h0dc2134_1.conda
-  version: 2.1.5.1
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/osx-64/libsodium-1.0.18-hbcb3906_1.tar.bz2
   hash:
     md5: 24632c09ed931af617fe6d5292919cab
     sha256: 2da45f14e3d383b4b9e3a8bacc95cd2832aac2dbf9fbc70d255d384a310c5660
-  manager: conda
-  name: libsodium
+  category: main
   optional: false
+- name: libuv
+  version: 1.46.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libsodium-1.0.18-hbcb3906_1.tar.bz2
-  version: 1.0.18
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/osx-64/libuv-1.46.0-h0c2f820_0.conda
   hash:
     md5: 27664a5d39d9c32ae38880fec2b33b36
     sha256: e51667c756f15580d3ce131d6157f0238d931c05af118c89f019854f2a7c125e
-  manager: conda
-  name: libuv
+  category: main
   optional: false
+- name: libwebp-base
+  version: 1.3.2
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libuv-1.46.0-h0c2f820_0.conda
-  version: 1.46.0
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/osx-64/libwebp-base-1.3.2-h0dc2134_0.conda
   hash:
     md5: 4e7e9d244e87d66c18d36894fd6a8ae5
     sha256: fa7580f26fec4c28321ec2ece1257f3293e0c646c635e9904679f4a8369be401
-  manager: conda
-  name: libwebp-base
+  category: main
   optional: false
+- name: libzlib
+  version: 1.2.13
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libwebp-base-1.3.2-h0dc2134_0.conda
-  version: 1.3.2
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/osx-64/libzlib-1.2.13-h8a1eda9_5.conda
   hash:
     md5: 4a3ad23f6e16f99c04e166767193d700
     sha256: fc58ad7f47ffea10df1f2165369978fba0a1cc32594aad778f5eec725f334867
-  manager: conda
-  name: libzlib
+  category: main
   optional: false
+- name: llvm-openmp
+  version: 17.0.6
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libzlib-1.2.13-h8a1eda9_5.conda
-  version: 1.2.13
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/osx-64/llvm-openmp-17.0.6-hb6ac08f_0.conda
   hash:
-    md5: 31391b68245bc68504169e98ffaf2c44
-    sha256: d49b6958d22075de5fb707fd5f593cfa4be059015db48b7f1cd5e47e7efde2ff
-  manager: conda
-  name: llvm-openmp
+    md5: f260ab897df05f729fc3e65dbb0850ef
+    sha256: 9ea2f7018f335fdc55bc9b21a388eb94ea47a243d9cbf6ec3d8862d4df9fb49b
+  category: main
   optional: false
+- name: openjdk
+  version: 8.0.382
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/llvm-openmp-17.0.4-hb6ac08f_0.conda
-  version: 17.0.4
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/osx-64/openjdk-8.0.382-h0dc2134_0.conda
   hash:
     md5: 41ec32582903ecc6e95b970eeb2ce0a0
     sha256: 2b34d99d76023d10a4bd1a1192f40c1666fad33630f63bb93e9706981d64a28c
-  manager: conda
-  name: openjdk
+  category: main
   optional: false
+- name: pthread-stubs
+  version: '0.4'
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/openjdk-8.0.382-h0dc2134_0.conda
-  version: 8.0.382
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/osx-64/pthread-stubs-0.4-hc929b4f_1001.tar.bz2
   hash:
     md5: addd19059de62181cd11ae8f4ef26084
     sha256: 6e3900bb241bcdec513d4e7180fe9a19186c1a38f0b4080ed619d26014222c53
-  manager: conda
-  name: pthread-stubs
+  category: main
   optional: false
+- name: python_abi
+  version: '3.8'
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/pthread-stubs-0.4-hc929b4f_1001.tar.bz2
-  version: '0.4'
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/osx-64/python_abi-3.8-4_cp38.conda
   hash:
     md5: 74bec187a12aed00501eaafd35e694bf
     sha256: 0dab6ce7b8e48f2308aa9c37e8feceaa7c84ee335745c1803686fbbb59a19926
-  manager: conda
-  name: python_abi
+  category: main
   optional: false
+- name: xorg-libxau
+  version: 1.0.11
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/python_abi-3.8-4_cp38.conda
-  version: '3.8'
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/osx-64/xorg-libxau-1.0.11-h0dc2134_0.conda
   hash:
     md5: 9566b4c29274125b0266d0177b5eb97b
     sha256: 8a2e398c4f06f10c64e69f56bcf3ddfa30b432201446a0893505e735b346619a
-  manager: conda
-  name: xorg-libxau
+  category: main
   optional: false
+- name: xorg-libxdmcp
+  version: 1.1.3
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/xorg-libxau-1.0.11-h0dc2134_0.conda
-  version: 1.0.11
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/osx-64/xorg-libxdmcp-1.1.3-h35c211d_0.tar.bz2
   hash:
     md5: 86ac76d6bf1cbb9621943eb3bd9ae36e
     sha256: 485421c16f03a01b8ed09984e0b2ababdbb3527e1abf354ff7646f8329be905f
-  manager: conda
-  name: xorg-libxdmcp
+  category: main
   optional: false
+- name: xz
+  version: 5.2.6
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/xorg-libxdmcp-1.1.3-h35c211d_0.tar.bz2
-  version: 1.1.3
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/osx-64/xz-5.2.6-h775f41a_0.tar.bz2
   hash:
     md5: a72f9d4ea13d55d745ff1ed594747f10
     sha256: eb09823f34cc2dd663c0ec4ab13f246f45dcd52e5b8c47b9864361de5204a1c8
-  manager: conda
-  name: xz
+  category: main
   optional: false
+- name: yaml
+  version: 0.2.5
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/xz-5.2.6-h775f41a_0.tar.bz2
-  version: 5.2.6
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/osx-64/yaml-0.2.5-h0d85af4_2.tar.bz2
   hash:
     md5: d7e08fcf8259d742156188e8762b4d20
     sha256: 5301417e2c8dea45b401ffee8df3957d2447d4ce80c83c5ff151fc6bfe1c4148
-  manager: conda
-  name: yaml
+  category: main
   optional: false
+- name: geos
+  version: 3.11.2
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/yaml-0.2.5-h0d85af4_2.tar.bz2
-  version: 0.2.5
-- category: main
   dependencies:
     libcxx: '>=14.0.6'
+  url: https://conda.anaconda.org/conda-forge/osx-64/geos-3.11.2-hf0c8a7f_0.conda
   hash:
     md5: 174943c1cc025b1c526f0a464694137c
     sha256: 5c14e176b6dfca527d663281201a5a3a0d1f1df41b4a7d04b03385e4bfd56918
-  manager: conda
-  name: geos
+  category: main
   optional: false
+- name: lerc
+  version: 4.0.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/geos-3.11.2-hf0c8a7f_0.conda
-  version: 3.11.2
-- category: main
   dependencies:
     libcxx: '>=13.0.1'
+  url: https://conda.anaconda.org/conda-forge/osx-64/lerc-4.0.0-hb486fe8_0.tar.bz2
   hash:
     md5: f9d6a4c82889d5ecedec1d90eb673c55
     sha256: e41790fc0f4089726369b3c7f813117bbc14b533e0ed8b94cf75aba252e82497
-  manager: conda
-  name: lerc
+  category: main
   optional: false
+- name: libbrotlidec
+  version: 1.1.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/lerc-4.0.0-hb486fe8_0.tar.bz2
-  version: 4.0.0
-- category: main
   dependencies:
-    libbrotlicommon: 1.1.0 h0dc2134_1
+    libbrotlicommon: 1.1.0
+  url: https://conda.anaconda.org/conda-forge/osx-64/libbrotlidec-1.1.0-h0dc2134_1.conda
   hash:
     md5: 9ee0bab91b2ca579e10353738be36063
     sha256: b11939c4c93c29448660ab5f63273216969d1f2f315dd9be60f3c43c4e61a50c
-  manager: conda
-  name: libbrotlidec
+  category: main
   optional: false
-  platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libbrotlidec-1.1.0-h0dc2134_1.conda
+- name: libbrotlienc
   version: 1.1.0
-- category: main
+  manager: conda
+  platform: osx-64
   dependencies:
-    libbrotlicommon: 1.1.0 h0dc2134_1
+    libbrotlicommon: 1.1.0
+  url: https://conda.anaconda.org/conda-forge/osx-64/libbrotlienc-1.1.0-h0dc2134_1.conda
   hash:
     md5: 8a421fe09c6187f0eb5e2338a8a8be6d
     sha256: bc964c23e1a60ca1afe7bac38a9c1f2af3db4a8072c9f2eac4e4de537a844ac7
-  manager: conda
-  name: libbrotlienc
+  category: main
   optional: false
+- name: libgfortran5
+  version: 13.2.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libbrotlienc-1.1.0-h0dc2134_1.conda
-  version: 1.1.0
-- category: main
   dependencies:
     llvm-openmp: '>=8.0.0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/libgfortran5-13.2.0-h2873a65_3.conda
   hash:
-    md5: 3af564516b5163cd8cc08820413854bc
-    sha256: 44de8930eef3b14d4d9fdfe419e6c909c13b7c859617d3616d5a5e964f3fcf63
-  manager: conda
-  name: libgfortran5
+    md5: e4fb4d23ec2870ff3c40d10afe305aec
+    sha256: da3db4b947e30aec7596a3ef92200d17e774cccbbf7efc47802529a4ca5ca31b
+  category: main
   optional: false
+- name: libpng
+  version: 1.6.42
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libgfortran5-13.2.0-h2873a65_1.conda
-  version: 13.2.0
-- category: main
   dependencies:
     libzlib: '>=1.2.13,<1.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/libpng-1.6.42-h92b6c6a_0.conda
   hash:
-    md5: 35e4928794c5391aec14ffdf1deaaee5
-    sha256: 5ad9f5e96e6770bfc8b0a826f48835e7f337c2d2e9512d76027a62f9c120b2a3
-  manager: conda
-  name: libpng
+    md5: 7654da21e9d7ca6a8c87fbc77448588e
+    sha256: 57c816e3b8cd0aaca7b85e79c0cc2211789ce0729a581d006faf8daeebf51f8d
+  category: main
   optional: false
+- name: libsqlite
+  version: 3.45.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libpng-1.6.39-ha978bb4_0.conda
-  version: 1.6.39
-- category: main
   dependencies:
     libzlib: '>=1.2.13,<1.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.45.1-h92b6c6a_0.conda
   hash:
-    md5: 5dd5e957ebfee02720c30e0e2d127bbe
-    sha256: 0832dc9cf18e811d2b41f8f4951d5ab608678e3459b1a4f36347097d8a9abf68
-  manager: conda
-  name: libsqlite
+    md5: e451d14a5412cdc68be50493df251f55
+    sha256: d65ce7093ecf5884b241a5ca8d26f80d21eaebf14ca67923b50c249f47a84cf9
+  category: main
   optional: false
+- name: libxcb
+  version: '1.15'
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.44.0-h92b6c6a_0.conda
-  version: 3.44.0
-- category: main
   dependencies:
     pthread-stubs: ''
     xorg-libxau: ''
     xorg-libxdmcp: ''
+  url: https://conda.anaconda.org/conda-forge/osx-64/libxcb-1.15-hb7f2c08_0.conda
   hash:
     md5: 5513f57e0238c87c12dffedbcc9c1a4a
     sha256: f41904f466acc8b3197f37f2dd3a08da75720c7f7464d9267635debc4ac1902b
-  manager: conda
-  name: libxcb
+  category: main
   optional: false
+- name: ncurses
+  version: '6.4'
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libxcb-1.15-hb7f2c08_0.conda
-  version: '1.15'
-- category: main
   dependencies:
     __osx: '>=10.9'
+  url: https://conda.anaconda.org/conda-forge/osx-64/ncurses-6.4-h93d8f39_2.conda
   hash:
     md5: e58f366bd4d767e9ab97ab8b272e7670
     sha256: ea0fca66bbb52a1ef0687d466518fe120b5f279684effd6fd336a7b0dddc423a
-  manager: conda
-  name: ncurses
+  category: main
   optional: false
+- name: openssl
+  version: 3.2.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/ncurses-6.4-h93d8f39_2.conda
-  version: '6.4'
-- category: main
   dependencies:
     ca-certificates: ''
+  url: https://conda.anaconda.org/conda-forge/osx-64/openssl-3.2.1-hd75f5a5_0.conda
   hash:
-    md5: bc9201da6eb1e0df4107901df5371347
-    sha256: 1c436103a8de0dc82c9c56974badaa1b8b8f8cd9f37c2766bd50cd9899720f6b
-  manager: conda
-  name: openssl
+    md5: 3033be9a59fd744172b03971b9ccd081
+    sha256: 20c1b1a34a1831c24d37ed1500ca07300171184af0c66598f3c5ca901634d713
+  category: main
   optional: false
+- name: tk
+  version: 8.6.13
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/openssl-3.1.4-hd75f5a5_0.conda
-  version: 3.1.4
-- category: main
   dependencies:
     libzlib: '>=1.2.13,<1.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/tk-8.6.13-h1abcd95_1.conda
   hash:
     md5: bf830ba5afc507c6232d4ef0fb1a882d
     sha256: 30412b2e9de4ff82d8c2a7e5d06a15f4f4fef1809a72138b6ccb53a33b26faf5
-  manager: conda
-  name: tk
+  category: main
   optional: false
+- name: zeromq
+  version: 4.3.5
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/tk-8.6.13-h1abcd95_1.conda
-  version: 8.6.13
-- category: main
   dependencies:
     __osx: '>=10.9'
     libcxx: '>=16.0.6'
     libsodium: '>=1.0.18,<1.0.19.0a0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/zeromq-4.3.5-h93d8f39_0.conda
   hash:
     md5: 4c055e46b394be36681fe476c1e2ee6e
     sha256: 19be553b3cc8352b6e842134b8de66ae39fcae80bc575c203076370faab6009c
-  manager: conda
-  name: zeromq
+  category: main
   optional: false
+- name: zlib
+  version: 1.2.13
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/zeromq-4.3.5-h93d8f39_0.conda
-  version: 4.3.5
-- category: main
   dependencies:
-    libzlib: 1.2.13 h8a1eda9_5
+    libzlib: 1.2.13
+  url: https://conda.anaconda.org/conda-forge/osx-64/zlib-1.2.13-h8a1eda9_5.conda
   hash:
     md5: 75a8a98b1c4671c5d2897975731da42d
     sha256: d1f4c82fd7bd240a78ce8905e931e68dca5f523c7da237b6b63c87d5625c5b35
-  manager: conda
-  name: zlib
+  category: main
   optional: false
+- name: zstd
+  version: 1.5.5
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/zlib-1.2.13-h8a1eda9_5.conda
-  version: 1.2.13
-- category: main
   dependencies:
     libzlib: '>=1.2.13,<1.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/zstd-1.5.5-h829000d_0.conda
   hash:
     md5: 80abc41d0c48b82fe0f04e7f42f5cb7e
     sha256: d54e31d3d8de5e254c0804abd984807b8ae5cd3708d758a8bf1adff1f5df166c
-  manager: conda
-  name: zstd
+  category: main
   optional: false
+- name: brotli-bin
+  version: 1.1.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/zstd-1.5.5-h829000d_0.conda
-  version: 1.5.5
-- category: main
   dependencies:
-    libbrotlidec: 1.1.0 h0dc2134_1
-    libbrotlienc: 1.1.0 h0dc2134_1
+    libbrotlidec: 1.1.0
+    libbrotlienc: 1.1.0
+  url: https://conda.anaconda.org/conda-forge/osx-64/brotli-bin-1.1.0-h0dc2134_1.conda
   hash:
     md5: ece565c215adcc47fc1db4e651ee094b
     sha256: 7ca3cfb4c5df314ed481301335387ab2b2ee651e2c74fbb15bacc795c664a5f1
-  manager: conda
-  name: brotli-bin
+  category: main
   optional: false
+- name: freetype
+  version: 2.12.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/brotli-bin-1.1.0-h0dc2134_1.conda
-  version: 1.1.0
-- category: main
   dependencies:
     libpng: '>=1.6.39,<1.7.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/freetype-2.12.1-h60636b9_2.conda
   hash:
     md5: 25152fce119320c980e5470e64834b50
     sha256: b292cf5a25f094eeb4b66e37d99a97894aafd04a5683980852a8cbddccdc8e4e
-  manager: conda
-  name: freetype
+  category: main
   optional: false
+- name: libedit
+  version: 3.1.20191231
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/freetype-2.12.1-h60636b9_2.conda
-  version: 2.12.1
-- category: main
   dependencies:
     ncurses: '>=6.2,<7.0.0a0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/libedit-3.1.20191231-h0678c8f_2.tar.bz2
   hash:
     md5: 6016a8a1d0e63cac3de2c352cd40208b
     sha256: dbd3c3f2eca1d21c52e4c03b21930bbce414c4592f8ce805801575b9e9256095
-  manager: conda
-  name: libedit
+  category: main
   optional: false
+- name: libgfortran
+  version: 5.0.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libedit-3.1.20191231-h0678c8f_2.tar.bz2
-  version: 3.1.20191231
-- category: main
   dependencies:
-    libgfortran5: 13.2.0 h2873a65_1
+    libgfortran5: 13.2.0
+  url: https://conda.anaconda.org/conda-forge/osx-64/libgfortran-5.0.0-13_2_0_h97931a8_3.conda
   hash:
-    md5: b55fd11ab6318a6e67ac191309701d5a
-    sha256: 5be1a59316e5063f4e6492ea86d692600a7b8e32caa25269f8a3b386a028e5f3
-  manager: conda
-  name: libgfortran
+    md5: 0b6e23a012ee7a9a5f6b244f5a92c1d5
+    sha256: 4874422e567b68334705c135c17e5acdca1404de8255673ce30ad3510e00be0d
+  category: main
   optional: false
+- name: libnghttp2
+  version: 1.58.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libgfortran-5.0.0-13_2_0_h97931a8_1.conda
-  version: 5.0.0
-- category: main
   dependencies:
     __osx: '>=10.9'
-    c-ares: '>=1.21.0,<2.0a0'
+    c-ares: '>=1.23.0,<2.0a0'
     libcxx: '>=16.0.6'
-    libev: '>=4.33,<4.34.0a0'
+    libev: '>=4.33,<5.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
-    openssl: '>=3.1.4,<4.0a0'
+    openssl: '>=3.2.0,<4.0a0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/libnghttp2-1.58.0-h64cf6d3_1.conda
   hash:
-    md5: 864e23fba3678000154f53bbf6d476a2
-    sha256: b2b94cdaffa0d4fddd73c04262fdb1d1bcd6f8783979281ccfdb832e159cac4e
-  manager: conda
-  name: libnghttp2
+    md5: faecc55c2a8155d9ff1c0ff9a0fef64f
+    sha256: 412fd768e787e586602f8e9ea52bf089f3460fc630f6987f0cbd89b70e9a4380
+  category: main
   optional: false
+- name: libssh2
+  version: 1.11.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libnghttp2-1.58.0-h64cf6d3_0.conda
-  version: 1.58.0
-- category: main
   dependencies:
     libzlib: '>=1.2.13,<1.3.0a0'
     openssl: '>=3.1.1,<4.0a0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/libssh2-1.11.0-hd019ec5_0.conda
   hash:
     md5: ca3a72efba692c59a90d4b9fc0dfe774
     sha256: f3886763b88f4b24265db6036535ef77b7b77ce91b1cbe588c0fbdd861eec515
-  manager: conda
-  name: libssh2
+  category: main
   optional: false
+- name: libtiff
+  version: 4.5.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libssh2-1.11.0-hd019ec5_0.conda
-  version: 1.11.0
-- category: main
   dependencies:
     lerc: '>=4.0.0,<5.0a0'
     libcxx: '>=15.0.7'
@@ -4324,540 +4424,563 @@ package:
     libzlib: '>=1.2.13,<1.3.0a0'
     xz: '>=5.2.6,<6.0a0'
     zstd: '>=1.5.2,<1.6.0a0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/libtiff-4.5.1-hf955e92_1.conda
   hash:
     md5: 3436c5763732687918ce258b0184c7c9
     sha256: 1302146bcfa3905b106543e9c7e7419a3b386767a2dd0b42dbdc36f267a6a0e7
-  manager: conda
-  name: libtiff
+  category: main
   optional: false
+- name: nodejs
+  version: 20.9.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libtiff-4.5.1-hf955e92_1.conda
-  version: 4.5.1
-- category: main
   dependencies:
     __osx: '>=10.9'
     icu: '>=73.2,<74.0a0'
     libcxx: '>=16.0.6'
     libuv: '>=1.46.0,<1.47.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
-    openssl: '>=3.1.3,<4.0a0'
+    openssl: '>=3.1.4,<4.0a0'
     zlib: ''
+  url: https://conda.anaconda.org/conda-forge/osx-64/nodejs-20.9.0-h9adec40_0.conda
   hash:
-    md5: d653802cf7edab59398a6896c62c4b9b
-    sha256: 8c749285d3f3c09dd4d4fd3009a3a55bca400b306541a64d62af25ca5bc5bab2
-  manager: conda
-  name: nodejs
+    md5: eea3610c4b86886f545c0fe53d1e9438
+    sha256: b492f1478fbca841491fbb9feeca7e859a9f57ea6319eeef09d702e12140a44f
+  category: main
   optional: false
+- name: readline
+  version: '8.2'
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/nodejs-20.8.1-h9adec40_0.conda
-  version: 20.8.1
-- category: main
   dependencies:
     ncurses: '>=6.3,<7.0a0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/readline-8.2-h9e318b2_1.conda
   hash:
     md5: f17f77f2acf4d344734bda76829ce14e
     sha256: 41e7d30a097d9b060037f0c6a2b1d4c4ae7e942c06c943d23f9d481548478568
-  manager: conda
-  name: readline
+  category: main
   optional: false
+- name: brotli
+  version: 1.1.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/readline-8.2-h9e318b2_1.conda
-  version: '8.2'
-- category: main
   dependencies:
-    brotli-bin: 1.1.0 h0dc2134_1
-    libbrotlidec: 1.1.0 h0dc2134_1
-    libbrotlienc: 1.1.0 h0dc2134_1
+    brotli-bin: 1.1.0
+    libbrotlidec: 1.1.0
+    libbrotlienc: 1.1.0
+  url: https://conda.anaconda.org/conda-forge/osx-64/brotli-1.1.0-h0dc2134_1.conda
   hash:
     md5: 9272dd3b19c4e8212f8542cefd5c3d67
     sha256: 4bf66d450be5d3f9ebe029b50f818d088b1ef9666b1f19e90c85479c77bbdcde
-  manager: conda
-  name: brotli
+  category: main
   optional: false
+- name: krb5
+  version: 1.21.2
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/brotli-1.1.0-h0dc2134_1.conda
-  version: 1.1.0
-- category: main
   dependencies:
     libcxx: '>=15.0.7'
     libedit: '>=3.1.20191231,<4.0a0'
     openssl: '>=3.1.2,<4.0a0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/krb5-1.21.2-hb884880_0.conda
   hash:
     md5: 80505a68783f01dc8d7308c075261b2f
     sha256: 081ae2008a21edf57c048f331a17c65d1ccb52d6ca2f87ee031a73eff4dc0fc6
-  manager: conda
-  name: krb5
+  category: main
   optional: false
+- name: lcms2
+  version: '2.15'
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/krb5-1.21.2-hb884880_0.conda
-  version: 1.21.2
-- category: main
   dependencies:
     libjpeg-turbo: '>=2.1.5.1,<3.0a0'
     libtiff: '>=4.5.0,<4.6.0a0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/lcms2-2.15-h2dcdeff_1.conda
   hash:
     md5: f1df9b0c2d9fbe985e62f4b24773a9e4
     sha256: 5154e12ea600a0008ddb76a02e3f6edb373bf8c3eef47f7dd052d66b8d2fc35a
-  manager: conda
-  name: lcms2
+  category: main
   optional: false
+- name: libopenblas
+  version: 0.3.25
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/lcms2-2.15-h2dcdeff_1.conda
-  version: '2.15'
-- category: main
   dependencies:
     libgfortran: 5.*
     libgfortran5: '>=12.3.0'
-    llvm-openmp: '>=15.0.7'
+    llvm-openmp: '>=16.0.6'
+  url: https://conda.anaconda.org/conda-forge/osx-64/libopenblas-0.3.25-openmp_hfef2a42_0.conda
   hash:
-    md5: 077718837dd06cf0c3089070108869f6
-    sha256: ff2c14f7ed121f1df3ad06bea353288eade77c12fb891212a27af88a61483490
-  manager: conda
-  name: libopenblas
+    md5: a01b96f00c3155c830d98a518c7dcbfb
+    sha256: 9895bccdbaa34958ab7dd1f29de66d1dfb94c551c7bb5a663666a500c67ee93c
+  category: main
   optional: false
+- name: openjpeg
+  version: 2.5.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libopenblas-0.3.24-openmp_h48a4ad5_0.conda
-  version: 0.3.24
-- category: main
   dependencies:
     libcxx: '>=14.0.6'
     libpng: '>=1.6.39,<1.7.0a0'
     libtiff: '>=4.5.0,<4.6.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/openjpeg-2.5.0-h13ac156_2.conda
   hash:
     md5: 299a29af9ac9f550ad459d655739280b
     sha256: 2375eafbd5241d8249fb467e2a8e190646e8798c33059c72efa60f197cdf4944
-  manager: conda
-  name: openjpeg
+  category: main
   optional: false
+- name: python
+  version: 3.8.18
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/openjpeg-2.5.0-h13ac156_2.conda
-  version: 2.5.0
-- category: main
   dependencies:
     bzip2: '>=1.0.8,<2.0a0'
     libffi: '>=3.4,<4.0a0'
-    libsqlite: '>=3.43.0,<4.0a0'
+    libsqlite: '>=3.44.2,<4.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
     ncurses: '>=6.4,<7.0a0'
-    openssl: '>=3.1.3,<4.0a0'
+    openssl: '>=3.2.0,<4.0a0'
     readline: '>=8.2,<9.0a0'
     tk: '>=8.6.13,<8.7.0a0'
     xz: '>=5.2.6,<6.0a0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/python-3.8.18-h5ba8234_1_cpython.conda
   hash:
-    md5: d57653799bb19c13703a696f46dadce4
-    sha256: c47b1478d4afd1e8149fb5a0e395121f9f2164b0e5b0c86de7211e3685f1302b
-  manager: conda
-  name: python
+    md5: 34024ccde0d6a5f42b2ef4c3d08b8f65
+    sha256: 46f3bf96209c80015bd2f4ce4f72da61fde85a7631efb77beaf83232b7c3576d
+  category: main
   optional: false
+- name: sqlite
+  version: 3.45.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/python-3.8.18-h5ba8234_0_cpython.conda
-  version: 3.8.18
-- category: main
   dependencies:
-    libsqlite: 3.44.0 h92b6c6a_0
+    libsqlite: 3.45.1
     libzlib: '>=1.2.13,<1.3.0a0'
     ncurses: '>=6.4,<7.0a0'
     readline: '>=8.2,<9.0a0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/sqlite-3.45.1-h7461747_0.conda
   hash:
-    md5: 4c125fcbf57aa07682468a1e9d202cfa
-    sha256: a222b2686f7e62c27ec2aaa64e7f2d927a883e5ef62e4ea060b6bd53c032cfca
-  manager: conda
-  name: sqlite
+    md5: 239ff6ffc3ee45898db19e3cbbf40f88
+    sha256: ce0908a02a1965854dde0022f5ba9b986324077ba4835a3c990463ed762e6e8f
+  category: main
   optional: false
+- name: appnope
+  version: 0.1.4
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/sqlite-3.44.0-h7461747_0.conda
-  version: 3.44.0
-- category: main
   dependencies:
-    python: '>=2.7'
+    python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/appnope-0.1.4-pyhd8ed1ab_0.conda
   hash:
-    md5: 54ac328d703bff191256ffa1183126d1
-    sha256: b209a68ac55eb9ecad7042f0d4eedef5da924699f6cdf54ac1826869cfdae742
-  manager: conda
-  name: appnope
+    md5: cc4834a9ee7cc49ce8d25177c47b10d8
+    sha256: 45ae2d41f4a4dcf8707633d3d7ae376fc62f0c09b1d063c3049c3f6f8c911670
+  category: main
   optional: false
+- name: attrs
+  version: 23.2.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/appnope-0.1.3-pyhd8ed1ab_0.tar.bz2
-  version: 0.1.3
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/attrs-23.2.0-pyh71513ae_0.conda
   hash:
-    md5: 3edfead7cedd1ab4400a6c588f3e75f8
-    sha256: 063639cd568f5c7a557b0fb1cc27f098598c0d8ff869088bfeb82934674f8821
-  manager: conda
-  name: attrs
+    md5: 5e4c0743c70186509d1412e03c2d8dfa
+    sha256: 77c7d03bdb243a048fff398cedc74327b7dc79169ebe3b4c8448b0331ea55fea
+  category: main
   optional: false
+- name: backcall
+  version: 0.2.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/attrs-23.1.0-pyh71513ae_1.conda
-  version: 23.1.0
-- category: main
   dependencies:
     python: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/backcall-0.2.0-pyh9f0ad1d_0.tar.bz2
   hash:
     md5: 6006a6d08a3fa99268a2681c7fb55213
     sha256: ee62d6434090c1327a48551734e06bd10e65a64ef7f3b6e68719500dab0e42b9
-  manager: conda
-  name: backcall
+  category: main
   optional: false
+- name: backports
+  version: '1.0'
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/backcall-0.2.0-pyh9f0ad1d_0.tar.bz2
-  version: 0.2.0
-- category: main
   dependencies:
     python: '>=2.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/backports-1.0-pyhd8ed1ab_3.conda
   hash:
     md5: 54ca2e08b3220c148a1d8329c2678e02
     sha256: 711602276ae39276cb0faaca6fd0ac851fff0ca17151917569174841ef830bbd
-  manager: conda
-  name: backports
+  category: main
   optional: false
+- name: basemap-data
+  version: 1.3.2
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/backports-1.0-pyhd8ed1ab_3.conda
-  version: '1.0'
-- category: main
   dependencies:
     python: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/basemap-data-1.3.2-pyhd8ed1ab_3.conda
   hash:
     md5: 0cf2bde421530ef9f2dad055de9ba099
     sha256: d7ada152f0eed21cec35e9a0c355f66fa2803e1342a32738499fbce07823ea71
-  manager: conda
-  name: basemap-data
+  category: main
   optional: false
+- name: brotli-python
+  version: 1.1.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/basemap-data-1.3.2-pyhd8ed1ab_3.conda
-  version: 1.3.2
-- category: main
   dependencies:
     libcxx: '>=15.0.7'
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
+  url: https://conda.anaconda.org/conda-forge/osx-64/brotli-python-1.1.0-py38h940360d_1.conda
   hash:
     md5: ad8d4ae4e8351a2fc0fe92f13bd266d8
     sha256: 0a088bff62ddd2e505bdc80cc16da009c134b9ccfa6352b0cfe9d4eeed27d8c2
-  manager: conda
-  name: brotli-python
+  category: main
   optional: false
+- name: cached_property
+  version: 1.5.2
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/brotli-python-1.1.0-py38h940360d_1.conda
-  version: 1.1.0
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/cached_property-1.5.2-pyha770c72_1.tar.bz2
   hash:
     md5: 576d629e47797577ab0f1b351297ef4a
     sha256: 6dbf7a5070cc43d90a1e4c2ec0c541c69d8e30a0e25f50ce9f6e4a432e42c5d7
-  manager: conda
-  name: cached_property
+  category: main
   optional: false
+- name: certifi
+  version: 2024.2.2
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/cached_property-1.5.2-pyha770c72_1.tar.bz2
-  version: 1.5.2
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.2.2-pyhd8ed1ab_0.conda
   hash:
-    md5: 7f3dbc9179b4dde7da98dfb151d0ad22
-    sha256: db66e31866ff4250c190788769e3a8a1709237c3e9c38d7143aae95ab75fcb31
-  manager: conda
-  name: certifi
+    md5: 0876280e409658fc6f9e75d035960333
+    sha256: f1faca020f988696e6b6ee47c82524c7806380b37cfdd1def32f92c326caca54
+  category: main
   optional: false
+- name: charset-normalizer
+  version: 3.3.2
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/certifi-2023.7.22-pyhd8ed1ab_0.conda
-  version: 2023.7.22
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.3.2-pyhd8ed1ab_0.conda
   hash:
     md5: 7f4a9e3fcff3f6356ae99244a014da6a
     sha256: 20cae47d31fdd58d99c4d2e65fbdcefa0b0de0c84e455ba9d6356a4bdbc4b5b9
-  manager: conda
-  name: charset-normalizer
+  category: main
   optional: false
+- name: cycler
+  version: 0.12.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.3.2-pyhd8ed1ab_0.conda
-  version: 3.3.2
-- category: main
   dependencies:
     python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda
   hash:
     md5: 5cd86562580f274031ede6aa6aa24441
     sha256: f221233f21b1d06971792d491445fd548224641af9443739b4b7b6d5d72954a8
-  manager: conda
-  name: cycler
+  category: main
   optional: false
+- name: debugpy
+  version: 1.8.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda
-  version: 0.12.1
-- category: main
   dependencies:
-    libcxx: '>=15.0.7'
+    libcxx: '>=16'
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
+  url: https://conda.anaconda.org/conda-forge/osx-64/debugpy-1.8.1-py38h1f5f77c_0.conda
   hash:
-    md5: 36eb00ff62ea418a9da0b795f7886535
-    sha256: 39b3f490a5eb001248f5b01317d7e30f8a43162615769fa6ed8631065638c8b5
-  manager: conda
-  name: debugpy
+    md5: 330e7bdce942d7228484a73b926c1441
+    sha256: aa6a0f3a79d1f428423ebe14e471d5d91079d96636c63bdec5942dc0f1e9868d
+  category: main
   optional: false
+- name: decorator
+  version: 5.1.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/debugpy-1.8.0-py38h940360d_1.conda
-  version: 1.8.0
-- category: main
   dependencies:
     python: '>=3.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 43afe5ab04e35e17ba28649471dd7364
     sha256: 328a6a379f9bdfd0230e51de291ce858e6479411ea4b0545fb377c71662ef3e2
-  manager: conda
-  name: decorator
+  category: main
   optional: false
+- name: defusedxml
+  version: 0.7.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_0.tar.bz2
-  version: 5.1.1
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/defusedxml-0.7.1-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 961b3a227b437d82ad7054484cfa71b2
     sha256: 9717a059677553562a8f38ff07f3b9f61727bd614f505658b0a5ecbcf8df89be
-  manager: conda
-  name: defusedxml
+  category: main
   optional: false
+- name: entrypoints
+  version: '0.4'
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/defusedxml-0.7.1-pyhd8ed1ab_0.tar.bz2
-  version: 0.7.1
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/entrypoints-0.4-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 3cf04868fee0a029769bd41f4b2fbf2d
     sha256: 2ec4a0900a4a9f42615fc04d0fb3286b796abe56590e8e042f6ec25e102dd5af
-  manager: conda
-  name: entrypoints
+  category: main
   optional: false
+- name: exceptiongroup
+  version: 1.2.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/entrypoints-0.4-pyhd8ed1ab_0.tar.bz2
-  version: '0.4'
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.0-pyhd8ed1ab_2.conda
   hash:
-    md5: e6518222753f519e911e83136d2158d9
-    sha256: c28f715e049fe0f09785660bcbffa175ffb438720e5bc5a60d56d4b08364b315
-  manager: conda
-  name: exceptiongroup
+    md5: 8d652ea2ee8eaee02ed8dc820bc794aa
+    sha256: a6ae416383bda0e3ed14eaa187c653e22bec94ff2aa3b56970cdf0032761e80d
+  category: main
   optional: false
+- name: executing
+  version: 2.0.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.1.3-pyhd8ed1ab_0.conda
-  version: 1.1.3
-- category: main
   dependencies:
     python: '>=2.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/executing-2.0.1-pyhd8ed1ab_0.conda
   hash:
     md5: e16be50e378d8a4533b989035b196ab8
     sha256: c738804ab1e6376f8ea63372229a04c8d658dc90fd5a218c6273a2eaf02f4057
+  category: main
+  optional: false
+- name: hpack
+  version: 4.0.0
   manager: conda
-  name: executing
+  platform: osx-64
+  dependencies:
+    python: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2
+  hash:
+    md5: 914d6646c4dbb1fd3ff539830a12fd71
+    sha256: 5dec948932c4f740674b1afb551223ada0c55103f4c7bf86a110454da3d27cb8
+  category: main
   optional: false
+- name: hyperframe
+  version: 6.0.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/executing-2.0.1-pyhd8ed1ab_0.conda
-  version: 2.0.1
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2
   hash:
-    md5: 34272b248891bddccc64479f9a7fffed
-    sha256: 9887c35c374ec1847f167292d3fde023cb4c994a4ceeec283072b95440131f09
+    md5: 9f765cbfab6870c8435b9eefecd7a1f4
+    sha256: e374a9d0f53149328134a8d86f5d72bca4c6dcebed3c0ecfa968c02996289330
+  category: main
+  optional: false
+- name: idna
+  version: '3.6'
   manager: conda
-  name: idna
+  platform: osx-64
+  dependencies:
+    python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/idna-3.6-pyhd8ed1ab_0.conda
+  hash:
+    md5: 1a76f09108576397c41c0b0c5bd84134
+    sha256: 6ee4c986d69ce61e60a20b2459b6f2027baeba153f0a64995fd3cb47c2cc7e07
+  category: main
   optional: false
+- name: json5
+  version: 0.9.17
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/idna-3.4-pyhd8ed1ab_0.tar.bz2
-  version: '3.4'
-- category: main
   dependencies:
     python: '>=3.7,<4.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/json5-0.9.17-pyhd8ed1ab_0.conda
   hash:
-    md5: dac1dabba2b5a9d1aee175c5fcc7b436
-    sha256: 41514104208c092959bef0713cbd795e72c535f2f939b7903d8c97809f2adaa7
-  manager: conda
-  name: json5
+    md5: 0e1b14ff0f0762acca0f87c26c9b75ad
+    sha256: e01ee861d57b748874f4b4f4392b82d9341f61819a35095b4f68fbdfc93041a1
+  category: main
   optional: false
+- name: jsonpointer
+  version: '2.4'
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/json5-0.9.14-pyhd8ed1ab_0.conda
-  version: 0.9.14
-- category: main
   dependencies:
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
+  url: https://conda.anaconda.org/conda-forge/osx-64/jsonpointer-2.4-py38h50d1736_3.conda
   hash:
     md5: 587da7fcb04fb5d49d7caf0f0010e17f
     sha256: f706894de91a7c453fb8509172251d4cf99f30e0461c57a0405eac9c477faed3
-  manager: conda
-  name: jsonpointer
+  category: main
   optional: false
+- name: kiwisolver
+  version: 1.4.5
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/jsonpointer-2.4-py38h50d1736_3.conda
-  version: '2.4'
-- category: main
   dependencies:
     libcxx: '>=15.0.7'
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
+  url: https://conda.anaconda.org/conda-forge/osx-64/kiwisolver-1.4.5-py38h15a1a5b_1.conda
   hash:
     md5: a288aa741a88b5242389f05dcd9e6670
     sha256: b024d357b0cd1e160e3565f6ff6fc15f70f44beb736ac7a7ec9f714bd430140d
-  manager: conda
-  name: kiwisolver
+  category: main
   optional: false
+- name: libblas
+  version: 3.9.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/kiwisolver-1.4.5-py38h15a1a5b_1.conda
-  version: 1.4.5
-- category: main
   dependencies:
-    libopenblas: '>=0.3.24,<1.0a0'
+    libopenblas: '>=0.3.25,<1.0a0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/libblas-3.9.0-20_osx64_openblas.conda
   hash:
-    md5: e932b99c38915fa2ee252cdff6ea1f01
-    sha256: c2c96103aa23a65f45b76716df49940cb0722258d3e0416f8fa06ade02464b23
-  manager: conda
-  name: libblas
+    md5: 1673476d205d14a9042172be795f63cb
+    sha256: 89cac4653b52817d44802d96c13e5f194320e2e4ea805596641d0f3e22e32525
+  category: main
   optional: false
+- name: libcurl
+  version: 8.5.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libblas-3.9.0-19_osx64_openblas.conda
-  version: 3.9.0
-- category: main
   dependencies:
     krb5: '>=1.21.2,<1.22.0a0'
-    libnghttp2: '>=1.52.0,<2.0a0'
+    libnghttp2: '>=1.58.0,<2.0a0'
     libssh2: '>=1.11.0,<2.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
-    openssl: '>=3.1.3,<4.0a0'
+    openssl: '>=3.2.0,<4.0a0'
     zstd: '>=1.5.5,<1.6.0a0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/libcurl-8.5.0-h726d00d_0.conda
   hash:
-    md5: 2c17b4dedf0039736951471f493353bd
-    sha256: cd3400ecb42fc420acb18e2d836535c44ebd501ebeb4e0bf3830776e9b4ca650
-  manager: conda
-  name: libcurl
+    md5: 86d749e27fe00fa6b7d790a6feaa22a2
+    sha256: 7ec7e026be90da0965dfa6b92bbc905c852c13b27f3f83c47156db66ed0668f0
+  category: main
   optional: false
+- name: markupsafe
+  version: 2.1.5
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libcurl-8.4.0-h726d00d_0.conda
-  version: 8.4.0
-- category: main
   dependencies:
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
+  url: https://conda.anaconda.org/conda-forge/osx-64/markupsafe-2.1.5-py38hae2e43d_0.conda
   hash:
-    md5: ed178f435d4626880e8f5dd5d5f0e65c
-    sha256: a907d8cab806d821918b3339e71a91cb871311ab5843e3838341e771674cfdcb
-  manager: conda
-  name: markupsafe
+    md5: 5107dae4aa6cbcb0cb73718cdd951c29
+    sha256: ef6eaa455d99e40df64131d23f4b52bc3601f95a48f255cb9917f2d4eb760a36
+  category: main
   optional: false
+- name: mistune
+  version: 3.0.2
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/markupsafe-2.1.3-py38hcafd530_1.conda
-  version: 2.1.3
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/mistune-3.0.2-pyhd8ed1ab_0.conda
   hash:
     md5: 5cbee699846772cc939bef23a0d524ed
     sha256: f95cb70007e3cc2ba44e17c29a056b499e6dadf08746706d0c817c8e2f47e05c
-  manager: conda
-  name: mistune
+  category: main
   optional: false
+- name: munkres
+  version: 1.1.4
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/mistune-3.0.2-pyhd8ed1ab_0.conda
-  version: 3.0.2
-- category: main
   dependencies:
     python: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2
   hash:
     md5: 2ba8498c1018c1e9c61eb99b973dfe19
     sha256: f86fb22b58e93d04b6f25e0d811b56797689d598788b59dcb47f59045b568306
-  manager: conda
-  name: munkres
+  category: main
   optional: false
+- name: nest-asyncio
+  version: 1.6.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2
-  version: 1.1.4
-- category: main
   dependencies:
     python: '>=3.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda
   hash:
-    md5: a4f0e4519bc50eee4f53f689be9607f7
-    sha256: d7b795b4e754136841c6da3f9fa1a0f7ec37bc7167e7dd68c5b45e657133e008
-  manager: conda
-  name: nest-asyncio
+    md5: 6598c056f64dc8800d40add25e4e2c34
+    sha256: 30db21d1f7e59b3408b831a7e0417b83b53ee6223afae56482c5f26da3ceb49a
+  category: main
   optional: false
+- name: orekit
+  version: 12.0.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.5.8-pyhd8ed1ab_0.conda
-  version: 1.5.8
-- category: main
   dependencies:
-    __osx: '>=10.9'
-    libcxx: '>=16.0.6'
+    libcxx: '>=15'
     openjdk: 8.*
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
+  url: https://conda.anaconda.org/conda-forge/osx-64/orekit-12.0.1-py38h1f5f77c_2.conda
   hash:
-    md5: 39fedccf67d985c70e6af4cefdc70512
-    sha256: d4fe841ff7d9d86f9f106f787790c8dec53d7be61134603d608eed85ec13ba2f
-  manager: conda
-  name: orekit
+    md5: af5a1f3affb122d8800925a27685148b
+    sha256: eee9bc98dba3b2945da8eec58bb14496115a3fd4c9469b8c30b7167803472ba4
+  category: main
   optional: false
+- name: packaging
+  version: '23.2'
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/orekit-12.0-py38hb2f96d7_0.conda
-  version: '12.0'
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/packaging-23.2-pyhd8ed1ab_0.conda
   hash:
     md5: 79002079284aa895f883c6b7f3f88fd6
     sha256: 69b3ace6cca2dab9047b2c24926077d81d236bef45329d264b394001e3c3e52f
-  manager: conda
-  name: packaging
+  category: main
   optional: false
+- name: pandocfilters
+  version: 1.5.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/packaging-23.2-pyhd8ed1ab_0.conda
-  version: '23.2'
-- category: main
   dependencies:
     python: '!=3.0,!=3.1,!=3.2,!=3.3'
+  url: https://conda.anaconda.org/conda-forge/noarch/pandocfilters-1.5.0-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 457c2c8c08e54905d6954e79cb5b5db9
     sha256: 2bb9ba9857f4774b85900c2562f7e711d08dd48e2add9bee4e1612fbee27e16f
-  manager: conda
-  name: pandocfilters
+  category: main
   optional: false
+- name: parso
+  version: 0.8.3
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pandocfilters-1.5.0-pyhd8ed1ab_0.tar.bz2
-  version: 1.5.0
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.3-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 17a565a0c3899244e938cdf417e7b094
     sha256: 4e26d5daf5de0e31aa5e74ac56386a361b202433b83f024fdadbf07d4a244da4
-  manager: conda
-  name: parso
+  category: main
   optional: false
+- name: pickleshare
+  version: 0.7.5
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.3-pyhd8ed1ab_0.tar.bz2
-  version: 0.8.3
-- category: main
   dependencies:
     python: '>=3'
+  url: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2
   hash:
     md5: 415f0ebb6198cc2801c73438a9fb5761
     sha256: a1ed1a094dd0d1b94a09ed85c283a0eb28943f2e6f22161fb45e128d35229738
-  manager: conda
-  name: pickleshare
+  category: main
   optional: false
+- name: pillow
+  version: 10.0.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2
-  version: 0.7.5
-- category: main
   dependencies:
     freetype: '>=2.12.1,<3.0a0'
     lcms2: '>=2.15,<3.0a0'
@@ -4868,1255 +4991,1380 @@ package:
     libzlib: '>=1.2.13,<1.3.0a0'
     openjpeg: '>=2.5.0,<3.0a0'
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
     tk: '>=8.6.12,<8.7.0a0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/pillow-10.0.0-py38h16710f9_0.conda
   hash:
     md5: 8f73f0573ab381d56588e001754c53d3
     sha256: 3c1ff64396da5a315d512772761c44d1228058b0efea15f0546fb5fd49957607
-  manager: conda
-  name: pillow
+  category: main
   optional: false
+- name: pkgutil-resolve-name
+  version: 1.3.10
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/pillow-10.0.0-py38h16710f9_0.conda
-  version: 10.0.0
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_1.conda
   hash:
     md5: 405678b942f2481cecdb3e010f4925d9
     sha256: fecf95377134b0e8944762d92ecf7b0149c07d8186fb5db583125a2705c7ea0a
-  manager: conda
-  name: pkgutil-resolve-name
+  category: main
   optional: false
+- name: platformdirs
+  version: 4.2.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_1.conda
-  version: 1.3.10
-- category: main
   dependencies:
-    python: '>=3.6'
+    python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.2.0-pyhd8ed1ab_0.conda
   hash:
-    md5: ade903cbe0b4440ca6bed64932d124b5
-    sha256: 0e0257eee11d3e0b3f73566283fd6c705b1b2a5dbc7d9a609fa885519a62913e
+    md5: a0bc3eec34b0fab84be6b2da94e98e20
+    sha256: 2ebfb971236ab825dd79dd6086ea742a9901008ffb9c6222c1f2b5172a8039d3
+  category: main
+  optional: false
+- name: prometheus_client
+  version: 0.20.0
   manager: conda
-  name: prometheus_client
+  platform: osx-64
+  dependencies:
+    python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.20.0-pyhd8ed1ab_0.conda
+  hash:
+    md5: 9a19b94034dd3abb2b348c8b93388035
+    sha256: 757cd91d01c2e0b64fadf6bc9a11f558cf7638d897dfbaf7415ddf324d5405c9
+  category: main
   optional: false
+- name: psutil
+  version: 5.9.8
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.18.0-pyhd8ed1ab_0.conda
-  version: 0.18.0
-- category: main
   dependencies:
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
+  url: https://conda.anaconda.org/conda-forge/osx-64/psutil-5.9.8-py38hae2e43d_0.conda
   hash:
-    md5: c916926d86a0578ec21f2140e661bc56
-    sha256: 961e84bd21fb2ca03e445bcf79fcb5b0e7b308c18abc31d3f1f7ef2caefdb6f0
-  manager: conda
-  name: psutil
+    md5: 472f759cff3581370fac5d574c559d0a
+    sha256: d946b6d24f33047f50ade6187fd84bde4c989b235c941225d02e62fb279c86ba
+  category: main
   optional: false
+- name: ptyprocess
+  version: 0.7.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/psutil-5.9.5-py38hcafd530_1.conda
-  version: 5.9.5
-- category: main
   dependencies:
     python: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd3deb0d_0.tar.bz2
   hash:
     md5: 359eeb6536da0e687af562ed265ec263
     sha256: fb31e006a25eb2e18f3440eb8d17be44c8ccfae559499199f73584566d0a444a
-  manager: conda
-  name: ptyprocess
+  category: main
   optional: false
+- name: pure_eval
+  version: 0.2.2
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd3deb0d_0.tar.bz2
-  version: 0.7.0
-- category: main
   dependencies:
     python: '>=3.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.2-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 6784285c7e55cb7212efabc79e4c2883
     sha256: 72792f9fc2b1820e37cc57f84a27bc819c71088c3002ca6db05a2e56404f9d44
-  manager: conda
-  name: pure_eval
+  category: main
   optional: false
+- name: pycparser
+  version: '2.21'
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.2-pyhd8ed1ab_0.tar.bz2
-  version: 0.2.2
-- category: main
   dependencies:
     python: 2.7.*|>=3.4
+  url: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.21-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 076becd9e05608f8dc72757d5f3a91ff
     sha256: 74c63fd03f1f1ea2b54e8bc529fd1a600aaafb24027b738d0db87909ee3a33dc
-  manager: conda
-  name: pycparser
+  category: main
   optional: false
+- name: pygments
+  version: 2.17.2
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.21-pyhd8ed1ab_0.tar.bz2
-  version: '2.21'
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/pygments-2.17.2-pyhd8ed1ab_0.conda
   hash:
-    md5: 40e5cb18165466773619e5c963f00a7b
-    sha256: 3f0f0fadc6084960ec8cc00a32a03529c562ffea3b527eb73b1653183daad389
-  manager: conda
-  name: pygments
+    md5: 140a7f159396547e9799aa98f9f0742e
+    sha256: af5f8867450dc292f98ea387d4d8945fc574284677c8f60eaa9846ede7387257
+  category: main
   optional: false
+- name: pyparsing
+  version: 3.1.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pygments-2.16.1-pyhd8ed1ab_0.conda
-  version: 2.16.1
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.1-pyhd8ed1ab_0.conda
   hash:
     md5: 176f7d56f0cfe9008bdf1bccd7de02fb
     sha256: 4a1332d634b6c2501a973655d68f08c9c42c0bd509c349239127b10572b8354b
-  manager: conda
-  name: pyparsing
+  category: main
   optional: false
+- name: pyshp
+  version: 2.3.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.1-pyhd8ed1ab_0.conda
-  version: 3.1.1
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/pyshp-2.3.1-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 92a889dc236a5197612bc85bee6d7174
     sha256: 41eced0d5e855bc52018f200b239d627daa38ad78a655ffa2f1efd95b07b6bce
-  manager: conda
-  name: pyshp
+  category: main
   optional: false
+- name: pysocks
+  version: 1.7.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pyshp-2.3.1-pyhd8ed1ab_0.tar.bz2
-  version: 2.3.1
-- category: main
   dependencies:
     __unix: ''
     python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2
   hash:
     md5: 2a7de29fb590ca14b5243c4c812c8025
     sha256: a42f826e958a8d22e65b3394f437af7332610e43ee313393d1cf143f0a2d274b
-  manager: conda
-  name: pysocks
+  category: main
   optional: false
+- name: python-fastjsonschema
+  version: 2.19.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2
-  version: 1.7.1
-- category: main
   dependencies:
     python: '>=3.3'
+  url: https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.19.1-pyhd8ed1ab_0.conda
   hash:
-    md5: 305141cff54af2f90e089d868fffce28
-    sha256: 3fb1af1ac7525072c46e111bc4e96ddf971f792ab049ca3aa25dbebbaffb6f7d
-  manager: conda
-  name: python-fastjsonschema
+    md5: 4d3ceee3af4b0f9a1f48f57176bf8625
+    sha256: 38b2db169d65cc5595e3ce63294c4fdb6a242ecf71f70b3ad8cad3bd4230d82f
+  category: main
   optional: false
+- name: python-json-logger
+  version: 2.0.7
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.18.1-pyhd8ed1ab_0.conda
-  version: 2.18.1
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda
   hash:
     md5: a61bf9ec79426938ff785eb69dbb1960
     sha256: 4790787fe1f4e8da616edca4acf6a4f8ed4e7c6967aa31b920208fc8f95efcca
-  manager: conda
-  name: python-json-logger
+  category: main
   optional: false
+- name: python-tzdata
+  version: '2024.1'
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda
-  version: 2.0.7
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.1-pyhd8ed1ab_0.conda
   hash:
-    md5: 2590495f608a63625e165915fb4e2e34
-    sha256: 0108888507014fb24573c31e4deceb61c99e63d37776dddcadd7c89b2ecae0b6
-  manager: conda
-  name: python-tzdata
+    md5: 98206ea9954216ee7540f0c773f2104d
+    sha256: 9da9a849d53705dee450b83507df1ca8ffea5f83bd21a215202221f1c492f8ad
+  category: main
   optional: false
+- name: pytz
+  version: '2024.1'
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2023.3-pyhd8ed1ab_0.conda
-  version: '2023.3'
-- category: main
   dependencies:
-    python: '>=3.6'
+    python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda
   hash:
-    md5: c93346b446cd08c169d843ae5fc0da97
-    sha256: 6b680e63d69aaf087cd43ca765a23838723ef59b0a328799e6363eb13f52c49e
-  manager: conda
-  name: pytz
+    md5: 3eeeeb9e4827ace8c0c1419c85d590ad
+    sha256: 1a7d6b233f7e6e3bbcbad054c8fd51e690a67b129a899a056a5e45dd9f00cb41
+  category: main
   optional: false
+- name: pyyaml
+  version: 6.0.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pytz-2023.3.post1-pyhd8ed1ab_0.conda
-  version: 2023.3.post1
-- category: main
   dependencies:
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
     yaml: '>=0.2.5,<0.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/pyyaml-6.0.1-py38hcafd530_1.conda
   hash:
     md5: 17cfcfdd18fa2fe701ff68c9bbcea9a5
     sha256: cd1dceaa9bb8296ddea04cfb5e933bf5ab2b189c566bb55e1a3c9a38efffa82d
-  manager: conda
-  name: pyyaml
+  category: main
   optional: false
+- name: pyzmq
+  version: 25.1.2
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/pyyaml-6.0.1-py38hcafd530_1.conda
-  version: 6.0.1
-- category: main
   dependencies:
+    __osx: '>=10.9'
+    libcxx: '>=16.0.6'
     libsodium: '>=1.0.18,<1.0.19.0a0'
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
     zeromq: '>=4.3.5,<4.4.0a0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/pyzmq-25.1.2-py38ha51bd64_0.conda
   hash:
-    md5: 1ccbf7c0d821bff50420ff3a9f1ff71d
-    sha256: 5fcbf77d68dbe9db061c96dec2b219885caf362f7bad8896f4cf0971af4dbaaa
-  manager: conda
-  name: pyzmq
+    md5: 5b1b92548960b54e5522b87b43d861fc
+    sha256: dfeb5c6afcd19e870e9b58cc7ca931457d0dbb64c648901d194e94d88cd757f4
+  category: main
   optional: false
+- name: rfc3986-validator
+  version: 0.1.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/pyzmq-25.1.1-py38hf69f452_2.conda
-  version: 25.1.1
-- category: main
   dependencies:
     python: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/rfc3986-validator-0.1.1-pyh9f0ad1d_0.tar.bz2
   hash:
     md5: 912a71cc01012ee38e6b90ddd561e36f
     sha256: 2a5b495a1de0f60f24d8a74578ebc23b24aa53279b1ad583755f223097c41c37
-  manager: conda
-  name: rfc3986-validator
+  category: main
   optional: false
+- name: rpds-py
+  version: 0.18.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/rfc3986-validator-0.1.1-pyh9f0ad1d_0.tar.bz2
-  version: 0.1.1
-- category: main
   dependencies:
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
+  url: https://conda.anaconda.org/conda-forge/osx-64/rpds-py-0.18.0-py38h3614dca_0.conda
   hash:
-    md5: 6d7cefa46394625b7f3be002d1aa9fc8
-    sha256: 95fb3080191d4b7758417c4de6241427c130a10fbbf810a8f2889b81d7e95875
-  manager: conda
-  name: rpds-py
+    md5: 80427fb458ba11e24847b5099a0f8878
+    sha256: 9356808834ea9f0ca0eca6d4095923ad8b16705dd68b40068554754aa14bae9a
+  category: main
   optional: false
+- name: setuptools
+  version: 69.1.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/rpds-py-0.12.0-py38h51dbebd_0.conda
-  version: 0.12.0
-- category: main
   dependencies:
-    python: '>=3.7'
+    python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/setuptools-69.1.0-pyhd8ed1ab_1.conda
   hash:
-    md5: fc2166155db840c634a1291a5c35a709
-    sha256: 851901b1f8f2049edb36a675f0c3f9a98e1495ef4eb214761b048c6f696a06f7
-  manager: conda
-  name: setuptools
+    md5: d76a248ad1b9d4a79c2ce39ee41d626c
+    sha256: d233a0dc17d452324a4aa1f633c18ca562820c90cd08240c99e4b2f4f27a8692
+  category: main
   optional: false
+- name: six
+  version: 1.16.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/setuptools-68.2.2-pyhd8ed1ab_0.conda
-  version: 68.2.2
-- category: main
   dependencies:
     python: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2
   hash:
     md5: e5f25f8dbc060e9a8d912e432202afc2
     sha256: a85c38227b446f42c5b90d9b642f2c0567880c15d72492d8da074a59c8f91dd6
-  manager: conda
-  name: six
+  category: main
   optional: false
+- name: sniffio
+  version: 1.3.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2
-  version: 1.16.0
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.0-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: dd6cbc539e74cb1f430efbd4575b9303
     sha256: a3fd30754c20ddb28b777db38345ea00d958f46701f0decd6291a81c0f4eee78
-  manager: conda
-  name: sniffio
+  category: main
   optional: false
+- name: soupsieve
+  version: '2.5'
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.0-pyhd8ed1ab_0.tar.bz2
-  version: 1.3.0
-- category: main
   dependencies:
     python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda
   hash:
     md5: 3f144b2c34f8cb5a9abd9ed23a39c561
     sha256: 54ae221033db8fbcd4998ccb07f3c3828b4d77e73b0c72b18c1d6a507059059c
-  manager: conda
-  name: soupsieve
+  category: main
   optional: false
+- name: tenacity
+  version: 8.2.3
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda
-  version: '2.5'
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/tenacity-8.2.3-pyhd8ed1ab_0.conda
   hash:
     md5: 1482e77f87c6a702a7e05ef22c9b197b
     sha256: 860c11e7369d6a86fcc9c6cbca49d5c457f6c0a27faeacca4d46267f9dd10d78
-  manager: conda
-  name: tenacity
+  category: main
   optional: false
+- name: tomli
+  version: 2.0.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/tenacity-8.2.3-pyhd8ed1ab_0.conda
-  version: 8.2.3
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.1-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 5844808ffab9ebdb694585b50ba02a96
     sha256: 4cd48aba7cd026d17e86886af48d0d2ebc67ed36f87f6534f4b67138f5a5a58f
-  manager: conda
-  name: tomli
+  category: main
   optional: false
+- name: tornado
+  version: '6.4'
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.1-pyhd8ed1ab_0.tar.bz2
-  version: 2.0.1
-- category: main
   dependencies:
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
+  url: https://conda.anaconda.org/conda-forge/osx-64/tornado-6.4-py38hae2e43d_0.conda
   hash:
-    md5: b416bb581bd581ff6d2e5b532b11f19b
-    sha256: dfccc751956a31a6c3487d44cec374227cd2285767f4f0de989ff71c9ce0b4e7
-  manager: conda
-  name: tornado
+    md5: cebe6ef877354d724e18bb2a3f20ea39
+    sha256: 0b57584383ec6f703ac63dbcf3fa44d31e8c16be691f586e7473120b2e06e716
+  category: main
   optional: false
+- name: traitlets
+  version: 5.14.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/tornado-6.3.3-py38hcafd530_1.conda
-  version: 6.3.3
-- category: main
   dependencies:
     python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.1-pyhd8ed1ab_0.conda
   hash:
-    md5: 8a9953c15e1e5a7c1baddbbf4511a567
-    sha256: 7ac67960ba2e8c16818043cc65ac6190fa4fd95f5b24357df58e4f73d5e60a10
-  manager: conda
-  name: traitlets
+    md5: 1c6acfdc7ecbfe09954c4216da99c146
+    sha256: fa78d68f74ec8aae5c93f135140bfdbbf0ab60a79c6062b55d73c316068545ec
+  category: main
   optional: false
+- name: types-python-dateutil
+  version: 2.8.19.20240106
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.13.0-pyhd8ed1ab_0.conda
-  version: 5.13.0
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/types-python-dateutil-2.8.19.20240106-pyhd8ed1ab_0.conda
   hash:
-    md5: 4df15c51a543e806d439490b862be1c6
-    sha256: 7b0129c72d371fa7a06ed5dd1d701844c20d03bb4641a38a88a982b347d087e2
-  manager: conda
-  name: types-python-dateutil
+    md5: c9096a546660b9079dce531c0039e074
+    sha256: 09ef8cc587bdea80a83b6f820dbae24daadcf82be088fb0a9f6495781653e300
+  category: main
   optional: false
+- name: typing_extensions
+  version: 4.9.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/types-python-dateutil-2.8.19.14-pyhd8ed1ab_0.conda
-  version: 2.8.19.14
-- category: main
   dependencies:
     python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.9.0-pyha770c72_0.conda
   hash:
-    md5: 5b1be40a26d10a06f6d4f1f9e19fa0c7
-    sha256: 38d16b5c53ec1af845d37d22e7bb0e6c934c7f19499123507c5a470f6f8b7dde
-  manager: conda
-  name: typing_extensions
+    md5: a92a6440c3fe7052d63244f3aba2a4a7
+    sha256: f3c5be8673bfd905c4665efcb27fa50192f24f84fa8eff2f19cba5d09753d905
+  category: main
   optional: false
+- name: typing_utils
+  version: 0.1.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.8.0-pyha770c72_0.conda
-  version: 4.8.0
-- category: main
   dependencies:
     python: '>=3.6.1'
+  url: https://conda.anaconda.org/conda-forge/noarch/typing_utils-0.1.0-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: eb67e3cace64c66233e2d35949e20f92
     sha256: 9e3758b620397f56fb709f796969de436d63b7117897159619b87938e1f78739
-  manager: conda
-  name: typing_utils
+  category: main
   optional: false
+- name: unicodedata2
+  version: 15.1.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/typing_utils-0.1.0-pyhd8ed1ab_0.tar.bz2
-  version: 0.1.0
-- category: main
   dependencies:
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
+  url: https://conda.anaconda.org/conda-forge/osx-64/unicodedata2-15.1.0-py38hcafd530_0.conda
   hash:
     md5: 0c713dba14142a6f12e87ee798a6d73d
     sha256: d3e2ba343685c366d9fe52ebc7e292c6da9bee0a7c94c8161be5b5d06d8298b9
-  manager: conda
-  name: unicodedata2
+  category: main
   optional: false
+- name: uri-template
+  version: 1.3.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/unicodedata2-15.1.0-py38hcafd530_0.conda
-  version: 15.1.0
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/uri-template-1.3.0-pyhd8ed1ab_0.conda
   hash:
     md5: 0944dc65cb4a9b5b68522c3bb585d41c
     sha256: b76904b53721dc88a46352324c79d2b077c2f74a9f7208ad2c4249892669ae94
+  category: main
+  optional: false
+- name: wcwidth
+  version: 0.2.13
   manager: conda
-  name: uri-template
+  platform: osx-64
+  dependencies:
+    python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.13-pyhd8ed1ab_0.conda
+  hash:
+    md5: 68f0738df502a14213624b288c60c9ad
+    sha256: b6cd2fee7e728e620ec736d8dfee29c6c9e2adbd4e695a31f1d8f834a83e57e3
+  category: main
   optional: false
+- name: webcolors
+  version: '1.13'
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/uri-template-1.3.0-pyhd8ed1ab_0.conda
-  version: 1.3.0
-- category: main
   dependencies:
     python: '>=3.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/webcolors-1.13-pyhd8ed1ab_0.conda
   hash:
     md5: 166212fe82dad8735550030488a01d03
     sha256: 6e097d5fe92849ad3af2c2a313771ad2fbf1cadd4dc4afd552303b2bf3f85211
-  manager: conda
-  name: webcolors
+  category: main
   optional: false
+- name: webencodings
+  version: 0.5.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/webcolors-1.13-pyhd8ed1ab_0.conda
-  version: '1.13'
-- category: main
   dependencies:
     python: '>=2.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda
   hash:
     md5: daf5160ff9cde3a468556965329085b9
     sha256: 2adf9bd5482802837bc8814cbe28d7b2a4cbd2e2c52e381329eaa283b3ed1944
-  manager: conda
-  name: webencodings
+  category: main
   optional: false
+- name: websocket-client
+  version: 1.7.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda
-  version: 0.5.1
-- category: main
   dependencies:
     python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/websocket-client-1.7.0-pyhd8ed1ab_0.conda
   hash:
-    md5: bdb77b28cf16deac0eef431a068320e8
-    sha256: df45b89862edcd7cd5180ec7b8c0c0ca9fb4d3f7d49ddafccdc76afcf50d8da6
-  manager: conda
-  name: websocket-client
+    md5: 50ad31e07d706aae88b14a4ac9c73f23
+    sha256: d9b537d5b7c5aa7a02a4ce4c6b755e458bd8083b67752a73c92d113ccec6c10f
+  category: main
   optional: false
+- name: zipp
+  version: 3.17.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/websocket-client-1.6.4-pyhd8ed1ab_0.conda
-  version: 1.6.4
-- category: main
   dependencies:
     python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/zipp-3.17.0-pyhd8ed1ab_0.conda
   hash:
     md5: 2e4d6bc0b14e10f895fc6791a7d9b26a
     sha256: bced1423fdbf77bca0a735187d05d9b9812d2163f60ab426fc10f11f92ecbe26
-  manager: conda
-  name: zipp
+  category: main
   optional: false
+- name: anyio
+  version: 4.3.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/zipp-3.17.0-pyhd8ed1ab_0.conda
-  version: 3.17.0
-- category: main
   dependencies:
-    exceptiongroup: ''
-    idna: '>=2.8'
     python: '>=3.8'
     sniffio: '>=1.1'
+    typing_extensions: '>=4.1'
+    idna: '>=2.8'
+    exceptiongroup: '>=1.0.2'
+  url: https://conda.anaconda.org/conda-forge/noarch/anyio-4.3.0-pyhd8ed1ab_0.conda
   hash:
-    md5: 3c4e99d3ae4ec033d4dd99fb5220e540
-    sha256: 64125775b2e724db5c72e431dd180495d5d509d0a2d1228a122e6af9f1b60e33
-  manager: conda
-  name: anyio
+    md5: ac95aa8ed65adfdde51132595c79aade
+    sha256: 86aca4a31c09f9b4dbdb332cd9a6a7dbab62ca734d3f832651c0ab59c6a7f52e
+  category: main
   optional: false
+- name: asttokens
+  version: 2.4.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/anyio-4.0.0-pyhd8ed1ab_0.conda
-  version: 4.0.0
-- category: main
   dependencies:
     python: '>=3.5'
     six: '>=1.12.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/asttokens-2.4.1-pyhd8ed1ab_0.conda
   hash:
     md5: 5f25798dcefd8252ce5f9dc494d5f571
     sha256: 708168f026df19a0344983754d27d1f7b28bb21afc7b97a82f02c4798a3d2111
-  manager: conda
-  name: asttokens
+  category: main
   optional: false
+- name: async-lru
+  version: 2.0.4
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/asttokens-2.4.1-pyhd8ed1ab_0.conda
-  version: 2.4.1
-- category: main
   dependencies:
     python: '>=3.8'
     typing_extensions: '>=4.0.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/async-lru-2.0.4-pyhd8ed1ab_0.conda
   hash:
     md5: 3d081de3a6ea9f894bbb585e8e3a4dcb
     sha256: 7ed83731979fe5b046c157730e50af0e24454468bbba1ed8fc1a3107db5d7518
-  manager: conda
-  name: async-lru
+  category: main
   optional: false
+- name: babel
+  version: 2.14.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/async-lru-2.0.4-pyhd8ed1ab_0.conda
-  version: 2.0.4
-- category: main
   dependencies:
-    python: '>=3.7'
-    pytz: ''
     setuptools: ''
+    pytz: ''
+    python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/babel-2.14.0-pyhd8ed1ab_0.conda
   hash:
-    md5: 3ccff479c246692468f604df9c85ef26
-    sha256: 1f955c700db16f65b16c9e9c1613436480d5497970b8030b7a9ebe1620cc2147
-  manager: conda
-  name: babel
+    md5: 9669586875baeced8fc30c0826c3270e
+    sha256: 8584e3da58e92b72641c89ff9b98c51f0d5dbe76e527867804cbdf03ac91d8e6
+  category: main
   optional: false
+- name: backports.functools_lru_cache
+  version: 1.6.5
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/babel-2.13.1-pyhd8ed1ab_0.conda
-  version: 2.13.1
-- category: main
   dependencies:
     backports: ''
     python: '>=3.6'
     setuptools: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/backports.functools_lru_cache-1.6.5-pyhd8ed1ab_0.conda
   hash:
     md5: 6b1b907661838a75d067a22f87996b2e
     sha256: 7027bb689dd4ca4a08e3b25805de9d04239be6b31125993558f21f102a9d2700
-  manager: conda
-  name: backports.functools_lru_cache
+  category: main
   optional: false
+- name: beautifulsoup4
+  version: 4.12.3
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/backports.functools_lru_cache-1.6.5-pyhd8ed1ab_0.conda
-  version: 1.6.5
-- category: main
   dependencies:
     python: '>=3.6'
     soupsieve: '>=1.2'
+  url: https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda
   hash:
-    md5: a362ff7d976217f8fa78c0f1c4f59717
-    sha256: 52d3e6bcd442537e22699cd227d8fdcfd54b708eeb8ee5b4c671a6a9b9cd74da
-  manager: conda
-  name: beautifulsoup4
+    md5: 332493000404d8411859539a5a630865
+    sha256: 7b05b2d0669029326c623b9df7a29fa49d1982a9e7e31b2fea34b4c9a4a72317
+  category: main
   optional: false
+- name: bleach
+  version: 6.1.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.2-pyha770c72_0.conda
-  version: 4.12.2
-- category: main
   dependencies:
+    setuptools: ''
     packaging: ''
+    webencodings: ''
     python: '>=3.6'
-    setuptools: ''
     six: '>=1.9.0'
-    webencodings: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/bleach-6.1.0-pyhd8ed1ab_0.conda
   hash:
     md5: 0ed9d7c0e9afa7c025807a9a8136ea3e
     sha256: 845e77ef495376c5c3c328ccfd746ca0ef1978150cae8eae61a300fe7755fb08
-  manager: conda
-  name: bleach
+  category: main
   optional: false
-  platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/bleach-6.1.0-pyhd8ed1ab_0.conda
-  version: 6.1.0
-- category: main
+- name: cached-property
+  version: 1.5.2
+  manager: conda
+  platform: osx-64
   dependencies:
     cached_property: '>=1.5.2,<1.5.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/noarch/cached-property-1.5.2-hd8ed1ab_1.tar.bz2
   hash:
     md5: 9b347a7ec10940d3f7941ff6c460b551
     sha256: 561e6660f26c35d137ee150187d89767c988413c978e1b712d53f27ddf70ea17
-  manager: conda
-  name: cached-property
+  category: main
   optional: false
+- name: cffi
+  version: 1.16.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/cached-property-1.5.2-hd8ed1ab_1.tar.bz2
-  version: 1.5.2
-- category: main
   dependencies:
     libffi: '>=3.4,<4.0a0'
     pycparser: ''
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
+  url: https://conda.anaconda.org/conda-forge/osx-64/cffi-1.16.0-py38h082e395_0.conda
   hash:
     md5: 046fe2a8edb11f1b8a7d3bd8e2fd1de7
     sha256: c79e5074c663670f75258f6fce8ebd0e65042bd22ecbb4979294c57ff4fa8fc5
-  manager: conda
-  name: cffi
+  category: main
   optional: false
+- name: comm
+  version: 0.2.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/cffi-1.16.0-py38h082e395_0.conda
-  version: 1.16.0
-- category: main
   dependencies:
     python: '>=3.6'
     traitlets: '>=5.3'
+  url: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.1-pyhd8ed1ab_0.conda
   hash:
-    md5: c8eaca39e2b6abae1fc96acc929ae939
-    sha256: 11057745946a95ee7cc4c98900a60c7362266a4cb28bc97d96cd88e3056eb701
-  manager: conda
-  name: comm
+    md5: f4385072f4909bc974f6675a36e76796
+    sha256: bd90a200e6f7092a89f02c4800729a4a6d2b2de49d70a9706aeb083a635308c1
+  category: main
   optional: false
+- name: fonttools
+  version: 4.49.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/comm-0.1.4-pyhd8ed1ab_0.conda
-  version: 0.1.4
-- category: main
   dependencies:
     brotli: ''
     munkres: ''
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
     unicodedata2: '>=14.0.0'
+  url: https://conda.anaconda.org/conda-forge/osx-64/fonttools-4.49.0-py38hae2e43d_0.conda
+  hash:
+    md5: 5305398403fde34567050c93b3d49099
+    sha256: 13f93188a1bcdc668d99fafe75c2b406fe6c20093873711d1714c6f1709b2ea5
+  category: main
+  optional: false
+- name: h11
+  version: 0.14.0
+  manager: conda
+  platform: osx-64
+  dependencies:
+    typing_extensions: ''
+    python: '>=3'
+  url: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2
   hash:
-    md5: 0b85d2bc889e31eb5acadb53b11044b8
-    sha256: 94936c872837056634819ab3ed01566b45a4740ff85e42773643273954daec37
+    md5: b21ed0883505ba1910994f1df031a428
+    sha256: 817d2c77d53afe3f3d9cf7f6eb8745cdd8ea76c7adaa9d7ced75c455a2c2c085
+  category: main
+  optional: false
+- name: h2
+  version: 4.1.0
   manager: conda
-  name: fonttools
+  platform: osx-64
+  dependencies:
+    python: '>=3.6.1'
+    hpack: '>=4.0,<5'
+    hyperframe: '>=6.0,<7'
+  url: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2
+  hash:
+    md5: b748fbf7060927a6e82df7cb5ee8f097
+    sha256: bfc6a23849953647f4e255c782e74a0e18fe16f7e25c7bb0bc57b83bb6762c7a
+  category: main
   optional: false
+- name: importlib-metadata
+  version: 7.0.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/fonttools-4.44.0-py38hae2e43d_0.conda
-  version: 4.44.0
-- category: main
   dependencies:
     python: '>=3.8'
     zipp: '>=0.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.0.1-pyha770c72_0.conda
   hash:
-    md5: 4e9f59a060c3be52bc4ddc46ee9b6946
-    sha256: 2797ed927d65324309b6c630190d917b9f2111e0c217b721f80429aeb57f9fcf
-  manager: conda
-  name: importlib-metadata
+    md5: 746623a787e06191d80a2133e5daff17
+    sha256: e72d05f171f4567004c9360a838e9d5df21e23dcfeb945066b53a6e5f754b861
+  category: main
   optional: false
+- name: importlib_resources
+  version: 6.1.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-6.8.0-pyha770c72_0.conda
-  version: 6.8.0
-- category: main
   dependencies:
     python: '>=3.8'
     zipp: '>=3.1.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.1.1-pyhd8ed1ab_0.conda
   hash:
     md5: 3d5fa25cf42f3f32a12b2d874ace8574
     sha256: e584f9ae08fb2d242af0ce7e19e3cd2f85f362d8523119e08f99edb962db99ed
-  manager: conda
-  name: importlib_resources
+  category: main
   optional: false
+- name: jedi
+  version: 0.19.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.1.1-pyhd8ed1ab_0.conda
-  version: 6.1.1
-- category: main
   dependencies:
-    parso: '>=0.8.3,<0.9.0'
     python: '>=3.6'
+    parso: '>=0.8.3,<0.9.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.1-pyhd8ed1ab_0.conda
   hash:
     md5: 81a3be0b2023e1ea8555781f0ad904a2
     sha256: 362f0936ef37dfd1eaa860190e42a6ebf8faa094eaa3be6aa4d9ace95f40047a
-  manager: conda
-  name: jedi
+  category: main
   optional: false
+- name: jinja2
+  version: 3.1.3
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.1-pyhd8ed1ab_0.conda
-  version: 0.19.1
-- category: main
   dependencies:
-    markupsafe: '>=2.0'
     python: '>=3.7'
+    markupsafe: '>=2.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.3-pyhd8ed1ab_0.conda
   hash:
-    md5: c8490ed5c70966d232fdd389d0dbed37
-    sha256: b045faba7130ab263db6a8fdc96b1a3de5fcf85c4a607c5f11a49e76851500b5
+    md5: e7d8df6509ba635247ff9aea31134262
+    sha256: fd517b7dd3a61eca34f8a6f9f92f306397149cae1204fce72ac3d227107dafdc
+  category: main
+  optional: false
+- name: jupyter_core
+  version: 5.7.1
   manager: conda
-  name: jinja2
+  platform: osx-64
+  dependencies:
+    platformdirs: '>=2.5'
+    python: '>=3.8,<3.9.0a0'
+    python_abi: 3.8.*
+    traitlets: '>=5.3'
+  url: https://conda.anaconda.org/conda-forge/osx-64/jupyter_core-5.7.1-py38h50d1736_0.conda
+  hash:
+    md5: ba23db53d88425efc9ff8e4e78ea6d5e
+    sha256: 287797b0c32b7f0ed16c78bc1265a481dd0956a798f9f346dd59da6a8a46940f
+  category: main
   optional: false
+- name: jupyterlab_pygments
+  version: 0.3.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.2-pyhd8ed1ab_1.tar.bz2
-  version: 3.1.2
-- category: main
   dependencies:
-    pygments: '>=2.4.1,<3'
     python: '>=3.7'
+    pygments: '>=2.4.1,<3'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_1.conda
   hash:
-    md5: 243f63592c8e449f40cd42eb5cf32f40
-    sha256: 08453e09d5a6bbaeeca839553a5dfd7a377a97550efab96019c334a8042f54f5
-  manager: conda
-  name: jupyterlab_pygments
+    md5: afcd1b53bcac8844540358e33f33d28f
+    sha256: 4aa622bbcf97e44cd1adf0100b7ff71b7e20268f043bdf6feae4d16152f1f242
+  category: main
   optional: false
+- name: libcblas
+  version: 3.9.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.2.2-pyhd8ed1ab_0.tar.bz2
-  version: 0.2.2
-- category: main
   dependencies:
-    libblas: 3.9.0 19_osx64_openblas
+    libblas: 3.9.0
+  url: https://conda.anaconda.org/conda-forge/osx-64/libcblas-3.9.0-20_osx64_openblas.conda
   hash:
-    md5: 40e412c219ad8cf87ba664466071bcf6
-    sha256: 70afde49736007bbb804d126a3983ba1fa04383006aae416a2971d538e274427
-  manager: conda
-  name: libcblas
+    md5: b324ad206d39ce529fb9073f9d062062
+    sha256: b0a4eab6d22b865d9b0e39f358f17438602621709db66b8da159197bedd2c5eb
+  category: main
   optional: false
-  platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/libcblas-3.9.0-19_osx64_openblas.conda
+- name: liblapack
   version: 3.9.0
-- category: main
+  manager: conda
+  platform: osx-64
   dependencies:
-    libblas: 3.9.0 19_osx64_openblas
+    libblas: 3.9.0
+  url: https://conda.anaconda.org/conda-forge/osx-64/liblapack-3.9.0-20_osx64_openblas.conda
   hash:
-    md5: 2e714df18db99ee6d7b4ac728f53ca62
-    sha256: 6a1704c43a03195fecbbb226be5c257b2e37621e793967c3f31c8521f19e18df
-  manager: conda
-  name: liblapack
+    md5: 704bfc2af1288ea973b6755281e6ad32
+    sha256: d64e11b93dada339cd0dcc057b3f3f6a5114b8c9bdf90cf6c04cbfa75fb02104
+  category: main
   optional: false
+- name: matplotlib-inline
+  version: 0.1.6
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/liblapack-3.9.0-19_osx64_openblas.conda
-  version: 3.9.0
-- category: main
   dependencies:
-    python: '>=3.6'
     traitlets: ''
+    python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.6-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: b21613793fcc81d944c76c9f2864a7de
     sha256: aa091b88aec55bfa2d9207028d8cdc689b9efb090ae27b99557e93c675be2f3c
-  manager: conda
-  name: matplotlib-inline
+  category: main
   optional: false
+- name: overrides
+  version: 7.7.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.6-pyhd8ed1ab_0.tar.bz2
-  version: 0.1.6
-- category: main
   dependencies:
-    python: '>=3.6'
     typing_utils: ''
+    python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/overrides-7.7.0-pyhd8ed1ab_0.conda
   hash:
-    md5: 4625b7b01d7f4ac9c96300a5515acfaa
-    sha256: 29db8c3b521d261bf71897ba3cfbebc81cd61e581b30fcb984b5a713f02fe1ff
-  manager: conda
-  name: overrides
+    md5: 24fba5a9d161ad8103d4e84c0e1a3ed4
+    sha256: 5e238e5e646414d517a13f6786c7227206ace58271e3ef63f6adca4d6a4c2839
+  category: main
   optional: false
+- name: pexpect
+  version: 4.9.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/overrides-7.4.0-pyhd8ed1ab_0.conda
-  version: 7.4.0
-- category: main
   dependencies:
+    python: '>=3.7'
     ptyprocess: '>=0.5'
-    python: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_0.conda
   hash:
-    md5: 330448ce4403cc74990ac07c555942a1
-    sha256: 07706c0417ead94f359ca7278f65452d3c396448777aba1da6a11fc351bdca9a
-  manager: conda
-  name: pexpect
+    md5: 629f3203c99b32e0988910c93e77f3b6
+    sha256: 90a09d134a4a43911b716d4d6eb9d169238aff2349056f7323d9db613812667e
+  category: main
   optional: false
+- name: plotly
+  version: 5.19.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pexpect-4.8.0-pyh1a96a4e_2.tar.bz2
-  version: 4.8.0
-- category: main
   dependencies:
     packaging: ''
     python: '>=3.6'
     tenacity: '>=6.2.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/plotly-5.19.0-pyhd8ed1ab_0.conda
   hash:
-    md5: 9f6a8664f1fe752f79473eeb9bf33a60
-    sha256: 1e812d896897a4d58d520bb51072d91d477faf7697e2b724b8ce59040989e8be
-  manager: conda
-  name: plotly
+    md5: 669cd7065794633b9e64e6a9612ec700
+    sha256: fa9ae81e1f304f1480378ea25d559748e061c5b8d55b3ade433c3bc483dbae9e
+  category: main
   optional: false
+- name: proj
+  version: 9.2.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/plotly-5.18.0-pyhd8ed1ab_0.conda
-  version: 5.18.0
-- category: main
   dependencies:
     libcurl: '>=7.88.1,<9.0a0'
     libcxx: '>=14.0.6'
     libsqlite: '>=3.40.0,<4.0a0'
     libtiff: '>=4.5.0,<4.6.0a0'
     sqlite: ''
+  url: https://conda.anaconda.org/conda-forge/osx-64/proj-9.2.0-hf909084_0.conda
   hash:
     md5: 9aba089c58568c488fde1777c28f4742
     sha256: fae27009b3ae972ca76c0573dd17d927eaae447060a44225bcebe940c17a7c19
+  category: main
+  optional: false
+- name: prompt-toolkit
+  version: 3.0.42
   manager: conda
-  name: proj
+  platform: osx-64
+  dependencies:
+    wcwidth: ''
+    python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.42-pyha770c72_0.conda
+  hash:
+    md5: 0bf64bf10eee21f46ac83c161917fa86
+    sha256: 58525b2a9305fb154b2b0d43a48b9a6495441b80e4fbea44f2a34a597d2cef16
+  category: main
   optional: false
+- name: pyobjc-core
+  version: '10.1'
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/proj-9.2.0-hf909084_0.conda
-  version: 9.2.0
-- category: main
   dependencies:
     libffi: '>=3.4,<4.0a0'
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
     setuptools: ''
+  url: https://conda.anaconda.org/conda-forge/osx-64/pyobjc-core-10.1-py38h37016ba_0.conda
   hash:
-    md5: 8b11fad26ecbd9344cebca936c74cdfa
-    sha256: 9488ff20e510d1d343db48d2ea16ab239f1684794f143aac66d8bfe5ef166ec0
-  manager: conda
-  name: pyobjc-core
+    md5: 7fca3172ca45ff54b24d381db6d1972c
+    sha256: 34f8ee3ae97f5b1c513b561bba34f8c1aff77875605935f553ab9d17082a1df5
+  category: main
   optional: false
+- name: python-dateutil
+  version: 2.8.2
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/pyobjc-core-10.0-py38h095c2e5_0.conda
-  version: '10.0'
-- category: main
   dependencies:
     python: '>=3.6'
     six: '>=1.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.8.2-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: dd999d1cc9f79e67dbb855c8924c7984
     sha256: 54d7785c7678166aa45adeaccfc1d2b8c3c799ca2dc05d4a82bb39b1968bd7da
-  manager: conda
-  name: python-dateutil
+  category: main
   optional: false
+- name: referencing
+  version: 0.33.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.8.2-pyhd8ed1ab_0.tar.bz2
-  version: 2.8.2
-- category: main
   dependencies:
-    attrs: '>=22.2.0'
     python: '>=3.8'
+    attrs: '>=22.2.0'
     rpds-py: '>=0.7.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/referencing-0.33.0-pyhd8ed1ab_0.conda
   hash:
-    md5: a33161b983172ba6ef69d5fc850650cd
-    sha256: a6768fabc12f1eed87fec68c5c65439e908655cded1e458d70a164abbce13287
-  manager: conda
-  name: referencing
+    md5: bc415a1c6cf049166215d6b596e0fcbe
+    sha256: 5707eb9ee2c7cfcc56a5223b24ab3133ff61aaa796931f3b22068e0a43ea6ecf
+  category: main
   optional: false
+- name: rfc3339-validator
+  version: 0.1.4
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/referencing-0.30.2-pyhd8ed1ab_0.conda
-  version: 0.30.2
-- category: main
   dependencies:
-    python: '>=3.5'
     six: ''
+    python: '>=3.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/rfc3339-validator-0.1.4-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: fed45fc5ea0813240707998abe49f520
     sha256: 7c7052b51de0b5c558f890bb11f8b5edbb9934a653d76be086b1182b9f54185d
-  manager: conda
-  name: rfc3339-validator
+  category: main
   optional: false
+- name: terminado
+  version: 0.18.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/rfc3339-validator-0.1.4-pyhd8ed1ab_0.tar.bz2
-  version: 0.1.4
-- category: main
   dependencies:
     __osx: ''
     ptyprocess: ''
-    python: '>=3.7'
+    python: '>=3.8'
     tornado: '>=6.1.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/terminado-0.18.0-pyh31c8845_0.conda
   hash:
-    md5: 046120b71d8896cb7faef78bfdbfee1e
-    sha256: a2f8382ab390c74af592cc3566dc22e2ed81e5ac69c5b6417d1b7c22e63927bc
-  manager: conda
-  name: terminado
+    md5: 14759b57f5b9d97033e633fff0a2d27e
+    sha256: 8e8741c688ade9be8f86c0b209780c7fbe4a97e4265311ca9d8dda5fcedc6a28
+  category: main
   optional: false
+- name: tinycss2
+  version: 1.2.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/terminado-0.17.1-pyhd1c38e8_0.conda
-  version: 0.17.1
-- category: main
   dependencies:
     python: '>=3.5'
     webencodings: '>=0.4'
+  url: https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.2.1-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 7234c9eefff659501cd2fe0d2ede4d48
     sha256: f0db1a2298a5e10e30f4b947566c7229442834702f549dded40a73ecdea7502d
-  manager: conda
-  name: tinycss2
+  category: main
   optional: false
+- name: typing-extensions
+  version: 4.9.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.2.1-pyhd8ed1ab_0.tar.bz2
-  version: 1.2.1
-- category: main
   dependencies:
-    typing_extensions: 4.8.0 pyha770c72_0
+    typing_extensions: 4.9.0
+  url: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.9.0-hd8ed1ab_0.conda
   hash:
-    md5: 384462e63262a527bda564fa2d9126c0
-    sha256: d6e1dddd0c372218ef15912383d351ac8c73465cbf16238017f0269813cafe2d
-  manager: conda
-  name: typing-extensions
+    md5: c16524c1b7227dc80b36b4fa6f77cc86
+    sha256: d795c1eb1db4ea147f01ece74e5a504d7c2e8d5ee8c11ec987884967dd938f9c
+  category: main
   optional: false
+- name: urllib3
+  version: 2.2.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.8.0-hd8ed1ab_0.conda
-  version: 4.8.0
-- category: main
   dependencies:
+    python: '>=3.7'
     brotli-python: '>=1.0.9'
     pysocks: '>=1.5.6,<2.0,!=1.5.7'
-    python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.1-pyhd8ed1ab_0.conda
   hash:
-    md5: 270e71c14d37074b1d066ee21cf0c4a6
-    sha256: 9fe14735dde74278c6f1710cbe883d5710fc98501a96031dec6849a8d8a1bb11
-  manager: conda
-  name: urllib3
+    md5: 08807a87fa7af10754d46f63b368e016
+    sha256: d4009dcc9327684d6409706ce17656afbeae690d8522d3c9bc4df57649a352cd
+  category: main
   optional: false
+- name: argon2-cffi-bindings
+  version: 21.2.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.0.7-pyhd8ed1ab_0.conda
-  version: 2.0.7
-- category: main
   dependencies:
     cffi: '>=1.0.1'
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
+  url: https://conda.anaconda.org/conda-forge/osx-64/argon2-cffi-bindings-21.2.0-py38hcafd530_4.conda
   hash:
     md5: 5bea2cefa378752b4f1fe8d8049756fc
     sha256: bf063be63c87cff3ba93b891a1d3e6d7ff9239b210971f0a789319b73281d6f7
-  manager: conda
-  name: argon2-cffi-bindings
+  category: main
   optional: false
+- name: arrow
+  version: 1.3.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/argon2-cffi-bindings-21.2.0-py38hcafd530_4.conda
-  version: 21.2.0
-- category: main
   dependencies:
     python: '>=3.8'
     python-dateutil: '>=2.7.0'
     types-python-dateutil: '>=2.8.10'
+  url: https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_0.conda
   hash:
     md5: b77d8c2313158e6e461ca0efb1c2c508
     sha256: ff49825c7f9e29e09afa6284300810e7a8640d621740efb47c4541f4dc4969db
-  manager: conda
-  name: arrow
+  category: main
   optional: false
+- name: fqdn
+  version: 1.5.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_0.conda
-  version: 1.3.0
-- category: main
   dependencies:
     cached-property: '>=1.3.0'
     python: '>=2.7,<4'
+  url: https://conda.anaconda.org/conda-forge/noarch/fqdn-1.5.1-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 642d35437078749ef23a5dca2c9bb1f3
     sha256: 6cfd1f9bcd2358a69fb571f4b3af049b630d52647d906822dbedac03e84e4f63
+  category: main
+  optional: false
+- name: httpcore
+  version: 1.0.4
   manager: conda
-  name: fqdn
+  platform: osx-64
+  dependencies:
+    certifi: ''
+    python: '>=3.8'
+    sniffio: 1.*
+    h2: '>=3,<5'
+    anyio: '>=3.0,<5.0'
+    h11: '>=0.13,<0.15'
+  url: https://conda.anaconda.org/conda-forge/noarch/httpcore-1.0.4-pyhd8ed1ab_0.conda
+  hash:
+    md5: 20f047662cf4fa8b97836111df87dbb4
+    sha256: dec07ca00223d52433e7c20c71d5e645a7828b3e50206d855ad7a540869341f2
+  category: main
   optional: false
+- name: importlib-resources
+  version: 6.1.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/fqdn-1.5.1-pyhd8ed1ab_0.tar.bz2
-  version: 1.5.1
-- category: main
   dependencies:
-    importlib_resources: '>=6.1.1,<6.1.2.0a0'
     python: '>=3.8'
+    importlib_resources: '>=6.1.1,<6.1.2.0a0'
+  url: https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.1.1-pyhd8ed1ab_0.conda
   hash:
     md5: d04bd1b5bed9177dd7c3cef15e2b6710
     sha256: 89492a6619776e83d30fcdc6915fcb3a657cd345abcf68fdf6655540494ab0f0
-  manager: conda
-  name: importlib-resources
+  category: main
   optional: false
+- name: importlib_metadata
+  version: 7.0.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.1.1-pyhd8ed1ab_0.conda
-  version: 6.1.1
-- category: main
   dependencies:
-    importlib-metadata: '>=6.8.0,<6.8.1.0a0'
+    importlib-metadata: '>=7.0.1,<7.0.2.0a0'
+  url: https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-7.0.1-hd8ed1ab_0.conda
   hash:
-    md5: b279b07ce18058034e5b3606ba103a8b
-    sha256: b96e01dc42d547d6d9ceb1c5b52a5232cc04e40153534350f702c3e0418a6b3f
-  manager: conda
-  name: importlib_metadata
+    md5: 4a2f43a20fa404b998859c6a470ba316
+    sha256: bc362df1d4f5a04c38dff29cd9c2d0ac584f9c4b45d3e4683ee090944a38fba4
+  category: main
   optional: false
+- name: jsonschema-specifications
+  version: 2023.12.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-6.8.0-hd8ed1ab_0.conda
-  version: 6.8.0
-- category: main
   dependencies:
-    importlib_resources: '>=1.4.0'
     python: '>=3.8'
-    referencing: '>=0.25.0'
+    importlib_resources: '>=1.4.0'
+    referencing: '>=0.31.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2023.12.1-pyhd8ed1ab_0.conda
   hash:
-    md5: 7c27ea1bdbe520bb830dcadd59f55cbf
-    sha256: 7b0061e106674f27cc718f79a095e90a5667a3635ec6626dd23b3be0fd2bfbdc
-  manager: conda
-  name: jsonschema-specifications
+    md5: a0e4efb5f35786a05af4809a2fb1f855
+    sha256: a9630556ddc3121c0be32f4cbf792dd9102bd380d5cd81d57759d172cf0c2da2
+  category: main
   optional: false
+- name: jupyter_server_terminals
+  version: 0.5.2
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2023.7.1-pyhd8ed1ab_0.conda
-  version: 2023.7.1
-- category: main
   dependencies:
     python: '>=3.8'
     terminado: '>=0.8.3'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_server_terminals-0.5.2-pyhd8ed1ab_0.conda
   hash:
-    md5: 7c0965e1d4a0ee1529e8eaa03a78a5b3
-    sha256: 9f4c5fef9beef9fceed628db7a10b888f3308b37ae257ad3d50046088317ebf1
-  manager: conda
-  name: jupyter_server_terminals
+    md5: a0152d13c9deb13639fc84df884d50b6
+    sha256: a625150744fdffb646fb4451edc68b3eff56eeace4e86b83dc4a860479c9857c
+  category: main
   optional: false
+- name: numpy
+  version: 1.24.4
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_server_terminals-0.4.4-pyhd8ed1ab_1.conda
-  version: 0.4.4
-- category: main
   dependencies:
     libblas: '>=3.9.0,<4.0a0'
     libcblas: '>=3.9.0,<4.0a0'
     libcxx: '>=15.0.7'
     liblapack: '>=3.9.0,<4.0a0'
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
+  url: https://conda.anaconda.org/conda-forge/osx-64/numpy-1.24.4-py38h9a4a08f_0.conda
   hash:
     md5: 85debc55a30068d6bb76a6deaf599afa
     sha256: 35fbebae914d7c74f87e6b26a373fb7496bba7431916c745d8db68bc8f199674
-  manager: conda
-  name: numpy
+  category: main
   optional: false
+- name: prompt_toolkit
+  version: 3.0.42
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/numpy-1.24.4-py38h9a4a08f_0.conda
-  version: 1.24.4
-- category: main
   dependencies:
-    python: '>=3.7'
-    typing-extensions: '>=4.6.3'
+    prompt-toolkit: '>=3.0.42,<3.0.43.0a0'
+  url: https://conda.anaconda.org/conda-forge/noarch/prompt_toolkit-3.0.42-hd8ed1ab_0.conda
   hash:
-    md5: 8f567c0a74aa44cf732f15773b4083b0
-    sha256: b3d809ff5a18ee8514bba8bc05a23b4cdf1758090a18a2cf742af38aed405144
-  manager: conda
-  name: platformdirs
+    md5: 85a2189ecd2fcdd86e92b2d4ea8fe461
+    sha256: fd2185d501bf34cb4c121f2f5ade9157ac75e1644a9da81355c4c8f9c1b82d4d
+  category: main
   optional: false
+- name: pyobjc-framework-cocoa
+  version: '10.1'
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/platformdirs-3.11.0-pyhd8ed1ab_0.conda
-  version: 3.11.0
-- category: main
   dependencies:
     libffi: '>=3.4,<4.0a0'
-    pyobjc-core: 10.0.*
+    pyobjc-core: 10.1.*
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
+  url: https://conda.anaconda.org/conda-forge/osx-64/pyobjc-framework-cocoa-10.1-py38h37016ba_0.conda
   hash:
-    md5: de9d8f287891e69ac0860737b8d27488
-    sha256: c4f0821dc11b79063fe7ef828ebcf275eb9a2dc357428ab7c79a9a0e3214cfb7
-  manager: conda
-  name: pyobjc-framework-cocoa
+    md5: 0757c129a2a3556c1eaeaa55958e8639
+    sha256: ac69e7353942dd260657de9e79505a12738f81612922c809689aefebba033766
+  category: main
   optional: false
+- name: pyproj
+  version: 3.5.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/pyobjc-framework-cocoa-10.0-py38h095c2e5_1.conda
-  version: '10.0'
-- category: main
   dependencies:
     certifi: ''
     proj: '>=9.2.0,<9.2.1.0a0'
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
+  url: https://conda.anaconda.org/conda-forge/osx-64/pyproj-3.5.0-py38h28e30a5_1.conda
   hash:
     md5: 328f980b5e64738b2a69d0d07c795b68
     sha256: ff000ecb6627a46cba6376af96849b014e897f73056e6b3a28ad8eb2df091f6a
-  manager: conda
-  name: pyproj
+  category: main
   optional: false
+- name: requests
+  version: 2.31.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/pyproj-3.5.0-py38h28e30a5_1.conda
-  version: 3.5.0
-- category: main
   dependencies:
+    python: '>=3.7'
+    idna: '>=2.5,<4'
     certifi: '>=2017.4.17'
     charset-normalizer: '>=2,<4'
-    idna: '>=2.5,<4'
-    python: '>=3.7'
     urllib3: '>=1.21.1,<3'
+  url: https://conda.anaconda.org/conda-forge/noarch/requests-2.31.0-pyhd8ed1ab_0.conda
   hash:
     md5: a30144e4156cdbb236f99ebb49828f8b
     sha256: 9f629d6fd3c8ac5f2a198639fe7af87c4db2ac9235279164bfe0fcb49d8c4bad
-  manager: conda
-  name: requests
+  category: main
   optional: false
+- name: stack_data
+  version: 0.6.2
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/requests-2.31.0-pyhd8ed1ab_0.conda
-  version: 2.31.0
-- category: main
   dependencies:
     asttokens: ''
     executing: ''
     pure_eval: ''
     python: '>=3.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.2-pyhd8ed1ab_0.conda
   hash:
     md5: e7df0fdd404616638df5ece6e69ba7af
     sha256: a58433e75229bec39f3be50c02efbe9b7083e53a1f31d8ee247564f370191eec
-  manager: conda
-  name: stack_data
+  category: main
   optional: false
-  platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.2-pyhd8ed1ab_0.conda
-  version: 0.6.2
-- category: main
-  dependencies:
-    backports.functools_lru_cache: ''
-    python: '>=3.6'
-  hash:
-    md5: 8e8280dec091763dfdc29e066de52270
-    sha256: 7552f6545ed212b9ae5d023870481fc377c7f18b4854b63160699b95a420c42e
+- name: argon2-cffi
+  version: 23.1.0
   manager: conda
-  name: wcwidth
-  optional: false
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.9-pyhd8ed1ab_0.conda
-  version: 0.2.9
-- category: main
   dependencies:
+    typing-extensions: ''
     argon2-cffi-bindings: ''
     python: '>=3.7'
-    typing-extensions: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/argon2-cffi-23.1.0-pyhd8ed1ab_0.conda
   hash:
     md5: 3afef1f55a1366b4d3b6a0d92e2235e4
     sha256: 130766446f5507bd44df957b6b5c898a8bd98f024bb426ed6cb9ff1ad67fc677
-  manager: conda
-  name: argon2-cffi
+  category: main
   optional: false
+- name: contourpy
+  version: 1.1.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/argon2-cffi-23.1.0-pyhd8ed1ab_0.conda
-  version: 23.1.0
-- category: main
   dependencies:
     libcxx: '>=15.0.7'
     numpy: '>=1.16'
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
+  url: https://conda.anaconda.org/conda-forge/osx-64/contourpy-1.1.1-py38h15a1a5b_1.conda
   hash:
     md5: 1c702bb95106dbed8ddb262ad4041432
     sha256: da3bac66909c9fbfe0d1d106db87563dea55fd5ef4c86d50813fbf13e57a3558
-  manager: conda
-  name: contourpy
+  category: main
   optional: false
-  platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/contourpy-1.1.1-py38h15a1a5b_1.conda
-  version: 1.1.1
-- category: main
-  dependencies:
-    arrow: '>=0.15.0'
-    python: '>=3.7'
-  hash:
-    md5: 4cb68948e0b8429534380243d063a27a
-    sha256: 7bb5c4d994361022f47a807b5e7d101b3dce16f7dd8a0af6ffad9f479d346493
+- name: httpx
+  version: 0.27.0
   manager: conda
-  name: isoduration
-  optional: false
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/isoduration-20.11.0-pyhd8ed1ab_0.tar.bz2
-  version: 20.11.0
-- category: main
   dependencies:
-    attrs: '>=22.2.0'
-    importlib_resources: '>=1.4.0'
-    jsonschema-specifications: '>=2023.03.6'
-    pkgutil-resolve-name: '>=1.3.10'
+    certifi: ''
+    idna: ''
+    anyio: ''
+    sniffio: ''
     python: '>=3.8'
-    referencing: '>=0.28.4'
-    rpds-py: '>=0.7.1'
+    httpcore: 1.*
+  url: https://conda.anaconda.org/conda-forge/noarch/httpx-0.27.0-pyhd8ed1ab_0.conda
   hash:
-    md5: 24d41c2f9cc199d0a180ecf7ef54739c
-    sha256: 07e5d395d83c4b12a7abe3989fb42abdcd3b1c51cd27549e5eab390bb8c7bf0f
-  manager: conda
-  name: jsonschema
+    md5: 9f359af5a886fd6ca6b2b6ea02e58332
+    sha256: fdaf341fb2630b7afe8238315448fc93947f77ebfa4da68bb349e1bcf820af58
+  category: main
   optional: false
-  platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.19.2-pyhd8ed1ab_0.conda
-  version: 4.19.2
-- category: main
-  dependencies:
-    platformdirs: '>=2.5'
-    python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
-    traitlets: '>=5.3'
-  hash:
-    md5: c7c615f38285616baa58bf7436edca7b
-    sha256: 388af7713b43b44844338e8c973e2663c0cebcb3cd894cdac0a5b11204512b7a
+- name: ipython
+  version: 8.12.2
   manager: conda
-  name: jupyter_core
-  optional: false
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/jupyter_core-5.5.0-py38h50d1736_0.conda
-  version: 5.5.0
-- category: main
   dependencies:
-    libcxx: '>=15.0.7'
-    numpy: '>=1.21.6,<2.0a0'
+    typing_extensions: ''
+    decorator: ''
+    __osx: ''
+    stack_data: ''
+    matplotlib-inline: ''
+    pickleshare: ''
+    appnope: ''
+    backcall: ''
+    python: '>=3.8'
+    pygments: '>=2.4.0'
+    traitlets: '>=5'
+    jedi: '>=0.16'
+    pexpect: '>4.3'
+    prompt_toolkit: '>=3.0.30,<3.1.0,!=3.0.37'
+  url: https://conda.anaconda.org/conda-forge/noarch/ipython-8.12.2-pyhd1c38e8_0.conda
+  hash:
+    md5: acc618532cbc899f5721cc96407b16cc
+    sha256: 4187d131e7487d0f2867e383df9b2c4a7e2bc90ee7ad5906913372f023af2ea5
+  category: main
+  optional: false
+- name: isoduration
+  version: 20.11.0
+  manager: conda
+  platform: osx-64
+  dependencies:
+    python: '>=3.7'
+    arrow: '>=0.15.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/isoduration-20.11.0-pyhd8ed1ab_0.tar.bz2
+  hash:
+    md5: 4cb68948e0b8429534380243d063a27a
+    sha256: 7bb5c4d994361022f47a807b5e7d101b3dce16f7dd8a0af6ffad9f479d346493
+  category: main
+  optional: false
+- name: jsonschema
+  version: 4.21.1
+  manager: conda
+  platform: osx-64
+  dependencies:
+    python: '>=3.8'
+    attrs: '>=22.2.0'
+    importlib_resources: '>=1.4.0'
+    pkgutil-resolve-name: '>=1.3.10'
+    jsonschema-specifications: '>=2023.03.6'
+    referencing: '>=0.28.4'
+    rpds-py: '>=0.7.1'
+  url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.21.1-pyhd8ed1ab_0.conda
+  hash:
+    md5: 8a3a3d01629da20befa340919e3dd2c4
+    sha256: c5c1b4e08e91fdd697289015be1a176409b4e63942899a43b276f1f250be8129
+  category: main
+  optional: false
+- name: jupyter_client
+  version: 8.6.0
+  manager: conda
+  platform: osx-64
+  dependencies:
+    python: '>=3.8'
+    python-dateutil: '>=2.8.2'
+    jupyter_core: '>=4.12,!=5.0.*'
+    importlib_metadata: '>=4.8.3'
+    traitlets: '>=5.3'
+    pyzmq: '>=23.0'
+    tornado: '>=6.2'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.0-pyhd8ed1ab_0.conda
+  hash:
+    md5: 6bd3f1069cdebb44c7ae9efb900e312d
+    sha256: 86cbb9070862cf23a245451efce539ca214e610849d0950bb8ac90c545bd158d
+  category: main
+  optional: false
+- name: pandas
+  version: 2.0.3
+  manager: conda
+  platform: osx-64
+  dependencies:
+    libcxx: '>=15.0.7'
+    numpy: '>=1.21.6,<2.0a0'
     python: '>=3.8,<3.9.0a0'
     python-dateutil: '>=2.8.1'
     python-tzdata: '>=2022a'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
     pytz: '>=2020.1'
+  url: https://conda.anaconda.org/conda-forge/osx-64/pandas-2.0.3-py38h78e6021_1.conda
   hash:
     md5: c48f2a452f24c03d88a4c83c3e6e9230
     sha256: bf40f28a125480be3f870d4138fdd547c9be8b5709b8742b600b53bfd0569f99
-  manager: conda
-  name: pandas
+  category: main
   optional: false
+- name: pooch
+  version: 1.8.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/pandas-2.0.3-py38h78e6021_1.conda
-  version: 2.0.3
-- category: main
   dependencies:
-    packaging: '>=20.0'
-    platformdirs: '>=2.5.0'
     python: '>=3.7'
+    packaging: '>=20.0'
     requests: '>=2.19.0'
+    platformdirs: '>=2.5.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.1-pyhd8ed1ab_0.conda
   hash:
-    md5: 134b2b57b7865d2316a7cce1915a51ed
-    sha256: 51b02987370bbff28dbf782063c23e3b264aa34173b344454203cd691946e077
-  manager: conda
-  name: pooch
+    md5: d15917f33140f8d2ac9ca44db7ec8a25
+    sha256: 63f95e626754f5e05e74f39c0f4866aa8bd40b933eef336077978d365d66ca7b
+  category: main
   optional: false
-  platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.0-pyhd8ed1ab_0.conda
-  version: 1.8.0
-- category: main
-  dependencies:
-    python: '>=3.7'
-    wcwidth: ''
-  hash:
-    md5: a4986c6bb5b0d05a38855b0880a5f425
-    sha256: 10e7fdc75d4b85633be6b12a70b857053987127a808caa0f88b2cba4b3ce6359
+- name: send2trash
+  version: 1.8.2
   manager: conda
-  name: prompt-toolkit
-  optional: false
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.39-pyha770c72_0.conda
-  version: 3.0.39
-- category: main
   dependencies:
     __osx: ''
     pyobjc-framework-cocoa: ''
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.2-pyhd1c38e8_0.conda
   hash:
     md5: 2657c3de5371c571aef6678afb4aaadd
     sha256: dca4022bae47618ed738ab7d45ead5202d174b741cfb98e4484acdc6e76da32a
-  manager: conda
-  name: send2trash
+  category: main
   optional: false
+- name: shapely
+  version: 2.0.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.2-pyhd1c38e8_0.conda
-  version: 1.8.2
-- category: main
   dependencies:
     geos: '>=3.11.2,<3.11.3.0a0'
     numpy: '>=1.20.3,<2.0a0'
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
+  url: https://conda.anaconda.org/conda-forge/osx-64/shapely-2.0.1-py38he9ee71e_1.conda
   hash:
     md5: 87f62ed2852e28770d0b1d2449c0209b
     sha256: 1049ab9a2275b88797c0012704485fef29681384e0a3d58c40199b3b711e3ffe
+  category: main
+  optional: false
+- name: ipykernel
+  version: 6.29.2
   manager: conda
-  name: shapely
+  platform: osx-64
+  dependencies:
+    packaging: ''
+    psutil: ''
+    nest-asyncio: ''
+    __osx: ''
+    appnope: ''
+    python: '>=3.8'
+    tornado: '>=6.1'
+    jupyter_client: '>=6.1.12'
+    jupyter_core: '>=4.12,!=5.0.*'
+    ipython: '>=7.23.1'
+    matplotlib-inline: '>=0.1'
+    debugpy: '>=1.6.5'
+    comm: '>=0.1.1'
+    traitlets: '>=5.4.0'
+    pyzmq: '>=24'
+  url: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.29.2-pyh3cd1d5f_0.conda
+  hash:
+    md5: 70402d8d2b523e33c9b6090f5a9c74ff
+    sha256: bd454a69fe3dc80e4a11078aab370d87ee2bd863f386d619fb2bb051b4d6f82b
+  category: main
   optional: false
+- name: jsonschema-with-format-nongpl
+  version: 4.21.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/shapely-2.0.1-py38he9ee71e_1.conda
-  version: 2.0.1
-- category: main
   dependencies:
-    fqdn: ''
-    idna: ''
-    isoduration: ''
-    jsonpointer: '>1.13'
-    jsonschema: '>=4.19.2,<4.19.3.0a0'
     python: ''
+    idna: ''
     rfc3339-validator: ''
-    rfc3986-validator: '>0.1.0'
     uri-template: ''
+    fqdn: ''
+    isoduration: ''
+    jsonpointer: '>1.13'
     webcolors: '>=1.11'
+    rfc3986-validator: '>0.1.0'
+    jsonschema: '>=4.21.1,<4.21.2.0a0'
+  url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-with-format-nongpl-4.21.1-pyhd8ed1ab_0.conda
   hash:
-    md5: c447b7c28ad6bb3306f0015f1195c721
-    sha256: b06681b4499635f0ed901f4879122bfd3ff6ef28de1797367769a4ba6b990b0d
-  manager: conda
-  name: jsonschema-with-format-nongpl
+    md5: 26bce4b5405738c09304d4f4796b2c2a
+    sha256: 6e458c325c097956ac4605ef386f0d67bad5223041cedd66819892988b72f83a
+  category: main
   optional: false
-  platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-with-format-nongpl-4.19.2-pyhd8ed1ab_0.conda
-  version: 4.19.2
-- category: main
-  dependencies:
-    importlib_metadata: '>=4.8.3'
-    jupyter_core: '>=4.12,!=5.0.*'
-    python: '>=3.8'
-    python-dateutil: '>=2.8.2'
-    pyzmq: '>=23.0'
-    tornado: '>=6.2'
-    traitlets: '>=5.3'
-  hash:
-    md5: 6bd3f1069cdebb44c7ae9efb900e312d
-    sha256: 86cbb9070862cf23a245451efce539ca214e610849d0950bb8ac90c545bd158d
+- name: matplotlib-base
+  version: 3.7.3
   manager: conda
-  name: jupyter_client
-  optional: false
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.0-pyhd8ed1ab_0.conda
-  version: 8.6.0
-- category: main
   dependencies:
     __osx: '>=10.12'
     certifi: '>=2020.06.20'
@@ -6133,45 +6381,33 @@ package:
     pyparsing: '>=2.3.1'
     python: '>=3.8,<3.9.0a0'
     python-dateutil: '>=2.7'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
+  url: https://conda.anaconda.org/conda-forge/osx-64/matplotlib-base-3.7.3-py38hcd1b199_0.conda
   hash:
     md5: 7e17b15addb42d41728f580757e3f528
     sha256: 9256e2e230c990466247b1e913182bdcdbb0045f6b053f0abc2b4ce55d10c842
-  manager: conda
-  name: matplotlib-base
+  category: main
   optional: false
+- name: nbformat
+  version: 5.9.2
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/matplotlib-base-3.7.3-py38hcd1b199_0.conda
-  version: 3.7.3
-- category: main
   dependencies:
-    jsonschema: '>=2.6'
     jupyter_core: ''
-    python: '>=3.8'
     python-fastjsonschema: ''
+    python: '>=3.8'
     traitlets: '>=5.1'
+    jsonschema: '>=2.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/nbformat-5.9.2-pyhd8ed1ab_0.conda
   hash:
     md5: 61ba076de6530d9301a0053b02f093d2
     sha256: fc82c5a9116820757b03ffb836b36f0f50e4cd390018024dbadb0ee0217f6992
-  manager: conda
-  name: nbformat
+  category: main
   optional: false
-  platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/nbformat-5.9.2-pyhd8ed1ab_0.conda
-  version: 5.9.2
-- category: main
-  dependencies:
-    prompt-toolkit: '>=3.0.39,<3.0.40.0a0'
-  hash:
-    md5: 4bbbe67d5df19db30f04b8e344dc9976
-    sha256: 89f7fecc7355181dbc2ab851e668a2fce6aa4830b336a34c93b59bda93206270
+- name: scipy
+  version: 1.10.1
   manager: conda
-  name: prompt_toolkit
-  optional: false
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/prompt_toolkit-3.0.39-hd8ed1ab_0.conda
-  version: 3.0.39
-- category: main
   dependencies:
     libblas: '>=3.9.0,<4.0a0'
     libcblas: '>=3.9.0,<4.0a0'
@@ -6182,17 +6418,17 @@ package:
     numpy: '>=1.21.6,<2.0a0'
     pooch: ''
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
+  url: https://conda.anaconda.org/conda-forge/osx-64/scipy-1.10.1-py38h9cf86d3_3.conda
   hash:
     md5: 5e20c77455e815704b008ab8f42f6169
     sha256: f38d549c75237a6c3a4d872f4153ba39411100fec4fcf166f74b4d1784792862
-  manager: conda
-  name: scipy
+  category: main
   optional: false
+- name: basemap
+  version: 1.3.7
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/scipy-1.10.1-py38h9cf86d3_3.conda
-  version: 1.10.1
-- category: main
   dependencies:
     basemap-data: '>=1.3.2,<2.0a0'
     geos: '>=3.11.2,<4.0a0'
@@ -6202,17 +6438,17 @@ package:
     pyproj: '>=1.9.3,<3.6'
     pyshp: '>=1.2.0,<2.4'
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
+  url: https://conda.anaconda.org/conda-forge/osx-64/basemap-1.3.7-py38h590b9ba_0.conda
   hash:
     md5: ed8a12b66b25e1f3edff2c4b7aa513ba
     sha256: 3d5ce7d6a2587457beb8fd07a3fd822086e52989d6b6f64b73068d2c194d4baf
-  manager: conda
-  name: basemap
+  category: main
   optional: false
+- name: cartopy
+  version: 0.21.1
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/basemap-1.3.7-py38h590b9ba_0.conda
-  version: 1.3.7
-- category: main
   dependencies:
     geos: '>=3.11.2,<3.11.3.0a0'
     libcxx: '>=14.0.6'
@@ -6221,1242 +6457,1202 @@ package:
     pyproj: '>=3.0.0'
     pyshp: '>=2.1'
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
     scipy: '>=0.10'
     shapely: '>=1.6.4'
+  url: https://conda.anaconda.org/conda-forge/osx-64/cartopy-0.21.1-py38h8dd4a0a_1.conda
   hash:
     md5: 651a5c616b439e95b6611b785089c9e2
     sha256: 001206e8f77cb6bd590c7c380af545bf63293dd43ab11bff1956a39cce3947c4
-  manager: conda
-  name: cartopy
+  category: main
   optional: false
-  platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/cartopy-0.21.1-py38h8dd4a0a_1.conda
-  version: 0.21.1
-- category: main
-  dependencies:
-    __osx: ''
-    appnope: ''
-    backcall: ''
-    decorator: ''
-    jedi: '>=0.16'
-    matplotlib-inline: ''
-    pexpect: '>4.3'
-    pickleshare: ''
-    prompt_toolkit: '>=3.0.30,<3.1.0,!=3.0.37'
-    pygments: '>=2.4.0'
-    python: '>=3.8'
-    stack_data: ''
-    traitlets: '>=5'
-    typing_extensions: ''
-  hash:
-    md5: acc618532cbc899f5721cc96407b16cc
-    sha256: 4187d131e7487d0f2867e383df9b2c4a7e2bc90ee7ad5906913372f023af2ea5
+- name: jupyter_events
+  version: 0.9.0
   manager: conda
-  name: ipython
-  optional: false
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/ipython-8.12.2-pyhd1c38e8_0.conda
-  version: 8.12.2
-- category: main
   dependencies:
-    jsonschema-with-format-nongpl: '>=4.18.0'
+    rfc3339-validator: ''
+    referencing: ''
     python: '>=3.8'
-    python-json-logger: '>=2.0.4'
     pyyaml: '>=5.3'
-    referencing: ''
-    rfc3339-validator: ''
     rfc3986-validator: '>=0.1.1'
     traitlets: '>=5.3'
+    python-json-logger: '>=2.0.4'
+    jsonschema-with-format-nongpl: '>=4.18.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_events-0.9.0-pyhd8ed1ab_0.conda
   hash:
     md5: 00ba25993f0dba38cf72a7224e33289f
     sha256: 713f0cc927a862862a6d35bfb29c4114f987e4f59e2a8a14f71f23fcd7edfec3
-  manager: conda
-  name: jupyter_events
+  category: main
   optional: false
+- name: matplotlib
+  version: 3.7.3
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_events-0.9.0-pyhd8ed1ab_0.conda
-  version: 0.9.0
-- category: main
   dependencies:
     matplotlib-base: '>=3.7.3,<3.7.4.0a0'
     python: '>=3.8,<3.9.0a0'
-    python_abi: 3.8.* *_cp38
+    python_abi: 3.8.*
     tornado: '>=5'
+  url: https://conda.anaconda.org/conda-forge/osx-64/matplotlib-3.7.3-py38h50d1736_0.conda
   hash:
     md5: 24885db052b1f02675a2f45ed6be3396
     sha256: 971077b11d4c29950db75a81c1fe8de41fd77bb0c405a52cf6fcb37afc2e689d
-  manager: conda
-  name: matplotlib
+  category: main
   optional: false
+- name: nbclient
+  version: 0.8.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/osx-64/matplotlib-3.7.3-py38h50d1736_0.conda
-  version: 3.7.3
-- category: main
   dependencies:
+    python: '>=3.8'
     jupyter_client: '>=6.1.12'
     jupyter_core: '>=4.12,!=5.0.*'
     nbformat: '>=5.1'
-    python: '>=3.8'
     traitlets: '>=5.4'
+  url: https://conda.anaconda.org/conda-forge/noarch/nbclient-0.8.0-pyhd8ed1ab_0.conda
   hash:
     md5: e78da91cf428faaf05701ce8cc8f2f9b
     sha256: 4ebd237cdf4bfa5226f92d2ae78fab8dba27696909391884dc6594ca6f9df5ff
-  manager: conda
-  name: nbclient
+  category: main
   optional: false
-  platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/nbclient-0.8.0-pyhd8ed1ab_0.conda
-  version: 0.8.0
-- category: main
-  dependencies:
-    __osx: ''
-    appnope: ''
-    comm: '>=0.1.1'
-    debugpy: '>=1.6.5'
-    ipython: '>=7.23.1'
-    jupyter_client: '>=6.1.12'
-    jupyter_core: '>=4.12,!=5.0.*'
-    matplotlib-inline: '>=0.1'
-    nest-asyncio: ''
-    packaging: ''
-    psutil: ''
-    python: '>=3.8'
-    pyzmq: '>=20'
-    tornado: '>=6.1'
-    traitlets: '>=5.4.0'
-  hash:
-    md5: 3c6e2148d30e6a762d8327a433ebfb5a
-    sha256: be9927d47fe23cc4d2a09d252e37e1e56ffb137767d2c0577ed882ead16f75fa
+- name: nbconvert-core
+  version: 7.16.1
   manager: conda
-  name: ipykernel
-  optional: false
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.26.0-pyh3cd1d5f_0.conda
-  version: 6.26.0
-- category: main
   dependencies:
+    packaging: ''
     beautifulsoup4: ''
-    bleach: ''
     defusedxml: ''
-    entrypoints: '>=0.2.2'
+    bleach: ''
+    tinycss2: ''
+    jupyterlab_pygments: ''
+    python: '>=3.8'
     jinja2: '>=3.0'
+    entrypoints: '>=0.2.2'
     jupyter_core: '>=4.7'
-    jupyterlab_pygments: ''
+    traitlets: '>=5.0'
     markupsafe: '>=2.0'
-    mistune: '>=2.0.3,<4'
-    nbclient: '>=0.5.0'
-    nbformat: '>=5.1'
-    packaging: ''
     pandocfilters: '>=1.4.1'
+    nbformat: '>=5.1'
     pygments: '>=2.4.1'
-    python: '>=3.8'
-    tinycss2: ''
-    traitlets: '>=5.0'
+    nbclient: '>=0.5.0'
+    mistune: '>=2.0.3,<4'
+  url: https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.1-pyhd8ed1ab_0.conda
   hash:
-    md5: d59e0cb1ca993f8f910cfdf393232acf
-    sha256: 81732e083c4c85a52248e20ff0e40a14b0b49db9cc7ce414e8aa7d6f8980dad0
-  manager: conda
-  name: nbconvert-core
+    md5: 2537745e9bc0e9bfcf66a27f113ae0e5
+    sha256: 684e0710abd6477ed9df743506edecb4b53d1c9deeaf8d6d7fdbb82e58f43090
+  category: main
   optional: false
+- name: jupyter_server
+  version: 2.12.5
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.11.0-pyhd8ed1ab_0.conda
-  version: 7.11.0
-- category: main
   dependencies:
-    anyio: '>=3.1.0'
-    argon2-cffi: ''
-    jinja2: ''
-    jupyter_client: '>=7.4.4'
-    jupyter_core: '>=4.12,!=5.0.*'
-    jupyter_events: '>=0.6.0'
-    jupyter_server_terminals: ''
-    nbconvert-core: '>=6.4.4'
-    nbformat: '>=5.3.0'
-    overrides: ''
     packaging: ''
+    jinja2: ''
     prometheus_client: ''
+    websocket-client: ''
+    argon2-cffi: ''
+    overrides: ''
+    jupyter_server_terminals: ''
     python: '>=3.8'
-    pyzmq: '>=24'
-    send2trash: '>=1.8.2'
     terminado: '>=0.8.3'
+    jupyter_core: '>=4.12,!=5.0.*'
     tornado: '>=6.2.0'
+    nbconvert-core: '>=6.4.4'
+    pyzmq: '>=24'
+    jupyter_client: '>=7.4.4'
+    nbformat: '>=5.3.0'
     traitlets: '>=5.6.0'
-    websocket-client: ''
+    anyio: '>=3.1.0'
+    send2trash: '>=1.8.2'
+    jupyter_events: '>=0.9.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_server-2.12.5-pyhd8ed1ab_0.conda
   hash:
-    md5: 016d56f5d81b9364d1da5f4895a2a9f8
-    sha256: 0b9a72f28ff8a12e6ea0ae43d3ea93e288074d29348c5fc6fbb3a5e5e18b2ecd
-  manager: conda
-  name: jupyter_server
+    md5: 755177a956fa6dd90d5cfcbbb5084de2
+    sha256: 43dcd238c656c7ecf3228be8735def530cad5181f990c042ba202b9e383d2b1f
+  category: main
   optional: false
+- name: jupyter-lsp
+  version: 2.2.2
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_server-2.10.0-pyhd8ed1ab_0.conda
-  version: 2.10.0
-- category: main
   dependencies:
+    python: '>=3.8'
     importlib-metadata: '>=4.8.3'
     jupyter_server: '>=1.1.2'
-    python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyter-lsp-2.2.2-pyhd8ed1ab_0.conda
   hash:
-    md5: 38589f4104d11f2a59ff01a9f4e3bfb3
-    sha256: 16fc7b40024adece716ba7227e5c123a2deccc13f946a10d9a3270493908d11c
-  manager: conda
-  name: jupyter-lsp
+    md5: ed56b103cac2db68f22909e9f5cca6b6
+    sha256: d8ab253be3df67be1b31fe040a8386e071ff065ef4442b94a722a45fa3562fbe
+  category: main
   optional: false
+- name: jupyterlab_server
+  version: 2.25.3
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyter-lsp-2.2.0-pyhd8ed1ab_0.conda
-  version: 2.2.0
-- category: main
   dependencies:
-    babel: '>=2.10'
-    importlib-metadata: '>=4.8.3'
+    python: '>=3.8'
+    packaging: '>=21.3'
     jinja2: '>=3.0.3'
-    json5: '>=0.9.0'
-    jsonschema: '>=4.18'
+    importlib-metadata: '>=4.8.3'
     jupyter_server: '>=1.21,<3'
-    packaging: '>=21.3'
-    python: '>=3.8'
+    babel: '>=2.10'
+    json5: '>=0.9.0'
     requests: '>=2.31'
+    jsonschema: '>=4.18'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_server-2.25.3-pyhd8ed1ab_0.conda
   hash:
-    md5: 5cf15f8fd42c77af4eb1611fe614df2f
-    sha256: 5f373d9adc11b6d49bee06a4c6bea9623fff1d2a0b798edc2e3f594680aa18f3
-  manager: conda
-  name: jupyterlab_server
+    md5: 78f28bcd22aadca6ec8eaff4319e6610
+    sha256: 30269e4ab0e67935b15b012e5e97f5c5c72111d0f02e03b3c644e556fe1a5275
+  category: main
   optional: false
+- name: notebook-shim
+  version: 0.2.4
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_server-2.25.1-pyhd8ed1ab_0.conda
-  version: 2.25.1
-- category: main
   dependencies:
-    jupyter_server: '>=1.8,<3'
     python: '>=3.7'
+    jupyter_server: '>=1.8,<3'
+  url: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_0.conda
   hash:
-    md5: 67e0fe74c156267d9159e9133df7fd37
-    sha256: f028d7ad1f2175cde307db08b60d07e371b9d6f035cfae6c81ea94b4c408c538
-  manager: conda
-  name: notebook-shim
+    md5: 3d85618e2c97ab896b5b5e298d32b5b3
+    sha256: 9b5fdef9ebe89222baa9da2796ebe7bc02ec6c5a1f61327b651d6b92cf9a0230
+  category: main
   optional: false
+- name: jupyterlab
+  version: 4.1.2
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.3-pyhd8ed1ab_0.conda
-  version: 0.2.3
-- category: main
   dependencies:
-    async-lru: '>=1.0.0'
+    packaging: ''
+    traitlets: ''
+    tomli: ''
+    ipykernel: ''
+    jupyter_core: ''
+    python: '>=3.8'
+    tornado: '>=6.2.0'
+    jinja2: '>=3.0.3'
     importlib_metadata: '>=4.8.3'
+    jupyter_server: '>=2.4.0,<3'
     importlib_resources: '>=1.4'
-    ipykernel: ''
-    jinja2: '>=3.0.3'
     jupyter-lsp: '>=2.0.0'
-    jupyter_core: ''
-    jupyter_server: '>=2.4.0,<3'
+    async-lru: '>=1.0.0'
     jupyterlab_server: '>=2.19.0,<3'
     notebook-shim: '>=0.2'
-    packaging: ''
-    python: '>=3.8'
-    tomli: ''
-    tornado: '>=6.2.0'
-    traitlets: ''
+    httpx: '>=0.25.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.1.2-pyhd8ed1ab_0.conda
   hash:
-    md5: 299796efa08ad91c602fa4d0c5ecc86f
-    sha256: fe5ca6c8bbda69af332593d7f9592aa19d9ab98d34c647ed0d8fbbae88b29a95
-  manager: conda
-  name: jupyterlab
+    md5: ffcabe653273b2b81a30c82d625bd5e8
+    sha256: d4be2239d93c7db7db911b0e992bde6110f50cd705c23ac7e43483ded90a57ed
+  category: main
   optional: false
+- name: jupyterlab-plotly-extension
+  version: 1.0.0
+  manager: conda
   platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.0.8-pyhd8ed1ab_0.conda
-  version: 4.0.8
-- category: main
   dependencies:
     jupyterlab: ''
     nodejs: ''
     python: '>=3.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-plotly-extension-1.0.0-py_0.tar.bz2
   hash:
     md5: 0996a9698037d8a707168956e3abba16
     sha256: 8ef5b70f61d995093db82d0bb5f770426d4f270848b2cfd826b8d3df34a060e4
-  manager: conda
-  name: jupyterlab-plotly-extension
+  category: main
   optional: false
-  platform: osx-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-plotly-extension-1.0.0-py_0.tar.bz2
-  version: 1.0.0
-- category: main
+- name: ca-certificates
+  version: 2024.2.2
+  manager: conda
+  platform: win-64
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/win-64/ca-certificates-2024.2.2-h56e8100_0.conda
   hash:
-    md5: b1c2327b36f1a25d96f2039b0d3e3739
-    sha256: b85a6f307f8e1c803cb570bdfb9e4d811a361417873ecd2ecf687587405a72e0
-  manager: conda
-  name: ca-certificates
+    md5: 63da060240ab8087b60d1357051ea7d6
+    sha256: 4d587088ecccd393fec3420b64f1af4ee1a0e6897a45cfd5ef38055322cea5d0
+  category: main
   optional: false
+- name: intel-openmp
+  version: 2024.0.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/ca-certificates-2023.7.22-h56e8100_0.conda
-  version: 2023.7.22
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/win-64/intel-openmp-2024.0.0-h57928b3_49841.conda
   hash:
-    md5: a401f3cae152deb75bbed766a90a6312
-    sha256: dd9fded25ebe5c66af30ac6e3685146efdc2d7787035f01bfb546b347f138f6f
-  manager: conda
-  name: intel-openmp
+    md5: e3255c8cdaf1d52f15816d1970f9c77a
+    sha256: 6ee8eb9080bb3268654e015dd17ad79d0c1ea98b2eee6b928ecd27f01d6b38e8
+  category: main
   optional: false
+- name: libexpat
+  version: 2.5.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/intel-openmp-2023.2.0-h57928b3_50497.conda
-  version: 2023.2.0
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/win-64/libexpat-2.5.0-h63175ca_1.conda
   hash:
     md5: 636cc3cbbd2e28bcfd2f73b2044aac2c
     sha256: 794b2a9be72f176a2767c299574d330ffb76b2ed75d7fd20bee3bbadce5886cf
-  manager: conda
-  name: libexpat
+  category: main
   optional: false
+- name: msys2-conda-epoch
+  version: '20160418'
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libexpat-2.5.0-h63175ca_1.conda
-  version: 2.5.0
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/win-64/msys2-conda-epoch-20160418-1.tar.bz2
   hash:
     md5: b0309b72560df66f71a9d5e34a5efdfa
     sha256: 99358d58d778abee4dca82ad29fb58058571f19b0f86138363c260049d4ac7f1
-  manager: conda
-  name: msys2-conda-epoch
+  category: main
   optional: false
+- name: nodejs
+  version: 20.9.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/msys2-conda-epoch-20160418-1.tar.bz2
-  version: '20160418'
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/win-64/nodejs-20.9.0-h57928b3_0.conda
   hash:
-    md5: 1f243e2387f95ce1078614f2426b5780
-    sha256: 1bd795a799e93125844c08b994b74c10a43e2f2017d5cea82c299e02ec2a1fe1
-  manager: conda
-  name: nodejs
+    md5: 97d4628e7c293eb10516d35c6fb3c7e5
+    sha256: 7ec505ac95df1847bd0065ae587a4fd176a23e4ddccda246113e0b5426a8469e
+  category: main
   optional: false
+- name: openjdk
+  version: 8.0.382
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/nodejs-20.8.1-h57928b3_0.conda
-  version: 20.8.1
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/win-64/openjdk-8.0.382-h57928b3_0.conda
   hash:
     md5: 40aaea63a3eed57bfb830d9d08438f33
     sha256: 92b790d8ccb2adb15f275bd7eff55fddf38295a29fe106e2ff32171b99d1763a
-  manager: conda
-  name: openjdk
+  category: main
   optional: false
+- name: python_abi
+  version: '3.12'
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/openjdk-8.0.382-h57928b3_0.conda
-  version: 8.0.382
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/win-64/python_abi-3.12-4_cp312.conda
   hash:
-    md5: 70513332c71b56eace4ee6441e66c012
-    sha256: 67c2aade3e2160642eec0742384e766b20c766055e3d99335681e3e05d88ed7b
-  manager: conda
-  name: python_abi
+    md5: 17f4ccf6be9ded08bd0a376f489ac1a6
+    sha256: 488f8519d04b48f59bd6fde21ebe2d7a527718ff28aac86a8b53aa63658bdef6
+  category: main
   optional: false
+- name: tzdata
+  version: 2024a
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/python_abi-3.11-4_cp311.conda
-  version: '3.11'
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024a-h0c530f3_0.conda
   hash:
-    md5: 939e3e74d8be4dac89ce83b20de2492a
-    sha256: 0449138224adfa125b220154408419ec37c06b0b49f63c5954724325903ecf55
-  manager: conda
-  name: tzdata
+    md5: 161081fc7cec0bfda0d86d7cb595f8d8
+    sha256: 7b2b69c54ec62a243eb6fba2391b5e443421608c3ae5dbff938ad33ca8db5122
+  category: main
   optional: false
+- name: ucrt
+  version: 10.0.22621.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/tzdata-2023c-h71feb2d_0.conda
-  version: 2023c
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/win-64/ucrt-10.0.22621.0-h57928b3_0.tar.bz2
   hash:
     md5: 72608f6cd3e5898229c3ea16deb1ac43
     sha256: f29cdaf8712008f6b419b8b1a403923b00ab2504bfe0fb2ba8eb60e72d4f14c6
-  manager: conda
-  name: ucrt
+  category: main
   optional: false
+- name: winpty
+  version: 0.4.3
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/ucrt-10.0.22621.0-h57928b3_0.tar.bz2
-  version: 10.0.22621.0
-- category: main
   dependencies: {}
+  url: https://conda.anaconda.org/conda-forge/win-64/winpty-0.4.3-4.tar.bz2
   hash:
     md5: 1cee351bf20b830d991dbe0bc8cd7dfe
     sha256: 9df10c5b607dd30e05ba08cbd940009305c75db242476f4e845ea06008b0a283
-  manager: conda
-  name: winpty
+  category: main
   optional: false
+- name: m2w64-gmp
+  version: 6.1.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/winpty-0.4.3-4.tar.bz2
-  version: 0.4.3
-- category: main
   dependencies:
     msys2-conda-epoch: '20160418'
+  url: https://conda.anaconda.org/conda-forge/win-64/m2w64-gmp-6.1.0-2.tar.bz2
   hash:
     md5: 53a1c73e1e3d185516d7e3af177596d9
     sha256: 7e3cd95f554660de45f8323fca359e904e8d203efaf07a4d311e46d611481ed1
-  manager: conda
-  name: m2w64-gmp
+  category: main
   optional: false
+- name: m2w64-libwinpthread-git
+  version: 5.0.0.4634.697f757
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/m2w64-gmp-6.1.0-2.tar.bz2
-  version: 6.1.0
-- category: main
   dependencies:
     msys2-conda-epoch: '20160418'
+  url: https://conda.anaconda.org/conda-forge/win-64/m2w64-libwinpthread-git-5.0.0.4634.697f757-2.tar.bz2
   hash:
     md5: 774130a326dee16f1ceb05cc687ee4f0
     sha256: f63a09b2cae7defae0480f1740015d6235f1861afa6fe2e2d3e10bd0d1314ee0
-  manager: conda
-  name: m2w64-libwinpthread-git
+  category: main
   optional: false
+- name: vc14_runtime
+  version: 14.38.33130
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/m2w64-libwinpthread-git-5.0.0.4634.697f757-2.tar.bz2
-  version: 5.0.0.4634.697f757
-- category: main
   dependencies:
     ucrt: '>=10.0.20348.0'
+  url: https://conda.anaconda.org/conda-forge/win-64/vc14_runtime-14.38.33130-h82b7239_18.conda
   hash:
-    md5: d0de20f2f3fc806a81b44fcdd941aaf7
-    sha256: b317d49af32d5c031828e62c08d56f01d9a64cd3f40d4cccb052bc38c7a9e62e
-  manager: conda
-  name: vc14_runtime
+    md5: 8be79fdd2725ddf7bbf8a27a4c1f79ba
+    sha256: bf94c9af4b2e9cba88207001197e695934eadc96a5c5e4cd7597e950aae3d8ff
+  category: main
   optional: false
+- name: m2w64-gcc-libs-core
+  version: 5.3.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/vc14_runtime-14.36.32532-hdcecf7f_17.conda
-  version: 14.36.32532
-- category: main
   dependencies:
     m2w64-gmp: ''
     m2w64-libwinpthread-git: ''
     msys2-conda-epoch: '20160418'
+  url: https://conda.anaconda.org/conda-forge/win-64/m2w64-gcc-libs-core-5.3.0-7.tar.bz2
   hash:
     md5: 4289d80fb4d272f1f3b56cfe87ac90bd
     sha256: 58afdfe859ed2e9a9b1cc06bc408720cb2c3a6a132e59d4805b090d7574f4ee0
-  manager: conda
-  name: m2w64-gcc-libs-core
+  category: main
   optional: false
+- name: vc
+  version: '14.3'
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/m2w64-gcc-libs-core-5.3.0-7.tar.bz2
-  version: 5.3.0
-- category: main
   dependencies:
-    vc14_runtime: '>=14.36.32532'
+    vc14_runtime: '>=14.38.33130'
+  url: https://conda.anaconda.org/conda-forge/win-64/vc-14.3-hcf57466_18.conda
   hash:
-    md5: 67ff6791f235bb606659bf2a5c169191
-    sha256: 86ae94bf680980776aa761c2b0909a0ddbe1f817e7eeb8b16a1730f10f8891b6
-  manager: conda
-  name: vc
+    md5: 20e1e652a4c740fa719002a8449994a2
+    sha256: 447a8d8292a7b2107dcc18afb67f046824711a652725fc0f522c368e7a7b8318
+  category: main
   optional: false
+- name: vs2015_runtime
+  version: 14.38.33130
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/vc-14.3-h64f974e_17.conda
-  version: '14.3'
-- category: main
   dependencies:
-    vc14_runtime: '>=14.36.32532'
+    vc14_runtime: '>=14.38.33130'
+  url: https://conda.anaconda.org/conda-forge/win-64/vs2015_runtime-14.38.33130-hcb4865c_18.conda
   hash:
-    md5: 4618046c39f7c81861e53ded842e738a
-    sha256: 5ecbd731dc7f13762d67be0eadc47eb7f14713005e430d9b5fc680e965ac0f81
-  manager: conda
-  name: vs2015_runtime
+    md5: 10d42885e3ed84e575b454db30f1aa93
+    sha256: a2fec221f361d6263c117f4ea6d772b21c90a2f8edc6f3eb0eadec6bfe8843db
+  category: main
   optional: false
+- name: bzip2
+  version: 1.0.8
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/vs2015_runtime-14.36.32532-h05e6639_17.conda
-  version: 14.36.32532
-- category: main
   dependencies:
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/bzip2-1.0.8-hcfcfb64_5.conda
   hash:
     md5: 26eb8ca6ea332b675e11704cce84a3be
     sha256: ae5f47a5c86fd6db822931255dcf017eb12f60c77f07dc782ccb477f7808aab2
-  manager: conda
-  name: bzip2
+  category: main
   optional: false
+- name: geos
+  version: 3.12.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/bzip2-1.0.8-hcfcfb64_5.conda
-  version: 1.0.8
-- category: main
   dependencies:
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/geos-3.12.1-h1537add_0.conda
   hash:
-    md5: 78119c25e59de33135b673375c6fa126
-    sha256: 096c45cb03240ae67ff9e09166110a3bd19a5ab20bf7deea8be55557792b9924
-  manager: conda
-  name: geos
+    md5: 02fdccc66ed44a8f9f3731d15f445724
+    sha256: d7a6bb89063df38b24843e5b4c99da602333ac4e1c1e39c069f2021827d3c98d
+  category: main
   optional: false
+- name: icu
+  version: '73.2'
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/geos-3.12.0-h1537add_0.conda
-  version: 3.12.0
-- category: main
   dependencies:
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/icu-73.2-h63175ca_0.conda
   hash:
     md5: 0f47d9e3192d9e09ae300da0d28e0f56
     sha256: 423aaa2b69d713520712f55c7c71994b7e6f967824bb39b59ad968e7b209ce8c
-  manager: conda
-  name: icu
+  category: main
   optional: false
+- name: lerc
+  version: 4.0.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/icu-73.2-h63175ca_0.conda
-  version: '73.2'
-- category: main
   dependencies:
     vc: '>=14.2,<15'
     vs2015_runtime: '>=14.29.30037'
+  url: https://conda.anaconda.org/conda-forge/win-64/lerc-4.0.0-h63175ca_0.tar.bz2
   hash:
     md5: 1900cb3cab5055833cfddb0ba233b074
     sha256: f4f39d7f6a2f9b407f8fb567a6c25755270421731d70f0ff331f5de4fa367488
-  manager: conda
-  name: lerc
+  category: main
   optional: false
+- name: libbrotlicommon
+  version: 1.1.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/lerc-4.0.0-h63175ca_0.tar.bz2
-  version: 4.0.0
-- category: main
   dependencies:
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/libbrotlicommon-1.1.0-hcfcfb64_1.conda
   hash:
     md5: f77f319fb82980166569e1280d5b2864
     sha256: f75fed29b0cc503d1b149a4945eaa32df56e19da5e2933de29e8f03947203709
-  manager: conda
-  name: libbrotlicommon
+  category: main
   optional: false
+- name: libdeflate
+  version: '1.19'
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libbrotlicommon-1.1.0-hcfcfb64_1.conda
-  version: 1.1.0
-- category: main
   dependencies:
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
-    vs2015_runtime: '>=14.29.30139'
+    vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/libdeflate-1.19-hcfcfb64_0.conda
   hash:
-    md5: 493acc14c556ef6f1d13ba00b099c679
-    sha256: 9a9a1a6e47777c9bf6086d88f6567ed3fc32d4f849b3d42b51bbf0b9fa4727f7
-  manager: conda
-  name: libdeflate
+    md5: 002b1b723b44dbd286b9e3708762433c
+    sha256: e2886a84eaa0fbeca1d1d810270f234431d190402b4a79acf756ca2d16000354
+  category: main
   optional: false
+- name: libffi
+  version: 3.4.2
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libdeflate-1.18-hcfcfb64_0.conda
-  version: '1.18'
-- category: main
   dependencies:
     vc: '>=14.1,<15.0a0'
     vs2015_runtime: '>=14.16.27012'
+  url: https://conda.anaconda.org/conda-forge/win-64/libffi-3.4.2-h8ffe710_5.tar.bz2
   hash:
     md5: 2c96d1b6915b408893f9472569dee135
     sha256: 1951ab740f80660e9bc07d2ed3aefb874d78c107264fd810f24a1a6211d4b1a5
-  manager: conda
-  name: libffi
+  category: main
   optional: false
+- name: libiconv
+  version: '1.17'
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libffi-3.4.2-h8ffe710_5.tar.bz2
-  version: 3.4.2
-- category: main
   dependencies:
-    vc: '>=14.1,<15'
-    vs2015_runtime: '>=14.16.27033'
+    ucrt: '>=10.0.20348.0'
+    vc: '>=14.2,<15'
+    vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/libiconv-1.17-hcfcfb64_2.conda
   hash:
-    md5: 050119977a86e4856f0416e2edcf81bb
-    sha256: 657c2a992c896475021a25faebd9ccfaa149c5d70c7dc824d4069784b686cea1
-  manager: conda
-  name: libiconv
+    md5: e1eb10b1cca179f2baa3601e4efc8712
+    sha256: 5f844dd19b046d43174ad80c6ea75b5d504020e3b63cfbc4ace97b8730d35c7b
+  category: main
   optional: false
+- name: libjpeg-turbo
+  version: 3.0.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libiconv-1.17-h8ffe710_0.tar.bz2
-  version: '1.17'
-- category: main
   dependencies:
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/libjpeg-turbo-3.0.0-hcfcfb64_1.conda
   hash:
-    md5: 9503c6648d5692f1f26aabca7156f809
-    sha256: 27e49e07f2129cd39c1c34ac882a0e89f55d597d54c35fab362bcd0a37b532a2
-  manager: conda
-  name: libjpeg-turbo
+    md5: 3f1b948619c45b1ca714d60c7389092c
+    sha256: 4e7808e3098b4b4ed7e287f63bb24f9045cc4d95bfd39f0db870fc2837d74dff
+  category: main
   optional: false
+- name: libogg
+  version: 1.3.4
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libjpeg-turbo-2.1.5.1-hcfcfb64_1.conda
-  version: 2.1.5.1
-- category: main
   dependencies:
     vc: '>=14.1,<15.0a0'
     vs2015_runtime: '>=14.16.27012'
+  url: https://conda.anaconda.org/conda-forge/win-64/libogg-1.3.4-h8ffe710_1.tar.bz2
   hash:
     md5: 04286d905a0dcb7f7d4a12bdfe02516d
     sha256: ef20f04ad2121a07e074b34bfc211587df18180e680963f5c02c54d1951b9ee6
-  manager: conda
-  name: libogg
+  category: main
   optional: false
+- name: libsodium
+  version: 1.0.18
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libogg-1.3.4-h8ffe710_1.tar.bz2
-  version: 1.3.4
-- category: main
   dependencies:
     vc: '>=14.1,<15.0a0'
     vs2015_runtime: '>=14.16.27012'
+  url: https://conda.anaconda.org/conda-forge/win-64/libsodium-1.0.18-h8d14728_1.tar.bz2
   hash:
     md5: 5c1fb45b5e2912c19098750ae8a32604
     sha256: ecc463f0ab6eaf6bc5bd6ff9c17f65595de6c7a38db812222ab8ffde0d3f4bc2
-  manager: conda
-  name: libsodium
+  category: main
   optional: false
+- name: libsqlite
+  version: 3.45.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libsodium-1.0.18-h8d14728_1.tar.bz2
-  version: 1.0.18
-- category: main
   dependencies:
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.45.1-hcfcfb64_0.conda
   hash:
-    md5: 446fb1973cfeb8b32de4add3c9ac1057
-    sha256: b2be4125343d89765269b537e90ea5ab7f219e7398e7ad610ddcdcf31e7b9e65
-  manager: conda
-  name: libsqlite
+    md5: c583c1d6999b7aa148eff3089e13c44b
+    sha256: e1010f4ac7b056d85d91e6cb6137ef118f920eba88059261689e543780b230df
+  category: main
   optional: false
+- name: libwebp-base
+  version: 1.3.2
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.44.0-hcfcfb64_0.conda
-  version: 3.44.0
-- category: main
   dependencies:
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/libwebp-base-1.3.2-hcfcfb64_0.conda
   hash:
     md5: dcde8820959e64378d4e06147ffecfdd
     sha256: af1453fab10d1fb8b379c61a78882614051a8bac37307d7ac4fb58eac667709e
-  manager: conda
-  name: libwebp-base
+  category: main
   optional: false
+- name: libzlib
+  version: 1.2.13
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libwebp-base-1.3.2-hcfcfb64_0.conda
-  version: 1.3.2
-- category: main
   dependencies:
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.2.13-hcfcfb64_5.conda
   hash:
     md5: 5fdb9c6a113b6b6cb5e517fd972d5f41
     sha256: c161822ee8130b71e08b6d282b9919c1de2c5274b29921a867bca0f7d30cad26
-  manager: conda
-  name: libzlib
+  category: main
   optional: false
+- name: m2w64-gcc-libgfortran
+  version: 5.3.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.2.13-hcfcfb64_5.conda
-  version: 1.2.13
-- category: main
   dependencies:
     m2w64-gcc-libs-core: ''
     msys2-conda-epoch: '20160418'
+  url: https://conda.anaconda.org/conda-forge/win-64/m2w64-gcc-libgfortran-5.3.0-6.tar.bz2
   hash:
     md5: 066552ac6b907ec6d72c0ddab29050dc
     sha256: 9de95a7996d5366ae0808eef2acbc63f9b11b874aa42375f55379e6715845dc6
-  manager: conda
-  name: m2w64-gcc-libgfortran
+  category: main
   optional: false
+- name: openssl
+  version: 3.2.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/m2w64-gcc-libgfortran-5.3.0-6.tar.bz2
-  version: 5.3.0
-- category: main
   dependencies:
     ca-certificates: ''
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/openssl-3.2.1-hcfcfb64_0.conda
   hash:
-    md5: 2eebbc64373a1c6db62ad23304e9678e
-    sha256: e30b7f55c27d06e3322876c9433a3522e751d06a40b3bb6c4f8b4bcd781a3794
-  manager: conda
-  name: openssl
+    md5: 158df8eead8092cf0e27167c8761a8dd
+    sha256: 1df1c43136f863d5e9ba20b703001caf9a4d0ea56bdc3eeb948c977e3d4f91d3
+  category: main
   optional: false
+- name: pthreads-win32
+  version: 2.9.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/openssl-3.1.4-hcfcfb64_0.conda
-  version: 3.1.4
-- category: main
   dependencies:
     vc: 14.*
+  url: https://conda.anaconda.org/conda-forge/win-64/pthreads-win32-2.9.1-hfa6e2cd_3.tar.bz2
   hash:
     md5: e2da8758d7d51ff6aa78a14dfb9dbed4
     sha256: 576a228630a72f25d255a5e345e5f10878e153221a96560f2498040cd6f54005
-  manager: conda
-  name: pthreads-win32
+  category: main
   optional: false
+- name: tk
+  version: 8.6.13
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/pthreads-win32-2.9.1-hfa6e2cd_3.tar.bz2
-  version: 2.9.1
-- category: main
   dependencies:
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/tk-8.6.13-h5226925_1.conda
   hash:
     md5: fc048363eb8f03cd1737600a5d08aafe
     sha256: 2c4e914f521ccb2718946645108c9bd3fc3216ba69aea20c2c3cedbd8db32bb1
-  manager: conda
-  name: tk
+  category: main
   optional: false
+- name: xz
+  version: 5.2.6
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/tk-8.6.13-h5226925_1.conda
-  version: 8.6.13
-- category: main
   dependencies:
     vc: '>=14.1,<15'
     vs2015_runtime: '>=14.16.27033'
+  url: https://conda.anaconda.org/conda-forge/win-64/xz-5.2.6-h8d14728_0.tar.bz2
   hash:
     md5: 515d77642eaa3639413c6b1bc3f94219
     sha256: 54d9778f75a02723784dc63aff4126ff6e6749ba21d11a6d03c1f4775f269fe0
-  manager: conda
-  name: xz
+  category: main
   optional: false
+- name: yaml
+  version: 0.2.5
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/xz-5.2.6-h8d14728_0.tar.bz2
-  version: 5.2.6
-- category: main
   dependencies:
     vc: '>=14.1,<15.0a0'
     vs2015_runtime: '>=14.16.27012'
+  url: https://conda.anaconda.org/conda-forge/win-64/yaml-0.2.5-h8ffe710_2.tar.bz2
   hash:
     md5: adbfb9f45d1004a26763652246a33764
     sha256: 4e2246383003acbad9682c7c63178e2e715ad0eb84f03a8df1fbfba455dfedc5
-  manager: conda
-  name: yaml
+  category: main
   optional: false
+- name: gettext
+  version: 0.21.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/yaml-0.2.5-h8ffe710_2.tar.bz2
-  version: 0.2.5
-- category: main
   dependencies:
     libiconv: '>=1.17,<2.0a0'
+  url: https://conda.anaconda.org/conda-forge/win-64/gettext-0.21.1-h5728263_0.tar.bz2
   hash:
     md5: 299d4fd6798a45337042ff5a48219e5f
     sha256: 71c75b0a4dc2cf95d2860ea0076edf9f5558baeb4dacaeecb32643b199074616
-  manager: conda
-  name: gettext
+  category: main
   optional: false
+- name: krb5
+  version: 1.21.2
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/gettext-0.21.1-h5728263_0.tar.bz2
-  version: 0.21.1
-- category: main
   dependencies:
     openssl: '>=3.1.2,<4.0a0'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/krb5-1.21.2-heb0366b_0.conda
   hash:
     md5: 6e8b0f22b4eef3b3cb3849bb4c3d47f9
     sha256: 6002adff9e3dcfc9732b861730cb9e33d45fd76b2035b2cdb4e6daacb8262c0b
-  manager: conda
-  name: krb5
+  category: main
   optional: false
+- name: libbrotlidec
+  version: 1.1.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/krb5-1.21.2-heb0366b_0.conda
-  version: 1.21.2
-- category: main
   dependencies:
-    libbrotlicommon: 1.1.0 hcfcfb64_1
+    libbrotlicommon: 1.1.0
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/libbrotlidec-1.1.0-hcfcfb64_1.conda
   hash:
     md5: 19ce3e1dacc7912b3d6ff40690ba9ae0
     sha256: 1b352ee05931ea24c11cd4a994d673890fd1cc690c21e023e736bdaac2632e93
-  manager: conda
-  name: libbrotlidec
+  category: main
   optional: false
-  platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libbrotlidec-1.1.0-hcfcfb64_1.conda
+- name: libbrotlienc
   version: 1.1.0
-- category: main
+  manager: conda
+  platform: win-64
   dependencies:
-    libbrotlicommon: 1.1.0 hcfcfb64_1
+    libbrotlicommon: 1.1.0
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/libbrotlienc-1.1.0-hcfcfb64_1.conda
   hash:
     md5: 71e890a0b361fd58743a13f77e1506b7
     sha256: eae6b76154e594c6d211160c6d1aeed848672618152a562e0eabdfa641d34aca
-  manager: conda
-  name: libbrotlienc
+  category: main
   optional: false
+- name: libpng
+  version: 1.6.42
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libbrotlienc-1.1.0-hcfcfb64_1.conda
-  version: 1.1.0
-- category: main
   dependencies:
     libzlib: '>=1.2.13,<1.3.0a0'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/libpng-1.6.42-h19919ed_0.conda
   hash:
-    md5: ba26634d038b91466bb4242c8b5e0cfa
-    sha256: 9cff68d1bd3b1b956133f9f5f35d475014402f3f4e7956047bf3a70f2107f11c
-  manager: conda
-  name: libclang13
+    md5: 9d97d0e6a5d51a7fd03c3398bc752890
+    sha256: 92a7f54585bac3b5f90e89bb674be1bd2e66e281206ec056a125eec7e32bb85f
+  category: main
   optional: false
-  platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libclang13-15.0.7-default_h77d9078_3.conda
-  version: 15.0.7
-- category: main
-  dependencies:
-    libzlib: '>=1.2.13,<1.3.0a0'
-    ucrt: '>=10.0.20348.0'
-    vc: '>=14.2,<15'
-    vs2015_runtime: '>=14.29.30139'
-  hash:
-    md5: ab6febdb2dbd9c00803609079db4de71
-    sha256: 1f139a72109366ba1da69f5bdc569b0e6783f887615807c02d7bfcc2c7575067
+- name: libssh2
+  version: 1.11.0
   manager: conda
-  name: libpng
-  optional: false
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libpng-1.6.39-h19919ed_0.conda
-  version: 1.6.39
-- category: main
   dependencies:
     libzlib: '>=1.2.13,<1.3.0a0'
     openssl: '>=3.1.1,<4.0a0'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/libssh2-1.11.0-h7dfc565_0.conda
   hash:
     md5: dc262d03aae04fe26825062879141a41
     sha256: 813fd04eed2a2d5d9c36e53c554f9c1f08e9324e2922bd60c9c52dbbed2dbcec
-  manager: conda
-  name: libssh2
+  category: main
   optional: false
+- name: libvorbis
+  version: 1.3.7
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libssh2-1.11.0-h7dfc565_0.conda
-  version: 1.11.0
-- category: main
   dependencies:
     libogg: '>=1.3.4,<1.4.0a0'
     vc: '>=14.1,<15.0a0'
     vs2015_runtime: '>=14.16.27012'
+  url: https://conda.anaconda.org/conda-forge/win-64/libvorbis-1.3.7-h0e60522_0.tar.bz2
   hash:
     md5: e1a22282de0169c93e4ffe6ce6acc212
     sha256: 6cdc018a024908270205d8512d92f92cf0adaaa5401c2b403757189b138bf56a
-  manager: conda
-  name: libvorbis
+  category: main
   optional: false
+- name: libxml2
+  version: 2.12.5
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libvorbis-1.3.7-h0e60522_0.tar.bz2
-  version: 1.3.7
-- category: main
   dependencies:
     libiconv: '>=1.17,<2.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/libxml2-2.12.5-hc3477c8_0.conda
   hash:
-    md5: 27974f880a010b1441093d9f737a949f
-    sha256: ad3b5a510be2c5f9fe90b2c20e10adb135717304bcb3a197f256feb48d713d99
-  manager: conda
-  name: libxml2
+    md5: d8c3c1c8242db352f38cd1dc0bf44f77
+    sha256: 15696b049911b3ea5d37672408e500fb27e375d865f8cceac9cb02f9349e6804
+  category: main
   optional: false
+- name: m2w64-gcc-libs
+  version: 5.3.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libxml2-2.11.5-hc3477c8_1.conda
-  version: 2.11.5
-- category: main
   dependencies:
     m2w64-gcc-libgfortran: ''
     m2w64-gcc-libs-core: ''
     m2w64-gmp: ''
     m2w64-libwinpthread-git: ''
     msys2-conda-epoch: '20160418'
+  url: https://conda.anaconda.org/conda-forge/win-64/m2w64-gcc-libs-5.3.0-7.tar.bz2
   hash:
     md5: fe759119b8b3bfa720b8762c6fdc35de
     sha256: 3bd1ab02b7c89a5b153a17be03b36d833f1517ff2a6a77ead7c4a808b88196aa
-  manager: conda
-  name: m2w64-gcc-libs
+  category: main
   optional: false
+- name: pcre2
+  version: '10.42'
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/m2w64-gcc-libs-5.3.0-7.tar.bz2
-  version: 5.3.0
-- category: main
   dependencies:
     bzip2: '>=1.0.8,<2.0a0'
-    libzlib: '>=1.2.12,<1.3.0a0'
+    libzlib: '>=1.2.13,<1.3.0a0'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
-    vs2015_runtime: '>=14.29.30139'
+    vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/pcre2-10.42-h17e33f8_0.conda
   hash:
-    md5: 2519de0d9620dc2bc7e19caf6867136d
-    sha256: 5833c63548e4fae91da6d77739eab7dc9bf6542e43f105826b23c01bfdd9cb57
-  manager: conda
-  name: pcre2
+    md5: 59610c61da3af020289a806ec9c6a7fd
+    sha256: 25e33b148478de58842ccc018fbabb414665de59270476e92c951203d4485bb1
+  category: main
   optional: false
+- name: python
+  version: 3.12.2
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/pcre2-10.40-h17e33f8_0.tar.bz2
-  version: '10.40'
-- category: main
   dependencies:
     bzip2: '>=1.0.8,<2.0a0'
     libexpat: '>=2.5.0,<3.0a0'
     libffi: '>=3.4,<4.0a0'
-    libsqlite: '>=3.43.0,<4.0a0'
+    libsqlite: '>=3.45.1,<4.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
-    openssl: '>=3.1.3,<4.0a0'
+    openssl: '>=3.2.1,<4.0a0'
     tk: '>=8.6.13,<8.7.0a0'
     tzdata: ''
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
     xz: '>=5.2.6,<6.0a0'
+  url: https://conda.anaconda.org/conda-forge/win-64/python-3.12.2-h2628c8c_0_cpython.conda
   hash:
-    md5: 80b761856b20383615a3fe8b1b13eef8
-    sha256: 7fb38fda8296b2651ef727bb57603f0952c07fc533b172044395744a2641a00a
-  manager: conda
-  name: python
+    md5: be8803e9f75a477df61d4aabea3c1246
+    sha256: b8eda863b48ae4531635e23fd15e759d93212b6204c6847d591e25fa5fd67477
+  category: main
   optional: false
+- name: sqlite
+  version: 3.45.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/python-3.11.6-h2628c8c_0_cpython.conda
-  version: 3.11.6
-- category: main
   dependencies:
-    libsqlite: 3.44.0 hcfcfb64_0
+    libsqlite: 3.45.1
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/sqlite-3.45.1-hcfcfb64_0.conda
   hash:
-    md5: 8bd8b9fbf5116bc98f5d6eef70f82af9
-    sha256: f6a4ae8130b32f566d0e406ebeb315671e202f08408fd69c512f38fb8efc0c7c
-  manager: conda
-  name: sqlite
+    md5: 3c6f2dc59bcde87ee1de006f22ecc40a
+    sha256: e77d529803d11743306b57d871c1f168da0eaa5a405591a4a53139a9a10cda0c
+  category: main
   optional: false
+- name: zeromq
+  version: 4.3.5
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/sqlite-3.44.0-hcfcfb64_0.conda
-  version: 3.44.0
-- category: main
   dependencies:
     libsodium: '>=1.0.18,<1.0.19.0a0'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/zeromq-4.3.5-h63175ca_0.conda
   hash:
     md5: e954e1881091405f36416f772292b396
     sha256: f8377793c36e19da17bbb8cf517f1a969b89e1cc7cb9622dc6d60c3d1383c919
-  manager: conda
-  name: zeromq
+  category: main
   optional: false
+- name: zstd
+  version: 1.5.5
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/zeromq-4.3.5-h63175ca_0.conda
-  version: 4.3.5
-- category: main
   dependencies:
     libzlib: '>=1.2.13,<1.3.0a0'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/zstd-1.5.5-h12be248_0.conda
   hash:
     md5: 792bb5da68bf0a6cac6a6072ecb8dbeb
     sha256: d540dd56c5ec772b60e4ce7d45f67f01c6614942225885911964ea1e70bb99e3
-  manager: conda
-  name: zstd
+  category: main
   optional: false
+- name: attrs
+  version: 23.2.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/zstd-1.5.5-h12be248_0.conda
-  version: 1.5.5
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/attrs-23.2.0-pyh71513ae_0.conda
   hash:
-    md5: 3edfead7cedd1ab4400a6c588f3e75f8
-    sha256: 063639cd568f5c7a557b0fb1cc27f098598c0d8ff869088bfeb82934674f8821
-  manager: conda
-  name: attrs
+    md5: 5e4c0743c70186509d1412e03c2d8dfa
+    sha256: 77c7d03bdb243a048fff398cedc74327b7dc79169ebe3b4c8448b0331ea55fea
+  category: main
   optional: false
+- name: backports
+  version: '1.0'
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/attrs-23.1.0-pyh71513ae_1.conda
-  version: 23.1.0
-- category: main
   dependencies:
     python: '>=2.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/backports-1.0-pyhd8ed1ab_3.conda
   hash:
     md5: 54ca2e08b3220c148a1d8329c2678e02
     sha256: 711602276ae39276cb0faaca6fd0ac851fff0ca17151917569174841ef830bbd
-  manager: conda
-  name: backports
+  category: main
   optional: false
+- name: basemap-data
+  version: 1.3.2
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/backports-1.0-pyhd8ed1ab_3.conda
-  version: '1.0'
-- category: main
   dependencies:
     python: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/basemap-data-1.3.2-pyhd8ed1ab_3.conda
   hash:
     md5: 0cf2bde421530ef9f2dad055de9ba099
     sha256: d7ada152f0eed21cec35e9a0c355f66fa2803e1342a32738499fbce07823ea71
-  manager: conda
-  name: basemap-data
+  category: main
   optional: false
+- name: brotli-bin
+  version: 1.1.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/basemap-data-1.3.2-pyhd8ed1ab_3.conda
-  version: 1.3.2
-- category: main
   dependencies:
-    libbrotlidec: 1.1.0 hcfcfb64_1
-    libbrotlienc: 1.1.0 hcfcfb64_1
+    libbrotlidec: 1.1.0
+    libbrotlienc: 1.1.0
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/brotli-bin-1.1.0-hcfcfb64_1.conda
   hash:
     md5: 0105229d7c5fabaa840043a86c10ec64
     sha256: 4fbcb8f94acc97b2b04adbc64e304acd7c06fa0cf01953527bddae46091cc942
-  manager: conda
-  name: brotli-bin
+  category: main
   optional: false
-  platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/brotli-bin-1.1.0-hcfcfb64_1.conda
+- name: brotli-python
   version: 1.1.0
-- category: main
+  manager: conda
+  platform: win-64
   dependencies:
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12.0rc3,<3.13.0a0'
+    python_abi: 3.12.*
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/brotli-python-1.1.0-py312h53d5487_1.conda
   hash:
-    md5: 42fbf4e947c17ea605e6a4d7f526669a
-    sha256: 5390e1e5e8e159d4893ecbfd2c08ca75ef51bdce1a4a44ff4ee9e2d596004aac
-  manager: conda
-  name: brotli-python
+    md5: d01a6667b99f0e8ad4097af66c938e62
+    sha256: 769e276ecdebf86f097786cbde1ebd11e018cd6cd838800995954fe6360e0797
+  category: main
   optional: false
+- name: cached_property
+  version: 1.5.2
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/brotli-python-1.1.0-py311h12c1d0e_1.conda
-  version: 1.1.0
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/cached_property-1.5.2-pyha770c72_1.tar.bz2
   hash:
     md5: 576d629e47797577ab0f1b351297ef4a
     sha256: 6dbf7a5070cc43d90a1e4c2ec0c541c69d8e30a0e25f50ce9f6e4a432e42c5d7
-  manager: conda
-  name: cached_property
+  category: main
   optional: false
+- name: certifi
+  version: 2024.2.2
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/cached_property-1.5.2-pyha770c72_1.tar.bz2
-  version: 1.5.2
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.2.2-pyhd8ed1ab_0.conda
   hash:
-    md5: 7f3dbc9179b4dde7da98dfb151d0ad22
-    sha256: db66e31866ff4250c190788769e3a8a1709237c3e9c38d7143aae95ab75fcb31
-  manager: conda
-  name: certifi
+    md5: 0876280e409658fc6f9e75d035960333
+    sha256: f1faca020f988696e6b6ee47c82524c7806380b37cfdd1def32f92c326caca54
+  category: main
   optional: false
+- name: charset-normalizer
+  version: 3.3.2
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/certifi-2023.7.22-pyhd8ed1ab_0.conda
-  version: 2023.7.22
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.3.2-pyhd8ed1ab_0.conda
   hash:
     md5: 7f4a9e3fcff3f6356ae99244a014da6a
     sha256: 20cae47d31fdd58d99c4d2e65fbdcefa0b0de0c84e455ba9d6356a4bdbc4b5b9
-  manager: conda
-  name: charset-normalizer
+  category: main
   optional: false
+- name: colorama
+  version: 0.4.6
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.3.2-pyhd8ed1ab_0.conda
-  version: 3.3.2
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 3faab06a954c2a04039983f2c4a50d99
     sha256: 2c1b2e9755ce3102bca8d69e8f26e4f087ece73f50418186aee7c74bef8e1698
-  manager: conda
-  name: colorama
+  category: main
   optional: false
+- name: cycler
+  version: 0.12.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2
-  version: 0.4.6
-- category: main
   dependencies:
     python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda
   hash:
     md5: 5cd86562580f274031ede6aa6aa24441
     sha256: f221233f21b1d06971792d491445fd548224641af9443739b4b7b6d5d72954a8
-  manager: conda
-  name: cycler
+  category: main
   optional: false
+- name: debugpy
+  version: 1.8.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda
-  version: 0.12.1
-- category: main
   dependencies:
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/debugpy-1.8.1-py312h53d5487_0.conda
   hash:
-    md5: 8f521f35a7544cbf058b24e11561d53a
-    sha256: df14ab3bfa7864fedda2d45b16057792ad29dd607f0ff9a86b3e9cfbd0c41332
-  manager: conda
-  name: debugpy
+    md5: 4094ccb019f079de8b0f61a5f366d294
+    sha256: 5e8beecf42088481c88aa97118c52b2142f0e0d48ffed877e973c309c7fc83af
+  category: main
   optional: false
+- name: decorator
+  version: 5.1.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/debugpy-1.8.0-py311h12c1d0e_1.conda
-  version: 1.8.0
-- category: main
   dependencies:
     python: '>=3.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 43afe5ab04e35e17ba28649471dd7364
     sha256: 328a6a379f9bdfd0230e51de291ce858e6479411ea4b0545fb377c71662ef3e2
-  manager: conda
-  name: decorator
+  category: main
   optional: false
+- name: defusedxml
+  version: 0.7.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_0.tar.bz2
-  version: 5.1.1
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/defusedxml-0.7.1-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 961b3a227b437d82ad7054484cfa71b2
     sha256: 9717a059677553562a8f38ff07f3b9f61727bd614f505658b0a5ecbcf8df89be
-  manager: conda
-  name: defusedxml
+  category: main
   optional: false
+- name: entrypoints
+  version: '0.4'
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/defusedxml-0.7.1-pyhd8ed1ab_0.tar.bz2
-  version: 0.7.1
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/entrypoints-0.4-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 3cf04868fee0a029769bd41f4b2fbf2d
     sha256: 2ec4a0900a4a9f42615fc04d0fb3286b796abe56590e8e042f6ec25e102dd5af
-  manager: conda
-  name: entrypoints
+  category: main
   optional: false
+- name: exceptiongroup
+  version: 1.2.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/entrypoints-0.4-pyhd8ed1ab_0.tar.bz2
-  version: '0.4'
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.0-pyhd8ed1ab_2.conda
   hash:
-    md5: e6518222753f519e911e83136d2158d9
-    sha256: c28f715e049fe0f09785660bcbffa175ffb438720e5bc5a60d56d4b08364b315
-  manager: conda
-  name: exceptiongroup
+    md5: 8d652ea2ee8eaee02ed8dc820bc794aa
+    sha256: a6ae416383bda0e3ed14eaa187c653e22bec94ff2aa3b56970cdf0032761e80d
+  category: main
   optional: false
+- name: executing
+  version: 2.0.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.1.3-pyhd8ed1ab_0.conda
-  version: 1.1.3
-- category: main
   dependencies:
     python: '>=2.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/executing-2.0.1-pyhd8ed1ab_0.conda
   hash:
     md5: e16be50e378d8a4533b989035b196ab8
     sha256: c738804ab1e6376f8ea63372229a04c8d658dc90fd5a218c6273a2eaf02f4057
-  manager: conda
-  name: executing
+  category: main
   optional: false
+- name: freetype
+  version: 2.12.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/executing-2.0.1-pyhd8ed1ab_0.conda
-  version: 2.0.1
-- category: main
   dependencies:
     libpng: '>=1.6.39,<1.7.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/freetype-2.12.1-hdaf720e_2.conda
   hash:
     md5: 3761b23693f768dc75a8fd0a73ca053f
     sha256: 2c53ee8879e05e149a9e525481d36adfd660a6abda26fd731376fa64ff03e728
+  category: main
+  optional: false
+- name: hpack
+  version: 4.0.0
   manager: conda
-  name: freetype
+  platform: win-64
+  dependencies:
+    python: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2
+  hash:
+    md5: 914d6646c4dbb1fd3ff539830a12fd71
+    sha256: 5dec948932c4f740674b1afb551223ada0c55103f4c7bf86a110454da3d27cb8
+  category: main
   optional: false
+- name: hyperframe
+  version: 6.0.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/freetype-2.12.1-hdaf720e_2.conda
-  version: 2.12.1
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2
   hash:
-    md5: 34272b248891bddccc64479f9a7fffed
-    sha256: 9887c35c374ec1847f167292d3fde023cb4c994a4ceeec283072b95440131f09
+    md5: 9f765cbfab6870c8435b9eefecd7a1f4
+    sha256: e374a9d0f53149328134a8d86f5d72bca4c6dcebed3c0ecfa968c02996289330
+  category: main
+  optional: false
+- name: idna
+  version: '3.6'
   manager: conda
-  name: idna
+  platform: win-64
+  dependencies:
+    python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/idna-3.6-pyhd8ed1ab_0.conda
+  hash:
+    md5: 1a76f09108576397c41c0b0c5bd84134
+    sha256: 6ee4c986d69ce61e60a20b2459b6f2027baeba153f0a64995fd3cb47c2cc7e07
+  category: main
   optional: false
+- name: json5
+  version: 0.9.17
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/idna-3.4-pyhd8ed1ab_0.tar.bz2
-  version: '3.4'
-- category: main
   dependencies:
     python: '>=3.7,<4.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/json5-0.9.17-pyhd8ed1ab_0.conda
   hash:
-    md5: dac1dabba2b5a9d1aee175c5fcc7b436
-    sha256: 41514104208c092959bef0713cbd795e72c535f2f939b7903d8c97809f2adaa7
-  manager: conda
-  name: json5
+    md5: 0e1b14ff0f0762acca0f87c26c9b75ad
+    sha256: e01ee861d57b748874f4b4f4392b82d9341f61819a35095b4f68fbdfc93041a1
+  category: main
   optional: false
+- name: jsonpointer
+  version: '2.4'
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/json5-0.9.14-pyhd8ed1ab_0.conda
-  version: 0.9.14
-- category: main
   dependencies:
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12.0rc3,<3.13.0a0'
+    python_abi: 3.12.*
+  url: https://conda.anaconda.org/conda-forge/win-64/jsonpointer-2.4-py312h2e8e312_3.conda
   hash:
-    md5: db8fc59f9215e668e602f769d0bf67bb
-    sha256: 13042586b08e8caa60615e7c42d05601f9421e8bda5df932e3ef9d2401bf2435
-  manager: conda
-  name: jsonpointer
+    md5: 9d9572e257bf4559f20629efb0d3511d
+    sha256: 98d86d5ccb3a95da2cd96b394c157aa6fef0d4908b8878c3e2b5931f6bc5fd57
+  category: main
   optional: false
+- name: kiwisolver
+  version: 1.4.5
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/jsonpointer-2.4-py311h1ea47a8_3.conda
-  version: '2.4'
-- category: main
   dependencies:
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12.0rc3,<3.13.0a0'
+    python_abi: 3.12.*
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/kiwisolver-1.4.5-py312h0d7def4_1.conda
   hash:
-    md5: de0b3f37405f8386ac8be18fdc06ff92
-    sha256: 8fdd1bff75c24ac6a2a13be4db1c9abcfa39ab50b81539e8bd01131141df271a
-  manager: conda
-  name: kiwisolver
+    md5: 77c9d46fc8680bb08f4e1ebb6669e44e
+    sha256: 07021ffc3bbf42922694c23634e028950547d088717b448b46296b3ca5a26068
+  category: main
   optional: false
+- name: libclang13
+  version: 15.0.7
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/kiwisolver-1.4.5-py311h005e61a_1.conda
-  version: 1.4.5
-- category: main
   dependencies:
-    libclang13: 15.0.7 default_h77d9078_3
     libzlib: '>=1.2.13,<1.3.0a0'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+    zstd: '>=1.5.5,<1.6.0a0'
+  url: https://conda.anaconda.org/conda-forge/win-64/libclang13-15.0.7-default_h85b4d89_4.conda
   hash:
-    md5: 71c8b6249c9e9e18b3aec705e95c1040
-    sha256: d54ad3cc60469f3c885cef45acd7216bab9d941dec8f37e75ece48b9baba145b
-  manager: conda
-  name: libclang
+    md5: c6b0181860717a08469a324c4180ff2d
+    sha256: 37917f88ea5beb660a86b2325b727a03db125e25182d8186921a7cc53966df9d
+  category: main
   optional: false
+- name: libcurl
+  version: 8.5.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libclang-15.0.7-default_h77d9078_3.conda
-  version: 15.0.7
-- category: main
   dependencies:
     krb5: '>=1.21.2,<1.22.0a0'
     libssh2: '>=1.11.0,<2.0a0'
@@ -7464,2123 +7660,2198 @@ package:
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/libcurl-8.5.0-hd5e4a3a_0.conda
   hash:
-    md5: 13e4e3824a0212103330f57058601c21
-    sha256: f1367d8a3f115ee4c16ea4bcc313c21009decb0217f65d3bb94618939c518a71
-  manager: conda
-  name: libcurl
+    md5: c95eb3d60266dd47b8eb864e10d6bcf3
+    sha256: 8c933416c61445ab51515a5ca8c32ddc4f83180d5dc43684e4a80915022ffe1f
+  category: main
   optional: false
+- name: libglib
+  version: 2.78.4
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libcurl-8.4.0-hd5e4a3a_0.conda
-  version: 8.4.0
-- category: main
   dependencies:
     gettext: '>=0.21.1,<1.0a0'
     libffi: '>=3.4,<4.0a0'
     libiconv: '>=1.17,<2.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
-    pcre2: '>=10.40,<10.41.0a0'
+    pcre2: '>=10.42,<10.43.0a0'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/libglib-2.78.4-h16e383f_0.conda
   hash:
-    md5: 7022abdf53daa6566caebbe1c2d328ae
-    sha256: 5919e8f57640b142872899943ec122341ba1e19492e46ad9b47866e013224c10
-  manager: conda
-  name: libglib
+    md5: 72dc4e1cdde0894015567c90f9c4e261
+    sha256: d4350c4c8d7947b4f1b13918e04f07a35d2eb88cc1b6bccefe12eb92bd1aa660
+  category: main
   optional: false
+- name: libhwloc
+  version: 2.9.3
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libglib-2.78.1-he8f3873_0.conda
-  version: 2.78.1
-- category: main
   dependencies:
-    libxml2: '>=2.11.5,<2.12.0a0'
+    libxml2: '>=2.11.5,<3.0.0a0'
     pthreads-win32: ''
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/libhwloc-2.9.3-default_haede6df_1009.conda
   hash:
     md5: 87da045f6d26ce9fe20ad76a18f6a18a
     sha256: 2e8c4bb7173f281a8e13f333a23c9fb7a1c86d342d7dccdd74f2eb583ddde450
-  manager: conda
-  name: libhwloc
+  category: main
   optional: false
+- name: libtiff
+  version: 4.6.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libhwloc-2.9.3-default_haede6df_1009.conda
-  version: 2.9.3
-- category: main
   dependencies:
     lerc: '>=4.0.0,<5.0a0'
-    libdeflate: '>=1.18,<1.19.0a0'
-    libjpeg-turbo: '>=2.1.5.1,<3.0a0'
+    libdeflate: '>=1.19,<1.20.0a0'
+    libjpeg-turbo: '>=3.0.0,<4.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
     xz: '>=5.2.6,<6.0a0'
-    zstd: '>=1.5.2,<1.6.0a0'
+    zstd: '>=1.5.5,<1.6.0a0'
+  url: https://conda.anaconda.org/conda-forge/win-64/libtiff-4.6.0-h6e2ebb7_2.conda
   hash:
-    md5: 5faa8734cee2590b6d3615e06bfce4f8
-    sha256: 46cd425318c5318c9c78c985776fa64746d1812c19f14284876f1aad4f9ee044
-  manager: conda
-  name: libtiff
+    md5: 08d653b74ee2dec0131ad4259ffbb126
+    sha256: f7b50b71840a5d8edd74a8bccf0c173ca2599bd136e366c35722272b4afa0500
+  category: main
   optional: false
+- name: markupsafe
+  version: 2.1.5
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libtiff-4.5.1-h6c8260b_1.conda
-  version: 4.5.1
-- category: main
   dependencies:
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/markupsafe-2.1.5-py312he70551f_0.conda
   hash:
-    md5: bc93b9d445824cfce3933b5dcc1087b4
-    sha256: 435c4c2df8d98cd49d8332d22b6f4847fc4b594500f0cdf0f9437274c668642b
-  manager: conda
-  name: markupsafe
+    md5: 4950a739b19edaac1ed29ca9474e49ac
+    sha256: f8690a3c87e2e96cebd434a829bb95cac43afe6c439530b336dc3452fe4ce4af
+  category: main
   optional: false
+- name: mistune
+  version: 3.0.2
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/markupsafe-2.1.3-py311ha68e1ae_1.conda
-  version: 2.1.3
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/mistune-3.0.2-pyhd8ed1ab_0.conda
   hash:
     md5: 5cbee699846772cc939bef23a0d524ed
     sha256: f95cb70007e3cc2ba44e17c29a056b499e6dadf08746706d0c817c8e2f47e05c
-  manager: conda
-  name: mistune
+  category: main
   optional: false
+- name: munkres
+  version: 1.1.4
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/mistune-3.0.2-pyhd8ed1ab_0.conda
-  version: 3.0.2
-- category: main
   dependencies:
     python: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2
   hash:
     md5: 2ba8498c1018c1e9c61eb99b973dfe19
     sha256: f86fb22b58e93d04b6f25e0d811b56797689d598788b59dcb47f59045b568306
-  manager: conda
-  name: munkres
+  category: main
   optional: false
+- name: nest-asyncio
+  version: 1.6.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2
-  version: 1.1.4
-- category: main
   dependencies:
     python: '>=3.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda
   hash:
-    md5: a4f0e4519bc50eee4f53f689be9607f7
-    sha256: d7b795b4e754136841c6da3f9fa1a0f7ec37bc7167e7dd68c5b45e657133e008
-  manager: conda
-  name: nest-asyncio
+    md5: 6598c056f64dc8800d40add25e4e2c34
+    sha256: 30db21d1f7e59b3408b831a7e0417b83b53ee6223afae56482c5f26da3ceb49a
+  category: main
   optional: false
+- name: orekit
+  version: 12.0.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.5.8-pyhd8ed1ab_0.conda
-  version: 1.5.8
-- category: main
   dependencies:
     openjdk: 8.*
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/orekit-12.0.1-py312h53d5487_2.conda
   hash:
-    md5: d6e6f7f56309eb974d9640994eebe276
-    sha256: 4d27c15d60f2f0b5660abf21ed3c1f215842678ab56a3e7e1a98d331f32ffd10
-  manager: conda
-  name: orekit
+    md5: c92abab3fe0d2730d91ed84b0ff7aac2
+    sha256: e4867ea2bbfa3a1c12c2276c8c2ebeb39724c674bd0d4383e2303c4f51a8560a
+  category: main
   optional: false
+- name: packaging
+  version: '23.2'
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/orekit-12.0-py311h12c1d0e_0.conda
-  version: '12.0'
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/packaging-23.2-pyhd8ed1ab_0.conda
   hash:
     md5: 79002079284aa895f883c6b7f3f88fd6
     sha256: 69b3ace6cca2dab9047b2c24926077d81d236bef45329d264b394001e3c3e52f
-  manager: conda
-  name: packaging
+  category: main
   optional: false
+- name: pandocfilters
+  version: 1.5.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/packaging-23.2-pyhd8ed1ab_0.conda
-  version: '23.2'
-- category: main
   dependencies:
     python: '!=3.0,!=3.1,!=3.2,!=3.3'
+  url: https://conda.anaconda.org/conda-forge/noarch/pandocfilters-1.5.0-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 457c2c8c08e54905d6954e79cb5b5db9
     sha256: 2bb9ba9857f4774b85900c2562f7e711d08dd48e2add9bee4e1612fbee27e16f
-  manager: conda
-  name: pandocfilters
+  category: main
   optional: false
+- name: parso
+  version: 0.8.3
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pandocfilters-1.5.0-pyhd8ed1ab_0.tar.bz2
-  version: 1.5.0
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.3-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 17a565a0c3899244e938cdf417e7b094
     sha256: 4e26d5daf5de0e31aa5e74ac56386a361b202433b83f024fdadbf07d4a244da4
-  manager: conda
-  name: parso
+  category: main
   optional: false
+- name: pickleshare
+  version: 0.7.5
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.3-pyhd8ed1ab_0.tar.bz2
-  version: 0.8.3
-- category: main
   dependencies:
     python: '>=3'
+  url: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2
   hash:
     md5: 415f0ebb6198cc2801c73438a9fb5761
     sha256: a1ed1a094dd0d1b94a09ed85c283a0eb28943f2e6f22161fb45e128d35229738
-  manager: conda
-  name: pickleshare
+  category: main
   optional: false
+- name: pkgutil-resolve-name
+  version: 1.3.10
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2
-  version: 0.7.5
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_1.conda
   hash:
     md5: 405678b942f2481cecdb3e010f4925d9
     sha256: fecf95377134b0e8944762d92ecf7b0149c07d8186fb5db583125a2705c7ea0a
+  category: main
+  optional: false
+- name: platformdirs
+  version: 4.2.0
   manager: conda
-  name: pkgutil-resolve-name
+  platform: win-64
+  dependencies:
+    python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.2.0-pyhd8ed1ab_0.conda
+  hash:
+    md5: a0bc3eec34b0fab84be6b2da94e98e20
+    sha256: 2ebfb971236ab825dd79dd6086ea742a9901008ffb9c6222c1f2b5172a8039d3
+  category: main
   optional: false
+- name: ply
+  version: '3.11'
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_1.conda
-  version: 1.3.10
-- category: main
   dependencies:
     python: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/ply-3.11-py_1.tar.bz2
   hash:
     md5: 7205635cd71531943440fbfe3b6b5727
     sha256: 2cd6fae8f9cbc806b7f828f006ae4a83c23fac917cacfd73c37ce322d4324e53
-  manager: conda
-  name: ply
+  category: main
   optional: false
+- name: prometheus_client
+  version: 0.20.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/ply-3.11-py_1.tar.bz2
-  version: '3.11'
-- category: main
   dependencies:
-    python: '>=3.6'
+    python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.20.0-pyhd8ed1ab_0.conda
   hash:
-    md5: ade903cbe0b4440ca6bed64932d124b5
-    sha256: 0e0257eee11d3e0b3f73566283fd6c705b1b2a5dbc7d9a609fa885519a62913e
-  manager: conda
-  name: prometheus_client
+    md5: 9a19b94034dd3abb2b348c8b93388035
+    sha256: 757cd91d01c2e0b64fadf6bc9a11f558cf7638d897dfbaf7415ddf324d5405c9
+  category: main
   optional: false
+- name: psutil
+  version: 5.9.8
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.18.0-pyhd8ed1ab_0.conda
-  version: 0.18.0
-- category: main
   dependencies:
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/psutil-5.9.8-py312he70551f_0.conda
   hash:
-    md5: f64b2d9577e753fea9662dae11339ac2
-    sha256: e5c09eee9902e0c56d89f88210009b34d819d241ac5b7dde38266324a85fde51
-  manager: conda
-  name: psutil
+    md5: 5f2998851564bea33a159bd00e6249e8
+    sha256: 36f8addb327f80da4d6bd421170ff4cf8fb570d9ee8df39372427a4e33298dca
+  category: main
   optional: false
+- name: pthread-stubs
+  version: '0.4'
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/psutil-5.9.5-py311ha68e1ae_1.conda
-  version: 5.9.5
-- category: main
   dependencies:
     m2w64-gcc-libs: ''
+  url: https://conda.anaconda.org/conda-forge/win-64/pthread-stubs-0.4-hcd874cb_1001.tar.bz2
   hash:
     md5: a1f820480193ea83582b13249a7e7bd9
     sha256: bb5a6ddf1a609a63addd6d7b488b0f58d05092ea84e9203283409bff539e202a
-  manager: conda
-  name: pthread-stubs
+  category: main
   optional: false
+- name: pure_eval
+  version: 0.2.2
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/pthread-stubs-0.4-hcd874cb_1001.tar.bz2
-  version: '0.4'
-- category: main
   dependencies:
     python: '>=3.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.2-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 6784285c7e55cb7212efabc79e4c2883
     sha256: 72792f9fc2b1820e37cc57f84a27bc819c71088c3002ca6db05a2e56404f9d44
-  manager: conda
-  name: pure_eval
+  category: main
   optional: false
+- name: pycparser
+  version: '2.21'
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.2-pyhd8ed1ab_0.tar.bz2
-  version: 0.2.2
-- category: main
   dependencies:
     python: 2.7.*|>=3.4
+  url: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.21-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 076becd9e05608f8dc72757d5f3a91ff
     sha256: 74c63fd03f1f1ea2b54e8bc529fd1a600aaafb24027b738d0db87909ee3a33dc
-  manager: conda
-  name: pycparser
+  category: main
   optional: false
+- name: pygments
+  version: 2.17.2
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.21-pyhd8ed1ab_0.tar.bz2
-  version: '2.21'
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/pygments-2.17.2-pyhd8ed1ab_0.conda
   hash:
-    md5: 40e5cb18165466773619e5c963f00a7b
-    sha256: 3f0f0fadc6084960ec8cc00a32a03529c562ffea3b527eb73b1653183daad389
-  manager: conda
-  name: pygments
+    md5: 140a7f159396547e9799aa98f9f0742e
+    sha256: af5f8867450dc292f98ea387d4d8945fc574284677c8f60eaa9846ede7387257
+  category: main
   optional: false
+- name: pyparsing
+  version: 3.1.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pygments-2.16.1-pyhd8ed1ab_0.conda
-  version: 2.16.1
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.1-pyhd8ed1ab_0.conda
   hash:
     md5: 176f7d56f0cfe9008bdf1bccd7de02fb
     sha256: 4a1332d634b6c2501a973655d68f08c9c42c0bd509c349239127b10572b8354b
-  manager: conda
-  name: pyparsing
+  category: main
   optional: false
+- name: pyshp
+  version: 2.3.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.1-pyhd8ed1ab_0.conda
-  version: 3.1.1
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/pyshp-2.3.1-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 92a889dc236a5197612bc85bee6d7174
     sha256: 41eced0d5e855bc52018f200b239d627daa38ad78a655ffa2f1efd95b07b6bce
-  manager: conda
-  name: pyshp
+  category: main
   optional: false
+- name: python-fastjsonschema
+  version: 2.19.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pyshp-2.3.1-pyhd8ed1ab_0.tar.bz2
-  version: 2.3.1
-- category: main
   dependencies:
     python: '>=3.3'
+  url: https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.19.1-pyhd8ed1ab_0.conda
   hash:
-    md5: 305141cff54af2f90e089d868fffce28
-    sha256: 3fb1af1ac7525072c46e111bc4e96ddf971f792ab049ca3aa25dbebbaffb6f7d
-  manager: conda
-  name: python-fastjsonschema
+    md5: 4d3ceee3af4b0f9a1f48f57176bf8625
+    sha256: 38b2db169d65cc5595e3ce63294c4fdb6a242ecf71f70b3ad8cad3bd4230d82f
+  category: main
   optional: false
+- name: python-json-logger
+  version: 2.0.7
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.18.1-pyhd8ed1ab_0.conda
-  version: 2.18.1
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda
   hash:
     md5: a61bf9ec79426938ff785eb69dbb1960
     sha256: 4790787fe1f4e8da616edca4acf6a4f8ed4e7c6967aa31b920208fc8f95efcca
-  manager: conda
-  name: python-json-logger
+  category: main
   optional: false
+- name: python-tzdata
+  version: '2024.1'
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda
-  version: 2.0.7
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.1-pyhd8ed1ab_0.conda
   hash:
-    md5: 2590495f608a63625e165915fb4e2e34
-    sha256: 0108888507014fb24573c31e4deceb61c99e63d37776dddcadd7c89b2ecae0b6
-  manager: conda
-  name: python-tzdata
+    md5: 98206ea9954216ee7540f0c773f2104d
+    sha256: 9da9a849d53705dee450b83507df1ca8ffea5f83bd21a215202221f1c492f8ad
+  category: main
   optional: false
+- name: pytz
+  version: '2024.1'
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2023.3-pyhd8ed1ab_0.conda
-  version: '2023.3'
-- category: main
   dependencies:
-    python: '>=3.6'
+    python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda
   hash:
-    md5: c93346b446cd08c169d843ae5fc0da97
-    sha256: 6b680e63d69aaf087cd43ca765a23838723ef59b0a328799e6363eb13f52c49e
-  manager: conda
-  name: pytz
+    md5: 3eeeeb9e4827ace8c0c1419c85d590ad
+    sha256: 1a7d6b233f7e6e3bbcbad054c8fd51e690a67b129a899a056a5e45dd9f00cb41
+  category: main
   optional: false
+- name: pywin32
+  version: '306'
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pytz-2023.3.post1-pyhd8ed1ab_0.conda
-  version: 2023.3.post1
-- category: main
   dependencies:
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12.0rc3,<3.13.0a0'
+    python_abi: 3.12.*
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/pywin32-306-py312h53d5487_2.conda
   hash:
-    md5: 25df0fc55722ea1a94494f41302e2d1c
-    sha256: 79d942817bdaf384602113e5fcb9158dc45cae4044bed308918a5db97f141fdb
+    md5: f44c8f35c3f99eca30d6f5b68ddb0f42
+    sha256: d0ff1cd887b626a125f8323760736d8fab496bf2a400e825cce55361e7631264
+  category: main
+  optional: false
+- name: pywinpty
+  version: 2.0.12
   manager: conda
-  name: pywin32
-  optional: false
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/pywin32-306-py311h12c1d0e_2.conda
-  version: '306'
-- category: main
   dependencies:
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
     winpty: ''
+  url: https://conda.anaconda.org/conda-forge/win-64/pywinpty-2.0.12-py312h53d5487_0.conda
   hash:
-    md5: 6561b01d9a25270af769d3defd007cc5
-    sha256: 611a59e4b078054ca8cf49e6fd18509345e5d3b1fc79d464dfe584d35a93e933
-  manager: conda
-  name: pywinpty
+    md5: 9d6df56b1b0e5ba19160932e6bac356f
+    sha256: d7ed8a8a798a4c43581cefa370d91b90aff2a279d0256c4b04331a4e357c3625
+  category: main
   optional: false
+- name: pyyaml
+  version: 6.0.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/pywinpty-2.0.12-py311h12c1d0e_0.conda
-  version: 2.0.12
-- category: main
   dependencies:
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12.0rc3,<3.13.0a0'
+    python_abi: 3.12.*
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
     yaml: '>=0.2.5,<0.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/win-64/pyyaml-6.0.1-py312he70551f_1.conda
   hash:
-    md5: 2b4128962cd665153e946f2a88667a3b
-    sha256: 4fb0770fc70381a8ab3ced33413ad9dc5e82d4c535b593edd580113ce8760298
-  manager: conda
-  name: pyyaml
+    md5: f91e0baa89ba21166916624ba7bfb422
+    sha256: a72fa8152791b4738432f270e70b3a9a4d583ef059a78aa1c62f4b4ab7b15494
+  category: main
   optional: false
+- name: pyzmq
+  version: 25.1.2
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/pyyaml-6.0.1-py311ha68e1ae_1.conda
-  version: 6.0.1
-- category: main
   dependencies:
     libsodium: '>=1.0.18,<1.0.19.0a0'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
     zeromq: '>=4.3.5,<4.3.6.0a0'
+  url: https://conda.anaconda.org/conda-forge/win-64/pyzmq-25.1.2-py312h1ac6f91_0.conda
   hash:
-    md5: e2e285b5528875d9008c0f1527f8436e
-    sha256: 11e347a6756cef1454322de743fc1c7aff634a5d0161dd57261c5c610cae2a40
-  manager: conda
-  name: pyzmq
+    md5: 74194f888cc7b11d8c18edf416b61a1b
+    sha256: 9371101999c75aa562c5aa4ae0dfefa140bee635a3f8e15768628689f70d7765
+  category: main
   optional: false
+- name: rfc3986-validator
+  version: 0.1.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/pyzmq-25.1.1-py311h9250fbb_2.conda
-  version: 25.1.1
-- category: main
   dependencies:
     python: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/rfc3986-validator-0.1.1-pyh9f0ad1d_0.tar.bz2
   hash:
     md5: 912a71cc01012ee38e6b90ddd561e36f
     sha256: 2a5b495a1de0f60f24d8a74578ebc23b24aa53279b1ad583755f223097c41c37
-  manager: conda
-  name: rfc3986-validator
+  category: main
   optional: false
+- name: rpds-py
+  version: 0.18.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/rfc3986-validator-0.1.1-pyh9f0ad1d_0.tar.bz2
-  version: 0.1.1
-- category: main
   dependencies:
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/rpds-py-0.18.0-py312hfccd98a_0.conda
   hash:
-    md5: 9abe8102d5635b43dbd5226e7439c4e6
-    sha256: b61d0eb71478ccf0ca642fae8e256869e59ab5eff6b35e18b3f890061bb54d69
-  manager: conda
-  name: rpds-py
+    md5: 4f201390adc379696fb0bd3f2b5cdcc7
+    sha256: fa16681746a210e79783cde2069e8704cdb29b15d4e99e16859853f260da9867
+  category: main
   optional: false
+- name: setuptools
+  version: 69.1.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/rpds-py-0.12.0-py311hc37eb10_0.conda
-  version: 0.12.0
-- category: main
   dependencies:
-    python: '>=3.7'
+    python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/setuptools-69.1.0-pyhd8ed1ab_1.conda
   hash:
-    md5: fc2166155db840c634a1291a5c35a709
-    sha256: 851901b1f8f2049edb36a675f0c3f9a98e1495ef4eb214761b048c6f696a06f7
-  manager: conda
-  name: setuptools
+    md5: d76a248ad1b9d4a79c2ce39ee41d626c
+    sha256: d233a0dc17d452324a4aa1f633c18ca562820c90cd08240c99e4b2f4f27a8692
+  category: main
   optional: false
+- name: six
+  version: 1.16.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/setuptools-68.2.2-pyhd8ed1ab_0.conda
-  version: 68.2.2
-- category: main
   dependencies:
     python: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2
   hash:
     md5: e5f25f8dbc060e9a8d912e432202afc2
     sha256: a85c38227b446f42c5b90d9b642f2c0567880c15d72492d8da074a59c8f91dd6
-  manager: conda
-  name: six
+  category: main
   optional: false
+- name: sniffio
+  version: 1.3.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2
-  version: 1.16.0
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.0-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: dd6cbc539e74cb1f430efbd4575b9303
     sha256: a3fd30754c20ddb28b777db38345ea00d958f46701f0decd6291a81c0f4eee78
-  manager: conda
-  name: sniffio
+  category: main
   optional: false
+- name: soupsieve
+  version: '2.5'
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.0-pyhd8ed1ab_0.tar.bz2
-  version: 1.3.0
-- category: main
   dependencies:
     python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda
   hash:
     md5: 3f144b2c34f8cb5a9abd9ed23a39c561
     sha256: 54ae221033db8fbcd4998ccb07f3c3828b4d77e73b0c72b18c1d6a507059059c
-  manager: conda
-  name: soupsieve
+  category: main
   optional: false
+- name: tenacity
+  version: 8.2.3
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda
-  version: '2.5'
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/tenacity-8.2.3-pyhd8ed1ab_0.conda
   hash:
     md5: 1482e77f87c6a702a7e05ef22c9b197b
     sha256: 860c11e7369d6a86fcc9c6cbca49d5c457f6c0a27faeacca4d46267f9dd10d78
-  manager: conda
-  name: tenacity
+  category: main
   optional: false
+- name: toml
+  version: 0.10.2
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/tenacity-8.2.3-pyhd8ed1ab_0.conda
-  version: 8.2.3
-- category: main
   dependencies:
     python: '>=2.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: f832c45a477c78bebd107098db465095
     sha256: f0f3d697349d6580e4c2f35ba9ce05c65dc34f9f049e85e45da03800b46139c1
-  manager: conda
-  name: toml
+  category: main
   optional: false
+- name: tomli
+  version: 2.0.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2
-  version: 0.10.2
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.1-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 5844808ffab9ebdb694585b50ba02a96
     sha256: 4cd48aba7cd026d17e86886af48d0d2ebc67ed36f87f6534f4b67138f5a5a58f
-  manager: conda
-  name: tomli
+  category: main
   optional: false
+- name: tornado
+  version: '6.4'
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.1-pyhd8ed1ab_0.tar.bz2
-  version: 2.0.1
-- category: main
   dependencies:
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/tornado-6.4-py312he70551f_0.conda
   hash:
-    md5: ec581b55f82fd6a4a96770c74d48e456
-    sha256: 669091a38b2cb226198a6018a2784d4a4b55eb6416b14a4521a84882e02f47be
-  manager: conda
-  name: tornado
+    md5: 98907504f8c3eb0452bb10362227ce16
+    sha256: 0ebb1cd17f63f47262c42114a2b0af2b8d0bc19b0ae52e90e312a77ff7c55270
+  category: main
   optional: false
+- name: traitlets
+  version: 5.14.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/tornado-6.3.3-py311ha68e1ae_1.conda
-  version: 6.3.3
-- category: main
   dependencies:
     python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.1-pyhd8ed1ab_0.conda
   hash:
-    md5: 8a9953c15e1e5a7c1baddbbf4511a567
-    sha256: 7ac67960ba2e8c16818043cc65ac6190fa4fd95f5b24357df58e4f73d5e60a10
-  manager: conda
-  name: traitlets
+    md5: 1c6acfdc7ecbfe09954c4216da99c146
+    sha256: fa78d68f74ec8aae5c93f135140bfdbbf0ab60a79c6062b55d73c316068545ec
+  category: main
   optional: false
+- name: types-python-dateutil
+  version: 2.8.19.20240106
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.13.0-pyhd8ed1ab_0.conda
-  version: 5.13.0
-- category: main
   dependencies:
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/types-python-dateutil-2.8.19.20240106-pyhd8ed1ab_0.conda
   hash:
-    md5: 4df15c51a543e806d439490b862be1c6
-    sha256: 7b0129c72d371fa7a06ed5dd1d701844c20d03bb4641a38a88a982b347d087e2
-  manager: conda
-  name: types-python-dateutil
+    md5: c9096a546660b9079dce531c0039e074
+    sha256: 09ef8cc587bdea80a83b6f820dbae24daadcf82be088fb0a9f6495781653e300
+  category: main
   optional: false
+- name: typing_extensions
+  version: 4.9.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/types-python-dateutil-2.8.19.14-pyhd8ed1ab_0.conda
-  version: 2.8.19.14
-- category: main
   dependencies:
     python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.9.0-pyha770c72_0.conda
   hash:
-    md5: 5b1be40a26d10a06f6d4f1f9e19fa0c7
-    sha256: 38d16b5c53ec1af845d37d22e7bb0e6c934c7f19499123507c5a470f6f8b7dde
-  manager: conda
-  name: typing_extensions
+    md5: a92a6440c3fe7052d63244f3aba2a4a7
+    sha256: f3c5be8673bfd905c4665efcb27fa50192f24f84fa8eff2f19cba5d09753d905
+  category: main
   optional: false
+- name: typing_utils
+  version: 0.1.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.8.0-pyha770c72_0.conda
-  version: 4.8.0
-- category: main
   dependencies:
     python: '>=3.6.1'
+  url: https://conda.anaconda.org/conda-forge/noarch/typing_utils-0.1.0-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: eb67e3cace64c66233e2d35949e20f92
     sha256: 9e3758b620397f56fb709f796969de436d63b7117897159619b87938e1f78739
-  manager: conda
-  name: typing_utils
+  category: main
   optional: false
+- name: uri-template
+  version: 1.3.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/typing_utils-0.1.0-pyhd8ed1ab_0.tar.bz2
-  version: 0.1.0
-- category: main
   dependencies:
     python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/uri-template-1.3.0-pyhd8ed1ab_0.conda
   hash:
     md5: 0944dc65cb4a9b5b68522c3bb585d41c
     sha256: b76904b53721dc88a46352324c79d2b077c2f74a9f7208ad2c4249892669ae94
+  category: main
+  optional: false
+- name: wcwidth
+  version: 0.2.13
   manager: conda
-  name: uri-template
+  platform: win-64
+  dependencies:
+    python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.13-pyhd8ed1ab_0.conda
+  hash:
+    md5: 68f0738df502a14213624b288c60c9ad
+    sha256: b6cd2fee7e728e620ec736d8dfee29c6c9e2adbd4e695a31f1d8f834a83e57e3
+  category: main
   optional: false
+- name: webcolors
+  version: '1.13'
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/uri-template-1.3.0-pyhd8ed1ab_0.conda
-  version: 1.3.0
-- category: main
   dependencies:
     python: '>=3.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/webcolors-1.13-pyhd8ed1ab_0.conda
   hash:
     md5: 166212fe82dad8735550030488a01d03
     sha256: 6e097d5fe92849ad3af2c2a313771ad2fbf1cadd4dc4afd552303b2bf3f85211
-  manager: conda
-  name: webcolors
+  category: main
   optional: false
+- name: webencodings
+  version: 0.5.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/webcolors-1.13-pyhd8ed1ab_0.conda
-  version: '1.13'
-- category: main
   dependencies:
     python: '>=2.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda
   hash:
     md5: daf5160ff9cde3a468556965329085b9
     sha256: 2adf9bd5482802837bc8814cbe28d7b2a4cbd2e2c52e381329eaa283b3ed1944
-  manager: conda
-  name: webencodings
+  category: main
   optional: false
+- name: websocket-client
+  version: 1.7.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda
-  version: 0.5.1
-- category: main
   dependencies:
     python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/websocket-client-1.7.0-pyhd8ed1ab_0.conda
   hash:
-    md5: bdb77b28cf16deac0eef431a068320e8
-    sha256: df45b89862edcd7cd5180ec7b8c0c0ca9fb4d3f7d49ddafccdc76afcf50d8da6
-  manager: conda
-  name: websocket-client
+    md5: 50ad31e07d706aae88b14a4ac9c73f23
+    sha256: d9b537d5b7c5aa7a02a4ce4c6b755e458bd8083b67752a73c92d113ccec6c10f
+  category: main
   optional: false
+- name: win_inet_pton
+  version: 1.1.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/websocket-client-1.6.4-pyhd8ed1ab_0.conda
-  version: 1.6.4
-- category: main
   dependencies:
     __win: ''
     python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/win_inet_pton-1.1.0-pyhd8ed1ab_6.tar.bz2
   hash:
     md5: 30878ecc4bd36e8deeea1e3c151b2e0b
     sha256: a11ae693a0645bf6c7b8a47bac030be9c0967d0b1924537b9ff7458e832c0511
-  manager: conda
-  name: win_inet_pton
+  category: main
   optional: false
+- name: xorg-libxau
+  version: 1.0.11
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/win_inet_pton-1.1.0-pyhd8ed1ab_6.tar.bz2
-  version: 1.1.0
-- category: main
   dependencies:
     m2w64-gcc-libs: ''
     m2w64-gcc-libs-core: ''
+  url: https://conda.anaconda.org/conda-forge/win-64/xorg-libxau-1.0.11-hcd874cb_0.conda
   hash:
     md5: c46ba8712093cb0114404ae8a7582e1a
     sha256: 8c5b976e3b36001bdefdb41fb70415f9c07eff631f1f0155f3225a7649320e77
-  manager: conda
-  name: xorg-libxau
+  category: main
   optional: false
+- name: xorg-libxdmcp
+  version: 1.1.3
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/xorg-libxau-1.0.11-hcd874cb_0.conda
-  version: 1.0.11
-- category: main
   dependencies:
     m2w64-gcc-libs: ''
+  url: https://conda.anaconda.org/conda-forge/win-64/xorg-libxdmcp-1.1.3-hcd874cb_0.tar.bz2
   hash:
     md5: 46878ebb6b9cbd8afcf8088d7ef00ece
     sha256: f51205d33c07d744ec177243e5d9b874002910c731954f2c8da82459be462b93
-  manager: conda
-  name: xorg-libxdmcp
+  category: main
   optional: false
+- name: zipp
+  version: 3.17.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/xorg-libxdmcp-1.1.3-hcd874cb_0.tar.bz2
-  version: 1.1.3
-- category: main
   dependencies:
     python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/zipp-3.17.0-pyhd8ed1ab_0.conda
   hash:
     md5: 2e4d6bc0b14e10f895fc6791a7d9b26a
     sha256: bced1423fdbf77bca0a735187d05d9b9812d2163f60ab426fc10f11f92ecbe26
-  manager: conda
-  name: zipp
+  category: main
   optional: false
+- name: anyio
+  version: 4.3.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/zipp-3.17.0-pyhd8ed1ab_0.conda
-  version: 3.17.0
-- category: main
   dependencies:
-    exceptiongroup: ''
-    idna: '>=2.8'
     python: '>=3.8'
     sniffio: '>=1.1'
+    typing_extensions: '>=4.1'
+    idna: '>=2.8'
+    exceptiongroup: '>=1.0.2'
+  url: https://conda.anaconda.org/conda-forge/noarch/anyio-4.3.0-pyhd8ed1ab_0.conda
   hash:
-    md5: 3c4e99d3ae4ec033d4dd99fb5220e540
-    sha256: 64125775b2e724db5c72e431dd180495d5d509d0a2d1228a122e6af9f1b60e33
-  manager: conda
-  name: anyio
+    md5: ac95aa8ed65adfdde51132595c79aade
+    sha256: 86aca4a31c09f9b4dbdb332cd9a6a7dbab62ca734d3f832651c0ab59c6a7f52e
+  category: main
   optional: false
+- name: asttokens
+  version: 2.4.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/anyio-4.0.0-pyhd8ed1ab_0.conda
-  version: 4.0.0
-- category: main
   dependencies:
     python: '>=3.5'
     six: '>=1.12.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/asttokens-2.4.1-pyhd8ed1ab_0.conda
   hash:
     md5: 5f25798dcefd8252ce5f9dc494d5f571
     sha256: 708168f026df19a0344983754d27d1f7b28bb21afc7b97a82f02c4798a3d2111
-  manager: conda
-  name: asttokens
+  category: main
   optional: false
+- name: async-lru
+  version: 2.0.4
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/asttokens-2.4.1-pyhd8ed1ab_0.conda
-  version: 2.4.1
-- category: main
   dependencies:
     python: '>=3.8'
     typing_extensions: '>=4.0.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/async-lru-2.0.4-pyhd8ed1ab_0.conda
   hash:
     md5: 3d081de3a6ea9f894bbb585e8e3a4dcb
     sha256: 7ed83731979fe5b046c157730e50af0e24454468bbba1ed8fc1a3107db5d7518
-  manager: conda
-  name: async-lru
+  category: main
   optional: false
+- name: babel
+  version: 2.14.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/async-lru-2.0.4-pyhd8ed1ab_0.conda
-  version: 2.0.4
-- category: main
   dependencies:
-    python: '>=3.7'
-    pytz: ''
     setuptools: ''
+    pytz: ''
+    python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/babel-2.14.0-pyhd8ed1ab_0.conda
   hash:
-    md5: 3ccff479c246692468f604df9c85ef26
-    sha256: 1f955c700db16f65b16c9e9c1613436480d5497970b8030b7a9ebe1620cc2147
-  manager: conda
-  name: babel
+    md5: 9669586875baeced8fc30c0826c3270e
+    sha256: 8584e3da58e92b72641c89ff9b98c51f0d5dbe76e527867804cbdf03ac91d8e6
+  category: main
   optional: false
+- name: backports.functools_lru_cache
+  version: 1.6.5
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/babel-2.13.1-pyhd8ed1ab_0.conda
-  version: 2.13.1
-- category: main
   dependencies:
     backports: ''
     python: '>=3.6'
     setuptools: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/backports.functools_lru_cache-1.6.5-pyhd8ed1ab_0.conda
   hash:
     md5: 6b1b907661838a75d067a22f87996b2e
     sha256: 7027bb689dd4ca4a08e3b25805de9d04239be6b31125993558f21f102a9d2700
-  manager: conda
-  name: backports.functools_lru_cache
+  category: main
   optional: false
+- name: beautifulsoup4
+  version: 4.12.3
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/backports.functools_lru_cache-1.6.5-pyhd8ed1ab_0.conda
-  version: 1.6.5
-- category: main
   dependencies:
     python: '>=3.6'
     soupsieve: '>=1.2'
+  url: https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda
   hash:
-    md5: a362ff7d976217f8fa78c0f1c4f59717
-    sha256: 52d3e6bcd442537e22699cd227d8fdcfd54b708eeb8ee5b4c671a6a9b9cd74da
-  manager: conda
-  name: beautifulsoup4
+    md5: 332493000404d8411859539a5a630865
+    sha256: 7b05b2d0669029326c623b9df7a29fa49d1982a9e7e31b2fea34b4c9a4a72317
+  category: main
   optional: false
+- name: bleach
+  version: 6.1.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.2-pyha770c72_0.conda
-  version: 4.12.2
-- category: main
   dependencies:
+    setuptools: ''
     packaging: ''
+    webencodings: ''
     python: '>=3.6'
-    setuptools: ''
     six: '>=1.9.0'
-    webencodings: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/bleach-6.1.0-pyhd8ed1ab_0.conda
   hash:
     md5: 0ed9d7c0e9afa7c025807a9a8136ea3e
     sha256: 845e77ef495376c5c3c328ccfd746ca0ef1978150cae8eae61a300fe7755fb08
-  manager: conda
-  name: bleach
+  category: main
   optional: false
+- name: brotli
+  version: 1.1.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/bleach-6.1.0-pyhd8ed1ab_0.conda
-  version: 6.1.0
-- category: main
   dependencies:
-    brotli-bin: 1.1.0 hcfcfb64_1
-    libbrotlidec: 1.1.0 hcfcfb64_1
-    libbrotlienc: 1.1.0 hcfcfb64_1
+    brotli-bin: 1.1.0
+    libbrotlidec: 1.1.0
+    libbrotlienc: 1.1.0
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/brotli-1.1.0-hcfcfb64_1.conda
   hash:
     md5: f47f6db2528e38321fb00ae31674c133
     sha256: b927c95121c5f3d82fe084730281739fb04621afebf2d9f05711a0f42d27e326
-  manager: conda
-  name: brotli
+  category: main
   optional: false
+- name: cached-property
+  version: 1.5.2
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/brotli-1.1.0-hcfcfb64_1.conda
-  version: 1.1.0
-- category: main
   dependencies:
     cached_property: '>=1.5.2,<1.5.3.0a0'
+  url: https://conda.anaconda.org/conda-forge/noarch/cached-property-1.5.2-hd8ed1ab_1.tar.bz2
   hash:
     md5: 9b347a7ec10940d3f7941ff6c460b551
     sha256: 561e6660f26c35d137ee150187d89767c988413c978e1b712d53f27ddf70ea17
-  manager: conda
-  name: cached-property
+  category: main
   optional: false
+- name: cffi
+  version: 1.16.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/cached-property-1.5.2-hd8ed1ab_1.tar.bz2
-  version: 1.5.2
-- category: main
   dependencies:
     pycparser: ''
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12.0rc3,<3.13.0a0'
+    python_abi: 3.12.*
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/cffi-1.16.0-py312he70551f_0.conda
   hash:
-    md5: d109d6e767c4890ea32880b8bfa4a3b6
-    sha256: eb7463fe3785dd9ac0b3b1e5fea3b721d20eb082e194cab0af8d9ff28c28934f
-  manager: conda
-  name: cffi
+    md5: 5a51096925d52332c62bfd8904899055
+    sha256: dd39e594f5c6bca52dfed343de2af9326a99700ce2ba3404bd89706926fc0137
+  category: main
   optional: false
+- name: comm
+  version: 0.2.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/cffi-1.16.0-py311ha68e1ae_0.conda
-  version: 1.16.0
-- category: main
   dependencies:
     python: '>=3.6'
     traitlets: '>=5.3'
+  url: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.1-pyhd8ed1ab_0.conda
   hash:
-    md5: c8eaca39e2b6abae1fc96acc929ae939
-    sha256: 11057745946a95ee7cc4c98900a60c7362266a4cb28bc97d96cd88e3056eb701
-  manager: conda
-  name: comm
+    md5: f4385072f4909bc974f6675a36e76796
+    sha256: bd90a200e6f7092a89f02c4800729a4a6d2b2de49d70a9706aeb083a635308c1
+  category: main
   optional: false
+- name: glib-tools
+  version: 2.78.4
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/comm-0.1.4-pyhd8ed1ab_0.conda
-  version: 0.1.4
-- category: main
   dependencies:
-    libglib: 2.78.1 he8f3873_0
+    libglib: 2.78.4
     libzlib: '>=1.2.13,<1.3.0a0'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/glib-tools-2.78.4-h12be248_0.conda
   hash:
-    md5: 7d9280579328b01cddbb1c4e91ca2df1
-    sha256: c0b909c886088dac3f2224c8bd555ad0ceddd6835a3724f50dd4977ff4cdd93a
+    md5: 9e2a4c1cace3fbdeb11f20578484ddaf
+    sha256: 936c16a45216916d3fecce9353953bac0dcf3e24cf4999d5cab7b7e601dd274c
+  category: main
+  optional: false
+- name: h11
+  version: 0.14.0
+  manager: conda
+  platform: win-64
+  dependencies:
+    typing_extensions: ''
+    python: '>=3'
+  url: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2
+  hash:
+    md5: b21ed0883505ba1910994f1df031a428
+    sha256: 817d2c77d53afe3f3d9cf7f6eb8745cdd8ea76c7adaa9d7ced75c455a2c2c085
+  category: main
+  optional: false
+- name: h2
+  version: 4.1.0
   manager: conda
-  name: glib-tools
+  platform: win-64
+  dependencies:
+    python: '>=3.6.1'
+    hpack: '>=4.0,<5'
+    hyperframe: '>=6.0,<7'
+  url: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2
+  hash:
+    md5: b748fbf7060927a6e82df7cb5ee8f097
+    sha256: bfc6a23849953647f4e255c782e74a0e18fe16f7e25c7bb0bc57b83bb6762c7a
+  category: main
   optional: false
+- name: importlib-metadata
+  version: 7.0.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/glib-tools-2.78.1-h12be248_0.conda
-  version: 2.78.1
-- category: main
   dependencies:
     python: '>=3.8'
     zipp: '>=0.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.0.1-pyha770c72_0.conda
   hash:
-    md5: 4e9f59a060c3be52bc4ddc46ee9b6946
-    sha256: 2797ed927d65324309b6c630190d917b9f2111e0c217b721f80429aeb57f9fcf
-  manager: conda
-  name: importlib-metadata
+    md5: 746623a787e06191d80a2133e5daff17
+    sha256: e72d05f171f4567004c9360a838e9d5df21e23dcfeb945066b53a6e5f754b861
+  category: main
   optional: false
+- name: importlib_resources
+  version: 6.1.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-6.8.0-pyha770c72_0.conda
-  version: 6.8.0
-- category: main
   dependencies:
     python: '>=3.8'
     zipp: '>=3.1.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.1.1-pyhd8ed1ab_0.conda
   hash:
     md5: 3d5fa25cf42f3f32a12b2d874ace8574
     sha256: e584f9ae08fb2d242af0ce7e19e3cd2f85f362d8523119e08f99edb962db99ed
-  manager: conda
-  name: importlib_resources
+  category: main
   optional: false
+- name: jedi
+  version: 0.19.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.1.1-pyhd8ed1ab_0.conda
-  version: 6.1.1
-- category: main
   dependencies:
-    parso: '>=0.8.3,<0.9.0'
     python: '>=3.6'
+    parso: '>=0.8.3,<0.9.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.1-pyhd8ed1ab_0.conda
   hash:
     md5: 81a3be0b2023e1ea8555781f0ad904a2
     sha256: 362f0936ef37dfd1eaa860190e42a6ebf8faa094eaa3be6aa4d9ace95f40047a
-  manager: conda
-  name: jedi
+  category: main
   optional: false
+- name: jinja2
+  version: 3.1.3
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.1-pyhd8ed1ab_0.conda
-  version: 0.19.1
-- category: main
   dependencies:
-    markupsafe: '>=2.0'
     python: '>=3.7'
+    markupsafe: '>=2.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.3-pyhd8ed1ab_0.conda
   hash:
-    md5: c8490ed5c70966d232fdd389d0dbed37
-    sha256: b045faba7130ab263db6a8fdc96b1a3de5fcf85c4a607c5f11a49e76851500b5
+    md5: e7d8df6509ba635247ff9aea31134262
+    sha256: fd517b7dd3a61eca34f8a6f9f92f306397149cae1204fce72ac3d227107dafdc
+  category: main
+  optional: false
+- name: jupyter_core
+  version: 5.7.1
   manager: conda
-  name: jinja2
+  platform: win-64
+  dependencies:
+    platformdirs: '>=2.5'
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
+    pywin32: '>=300'
+    traitlets: '>=5.3'
+  url: https://conda.anaconda.org/conda-forge/win-64/jupyter_core-5.7.1-py312h2e8e312_0.conda
+  hash:
+    md5: 4169f425045de1e7e7ddc19fba8eaf71
+    sha256: d4ad01e013ad873c08fb8118c339695d9f289a908d59a9ffc1e68833ad61405b
+  category: main
   optional: false
+- name: jupyterlab_pygments
+  version: 0.3.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.2-pyhd8ed1ab_1.tar.bz2
-  version: 3.1.2
-- category: main
   dependencies:
-    pygments: '>=2.4.1,<3'
     python: '>=3.7'
+    pygments: '>=2.4.1,<3'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_1.conda
   hash:
-    md5: 243f63592c8e449f40cd42eb5cf32f40
-    sha256: 08453e09d5a6bbaeeca839553a5dfd7a377a97550efab96019c334a8042f54f5
-  manager: conda
-  name: jupyterlab_pygments
+    md5: afcd1b53bcac8844540358e33f33d28f
+    sha256: 4aa622bbcf97e44cd1adf0100b7ff71b7e20268f043bdf6feae4d16152f1f242
+  category: main
   optional: false
+- name: lcms2
+  version: '2.16'
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.2.2-pyhd8ed1ab_0.tar.bz2
-  version: 0.2.2
-- category: main
   dependencies:
-    libjpeg-turbo: '>=2.1.5.1,<3.0a0'
-    libtiff: '>=4.5.0,<4.6.0a0'
+    libjpeg-turbo: '>=3.0.0,<4.0a0'
+    libtiff: '>=4.6.0,<4.7.0a0'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
-    vs2015_runtime: '>=14.29.30139'
+    vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/lcms2-2.16-h67d730c_0.conda
   hash:
-    md5: a76c36ad1b4b87f038d67890122d08ec
-    sha256: 24179aae324bcfa65ec983a389c5e048bd6b174f63afedf4cdd654da78cf9558
+    md5: d3592435917b62a8becff3a60db674f6
+    sha256: f9fd9e80e46358a57d9bb97b1e37a03da4022143b019aa3c4476d8a7795de290
+  category: main
+  optional: false
+- name: libclang
+  version: 15.0.7
   manager: conda
-  name: lcms2
+  platform: win-64
+  dependencies:
+    libclang13: 15.0.7
+    libxml2: '>=2.12.1,<3.0.0a0'
+    libzlib: '>=1.2.13,<1.3.0a0'
+    ucrt: '>=10.0.20348.0'
+    vc: '>=14.2,<15'
+    vc14_runtime: '>=14.29.30139'
+    zstd: '>=1.5.5,<1.6.0a0'
+  url: https://conda.anaconda.org/conda-forge/win-64/libclang-15.0.7-default_hde6756a_4.conda
+  hash:
+    md5: a621ea4ac3f826d02441369e73e53800
+    sha256: 1083e53f51b35c7a6769fafa2e7ab5bb85f953eb288eb4a62cddd8200db7c46d
+  category: main
   optional: false
+- name: libxcb
+  version: '1.15'
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/lcms2-2.15-h3e3b177_1.conda
-  version: '2.15'
-- category: main
   dependencies:
     m2w64-gcc-libs: ''
     m2w64-gcc-libs-core: ''
     pthread-stubs: ''
     xorg-libxau: ''
     xorg-libxdmcp: ''
+  url: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.15-hcd874cb_0.conda
   hash:
     md5: 090d91b69396f14afef450c285f9758c
     sha256: d01322c693580f53f8d07a7420cd6879289f5ddad5531b372c3efd1c37cac3bf
-  manager: conda
-  name: libxcb
+  category: main
   optional: false
+- name: matplotlib-inline
+  version: 0.1.6
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.15-hcd874cb_0.conda
-  version: '1.15'
-- category: main
   dependencies:
-    python: '>=3.6'
     traitlets: ''
+    python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.6-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: b21613793fcc81d944c76c9f2864a7de
     sha256: aa091b88aec55bfa2d9207028d8cdc689b9efb090ae27b99557e93c675be2f3c
-  manager: conda
-  name: matplotlib-inline
+  category: main
   optional: false
+- name: openjpeg
+  version: 2.5.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.6-pyhd8ed1ab_0.tar.bz2
-  version: 0.1.6
-- category: main
   dependencies:
     libpng: '>=1.6.39,<1.7.0a0'
-    libtiff: '>=4.5.0,<4.6.0a0'
+    libtiff: '>=4.6.0,<4.7.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
-    vs2015_runtime: '>=14.29.30139'
+    vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/openjpeg-2.5.0-h3d672ee_3.conda
   hash:
-    md5: db0490689232e8e38c312281df6f31a2
-    sha256: 1fb72db47e9b1cdb4980a1fd031e31fad2c6a4a632fc602e7d6fa74f4f491608
-  manager: conda
-  name: openjpeg
+    md5: 45a9628a04efb6fc326fff0a8f47b799
+    sha256: c0f64d9642f0287f17cd9b6f1633d97a91efd66a0cb9b0414c540b247684985d
+  category: main
   optional: false
+- name: overrides
+  version: 7.7.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/openjpeg-2.5.0-ha2aaf27_2.conda
-  version: 2.5.0
-- category: main
   dependencies:
-    python: '>=3.6'
     typing_utils: ''
+    python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/overrides-7.7.0-pyhd8ed1ab_0.conda
   hash:
-    md5: 4625b7b01d7f4ac9c96300a5515acfaa
-    sha256: 29db8c3b521d261bf71897ba3cfbebc81cd61e581b30fcb984b5a713f02fe1ff
-  manager: conda
-  name: overrides
+    md5: 24fba5a9d161ad8103d4e84c0e1a3ed4
+    sha256: 5e238e5e646414d517a13f6786c7227206ace58271e3ef63f6adca4d6a4c2839
+  category: main
   optional: false
+- name: plotly
+  version: 5.19.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/overrides-7.4.0-pyhd8ed1ab_0.conda
-  version: 7.4.0
-- category: main
   dependencies:
     packaging: ''
     python: '>=3.6'
     tenacity: '>=6.2.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/plotly-5.19.0-pyhd8ed1ab_0.conda
   hash:
-    md5: 9f6a8664f1fe752f79473eeb9bf33a60
-    sha256: 1e812d896897a4d58d520bb51072d91d477faf7697e2b724b8ce59040989e8be
-  manager: conda
-  name: plotly
+    md5: 669cd7065794633b9e64e6a9612ec700
+    sha256: fa9ae81e1f304f1480378ea25d559748e061c5b8d55b3ade433c3bc483dbae9e
+  category: main
   optional: false
+- name: proj
+  version: 9.3.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/plotly-5.18.0-pyhd8ed1ab_0.conda
-  version: 5.18.0
-- category: main
   dependencies:
-    libcurl: '>=7.88.1,<9.0a0'
-    libsqlite: '>=3.40.0,<4.0a0'
-    libtiff: '>=4.5.0,<4.6.0a0'
+    libcurl: '>=8.4.0,<9.0a0'
+    libsqlite: '>=3.44.2,<4.0a0'
+    libtiff: '>=4.6.0,<4.7.0a0'
     sqlite: ''
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
-    vs2015_runtime: '>=14.29.30139'
+    vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/proj-9.3.1-he13c7e8_0.conda
   hash:
-    md5: a5c7a6b34d994f46b3cbf16d2acb383d
-    sha256: 9515d24cda37a5ef51fc13972620ce6a98189641769aba61cc1e62a73570a061
+    md5: 57aa204e187d515bb2600bc74a7e7dfc
+    sha256: bcf34f3610e2c34a74fccf76e47e0fd41d36afd8fc043920fef0ab34230bcd01
+  category: main
+  optional: false
+- name: prompt-toolkit
+  version: 3.0.42
   manager: conda
-  name: proj
+  platform: win-64
+  dependencies:
+    wcwidth: ''
+    python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.42-pyha770c72_0.conda
+  hash:
+    md5: 0bf64bf10eee21f46ac83c161917fa86
+    sha256: 58525b2a9305fb154b2b0d43a48b9a6495441b80e4fbea44f2a34a597d2cef16
+  category: main
   optional: false
+- name: pysocks
+  version: 1.7.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/proj-9.2.0-heca977f_0.conda
-  version: 9.2.0
-- category: main
   dependencies:
     __win: ''
-    python: '>=3.8'
     win_inet_pton: ''
+    python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyh0701188_6.tar.bz2
   hash:
     md5: 56cd9fe388baac0e90c7149cfac95b60
     sha256: b3a612bc887f3dd0fb7c4199ad8e342bd148cf69a9b74fd9468a18cf2bef07b7
-  manager: conda
-  name: pysocks
+  category: main
   optional: false
+- name: python-dateutil
+  version: 2.8.2
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyh0701188_6.tar.bz2
-  version: 1.7.1
-- category: main
   dependencies:
     python: '>=3.6'
     six: '>=1.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.8.2-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: dd999d1cc9f79e67dbb855c8924c7984
     sha256: 54d7785c7678166aa45adeaccfc1d2b8c3c799ca2dc05d4a82bb39b1968bd7da
-  manager: conda
-  name: python-dateutil
+  category: main
   optional: false
+- name: referencing
+  version: 0.33.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.8.2-pyhd8ed1ab_0.tar.bz2
-  version: 2.8.2
-- category: main
   dependencies:
-    attrs: '>=22.2.0'
     python: '>=3.8'
+    attrs: '>=22.2.0'
     rpds-py: '>=0.7.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/referencing-0.33.0-pyhd8ed1ab_0.conda
   hash:
-    md5: a33161b983172ba6ef69d5fc850650cd
-    sha256: a6768fabc12f1eed87fec68c5c65439e908655cded1e458d70a164abbce13287
-  manager: conda
-  name: referencing
+    md5: bc415a1c6cf049166215d6b596e0fcbe
+    sha256: 5707eb9ee2c7cfcc56a5223b24ab3133ff61aaa796931f3b22068e0a43ea6ecf
+  category: main
   optional: false
+- name: rfc3339-validator
+  version: 0.1.4
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/referencing-0.30.2-pyhd8ed1ab_0.conda
-  version: 0.30.2
-- category: main
   dependencies:
-    python: '>=3.5'
     six: ''
+    python: '>=3.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/rfc3339-validator-0.1.4-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: fed45fc5ea0813240707998abe49f520
     sha256: 7c7052b51de0b5c558f890bb11f8b5edbb9934a653d76be086b1182b9f54185d
-  manager: conda
-  name: rfc3339-validator
+  category: main
   optional: false
+- name: send2trash
+  version: 1.8.2
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/rfc3339-validator-0.1.4-pyhd8ed1ab_0.tar.bz2
-  version: 0.1.4
-- category: main
   dependencies:
     __win: ''
-    python: '>=3.6'
     pywin32: ''
+    python: '>=3.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.2-pyh08f2357_0.conda
   hash:
     md5: c00d32dfa733d381b6a1908d0d67e0d7
     sha256: 55208c6b48d68dc9ad2e2cf81ab9dc6b8a1d607e67acf9115bdc7794accc84bc
-  manager: conda
-  name: send2trash
+  category: main
   optional: false
+- name: sip
+  version: 6.7.12
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.2-pyh08f2357_0.conda
-  version: 1.8.2
-- category: main
   dependencies:
     packaging: ''
     ply: ''
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
     tomli: ''
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/sip-6.7.12-py312h53d5487_0.conda
   hash:
-    md5: c29f20b2860d1824535135d76d022394
-    sha256: 1129ac093d0c04ca07603fab9dfd2ee1e9a760eb94b31450e2cef1ffffa6a31a
-  manager: conda
-  name: sip
+    md5: a5d3d1363d6d0b4827d6b940414a5b76
+    sha256: 2347c2e7d5e7282b991d5d4f7448d9e6fe8c26e5d6df0d09f0e60b11b7d19586
+  category: main
   optional: false
+- name: tbb
+  version: 2021.11.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/sip-6.7.12-py311h12c1d0e_0.conda
-  version: 6.7.12
-- category: main
   dependencies:
     libhwloc: '>=2.9.3,<2.9.4.0a0'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/tbb-2021.11.0-h91493d7_1.conda
   hash:
-    md5: 5b8c97cf8f0e81d6c22c0bda9978790d
-    sha256: e55a2f1324f0fc8916ab8d590a3944ba1af62de727bb66e3019cf2744d26e679
-  manager: conda
-  name: tbb
+    md5: 21069f3ed16812f9f4f2700667b6ec86
+    sha256: aa30c089fdd6f66c7808592362e29963586e094159964a5fb61fb8efa9e349bc
+  category: main
   optional: false
+- name: terminado
+  version: 0.18.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/tbb-2021.10.0-h91493d7_2.conda
-  version: 2021.10.0
-- category: main
   dependencies:
     __win: ''
-    python: '>=3.7'
-    pywinpty: '>=1.1.0'
+    python: '>=3.8'
     tornado: '>=6.1.0'
+    pywinpty: '>=1.1.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/terminado-0.18.0-pyh5737063_0.conda
   hash:
-    md5: 0152a609d5748ed9887d195b1e61a6c9
-    sha256: 5c8fcf31430e0f312bc65ab5aa5b893fcc250820c023b02ff3fd188ae13199a5
-  manager: conda
-  name: terminado
+    md5: f2fc93bc1e08e04612c4d19361bb0011
+    sha256: 4353d8d2372ad050cbdab05890c057356ea8693ecfb959396ebb8ffdfc1948bf
+  category: main
   optional: false
+- name: tinycss2
+  version: 1.2.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/terminado-0.17.0-pyh08f2357_0.tar.bz2
-  version: 0.17.0
-- category: main
   dependencies:
     python: '>=3.5'
     webencodings: '>=0.4'
+  url: https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.2.1-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 7234c9eefff659501cd2fe0d2ede4d48
     sha256: f0db1a2298a5e10e30f4b947566c7229442834702f549dded40a73ecdea7502d
-  manager: conda
-  name: tinycss2
+  category: main
   optional: false
+- name: typing-extensions
+  version: 4.9.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.2.1-pyhd8ed1ab_0.tar.bz2
-  version: 1.2.1
-- category: main
   dependencies:
-    typing_extensions: 4.8.0 pyha770c72_0
+    typing_extensions: 4.9.0
+  url: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.9.0-hd8ed1ab_0.conda
   hash:
-    md5: 384462e63262a527bda564fa2d9126c0
-    sha256: d6e1dddd0c372218ef15912383d351ac8c73465cbf16238017f0269813cafe2d
-  manager: conda
-  name: typing-extensions
+    md5: c16524c1b7227dc80b36b4fa6f77cc86
+    sha256: d795c1eb1db4ea147f01ece74e5a504d7c2e8d5ee8c11ec987884967dd938f9c
+  category: main
   optional: false
+- name: argon2-cffi-bindings
+  version: 21.2.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.8.0-hd8ed1ab_0.conda
-  version: 4.8.0
-- category: main
   dependencies:
     cffi: '>=1.0.1'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12.0rc3,<3.13.0a0'
+    python_abi: 3.12.*
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/argon2-cffi-bindings-21.2.0-py312he70551f_4.conda
   hash:
-    md5: e95c947541bf1cb821ea4a6bf7d5794c
-    sha256: 0b8eb99e7ac6b409abbb5f3b9733f883865ff4314e85146380f072f6f6234929
-  manager: conda
-  name: argon2-cffi-bindings
+    md5: 69b7a1d899d46b91f8eecab9abf9728c
+    sha256: 4c3c428b994400ca753d9d0adbb11ce2d2a87f4dacd86c91d6cf985c5d89a3e1
+  category: main
   optional: false
+- name: arrow
+  version: 1.3.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/argon2-cffi-bindings-21.2.0-py311ha68e1ae_4.conda
-  version: 21.2.0
-- category: main
   dependencies:
     python: '>=3.8'
     python-dateutil: '>=2.7.0'
     types-python-dateutil: '>=2.8.10'
+  url: https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_0.conda
   hash:
     md5: b77d8c2313158e6e461ca0efb1c2c508
     sha256: ff49825c7f9e29e09afa6284300810e7a8640d621740efb47c4541f4dc4969db
-  manager: conda
-  name: arrow
+  category: main
   optional: false
+- name: fonttools
+  version: 4.49.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_0.conda
-  version: 1.3.0
-- category: main
   dependencies:
     brotli: ''
     munkres: ''
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/fonttools-4.49.0-py312he70551f_0.conda
   hash:
-    md5: 38ee0d81d9573521c9ce09c70a3f92fd
-    sha256: 477acc5cf0cd3503b457d893998aea30d59d8a46ee92015987ed0bb7ffe984af
-  manager: conda
-  name: fonttools
+    md5: f18ed43529ccb05217783459c49f2533
+    sha256: a95b5528c13faf6cb8b56f20dc19041f9ffc7145379b724f3282c57e172cc0f0
+  category: main
   optional: false
+- name: fqdn
+  version: 1.5.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/fonttools-4.44.0-py311ha68e1ae_0.conda
-  version: 4.44.0
-- category: main
   dependencies:
     cached-property: '>=1.3.0'
     python: '>=2.7,<4'
+  url: https://conda.anaconda.org/conda-forge/noarch/fqdn-1.5.1-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 642d35437078749ef23a5dca2c9bb1f3
     sha256: 6cfd1f9bcd2358a69fb571f4b3af049b630d52647d906822dbedac03e84e4f63
-  manager: conda
-  name: fqdn
+  category: main
   optional: false
+- name: glib
+  version: 2.78.4
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/fqdn-1.5.1-pyhd8ed1ab_0.tar.bz2
-  version: 1.5.1
-- category: main
   dependencies:
     gettext: '>=0.21.1,<1.0a0'
-    glib-tools: 2.78.1 h12be248_0
-    libglib: 2.78.1 he8f3873_0
+    glib-tools: 2.78.4
+    libglib: 2.78.4
     libzlib: '>=1.2.13,<1.3.0a0'
     python: '*'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/glib-2.78.4-h12be248_0.conda
   hash:
-    md5: 55a9176ace9721d0b89cbf99f78e6b04
-    sha256: 841ec811330ff4e1f8c30a993ec536778a7332423c9785af69a2b77568b32056
-  manager: conda
-  name: glib
+    md5: 0080f150ed83685497f841f4b70fca1f
+    sha256: 941aaf433be2b147738b4f2729008faa6639ed55b59381605f1cfb8d0dabac27
+  category: main
   optional: false
+- name: httpcore
+  version: 1.0.4
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/glib-2.78.1-h12be248_0.conda
-  version: 2.78.1
-- category: main
   dependencies:
-    importlib-metadata: '>=6.8.0,<6.8.1.0a0'
+    certifi: ''
+    python: '>=3.8'
+    sniffio: 1.*
+    h2: '>=3,<5'
+    anyio: '>=3.0,<5.0'
+    h11: '>=0.13,<0.15'
+  url: https://conda.anaconda.org/conda-forge/noarch/httpcore-1.0.4-pyhd8ed1ab_0.conda
   hash:
-    md5: b279b07ce18058034e5b3606ba103a8b
-    sha256: b96e01dc42d547d6d9ceb1c5b52a5232cc04e40153534350f702c3e0418a6b3f
+    md5: 20f047662cf4fa8b97836111df87dbb4
+    sha256: dec07ca00223d52433e7c20c71d5e645a7828b3e50206d855ad7a540869341f2
+  category: main
+  optional: false
+- name: importlib_metadata
+  version: 7.0.1
   manager: conda
-  name: importlib_metadata
+  platform: win-64
+  dependencies:
+    importlib-metadata: '>=7.0.1,<7.0.2.0a0'
+  url: https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-7.0.1-hd8ed1ab_0.conda
+  hash:
+    md5: 4a2f43a20fa404b998859c6a470ba316
+    sha256: bc362df1d4f5a04c38dff29cd9c2d0ac584f9c4b45d3e4683ee090944a38fba4
+  category: main
   optional: false
+- name: jsonschema-specifications
+  version: 2023.12.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-6.8.0-hd8ed1ab_0.conda
-  version: 6.8.0
-- category: main
   dependencies:
-    importlib_resources: '>=1.4.0'
     python: '>=3.8'
-    referencing: '>=0.25.0'
+    importlib_resources: '>=1.4.0'
+    referencing: '>=0.31.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2023.12.1-pyhd8ed1ab_0.conda
   hash:
-    md5: 7c27ea1bdbe520bb830dcadd59f55cbf
-    sha256: 7b0061e106674f27cc718f79a095e90a5667a3635ec6626dd23b3be0fd2bfbdc
-  manager: conda
-  name: jsonschema-specifications
+    md5: a0e4efb5f35786a05af4809a2fb1f855
+    sha256: a9630556ddc3121c0be32f4cbf792dd9102bd380d5cd81d57759d172cf0c2da2
+  category: main
   optional: false
+- name: jupyter_server_terminals
+  version: 0.5.2
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2023.7.1-pyhd8ed1ab_0.conda
-  version: 2023.7.1
-- category: main
   dependencies:
     python: '>=3.8'
     terminado: '>=0.8.3'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_server_terminals-0.5.2-pyhd8ed1ab_0.conda
   hash:
-    md5: 7c0965e1d4a0ee1529e8eaa03a78a5b3
-    sha256: 9f4c5fef9beef9fceed628db7a10b888f3308b37ae257ad3d50046088317ebf1
-  manager: conda
-  name: jupyter_server_terminals
+    md5: a0152d13c9deb13639fc84df884d50b6
+    sha256: a625150744fdffb646fb4451edc68b3eff56eeace4e86b83dc4a860479c9857c
+  category: main
   optional: false
+- name: mkl
+  version: 2024.0.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_server_terminals-0.4.4-pyhd8ed1ab_1.conda
-  version: 0.4.4
-- category: main
   dependencies:
-    intel-openmp: 2023.*
+    intel-openmp: 2024.*
     tbb: 2021.*
+  url: https://conda.anaconda.org/conda-forge/win-64/mkl-2024.0.0-h66d3029_49657.conda
   hash:
-    md5: 03da367d935ecf4d3e4005cf705d0e21
-    sha256: 40dc6ac2aa071ca248223de7cdbdfdb216bc8632a17104b1507bcbf9276265d4
-  manager: conda
-  name: mkl
+    md5: 006b65d9cd436247dfe053df772e041d
+    sha256: 928bed978827e4c891d0879d79ecda6c9104ed7df1f1d4e2e392c9c80b471be7
+  category: main
   optional: false
+- name: pillow
+  version: 10.2.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/mkl-2023.2.0-h6a75c08_50496.conda
-  version: 2023.2.0
-- category: main
   dependencies:
     freetype: '>=2.12.1,<3.0a0'
-    lcms2: '>=2.15,<3.0a0'
-    libjpeg-turbo: '>=2.1.5.1,<3.0a0'
-    libtiff: '>=4.5.1,<4.6.0a0'
-    libwebp-base: '>=1.3.1,<2.0a0'
+    lcms2: '>=2.16,<3.0a0'
+    libjpeg-turbo: '>=3.0.0,<4.0a0'
+    libtiff: '>=4.6.0,<4.7.0a0'
+    libwebp-base: '>=1.3.2,<2.0a0'
     libxcb: '>=1.15,<1.16.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
     openjpeg: '>=2.5.0,<3.0a0'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
-    tk: '>=8.6.12,<8.7.0a0'
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
+    tk: '>=8.6.13,<8.7.0a0'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/pillow-10.2.0-py312he768995_0.conda
   hash:
-    md5: 217a6fc0df385c9a929144549f26b124
-    sha256: 3771fa4cd26b5654dcb9e12a65a624be87836e002900a0d6b98c93870b75aa02
-  manager: conda
-  name: pillow
+    md5: de84e99e45dac3fa9e86fcdb24d991f2
+    sha256: 56f616c3167037f291443a879efec6a359ce59ee2b1304c392c11eba0e236d40
+  category: main
   optional: false
+- name: prompt_toolkit
+  version: 3.0.39
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/pillow-10.0.0-py311hde623f7_0.conda
-  version: 10.0.0
-- category: main
   dependencies:
-    python: '>=3.7'
-    typing-extensions: '>=4.6.3'
+    prompt-toolkit: '>=3.0.39,<3.0.40.0a0'
+  url: https://conda.anaconda.org/conda-forge/noarch/prompt_toolkit-3.0.39-hd8ed1ab_0.conda
   hash:
-    md5: 8f567c0a74aa44cf732f15773b4083b0
-    sha256: b3d809ff5a18ee8514bba8bc05a23b4cdf1758090a18a2cf742af38aed405144
-  manager: conda
-  name: platformdirs
+    md5: 4bbbe67d5df19db30f04b8e344dc9976
+    sha256: 89f7fecc7355181dbc2ab851e668a2fce6aa4830b336a34c93b59bda93206270
+  category: main
   optional: false
+- name: pyproj
+  version: 3.6.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/platformdirs-3.11.0-pyhd8ed1ab_0.conda
-  version: 3.11.0
-- category: main
   dependencies:
     certifi: ''
-    proj: '>=9.2.0,<9.2.1.0a0'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    proj: '>=9.3.1,<9.3.2.0a0'
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
-    vs2015_runtime: '>=14.29.30139'
+    vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/pyproj-3.6.1-py312hc725b1e_5.conda
   hash:
-    md5: 2bf16524acfc74d669c2bde451fdcf6a
-    sha256: afa9b1f593f1f20164de04a840659266c3217fcc39f4750048803ea7b328ab1b
-  manager: conda
-  name: pyproj
+    md5: 03b58ca2e2652462e83db38e241a352d
+    sha256: 5613805eed4a13a2d3c47c500bfedfd55a923bede9b5f558ca12ddbfbe62b7f6
+  category: main
   optional: false
+- name: pyqt5-sip
+  version: 12.12.2
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/pyproj-3.5.0-py311h095e9de_1.conda
-  version: 3.5.0
-- category: main
   dependencies:
     packaging: ''
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12.0rc3,<3.13.0a0'
+    python_abi: 3.12.*
     sip: ''
     toml: ''
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/pyqt5-sip-12.12.2-py312h53d5487_5.conda
   hash:
-    md5: 1b53a20f311bd99a1e55b31b7219106f
-    sha256: 7130493794e4c65f4e78258619a6ef9d022ba9f9b0f61e70d2973d9bc5f10e11
-  manager: conda
-  name: pyqt5-sip
+    md5: dbaa69d84f7da6ac3ec20de2a9529a4b
+    sha256: 56242d5203e7231ee5bdd25df417dfc60a4f38e335f922f7e00f8c518ba87bd1
+  category: main
   optional: false
+- name: stack_data
+  version: 0.6.2
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/pyqt5-sip-12.12.2-py311h12c1d0e_5.conda
-  version: 12.12.2
-- category: main
   dependencies:
     asttokens: ''
     executing: ''
     pure_eval: ''
     python: '>=3.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.2-pyhd8ed1ab_0.conda
   hash:
     md5: e7df0fdd404616638df5ece6e69ba7af
     sha256: a58433e75229bec39f3be50c02efbe9b7083e53a1f31d8ee247564f370191eec
-  manager: conda
-  name: stack_data
+  category: main
   optional: false
+- name: urllib3
+  version: 2.2.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.2-pyhd8ed1ab_0.conda
-  version: 0.6.2
-- category: main
   dependencies:
+    python: '>=3.7'
     brotli-python: '>=1.0.9'
     pysocks: '>=1.5.6,<2.0,!=1.5.7'
-    python: '>=3.7'
+  url: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.1-pyhd8ed1ab_0.conda
   hash:
-    md5: 270e71c14d37074b1d066ee21cf0c4a6
-    sha256: 9fe14735dde74278c6f1710cbe883d5710fc98501a96031dec6849a8d8a1bb11
-  manager: conda
-  name: urllib3
+    md5: 08807a87fa7af10754d46f63b368e016
+    sha256: d4009dcc9327684d6409706ce17656afbeae690d8522d3c9bc4df57649a352cd
+  category: main
   optional: false
-  platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.0.7-pyhd8ed1ab_0.conda
-  version: 2.0.7
-- category: main
-  dependencies:
-    backports.functools_lru_cache: ''
-    python: '>=3.6'
-  hash:
-    md5: 8e8280dec091763dfdc29e066de52270
-    sha256: 7552f6545ed212b9ae5d023870481fc377c7f18b4854b63160699b95a420c42e
+- name: argon2-cffi
+  version: 23.1.0
   manager: conda
-  name: wcwidth
-  optional: false
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.9-pyhd8ed1ab_0.conda
-  version: 0.2.9
-- category: main
   dependencies:
+    typing-extensions: ''
     argon2-cffi-bindings: ''
     python: '>=3.7'
-    typing-extensions: ''
+  url: https://conda.anaconda.org/conda-forge/noarch/argon2-cffi-23.1.0-pyhd8ed1ab_0.conda
   hash:
     md5: 3afef1f55a1366b4d3b6a0d92e2235e4
     sha256: 130766446f5507bd44df957b6b5c898a8bd98f024bb426ed6cb9ff1ad67fc677
-  manager: conda
-  name: argon2-cffi
+  category: main
   optional: false
+- name: gstreamer
+  version: 1.22.9
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/argon2-cffi-23.1.0-pyhd8ed1ab_0.conda
-  version: 23.1.0
-- category: main
   dependencies:
     gettext: '>=0.21.1,<1.0a0'
-    glib: '>=2.78.0,<3.0a0'
-    libglib: '>=2.78.0,<3.0a0'
+    glib: '>=2.78.3,<3.0a0'
+    libglib: '>=2.78.3,<3.0a0'
     libiconv: '>=1.17,<2.0a0'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/gstreamer-1.22.9-hb4038d2_0.conda
   hash:
-    md5: e6d2009457a1e5d9653fd06873a7a367
-    sha256: 08600f04d220a43f0ef5c383bb586cdd05ec482aceadb397fcd43a233b946144
+    md5: 0480eecdb44a71929d5e78bf1a8644fb
+    sha256: d2ba5248e1874608e6eb4e9d8f9a6af99c8395aec88696c4bfcc077e701d88f5
+  category: main
+  optional: false
+- name: httpx
+  version: 0.27.0
   manager: conda
-  name: gstreamer
+  platform: win-64
+  dependencies:
+    certifi: ''
+    idna: ''
+    anyio: ''
+    sniffio: ''
+    python: '>=3.8'
+    httpcore: 1.*
+  url: https://conda.anaconda.org/conda-forge/noarch/httpx-0.27.0-pyhd8ed1ab_0.conda
+  hash:
+    md5: 9f359af5a886fd6ca6b2b6ea02e58332
+    sha256: fdaf341fb2630b7afe8238315448fc93947f77ebfa4da68bb349e1bcf820af58
+  category: main
   optional: false
+- name: ipython
+  version: 8.21.0
+  manager: conda
+  platform: win-64
+  dependencies:
+    typing_extensions: ''
+    colorama: ''
+    decorator: ''
+    __win: ''
+    exceptiongroup: ''
+    stack_data: ''
+    matplotlib-inline: ''
+    pickleshare: ''
+    python: '>=3.10'
+    pygments: '>=2.4.0'
+    traitlets: '>=5'
+    jedi: '>=0.16'
+    prompt-toolkit: '>=3.0.41,<3.1.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/ipython-8.21.0-pyh7428d3b_0.conda
+  hash:
+    md5: 632aeffb0cce428d8b91229dbe69dbce
+    sha256: 91d4fe1b927354287ec9ad0314232a58e988402a0e0d6322805f81c042737038
+  category: main
+  optional: false
+- name: isoduration
+  version: 20.11.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/gstreamer-1.22.6-hb4038d2_2.conda
-  version: 1.22.6
-- category: main
   dependencies:
-    arrow: '>=0.15.0'
     python: '>=3.7'
+    arrow: '>=0.15.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/isoduration-20.11.0-pyhd8ed1ab_0.tar.bz2
   hash:
     md5: 4cb68948e0b8429534380243d063a27a
     sha256: 7bb5c4d994361022f47a807b5e7d101b3dce16f7dd8a0af6ffad9f479d346493
-  manager: conda
-  name: isoduration
+  category: main
   optional: false
+- name: jsonschema
+  version: 4.21.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/isoduration-20.11.0-pyhd8ed1ab_0.tar.bz2
-  version: 20.11.0
-- category: main
   dependencies:
+    python: '>=3.8'
     attrs: '>=22.2.0'
     importlib_resources: '>=1.4.0'
-    jsonschema-specifications: '>=2023.03.6'
     pkgutil-resolve-name: '>=1.3.10'
-    python: '>=3.8'
+    jsonschema-specifications: '>=2023.03.6'
     referencing: '>=0.28.4'
     rpds-py: '>=0.7.1'
+  url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.21.1-pyhd8ed1ab_0.conda
   hash:
-    md5: 24d41c2f9cc199d0a180ecf7ef54739c
-    sha256: 07e5d395d83c4b12a7abe3989fb42abdcd3b1c51cd27549e5eab390bb8c7bf0f
-  manager: conda
-  name: jsonschema
+    md5: 8a3a3d01629da20befa340919e3dd2c4
+    sha256: c5c1b4e08e91fdd697289015be1a176409b4e63942899a43b276f1f250be8129
+  category: main
   optional: false
+- name: jupyter_client
+  version: 8.6.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.19.2-pyhd8ed1ab_0.conda
-  version: 4.19.2
-- category: main
   dependencies:
-    platformdirs: '>=2.5'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
-    pywin32: '>=300'
+    python: '>=3.8'
+    python-dateutil: '>=2.8.2'
+    jupyter_core: '>=4.12,!=5.0.*'
+    importlib_metadata: '>=4.8.3'
     traitlets: '>=5.3'
+    pyzmq: '>=23.0'
+    tornado: '>=6.2'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.0-pyhd8ed1ab_0.conda
   hash:
-    md5: 8204454e085013b1b6908f04c63eaa36
-    sha256: 2cddd12760fa4a14eb5f448e7e3f961b835b8c7ef4bc47e89a9fdd03f4ffac04
-  manager: conda
-  name: jupyter_core
+    md5: 6bd3f1069cdebb44c7ae9efb900e312d
+    sha256: 86cbb9070862cf23a245451efce539ca214e610849d0950bb8ac90c545bd158d
+  category: main
   optional: false
-  platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/jupyter_core-5.5.0-py311h1ea47a8_0.conda
-  version: 5.5.0
-- category: main
-  dependencies:
-    mkl: 2023.2.0 h6a75c08_50496
-  hash:
-    md5: 4f8a1a63cfbf74bc7b2813d9c6c205be
-    sha256: 915eae5e0dedbf87733a0b8c6f410678c77111a3fb26ca0a272e11ff979e7ef2
+- name: libblas
+  version: 3.9.0
   manager: conda
-  name: libblas
-  optional: false
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libblas-3.9.0-19_win64_mkl.conda
-  version: 3.9.0
-- category: main
   dependencies:
-    python: '>=3.7'
-    wcwidth: ''
+    mkl: 2024.0.0
+  url: https://conda.anaconda.org/conda-forge/win-64/libblas-3.9.0-21_win64_mkl.conda
   hash:
-    md5: a4986c6bb5b0d05a38855b0880a5f425
-    sha256: 10e7fdc75d4b85633be6b12a70b857053987127a808caa0f88b2cba4b3ce6359
-  manager: conda
-  name: prompt-toolkit
+    md5: ebba3846d11201fe54277e4965ba5250
+    sha256: ad47053cee17802df875203aba191b04d97a50d820dbf75a114a50972c517334
+  category: main
   optional: false
+- name: requests
+  version: 2.31.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.39-pyha770c72_0.conda
-  version: 3.0.39
-- category: main
   dependencies:
+    python: '>=3.7'
+    idna: '>=2.5,<4'
     certifi: '>=2017.4.17'
     charset-normalizer: '>=2,<4'
-    idna: '>=2.5,<4'
-    python: '>=3.7'
     urllib3: '>=1.21.1,<3'
+  url: https://conda.anaconda.org/conda-forge/noarch/requests-2.31.0-pyhd8ed1ab_0.conda
   hash:
     md5: a30144e4156cdbb236f99ebb49828f8b
     sha256: 9f629d6fd3c8ac5f2a198639fe7af87c4db2ac9235279164bfe0fcb49d8c4bad
-  manager: conda
-  name: requests
+  category: main
   optional: false
+- name: gst-plugins-base
+  version: 1.22.9
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/requests-2.31.0-pyhd8ed1ab_0.conda
-  version: 2.31.0
-- category: main
   dependencies:
     gettext: '>=0.21.1,<1.0a0'
-    gstreamer: 1.22.6 hb4038d2_2
-    libglib: '>=2.78.0,<3.0a0'
+    gstreamer: 1.22.9
+    libglib: '>=2.78.3,<3.0a0'
     libogg: '>=1.3.4,<1.4.0a0'
     libvorbis: '>=1.3.7,<1.4.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/gst-plugins-base-1.22.9-h001b923_0.conda
+  hash:
+    md5: 304b9124de13767ea8c933f72f50b348
+    sha256: 509a67ce9ad9c6a992694a2ecfaff99a6aa9681a8ceab5dfa448b76cc686e887
+  category: main
+  optional: false
+- name: ipykernel
+  version: 6.29.2
+  manager: conda
+  platform: win-64
+  dependencies:
+    packaging: ''
+    psutil: ''
+    nest-asyncio: ''
+    __win: ''
+    python: '>=3.8'
+    tornado: '>=6.1'
+    jupyter_client: '>=6.1.12'
+    jupyter_core: '>=4.12,!=5.0.*'
+    ipython: '>=7.23.1'
+    matplotlib-inline: '>=0.1'
+    debugpy: '>=1.6.5'
+    comm: '>=0.1.1'
+    traitlets: '>=5.4.0'
+    pyzmq: '>=24'
+  url: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.29.2-pyha63f2e9_0.conda
   hash:
-    md5: 20e57b894392cb792cdf5c501b35a8f6
-    sha256: 34816d0335e796ea3610022756b3b0832f5699007adc2819a08e068120dd3a8f
-  manager: conda
-  name: gst-plugins-base
+    md5: 65db5267b7fb095354b72735ddb4e08d
+    sha256: 735982c20a60d7b307b7de7a42cafd95ef37eb61e37db8abb627f2902ee9c32c
+  category: main
   optional: false
+- name: jsonschema-with-format-nongpl
+  version: 4.21.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/gst-plugins-base-1.22.6-h001b923_2.conda
-  version: 1.22.6
-- category: main
   dependencies:
-    fqdn: ''
-    idna: ''
-    isoduration: ''
-    jsonpointer: '>1.13'
-    jsonschema: '>=4.19.2,<4.19.3.0a0'
     python: ''
+    idna: ''
     rfc3339-validator: ''
-    rfc3986-validator: '>0.1.0'
     uri-template: ''
+    fqdn: ''
+    isoduration: ''
+    jsonpointer: '>1.13'
     webcolors: '>=1.11'
+    rfc3986-validator: '>0.1.0'
+    jsonschema: '>=4.21.1,<4.21.2.0a0'
+  url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-with-format-nongpl-4.21.1-pyhd8ed1ab_0.conda
   hash:
-    md5: c447b7c28ad6bb3306f0015f1195c721
-    sha256: b06681b4499635f0ed901f4879122bfd3ff6ef28de1797367769a4ba6b990b0d
-  manager: conda
-  name: jsonschema-with-format-nongpl
+    md5: 26bce4b5405738c09304d4f4796b2c2a
+    sha256: 6e458c325c097956ac4605ef386f0d67bad5223041cedd66819892988b72f83a
+  category: main
   optional: false
-  platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-with-format-nongpl-4.19.2-pyhd8ed1ab_0.conda
-  version: 4.19.2
-- category: main
-  dependencies:
-    importlib_metadata: '>=4.8.3'
-    jupyter_core: '>=4.12,!=5.0.*'
-    python: '>=3.8'
-    python-dateutil: '>=2.8.2'
-    pyzmq: '>=23.0'
-    tornado: '>=6.2'
-    traitlets: '>=5.3'
-  hash:
-    md5: 6bd3f1069cdebb44c7ae9efb900e312d
-    sha256: 86cbb9070862cf23a245451efce539ca214e610849d0950bb8ac90c545bd158d
+- name: libcblas
+  version: 3.9.0
   manager: conda
-  name: jupyter_client
-  optional: false
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.0-pyhd8ed1ab_0.conda
-  version: 8.6.0
-- category: main
   dependencies:
-    libblas: 3.9.0 19_win64_mkl
+    libblas: 3.9.0
+  url: https://conda.anaconda.org/conda-forge/win-64/libcblas-3.9.0-21_win64_mkl.conda
   hash:
-    md5: 1b9ede5cff953aa1a5f4d9f8ec644972
-    sha256: 66c8934bf8ead1e3ab3653155697a7d70878e96115742b681aac16d9bd25dd3d
-  manager: conda
-  name: libcblas
+    md5: 38e5ec23bc2b62f9dd971143aa9dddb7
+    sha256: 886505d0a4a5b508b2255991395aadecdad140719ba0d413411fec86491a9283
+  category: main
   optional: false
-  platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/libcblas-3.9.0-19_win64_mkl.conda
+- name: liblapack
   version: 3.9.0
-- category: main
+  manager: conda
+  platform: win-64
   dependencies:
-    libblas: 3.9.0 19_win64_mkl
+    libblas: 3.9.0
+  url: https://conda.anaconda.org/conda-forge/win-64/liblapack-3.9.0-21_win64_mkl.conda
   hash:
-    md5: 574e6e8bcc85df2885eb2a87d31ae005
-    sha256: e53093eab7674528e9eafbd5efa28f3170ec1388b8df6c9b8343760696f47907
-  manager: conda
-  name: liblapack
+    md5: c4740f091cb75987390087934354a621
+    sha256: 3fa7c08dd4edf59cb0907d2e5b74e6be890e0671f845e1bae892d212d118a7e9
+  category: main
   optional: false
+- name: nbformat
+  version: 5.9.2
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/liblapack-3.9.0-19_win64_mkl.conda
-  version: 3.9.0
-- category: main
   dependencies:
-    jsonschema: '>=2.6'
     jupyter_core: ''
-    python: '>=3.8'
     python-fastjsonschema: ''
+    python: '>=3.8'
     traitlets: '>=5.1'
+    jsonschema: '>=2.6'
+  url: https://conda.anaconda.org/conda-forge/noarch/nbformat-5.9.2-pyhd8ed1ab_0.conda
   hash:
     md5: 61ba076de6530d9301a0053b02f093d2
     sha256: fc82c5a9116820757b03ffb836b36f0f50e4cd390018024dbadb0ee0217f6992
-  manager: conda
-  name: nbformat
-  optional: false
-  platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/nbformat-5.9.2-pyhd8ed1ab_0.conda
-  version: 5.9.2
-- category: main
-  dependencies:
-    prompt-toolkit: '>=3.0.39,<3.0.40.0a0'
-  hash:
-    md5: 4bbbe67d5df19db30f04b8e344dc9976
-    sha256: 89f7fecc7355181dbc2ab851e668a2fce6aa4830b336a34c93b59bda93206270
-  manager: conda
-  name: prompt_toolkit
+  category: main
   optional: false
-  platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/prompt_toolkit-3.0.39-hd8ed1ab_0.conda
-  version: 3.0.39
-- category: main
-  dependencies:
-    __win: ''
-    colorama: ''
-    decorator: ''
-    exceptiongroup: ''
-    jedi: '>=0.16'
-    matplotlib-inline: ''
-    pickleshare: ''
-    prompt_toolkit: '>=3.0.30,<3.1.0,!=3.0.37'
-    pygments: '>=2.4.0'
-    python: '>=3.9'
-    stack_data: ''
-    traitlets: '>=5'
-    typing_extensions: ''
-  hash:
-    md5: f303446f1ce22bd9173650d3e722e87b
-    sha256: e9da075dab85ad01df4355e264220e156273f719a62f6fad588a686616e86a9c
+- name: jupyter_events
+  version: 0.9.0
   manager: conda
-  name: ipython
-  optional: false
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/ipython-8.17.2-pyh5737063_0.conda
-  version: 8.17.2
-- category: main
   dependencies:
-    jsonschema-with-format-nongpl: '>=4.18.0'
+    rfc3339-validator: ''
+    referencing: ''
     python: '>=3.8'
-    python-json-logger: '>=2.0.4'
     pyyaml: '>=5.3'
-    referencing: ''
-    rfc3339-validator: ''
     rfc3986-validator: '>=0.1.1'
     traitlets: '>=5.3'
+    python-json-logger: '>=2.0.4'
+    jsonschema-with-format-nongpl: '>=4.18.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_events-0.9.0-pyhd8ed1ab_0.conda
   hash:
     md5: 00ba25993f0dba38cf72a7224e33289f
     sha256: 713f0cc927a862862a6d35bfb29c4114f987e4f59e2a8a14f71f23fcd7edfec3
-  manager: conda
-  name: jupyter_events
+  category: main
   optional: false
+- name: nbclient
+  version: 0.8.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_events-0.9.0-pyhd8ed1ab_0.conda
-  version: 0.9.0
-- category: main
   dependencies:
+    python: '>=3.8'
     jupyter_client: '>=6.1.12'
     jupyter_core: '>=4.12,!=5.0.*'
     nbformat: '>=5.1'
-    python: '>=3.8'
     traitlets: '>=5.4'
+  url: https://conda.anaconda.org/conda-forge/noarch/nbclient-0.8.0-pyhd8ed1ab_0.conda
   hash:
     md5: e78da91cf428faaf05701ce8cc8f2f9b
     sha256: 4ebd237cdf4bfa5226f92d2ae78fab8dba27696909391884dc6594ca6f9df5ff
-  manager: conda
-  name: nbclient
+  category: main
   optional: false
+- name: numpy
+  version: 1.26.4
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/nbclient-0.8.0-pyhd8ed1ab_0.conda
-  version: 0.8.0
-- category: main
   dependencies:
     libblas: '>=3.9.0,<4.0a0'
     libcblas: '>=3.9.0,<4.0a0'
     liblapack: '>=3.9.0,<4.0a0'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/numpy-1.26.4-py312h8753938_0.conda
   hash:
-    md5: a65e57fff208fd1d0f632e0afa8985d4
-    sha256: 3da6bcf524a4418d7d0dbc084c23c74e1f2fc4b19c34a5805f5e201e5d7fcd8f
-  manager: conda
-  name: numpy
+    md5: f9ac74c3b07c396014434aca1e58d362
+    sha256: 73570817a5109d396b4ebbe5124a89525959269fd33fa33fd413700289fbe0ef
+  category: main
   optional: false
+- name: qt-main
+  version: 5.15.8
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/numpy-1.26.0-py311h0b4df5a_0.conda
-  version: 1.26.0
-- category: main
   dependencies:
-    gst-plugins-base: '>=1.22.5,<1.23.0a0'
-    gstreamer: '>=1.22.5,<1.23.0a0'
+    gst-plugins-base: '>=1.22.9,<1.23.0a0'
+    gstreamer: '>=1.22.9,<1.23.0a0'
     icu: '>=73.2,<74.0a0'
     krb5: '>=1.21.2,<1.22.0a0'
     libclang: '>=15.0.7,<16.0a0'
     libclang13: '>=15.0.7'
-    libglib: '>=2.78.0,<3.0a0'
-    libjpeg-turbo: '>=2.1.5.1,<3.0a0'
-    libpng: '>=1.6.39,<1.7.0a0'
-    libsqlite: '>=3.43.0,<4.0a0'
+    libglib: '>=2.78.3,<3.0a0'
+    libjpeg-turbo: '>=3.0.0,<4.0a0'
+    libpng: '>=1.6.42,<1.7.0a0'
+    libsqlite: '>=3.45.1,<4.0a0'
     libzlib: '>=1.2.13,<1.3.0a0'
-    openssl: '>=3.1.2,<4.0a0'
+    openssl: '>=3.2.1,<4.0a0'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
     zstd: '>=1.5.5,<1.6.0a0'
+  url: https://conda.anaconda.org/conda-forge/win-64/qt-main-5.15.8-h9e85ed6_19.conda
   hash:
-    md5: b67cbf30e1c1c0dcb314e2705f088bc2
-    sha256: be746aad17335729eabc029a552c09e6afdcef1d6da14b8daa343cf306fae2b9
-  manager: conda
-  name: qt-main
+    md5: 1e5fa5b05768a8eed9d8bb0bf5585b1f
+    sha256: a132554a24f0617f54668479a29d9af80a2235653b08a4ebd200dcd30da971a8
+  category: main
   optional: false
+- name: contourpy
+  version: 1.2.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/qt-main-5.15.8-he5a7383_16.conda
-  version: 5.15.8
-- category: main
   dependencies:
     numpy: '>=1.20,<2'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/contourpy-1.2.0-py312h0d7def4_0.conda
   hash:
-    md5: 6e36537c6d0c16d2ee8ba8c3dd847662
-    sha256: d043a1cc9157ee25319fa85271cba38fc4c51caf4d38354176659d95629d04ab
-  manager: conda
-  name: contourpy
+    md5: 2f4496ef2b9e7a5ab9c866df31931028
+    sha256: 75a9369a76ab7af83bc17583f8fd5f2db2b33a1d937e3802aac4229c19956822
+  category: main
   optional: false
-  platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/contourpy-1.2.0-py311h005e61a_0.conda
-  version: 1.2.0
-- category: main
-  dependencies:
-    __win: ''
-    comm: '>=0.1.1'
-    debugpy: '>=1.6.5'
-    ipython: '>=7.23.1'
-    jupyter_client: '>=6.1.12'
-    jupyter_core: '>=4.12,!=5.0.*'
-    matplotlib-inline: '>=0.1'
-    nest-asyncio: ''
-    packaging: ''
-    psutil: ''
-    python: '>=3.8'
-    pyzmq: '>=20'
-    tornado: '>=6.1'
-    traitlets: '>=5.4.0'
-  hash:
-    md5: 10e1de12f78f0fedb82ff723f602b5c5
-    sha256: 7208f5ae35c321d03c71e4072c959c60f877d1b9cc2fb32d805972b54123fb95
+- name: nbconvert-core
+  version: 7.16.1
   manager: conda
-  name: ipykernel
-  optional: false
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.26.0-pyha63f2e9_0.conda
-  version: 6.26.0
-- category: main
   dependencies:
+    packaging: ''
     beautifulsoup4: ''
-    bleach: ''
     defusedxml: ''
-    entrypoints: '>=0.2.2'
+    bleach: ''
+    tinycss2: ''
+    jupyterlab_pygments: ''
+    python: '>=3.8'
     jinja2: '>=3.0'
+    entrypoints: '>=0.2.2'
     jupyter_core: '>=4.7'
-    jupyterlab_pygments: ''
+    traitlets: '>=5.0'
     markupsafe: '>=2.0'
-    mistune: '>=2.0.3,<4'
-    nbclient: '>=0.5.0'
-    nbformat: '>=5.1'
-    packaging: ''
     pandocfilters: '>=1.4.1'
+    nbformat: '>=5.1'
     pygments: '>=2.4.1'
-    python: '>=3.8'
-    tinycss2: ''
-    traitlets: '>=5.0'
+    nbclient: '>=0.5.0'
+    mistune: '>=2.0.3,<4'
+  url: https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.1-pyhd8ed1ab_0.conda
   hash:
-    md5: d59e0cb1ca993f8f910cfdf393232acf
-    sha256: 81732e083c4c85a52248e20ff0e40a14b0b49db9cc7ce414e8aa7d6f8980dad0
-  manager: conda
-  name: nbconvert-core
+    md5: 2537745e9bc0e9bfcf66a27f113ae0e5
+    sha256: 684e0710abd6477ed9df743506edecb4b53d1c9deeaf8d6d7fdbb82e58f43090
+  category: main
   optional: false
+- name: pandas
+  version: 2.2.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.11.0-pyhd8ed1ab_0.conda
-  version: 7.11.0
-- category: main
   dependencies:
-    numpy: '>=1.23.5,<2.0a0'
-    python: '>=3.11,<3.12.0a0'
+    numpy: '>=1.26.3,<2.0a0'
+    python: '>=3.12,<3.13.0a0'
     python-dateutil: '>=2.8.1'
     python-tzdata: '>=2022a'
-    python_abi: 3.11.* *_cp311
+    python_abi: 3.12.*
     pytz: '>=2020.1'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/pandas-2.2.0-py312h2ab9e98_0.conda
   hash:
-    md5: b4a17814deb47e22d9b5b091951c93a7
-    sha256: 6cae1500c0cd1ae1c25c525ed13b9de70666faeb8db39ff726b9a2a7f6343443
-  manager: conda
-  name: pandas
+    md5: 5cf40988e95c84634230633bc28b8cc7
+    sha256: 94a41280895fc7a30f44ab032e5170f2e6aafe8ba82f2f4614acb88dd2a8f562
+  category: main
   optional: false
+- name: pyqt
+  version: 5.15.9
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/pandas-2.1.2-py311hf63dbb6_0.conda
-  version: 2.1.2
-- category: main
   dependencies:
-    pyqt5-sip: 12.12.2 py311h12c1d0e_5
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    pyqt5-sip: 12.12.2
+    python: '>=3.12.0rc3,<3.13.0a0'
+    python_abi: 3.12.*
     qt-main: '>=5.15.8,<5.16.0a0'
     sip: '>=6.7.11,<6.8.0a0'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/pyqt-5.15.9-py312he09f080_5.conda
   hash:
-    md5: 29d36acae7ccbcb1f0ec4a39841b3197
-    sha256: 4608b9caafc4fa16d887f5af08e1bafe95f4cb07596ca8f5af184bf5de8f2c4c
-  manager: conda
-  name: pyqt
+    md5: fb0861092c40e5d054e984abd88e5ea8
+    sha256: c524cafaf98661f3bd5819494b41563fe5a851f6e44a7d08631c99f1dfb961c7
+  category: main
   optional: false
+- name: scipy
+  version: 1.12.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/pyqt-5.15.9-py311h125bc19_5.conda
-  version: 5.15.9
-- category: main
   dependencies:
     libblas: '>=3.9.0,<4.0a0'
     libcblas: '>=3.9.0,<4.0a0'
     liblapack: '>=3.9.0,<4.0a0'
-    numpy: '>=1.23.5,<2.0a0'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    numpy: '>=1.26.3,<2.0a0'
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/scipy-1.12.0-py312h8753938_2.conda
   hash:
-    md5: 67910f5db4ee7b8bbf39250c167d3a34
-    sha256: 1fc5493e5c6706c3e1a925090478f1c8306f493602cb8a4d935de8aa361be36c
-  manager: conda
-  name: scipy
+    md5: edaab613d30916045ea03d5f906cba67
+    sha256: 71bc446397e64ca2f221b82fa485a3940559e041360c9c042260f47ae6a5989e
+  category: main
   optional: false
+- name: shapely
+  version: 2.0.3
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/scipy-1.11.3-py311h0b4df5a_1.conda
-  version: 1.11.3
-- category: main
   dependencies:
-    geos: '>=3.12.0,<3.12.1.0a0'
-    numpy: '>=1.23.5,<2.0a0'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    geos: '>=3.12.1,<3.12.2.0a0'
+    numpy: '>=1.26.4,<2.0a0'
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/shapely-2.0.3-py312h7d70906_0.conda
   hash:
-    md5: 617eaf53ee620cdb0f3b5928c054e6af
-    sha256: 23adfdb0f4911fd58845485d318e647161b8c2b316c5c0f40ca40295d09e96e3
-  manager: conda
-  name: shapely
+    md5: 246e222db0eb7cd8d82a543b708176a7
+    sha256: 76b66f2f5be07c2d809c02c7224db359d189f3e24a3658a9393f5b47598996ba
+  category: main
   optional: false
+- name: jupyter_server
+  version: 2.12.5
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/shapely-2.0.2-py311h72efec2_0.conda
-  version: 2.0.2
-- category: main
   dependencies:
-    anyio: '>=3.1.0'
-    argon2-cffi: ''
-    jinja2: ''
-    jupyter_client: '>=7.4.4'
-    jupyter_core: '>=4.12,!=5.0.*'
-    jupyter_events: '>=0.6.0'
-    jupyter_server_terminals: ''
-    nbconvert-core: '>=6.4.4'
-    nbformat: '>=5.3.0'
-    overrides: ''
     packaging: ''
+    jinja2: ''
     prometheus_client: ''
+    websocket-client: ''
+    argon2-cffi: ''
+    overrides: ''
+    jupyter_server_terminals: ''
     python: '>=3.8'
-    pyzmq: '>=24'
-    send2trash: '>=1.8.2'
     terminado: '>=0.8.3'
+    jupyter_core: '>=4.12,!=5.0.*'
     tornado: '>=6.2.0'
+    nbconvert-core: '>=6.4.4'
+    pyzmq: '>=24'
+    jupyter_client: '>=7.4.4'
+    nbformat: '>=5.3.0'
     traitlets: '>=5.6.0'
-    websocket-client: ''
+    anyio: '>=3.1.0'
+    send2trash: '>=1.8.2'
+    jupyter_events: '>=0.9.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_server-2.12.5-pyhd8ed1ab_0.conda
   hash:
-    md5: 016d56f5d81b9364d1da5f4895a2a9f8
-    sha256: 0b9a72f28ff8a12e6ea0ae43d3ea93e288074d29348c5fc6fbb3a5e5e18b2ecd
-  manager: conda
-  name: jupyter_server
+    md5: 755177a956fa6dd90d5cfcbbb5084de2
+    sha256: 43dcd238c656c7ecf3228be8735def530cad5181f990c042ba202b9e383d2b1f
+  category: main
   optional: false
+- name: matplotlib-base
+  version: 3.8.3
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyter_server-2.10.0-pyhd8ed1ab_0.conda
-  version: 2.10.0
-- category: main
   dependencies:
     certifi: '>=2020.06.20'
     contourpy: '>=1.0.1'
     cycler: '>=0.10'
     fonttools: '>=4.22.0'
     freetype: '>=2.12.1,<3.0a0'
-    kiwisolver: '>=1.0.1'
-    numpy: '>=1.23.5,<2.0a0'
+    kiwisolver: '>=1.3.1'
+    numpy: '>=1.26.4,<2.0a0'
     packaging: '>=20.0'
-    pillow: '>=6.2.0'
+    pillow: '>=8'
     pyparsing: '>=2.3.1'
-    python: '>=3.11,<3.12.0a0'
+    python: '>=3.12,<3.13.0a0'
     python-dateutil: '>=2.7'
-    python_abi: 3.11.* *_cp311
+    python_abi: 3.12.*
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/matplotlib-base-3.8.3-py312h26ecaf7_0.conda
   hash:
-    md5: f30686cbbc29182d7135e21021040690
-    sha256: b63c2e567075a7eab18f172cb1ff490c35d101753ca7cc9303fc665302da637b
-  manager: conda
-  name: matplotlib-base
+    md5: 61dd1bddda8329454b5e1428646b5fe2
+    sha256: 70a548c7cf8d61d055a5daf5dce3b95e4d0ad698d35f932e1f39c0462eda2898
+  category: main
   optional: false
+- name: basemap
+  version: 1.4.1
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/matplotlib-base-3.7.3-py311h6e989c2_0.conda
-  version: 3.7.3
-- category: main
   dependencies:
-    basemap-data: '>=1.3.2,<2.0a0'
-    geos: '>=3.12.0,<4.0a0'
-    matplotlib-base: '>=1.5,<3.8'
-    numpy: '>=1.25.2,<2.0a0'
-    pyproj: '>=1.9.3,<3.6'
-    pyshp: '>=1.2.0,<2.4'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    basemap-data: ''
+    geos: '>=3.12.1,<3.12.2.0a0'
+    matplotlib-base: '>=1.5,<3.9'
+    numpy: '>=1.26.4,<2.0a0'
+    pyproj: '>=1.9.3,<3.7.0'
+    pyshp: '>=1.2.0,<2.4.0'
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/basemap-1.4.1-np126py312h67d5959_0.conda
   hash:
-    md5: e3634628f9bc2dabe4226371fddde430
-    sha256: e62eeaa741998e843a00820494f9e53211032fe2b31f928a190d9edc39d7b605
-  manager: conda
-  name: basemap
+    md5: 27959885acb93833f71093dadd5b3e88
+    sha256: 38f8cd987a2c95ef07c1e9153a26832d94550cbf1dccd54978368f84d42f8a2c
+  category: main
   optional: false
+- name: cartopy
+  version: 0.22.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/basemap-1.3.8-py311hdf67adf_0.conda
-  version: 1.3.8
-- category: main
   dependencies:
     matplotlib-base: '>=3.4'
-    numpy: '>=1.23.5,<2.0a0'
+    numpy: '>=1.26.0,<2.0a0'
     packaging: '>=20'
     pyproj: '>=3.1.0'
     pyshp: '>=2.1'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
     shapely: '>=1.7'
     ucrt: '>=10.0.20348.0'
     vc: '>=14.2,<15'
     vc14_runtime: '>=14.29.30139'
+  url: https://conda.anaconda.org/conda-forge/win-64/cartopy-0.22.0-py312h2ab9e98_1.conda
   hash:
-    md5: bb377a8ca27a0f3f99e37676da02f78a
-    sha256: da2c45702e519659e937432e7429e89feee9653ee7f7ed0d7f7898eed48fcc8a
-  manager: conda
-  name: cartopy
+    md5: bd02b811694678e3911a6f62cd9ed52f
+    sha256: 3f2573dd1b6a94dd3d4a598d662362b02072eb1d98575d4aab6496b0fa7e88cb
+  category: main
   optional: false
+- name: jupyter-lsp
+  version: 2.2.2
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/cartopy-0.22.0-py311hf63dbb6_1.conda
-  version: 0.22.0
-- category: main
   dependencies:
+    python: '>=3.8'
     importlib-metadata: '>=4.8.3'
     jupyter_server: '>=1.1.2'
-    python: '>=3.8'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyter-lsp-2.2.2-pyhd8ed1ab_0.conda
   hash:
-    md5: 38589f4104d11f2a59ff01a9f4e3bfb3
-    sha256: 16fc7b40024adece716ba7227e5c123a2deccc13f946a10d9a3270493908d11c
-  manager: conda
-  name: jupyter-lsp
+    md5: ed56b103cac2db68f22909e9f5cca6b6
+    sha256: d8ab253be3df67be1b31fe040a8386e071ff065ef4442b94a722a45fa3562fbe
+  category: main
   optional: false
+- name: jupyterlab_server
+  version: 2.25.3
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyter-lsp-2.2.0-pyhd8ed1ab_0.conda
-  version: 2.2.0
-- category: main
   dependencies:
-    babel: '>=2.10'
-    importlib-metadata: '>=4.8.3'
+    python: '>=3.8'
+    packaging: '>=21.3'
     jinja2: '>=3.0.3'
-    json5: '>=0.9.0'
-    jsonschema: '>=4.18'
+    importlib-metadata: '>=4.8.3'
     jupyter_server: '>=1.21,<3'
-    packaging: '>=21.3'
-    python: '>=3.8'
+    babel: '>=2.10'
+    json5: '>=0.9.0'
     requests: '>=2.31'
+    jsonschema: '>=4.18'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_server-2.25.3-pyhd8ed1ab_0.conda
   hash:
-    md5: 5cf15f8fd42c77af4eb1611fe614df2f
-    sha256: 5f373d9adc11b6d49bee06a4c6bea9623fff1d2a0b798edc2e3f594680aa18f3
-  manager: conda
-  name: jupyterlab_server
+    md5: 78f28bcd22aadca6ec8eaff4319e6610
+    sha256: 30269e4ab0e67935b15b012e5e97f5c5c72111d0f02e03b3c644e556fe1a5275
+  category: main
   optional: false
+- name: matplotlib
+  version: 3.8.3
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_server-2.25.1-pyhd8ed1ab_0.conda
-  version: 2.25.1
-- category: main
   dependencies:
-    matplotlib-base: '>=3.7.3,<3.7.4.0a0'
+    matplotlib-base: '>=3.8.3,<3.8.4.0a0'
     pyqt: '>=5.10'
-    python: '>=3.11,<3.12.0a0'
-    python_abi: 3.11.* *_cp311
+    python: '>=3.12,<3.13.0a0'
+    python_abi: 3.12.*
     tornado: '>=5'
+  url: https://conda.anaconda.org/conda-forge/win-64/matplotlib-3.8.3-py312h2e8e312_0.conda
   hash:
-    md5: ff72f8169259c0eaf82096b030505701
-    sha256: eb0250790b92cf6126e7c2396a7c1d65cdcb63ff292d304e1018e83543240b24
-  manager: conda
-  name: matplotlib
+    md5: ab33ab32d357937a0c165fbe5dec854c
+    sha256: a8f9f94ed6be01eb6c4bc2327b3206dc2e87d0901d6330fe1aa069df82b92d5e
+  category: main
   optional: false
+- name: notebook-shim
+  version: 0.2.4
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/win-64/matplotlib-3.7.3-py311h1ea47a8_0.conda
-  version: 3.7.3
-- category: main
   dependencies:
-    jupyter_server: '>=1.8,<3'
     python: '>=3.7'
+    jupyter_server: '>=1.8,<3'
+  url: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_0.conda
   hash:
-    md5: 67e0fe74c156267d9159e9133df7fd37
-    sha256: f028d7ad1f2175cde307db08b60d07e371b9d6f035cfae6c81ea94b4c408c538
-  manager: conda
-  name: notebook-shim
+    md5: 3d85618e2c97ab896b5b5e298d32b5b3
+    sha256: 9b5fdef9ebe89222baa9da2796ebe7bc02ec6c5a1f61327b651d6b92cf9a0230
+  category: main
   optional: false
+- name: jupyterlab
+  version: 4.1.2
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.3-pyhd8ed1ab_0.conda
-  version: 0.2.3
-- category: main
   dependencies:
-    async-lru: '>=1.0.0'
-    importlib_metadata: '>=4.8.3'
-    importlib_resources: '>=1.4'
+    packaging: ''
+    traitlets: ''
+    tomli: ''
     ipykernel: ''
-    jinja2: '>=3.0.3'
-    jupyter-lsp: '>=2.0.0'
     jupyter_core: ''
+    python: '>=3.8'
+    tornado: '>=6.2.0'
+    jinja2: '>=3.0.3'
+    importlib_metadata: '>=4.8.3'
     jupyter_server: '>=2.4.0,<3'
+    importlib_resources: '>=1.4'
+    jupyter-lsp: '>=2.0.0'
+    async-lru: '>=1.0.0'
     jupyterlab_server: '>=2.19.0,<3'
     notebook-shim: '>=0.2'
-    packaging: ''
-    python: '>=3.8'
-    tomli: ''
-    tornado: '>=6.2.0'
-    traitlets: ''
+    httpx: '>=0.25.0'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.1.2-pyhd8ed1ab_0.conda
   hash:
-    md5: 299796efa08ad91c602fa4d0c5ecc86f
-    sha256: fe5ca6c8bbda69af332593d7f9592aa19d9ab98d34c647ed0d8fbbae88b29a95
-  manager: conda
-  name: jupyterlab
+    md5: ffcabe653273b2b81a30c82d625bd5e8
+    sha256: d4be2239d93c7db7db911b0e992bde6110f50cd705c23ac7e43483ded90a57ed
+  category: main
   optional: false
+- name: jupyterlab-plotly-extension
+  version: 1.0.0
+  manager: conda
   platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.0.8-pyhd8ed1ab_0.conda
-  version: 4.0.8
-- category: main
   dependencies:
     jupyterlab: ''
     nodejs: ''
     python: '>=3.5'
+  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-plotly-extension-1.0.0-py_0.tar.bz2
   hash:
     md5: 0996a9698037d8a707168956e3abba16
     sha256: 8ef5b70f61d995093db82d0bb5f770426d4f270848b2cfd826b8d3df34a060e4
-  manager: conda
-  name: jupyterlab-plotly-extension
+  category: main
   optional: false
-  platform: win-64
-  url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-plotly-extension-1.0.0-py_0.tar.bz2
-  version: 1.0.0
-version: 1
diff --git a/environment.yml b/environment.yml
index c51efdd9c04b1e0d3fdc4d557fbed20a1d4a49f8..1c684ac4c2f7a087a3e06c866d705d4e826f0166 100644
--- a/environment.yml
+++ b/environment.yml
@@ -11,4 +11,7 @@ dependencies:
   - plotly
   - jupyterlab-plotly-extension
   - scipy
+  - jupyterlab
+  - ipython
+  
   
diff --git a/examples/3_Orbit_Definition.ipynb b/examples/3_Orbit_Definition.ipynb
index dfcc5ffd36ec8b1de6cfb8f8535a4457ceae44e5..797ec321ea72260e65c62cf90f8defc4a9e89934 100644
--- a/examples/3_Orbit_Definition.ipynb
+++ b/examples/3_Orbit_Definition.ipynb
@@ -34,7 +34,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 10,
+   "execution_count": 43,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -52,7 +52,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": 44,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -69,7 +69,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 12,
+   "execution_count": 45,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -136,7 +136,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 13,
+   "execution_count": 46,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -148,7 +148,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 14,
+   "execution_count": 47,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -166,7 +166,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 15,
+   "execution_count": 48,
    "metadata": {},
    "outputs": [
     {
@@ -175,7 +175,7 @@
        "<KeplerianOrbit: Keplerian parameters: {a: 2.446456E7; e: 0.7311; i: 6.997991918168848; pa: 178.00996553801494; raan: 57.68596377156641; v: 25.421887733782746;}>"
       ]
      },
-     "execution_count": 15,
+     "execution_count": 48,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -186,7 +186,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 16,
+   "execution_count": 49,
    "metadata": {},
    "outputs": [
     {
@@ -195,7 +195,7 @@
        "<OrbitType: KEPLERIAN>"
       ]
      },
-     "execution_count": 16,
+     "execution_count": 49,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -302,7 +302,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 17,
+   "execution_count": 50,
    "metadata": {},
    "outputs": [
     {
@@ -311,7 +311,7 @@
        "<Orbit: Cartesian parameters: {P(-1076225.324679696, -6765896.364327722, -332308.7833503755), V(9356.857420553722, -3312.347633206248, -1188.0157333024204)}>"
       ]
      },
-     "execution_count": 17,
+     "execution_count": 50,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -322,7 +322,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 18,
+   "execution_count": 51,
    "metadata": {},
    "outputs": [
     {
@@ -331,7 +331,7 @@
        "<Orbit: equinoctial parameters: {a: 2.446456E7; ex: -0.4120368028876257; ey: -0.6039311906717055; hx: 0.032685651234488015; hy: 0.051675555094569635; lv: 261.11781704336414;}>"
       ]
      },
-     "execution_count": 18,
+     "execution_count": 51,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -342,7 +342,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 19,
+   "execution_count": 52,
    "metadata": {},
    "outputs": [
     {
@@ -351,7 +351,7 @@
        "<Orbit: circular parameters: {a: 2.446456E7, ex: -0.7306590604464844, ey: 0.025387937833951824, i: 6.997991918168848, raan: 57.68596377156641, alphaV: 203.4318532717977;}>"
       ]
      },
-     "execution_count": 19,
+     "execution_count": 52,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -380,7 +380,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 20,
+   "execution_count": 53,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -391,7 +391,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 21,
+   "execution_count": 54,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -403,7 +403,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 22,
+   "execution_count": 55,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -423,7 +423,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 23,
+   "execution_count": 56,
    "metadata": {},
    "outputs": [
     {
@@ -432,7 +432,7 @@
        "<TimeStampedPVCoordinates: {2000-01-01T11:58:55.816, P(-4430688.814101733, -4950845.186894561, -4699999.637262113), V(5898.915766042544, -7268.899236563428, 1672.2669437202949), A(4.375511359024968, 5.311239823172287, -1.7162298995777892)}>"
       ]
      },
-     "execution_count": 23,
+     "execution_count": 56,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -469,7 +469,7 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -483,7 +483,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.11.6"
+   "version": "3.12.2"
   }
  },
  "nbformat": 4,
diff --git a/examples/Example_EarthObservation_-_Attitude_Sequence.ipynb b/examples/Example_EarthObservation_-_Attitude_Sequence.ipynb
index 97a50d40e0d7ff7b0dc746fe393f220b08eb7fb2..aced8424cf9e29666547e27e242c979dd6d48610 100644
--- a/examples/Example_EarthObservation_-_Attitude_Sequence.ipynb
+++ b/examples/Example_EarthObservation_-_Attitude_Sequence.ipynb
@@ -55,7 +55,7 @@
     {
      "data": {
       "text/plain": [
-       "<jcc.JCCEnv at 0x7f70e45c2770>"
+       "<jcc.JCCEnv at 0x7459685ba950>"
       ]
      },
      "execution_count": 3,
@@ -298,7 +298,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 16,
+   "execution_count": 15,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -308,7 +308,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 17,
+   "execution_count": 16,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -332,7 +332,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 18,
+   "execution_count": 17,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -361,7 +361,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 19,
+   "execution_count": 18,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -384,7 +384,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 20,
+   "execution_count": 19,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -404,7 +404,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 21,
+   "execution_count": 20,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -421,7 +421,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 22,
+   "execution_count": 21,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -462,7 +462,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 23,
+   "execution_count": 22,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -482,7 +482,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 24,
+   "execution_count": 23,
    "metadata": {},
    "outputs": [
     {
@@ -582,7 +582,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 25,
+   "execution_count": 24,
    "metadata": {},
    "outputs": [
     {
@@ -608,7 +608,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 26,
+   "execution_count": 25,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -617,7 +617,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 27,
+   "execution_count": 26,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -626,12 +626,12 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 28,
+   "execution_count": 27,
    "metadata": {},
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnoAAAHNCAYAAACJjdZcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOAUlEQVR4nO2dd3wU1fr/P5seIAkgkIQOokAIJdSE0EsQG4oIKoJckStiQ+Tyu8j3XrGi3isExYoKVsArYKVFkWYIPbTQVCCUhFCT0FLn98dxtiSbZHezU3bm83699rWT2cnMc2bn7HnO55zzPBZJkiQQQgghhBDD4ae1AYQQQgghRBno6BFCCCGEGBQ6eoQQQgghBoWOHiGEEEKIQaGjRwghhBBiUOjoEUIIIYQYFDp6hBBCCCEGJUBrA4xAcXExdu3ahcjISPj50XcmhBBCfIHS0lKcOXMGcXFxCAgwpktkzFKpzK5du9C9e3etzSCEEEKIB2zduhXdunXT2gxFoKPnBSIjIwGIByU6OlpjawghhBDiCllZWejevbu1HTcidPS8gDxcGx0djcaNG2tsDSGEEELcwcjTroxbMkIIIYQQk0NHjxBCCCHEoNDRI4QQQggxKHT0CCGEEEIMCh09QgghhBCDQkePEEIIIcSg0NEjhBBCCDEodPQIIYQQQgwKHT1CCCGEEINCR48QQgghxKDQ0SOEEEIIMSh09AghhBBCDAodPUIIIYQQgxKgtQGEbDy+EdN+noZrRde0NkVXlJYCZ3KAa1eBqGigRqjWFumPdg3a4bO7PoO/n7/WpuiKZ1c/i1+O/qK1Gbrj6jUg9xIQGgrUrq21NfojwC8A03tNxz0x92htCvEidPSI5nyS/gnSTqZpbYY+sQCoCeTnAcjT2hj9sfvMbvwz8Z9oH9lea1N0w+XCy5idNltrM/SLH4AC4PgZrQ3RJ/O2zaOjZzDo6BHNKSguAABM7DIRw9sO19gabTl8GHjnXeBAhvg7Khpo2hTYukX83bkz8I9pwA11tbNRL4xeNhpnr55FQUmB1qboCrk+AcCq0avgZzHfDJ2SUmDjRiBlDbB9ByCViv2BQUCbNsDePeLv4fcAf/874GfRzla9kHoiFTPXz3R4fogxoKNHNKeotAiAGIYbfONgja3Rhpwc4LnngE8+ASQJqFkTmDEDeOYZIDgY+Ogj4OmngZ3fAE+uAxYuBG67TWurtaVWUC2cvXoWRSVFWpuiK+T6ZIEFQ1oN0dgabRg/XtQlmcRE4KGHgJEjgYgIIDlZ1K1l/wHCzwLz5wMBJm8NC0sKAdieH2IczNfVI7pDbqgD/QI1tkQbMjOBdu2Ajz8WTt7o0cChQ8D06UBICGCxABMmADt2AB07AufOAbffDjz1FHD9utbWa0egv3he2DA5Yq1P/uasT2vXCifPYhGdp8OHgU2bRB2KiBDHTJ4MfPop4O8vOk333mvuugTY1Sd2nAwHHT2iOXJDbdaGafp04by1aSMapC++ABo1Kn9c27ZAWppQ9gDg7beFU2hW5I4BGyZHrPXJhB2n69eBiRPF9mOPAa+8Atx0k/Njx44Fli0Tivm33wqFPD9fNVN1h7U+seNkOOjoEc0xs6K3dSvw1VdCffjySzHEVBkhIWLY6ccfhRqxbBnw22+qmKo7qOg5x8yK3muvAUeOAFFRwKuvVn38nXcCK1cCtWoJJXDgQCDPpIueqOgZFzp6RHPMquhJEjBlitgeO1YstHCV224D/vY3sf3cc+JcZoOKnnPMqugdOgTMmiW25861DdNWRf/+wK+/AjfcAGzbBsw26YJlKnrGhY4e0RyzKnqyGhcaKoaY3OXf/xbDThs2AGvWeN8+vUNFzzlmVPQkSQzZFhYCQ4eKOXfu0LUr8P77YnvuXHOqelT0jAsdPaI5ZlT0CgqAadPE9j/+4XxOXlU0aQJMmiS2n3tOBFg2E1T0nGNGRe+zz4B160Sn6Z13xFQIdxk+XMyDvXQJePddb1uof6joGRc6ekRz5IY6wM888Q3eeQf4808xl+gf//D8PNOni/lFO3cCS5d6zz5fQH5e2DA5Yrb6dP48MHWq2H7+eaBFC8/O4+cnOkwA8OabwJUr3rHPV7DWJ3acDAcdPaI5xaXFAMyjQJw/D7z0kth+5RXhqHlK/frAs8+K7X/9Cygurr59voKsAMvPDxFY65NJFPJp08Sq9dhY25xXT7nvPqBlS3G++fO9Y5+vwPpkXOjoEc0x29Dtiy+K4aEOHUQQ1+oyZYqYSH7okBjCMgscunWOmYZuN2ywBUb+4AMgsJpFDggA/vlPsf2f/4gpFmaBQ7fGhY4e0RwzLcY4fNg2/+fNN0WIlOoSHi6GcAFg5kzzBH7lYgznmGUxRkmJLWbe3/8O9OzpnfOOHQs0bgycPi2CKZsFLsYwLnT0iOaYSdGbNk0Mr952GzBokPfOO2mSWNBx4oRt9aDRoaLnHLMoeqtXAwcOAHXqiPh53iI42LZQ6rXXgCKTPF7y81IilUAyY7wmA+NTjt6GDRtwxx13oGHDhrBYLPj2228rPX7ZsmUYPHgw6tevj/DwcCQkJGD16tUOxyxcuBAWi6Xc67pZZBEdYBZFb/164LvvhIr3n/9499yhoWIiOiACxZohwj8VPeeYRdH7+GPxPnascPa8ySOPAA0aAMeOiYDmZsD+eWGdMhY+5ehduXIFHTt2xLx581w6fsOGDRg8eDBWrFiBHTt2oH///rjjjjuwa9cuh+PCw8ORlZXl8AoJCVGiCMQJZlH05GCujz4qwjh4m7/9TaR7OntWZM8wOlT0nGMGRe/sWeD778X2+PHeP39oqG0l76uvimFio2P/vLBOGQufWn8/dOhQDB061OXjk8u0dq+++iq+++47/PDDD4iLi7Put1gsiIqK8paZxE3MoOidPg2kpIjt6q4MrIiAALGa9777gP/+F3jiCe8rHXqCk8edYwZF7/PPxRSIbt2A9u2VucbEiaJzdvgw8M03wKhRylxHL1DRMy4+pehVl9LSUuTn56Nu3boO+y9fvoxmzZqhcePGuP3228spfmUpKChAXl6e9ZVvhnEyBTGDovfVVyKgcWIicOONyl3n3nuBdu1EZP8lS5S7jh7g5HHnGF3RkyTbsK0Sap5MWBgwebLYfvll4wckp6JnXEzl6L355pu4cuUKRo4cad3Xpk0bLFy4EN9//z0WLVqEkJAQJCYm4siRIxWeZ9asWYiIiLC+YmJi1DDfsBhd0ZMk4NNPxfbYscpey88PGDdObH/5pbLX0hoqes4xuqK3ZQuQkSGGV++7T9lrPfmkcPj27QN++EHZa2mNxWKBv0WEAWCdMhamcfQWLVqEmTNnYsmSJWjQoIF1f3x8PB588EF07NgRvXv3xtdff42bb74Zb7/9doXnmj59OnJzc62vjIwMNYpgSCRJMryit3u3aCiCg93PwekJ998vUkBt2iQmkxsVKnrOMbqiJ6t5I0YAERHKXqtOHTEFAhDhkIwO65QxMYWjt2TJEowfPx5ff/01BlUR08LPzw/dunWrVNELDg5GeHi49RUWFuZtk01DiWSb5WzUlE1yEOM771RnzlyjRkD//mLbyCsGmQLNOUZOgXb5MrB4sdhWctjWnscfFx2njRtF+CIjwzplTAzv6C1atAjjxo3DV199hdtuu63K4yVJQnp6OqKjo1Wwjtin2zGiAlFcbBtCVXrY1p7Ro8X7l1+KoWMjIj8vTNnkiJFToP3vf8LZa9UK6NNHnWs2agT07m27vpFhnTImPuXoXb58Genp6UhPTwcAHD16FOnp6cjMzAQghlTH2rWmixYtwtixY/Hmm28iPj4e2dnZyM7ORm5urvWYF154AatXr8aff/6J9PR0jB8/Hunp6Zgoh1wnimI/RGDEhmnNGiAnR+SkHTJEvevec48YKs7IEEPHRoTDTM4x8tCtnO7s4YeFyqYW8opbWU00KqxTxsSnHL3t27cjLi7OGhplypQpiIuLw7///W8AQFZWltXpA4APPvgAxcXFePzxxxEdHW19Pf3009ZjLl26hL///e9o27YtkpKScOrUKWzYsAHdu3dXt3AmxX6IwIgNkzxs+8AD1c/D6Q4REcAdd4htoy7K4GIM5xh1cdOhQ2LeqZ+fd3JEu8OIEeK627YBf/yh7rXVhHXKmPjUJI5+/fpVmpplYZnEhOvWravynHPmzMGcOXOqaRnxFPueo9HmFF26BMjJW9QctpUZPVrE//rqK5HKyRt5dfUEM2M4x6iLm2Q1b+hQoGFDda/doAEwYADw88/A11/bcksbDSp6xsSnFD1iPORGKcAvABY1x2JU4JtvgIICEdfOLj63agwdCtSuLYI1r1+v/vWVhpkxnGNERa+oyBaiSK1FGGWRQ7kYefiWip4xoaNHNMWIjZKMPGw7dqy684lkgoMBOWSkEYdvqeg5x4iK3ooVwJkzQlm7/XZtbLj7bpF9Zs8e4MABbWxQGip6xoSOHtEUIzZKAPDnnyIcg8ViWwGrBfK1v/kGuH5dOzuUgIqec4zYeZJj540dq+5cV3vq1rUtqDJq1hkqeu4xa9YsWCwWTJZTqEBE7pg5cyYaNmyI0NBQ9OvXD/v379fOSNDRIxpjxEYJAL74QrwPGiTCM2hFr15AkyYiJdqPP2pnhxJQ0XOO0TpPWVlC0QPEalstkVffLllizLBFVPRcZ9u2bfjwww/RoUMHh/1vvPEGZs+ejXnz5mHbtm2IiorC4MGDNU2VSkePaIrRGiVANAD2w7Za4ucnVvwCxhu+paLnHKN1nr78EigpARISgLZttbVl2DAxJeLgQTGEazTMrOjl5+c75LAvKCio8NjLly9j9OjRmD9/PurYRcGXJAnJycmYMWMGhg8fjtjYWHz66ae4evUqvtIwej0dPaIpRmuUAGDzZhGCoWZNMa9Hax58ULyvWAFcuKCtLd6Eip5zjNZ5Wr5cvMvPsZaEhwO33iq2jTh8a2ZFLyYmxiGH/axZsyo89vHHH8dtt91WLtPW0aNHkZ2djaSkJOu+4OBg9O3bF6mpqYrZXhV09Iim2K+6NQqymjdihHD2tCY2FujQASgsFHP1jII1XZMJG6XKMFKdOntWdJwAW1xIrbFffWu04Vszp0DLyMhwyGE/vYIYOosXL8bOnTudOoLZ2dkAgMjISIf9kZGR1s+0gI4e0RSjpWsqKLD19LUetrXHPiWaUWC6JudY65QBVPKffhLOVFycmGuqB267DahRAzh6FNi+XWtrvIuZ61RYWJhDDvvg4OByx5w4cQJPP/00vvjiC4SEhFR4rrKhwiRJ0jR8GB09oilGG7pdv14ESo6KAvr109oaG/ffL1YAb9gA2CWP8Wk4dOsca50yQOfp++/F+513amuHPTVr2uwxWkw9Mw/dusKOHTuQk5ODLl26ICAgAAEBAVi/fj3eeustBAQEWJW8supdTk5OOZVPTejoEU0x2nwieWXr7beLhRB6oUkToG9fsb1okba2eAsuxnCOUXLdXr8OrF4ttvXk6AG21bdffw2Ulmprizcx82IMVxg4cCD27t2L9PR066tr164YPXo00tPT0bJlS0RFRSElJcX6P4WFhVi/fj169uypmd06aoqIGTGSoidJjo6e3rj/fvEuT273dajoOccoit7atcDVqyI8kRaZZSrjllvEwoyTJwEN59h7HSp6lRMWFobY2FiHV82aNXHDDTcgNjbWGlPv1VdfxfLly7Fv3z6MGzcONWrUwANy+AMNoKNHNMVIit7Bg2LeTlAQMHCg1taUR3Y+t24Vk9x9HSp6zjGKovfDD+L9zju1ySxTGSEhwF13iW0jDd9S0as+06ZNw+TJkzFp0iR07doVp06dwpo1axAWFqaZTXT0iKYYSdGT1bz+/YFatbS1xRkNGwKdOgnlcdUqra2pPlT0nGMERU+SbPPz9LLatizy6tv//Q8oNsjaBSp67rNu3TokJydb/7ZYLJg5cyaysrJw/fp1rF+/HrGxsdoZCDp6RGOMpOjpedhW5rbbxPtPP2lrhzegouccIyh6O3cCp0+LhQ/9+2ttjXMGDRJp0XJygN9+09oa70BFz5jQ0SOaYhRF7+JF24+97EzpEdm21at9X4WgouccIyh6spo3ZIgYJtUjgYHA0KFie+VKbW3xFuw8GRM6ekRTjKLorV4t0jTFxAAtWmhtTcV07w7ccIMIASMHovVV2Cg5xwiKnh7DqjjDcI4eO0+GhI4e0RS5kfb1KP6+MGwLAP7+YsUg4PvDt2aO4l8Zvl6nTpwA0tNFeCI53ZheGTJELBTZswc4dUpra6oPs80YEzp6RFOMoD4UF9t69Hp39ADb8O2KFdraUV04cdw5vq6Sy6ttExKA+vW1taUq6tUDunUT24ZY4MQ5eoaEjh7RFCOkQEtLAy5cAOrUEY2T3hkyRKgle/f6dpYMuVGSIKFUMlDU2mri6ynQfGXYVkYevjWEo+dv3hRoRoaOHtEUIyzGkIdAhw4FAnxgtKxuXZtD6suqnn3ngKqeDV9ejJGXJwIlA77n6KWkGGCBE+e9GhI6ekRTjDB0K8/P0/Nq27IYYfjW/pnhUJMNX65Ta9YARUXATTcBrVtrbY1rdO0qFjjl5hpggRMXYxgSOnpEU3xZfQCAY8eAffvEUKi8yMEXkCe5//KLyCnqi1DRc44v1yk9Z8OoCH9/MR0C8P3Vt5yjZ0zo6BFN8WX1AbAN2yYmiiFRX6FDB5FD9OpVYN06ra3xDCp6zvHVOlVcbKtPes2GURFGCbPCBU7GhI4e0RRfVh8AW8PkC6tt7bFYbKqerw7fWiwW+Fv8AbBhssdX69TmzcD582JRU2Ki1ta4hxxmJT0dyMrS2hrPoaJnTOjoEU3xVfUBAK5csU0c96X5eTL26dAkSVtbPIVzihyRJMln65S82va223xjUZM99euLuXqAb6++paJnTOjoEU3xVfUBEPPbCgqA5s1FRgxfY+BAICgI+PNP4NAhra3xDK4SdKREKrFu+1qdsp+f54sYYfiWip4xoaNHNMVX1QfAMRuGr0wct6dWLaBvX7Htq8O3VPQcsXd4falOHTsmOhv+/kBSktbWeIYRwqxQ0TMmdPSIpsgNtK+la5Ik352fZ4/98K0vwpRNjtg7vL5Up375Rbz36AFERGhri6d062bLI52WprU1nsG0gsaEjh7RFF8duk1PB06fBmrWtKlivojs6G3YIILV+hocanLEQdHzoTr188/ifdAgbe2oDvZqpK8O33IqhDGho0c0xVfTNckK2KBBQEiItrZUh1atRHDa4mJbY+tLMGWTI/b3QV6RrHdKS22Kni87eoDvz9NjfTImdPSIpvhqAnbZKfKlIMkV4cvDt1QgHLGf82rxkYmje/YAZ8+KOaPx8VpbUz3kwMm7dgHZ2dra4glUyI0JHT2iKb6Y6/bKFSA1VWwPHKitLd7APp5eaam2trgLF2M44otTIeROU9++QKDvmO2UBg1sYVZWr9bWFk/gYgxjQkePaIovKnqbNol8nE2aiKFPX6dPHzHXMDtbpHPzJajoOeKLq9iNMD/PHl8evqWiZ0zo6BFN8UVFT55PNHCgb4ZVKUtwMNC7t9iWy+YrUNFzxNcUvYICsRAIMJ6jt2aN74VZoaJnTOjoEU3xRUXP3tEzCnJZ5EwfvgIVPUd8TdHbvBm4dg2IjATatdPaGu/QvbtI43bxIrB1q9bWuAcVPWNCR49oiq8pehcuiInWgLEcvQEDxPv69b6lQlDRc8TXFD37YVsjqOOAb4dZoaJnTHzK0duwYQPuuOMONGzYEBaLBd9++22V/7N+/Xp06dIFISEhaNmyJd5///1yxyxduhQxMTEIDg5GTEwMli9froD1xBm+puj9+qsIlhwTA0RHa22N9+jUCahbF8jPB7Zv19oa16Gi54ivKXopKeLdKMO2MvJqfF8LWURFz5j4lKN35coVdOzYEfPmzXPp+KNHj+LWW29F7969sWvXLjz33HN46qmnsHTpUusxmzdvxqhRozBmzBjs3r0bY8aMwciRI7FlyxalikHs8DVFz4jDtgDg5wf07y+2fWmeHhU9R3xJ0bt40dapMJqjJyvk27b5ViByKnrGxKccvaFDh+Lll1/G8OHDXTr+/fffR9OmTZGcnIy2bdvikUcewcMPP4z//ve/1mOSk5MxePBgTJ8+HW3atMH06dMxcOBAJCcnK1QKYo+vpUAzqqMH2BonX3L0mALNEV+qT+vWiXA+bdoAjRtrbY13adpUrMgvKQE2btTaGtdhCjRj4lOOnrts3rwZSWUyZA8ZMgTbt29HUVFRpcekyoHSnFBQUIC8vDzrKz8/3/vGmwRrZgwfUCBOngQOHxbqly+nPasI2XlNTRUT5H0BWQlmJH+BL2WaMVpYlbLICrkvLXBifTImhnb0srOzERkZ6bAvMjISxcXFOHfuXKXHZFcS1nzWrFmIiIiwvmJiYrxvvEnwpaFbWenq2hWoXVtTUxTh5puBhg1FyItK+jm6gkO3jvjS0K3RHT1ZIf/1V23tcAf7FGiSJGlsDfEWhnb0AJRLAyQ/vPb7nR1TWfqg6dOnIzc31/rKyMjwosXmwpcWYxh52BYQqx59LcwKF2M44iuLMTIzbep4v35aW6MMsqKXng6cP6+pKS5j/9xQ1TMOhnb0oqKiyilzOTk5CAgIwA033FDpMWVVPnuCg4MRHh5ufYWFhXnfeJPgK4qeJNkUCKM6eoCtbL4yT4+KniO+oujJdal7dyAiQltblCIyUqzOlyQRtsgXsH9uWKeMg6EdvYSEBKTI6/f/Ys2aNejatSsC/0qqWNExPXv2VM1OM+Mrit7Bg0BWlsgiYeRHw361YG6utra4AhU9R3xF0TP6sK2MXJ98TSEHWKeMhE85epcvX0Z6ejrS09MBiPAp6enpyMzMBCCGVMeOHWs9fuLEiTh+/DimTJmCAwcO4JNPPsHHH3+MqVOnWo95+umnsWbNGrz++us4ePAgXn/9dfz888+YPHmymkUzLb6i6MkKV2IiEBqqrS1K0qQJcNNNYjWknJpKzzDulyO+oOiVltocvcGDtbVFaXxtnh4VPWPiU47e9u3bERcXh7i4OADAlClTEBcXh3//+98AgKysLKvTBwAtWrTAihUrsG7dOnTq1AkvvfQS3nrrLdxzzz3WY3r27InFixdjwYIF6NChAxYuXIglS5agR48e6hbOpPiKoic7ekZXIADfCrPCuF+O+IKit28fcPYsUKMGEB+vtTXK0revmPuakQFUsr5PN/hZ/OBnEW4B65Rx0H+wJTv69etX6UqghQsXltvXt29f7Ny5s9LzjhgxAiNGjKiuecQDfEHRKykRMb8AY8/Pkxk4EPjgA98YbqKi54gvKHqymte3LxAUpK0tSlO3rsg6s2uXUPXuv19ri6om0C8QBSUFrFMGwqcUPWIsSkpLIEE47npumHbuBC5dEpPGu3TR2hrlkVcL7t0L5ORoa0tVUNFzxBcUPbPMz5PxuXl6rFOGg44e0Qz7HqOeGyZ5CLNfP5Gw3OjUqwd07Ci29d44UdFzRO+KXmGhbQWq2Rw9n5mnxzplOOjoEc2w7zHqOWWT0ePnOcNX4ukxBZoj1hRoFn3Wp82bgatXgQYNgNhYra1Rh969RQfxjz+A48e1tqZqWKeMBx09ohn2ATn1qkBcvw5s2iS2zeTo+cqCDGskf4nBXQH9pxSUVa0BA0SwZDMQFgZ06ya2fUHVs8+OQYyBSaoa0SO+MHS7ebNw9qKjgbZttbZGPfr0AQICgD//BI4d09qaimEcPUf0vrhJXtRk1GwYFeFL8/Q4dGs86OgRzZAbJX+Lf6Up57REVrQGDBBhEsxCWJjIWgDou3FiZgxH9Byu6Pp1IC1NbPftq60tamPv6Ok9hSwXYxgPOnpEM/TcKMmYIe1ZRfjC8C0VPUf0rOht3QoUFIjUYK1ba22NuvTsKULJnDoF/P671tZUDhU940FHj2iGnhslAMjPB7ZvF9tmdPTsF2ToVYWgoueInjtP8mpbOYiwmQgNBRISxLaeFXKAip4RoaNHNEPPjRIApKaKYMktWgBNm2ptjfrExwMhISKi/4EDWlvjHCp6jui582Tv6JkRX5mnR0XPeNDRI5qh50YJsDVMffpoa4dWhIQAvXqJbb0O31LRc0SvnafCQtFxAszr6MmByH/9Vb8KOUBFz4jQ0SOaoddGSWbDBvFu1oYJsKkQstOrN6joOaLXzBjbtwPXrolg3DExWlujDT16iCHcs2eB/fu1tqZiqOgZDzp6RDP0rOhdvSomjwPmVfQAW9k3bNCnCkFFzxG9ZsaQw6r06WO++XkyQUEieDKg7+FbKnrGg44e0Qw9K3ppaUBREdCoEdCypdbWaEfXrmII9+xZ4OBBra0pDxU9R/Sq6Jl9fp6MPHyra0ePip7hoKNHNENunPWY/sx+2NasCgQABAfbVgvK90RPWNM1sVECoM86VVQE/Pab2Da7oydPhVi3Tiz00iNMgWY86OgRzbCma9KZ+gBwIYY99sO3eoPpmhzRYwq0nTuBK1eAOnWA9u21tkZbOncGwsOB3Fxgzx6trXEO65TxoKNHNEOvQ7cFBeaN4O8M+R6sX6+/eXocunVEj0O39p0ms+S3rYiAACAxUWzrseMEcOjWiJi82hEt0etijG3bRLqmBg3MF8HfGT16AIGBIqr/0aNaW+MIF2M4osfFGJyf54ieFXKAizGMCB09ohl6VfTsFQgzz8+TqVED6NZNbOstzAoVPUf0pugVFwObNoltOnoC3a9kp6JnOOjoEc3Qq6In97Q5P8+G3EjrTYWgoueI3hS99HQgLw+IiAA6dtTaGn0gr2Q/d44r2Yk60NEjmqFHRY8rBJ2j1+EmNkqO6E3RkxXgXr0Af39tbdELQUH6XsnOzpPxoKNHNEOPit6uXbYVgrGxWlujHxITxUT6P/8ETp7U2hobbJQc0Zuix/l5ztFrxwlg58mI0NEjmqFHRU9umHr35gpBe8LCRGgIQF+NExslR/Sk6JWUABs3im06eo7Ijp4uV7Kz82Q42JQRzdCjosf8thVj3zjpBTZKjuhJ0du7F7h0CahVy9ZJIIL4eBFq5dQp4Ngxra1xhJ0n40FHj2iG3hQ9ewWCCzHKo8cFGXKjVCqVolQq1dga7dGTomc/Py9AP4k6dEGNGmJRBmD7zdEL7DwZDzp6RDP0lq5pzx4RsT4sDOjUSWtr9EevXuL94EEgJ0dbW2Tsnx0qEPqqU5yfVzl6nafHFGjGg44e0Qy9pUCTf3ATE6lAOKNuXVsKK700TvZqMFM26ScFWmkpHb2q0KujJ/8esz4ZBzp6RDP0NMwEsGFyBb0N39o/Oxxq0k+d2r8fuHDBcYiSOJKYKAKyHzkCZGVpbY0NDt0aDzp6RDP0NHFckhgo2RX0tiDD/tnhUJN+6pT8fPTsKdLnkfLUrm0LIq2neXrMjGE86OgRzdCL+gAAGRnA+fNAaCgViMqQHb29e4ViozV+Fj/4WcTPGBsm/dQpquOuocfhW+a6NR509Ihm6EV9AGw/tD17isj1xDmRkUDr1kIBlTOIaA3DQdjQQ52yV8fp6FWOLh09KnqGg44e0Qy9qA+ATYHgsG3V6HX41uwNU0lpCSSI6Lta1qnffxersoOCgG7dNDPDJ+jdW7zrRSEHqOgZETp6RDP0oD4AQoHgUJPr6HVBhtkbJntHV8s6Jc83694dCAnRzAyfoEEDoE0bsa07hdzkHaeKeO+999ChQweEh4cjPDwcCQkJWLlypfVzSZIwc+ZMNGzYEKGhoejXrx/279+vocV09IiG6EXR+/13IDtbKBDdu2tqik8gK3o7dwL5+draAlDRk7F3dLWsU5s2iXc57iKpHL0N31LRq5zGjRvjtddew/bt27F9+3YMGDAAw4YNszpzb7zxBmbPno158+Zh27ZtiIqKwuDBg5Gv4Y8lHT2iGXrJjCH/wHbvLhZjkMpp0gRo3lxkEklN1doaKnoyelH0ZEdPHpYklaM7R4+KXqXccccduPXWW3HzzTfj5ptvxiuvvIJatWohLS0NkiQhOTkZM2bMwPDhwxEbG4tPP/0UV69exVdffaWZzXT0iGboJYo/0565j56Gb62R/E3eMNk7uv4Wf01syM4WceEsFrGwiVSN/LuzYwdw+bK2tgDmzYyRn5+PvLw866ugoKDK/ykpKcHixYtx5coVJCQk4OjRo8jOzkZSUpL1mODgYPTt2xepGvaK6egRzdDL0C0VCPfR04IMDjUJ5PoU4BcAi8WiiQ3yPLP27UWcOFI19gr55s1aW2PeqRAxMTGIiIiwvmbNmlXhsXv37kWtWrUQHByMiRMnYvny5YiJiUF2djYAIDIy0uH4yMhI62da4HOO3rvvvosWLVogJCQEXbp0wcZKIk2OGzcOFoul3Ktdu3bWYxYuXOj0mOvXr6tRHFOjh3RNWVnAH38IBSIhQTMzfA5Z0du6Fbh2TVtbmLJJoIeUgvLPMefnuYeehm/NWp8yMjKQm5trfU2fPr3CY1u3bo309HSkpaXhsccew0MPPYSMjAzr52U7WpIkadb5AnzM0VuyZAkmT56MGTNmYNeuXejduzeGDh2KzMxMp8fPnTsXWVlZ1teJEydQt25d3HvvvQ7HhYeHOxyXlZWFEC4XUxzrqlsNGyZZgejQAYiI0MwMn6NlSyAqCigqArZt09YWsyoQZdHDKnYuxPAMXTl6JlXIw8LCrCtpw8PDERwcXOGxQUFBaNWqFbp27YpZs2ahY8eOmDt3LqKiogCgnHqXk5NTTuVTE59y9GbPno3x48fjkUceQdu2bZGcnIwmTZrgvffec3p8REQEoqKirK/t27fj4sWL+Nvf/uZwnMVicThO/rKIsuhhMQYbJs+wWGz3TL6HWsHFGAKtp0Lk5wO7doltToNwD9nR27IFcGFqmKJwMYb7SJKEgoICtGjRAlFRUUhJSbF+VlhYiPXr16OnhpNWfcbRKywsxI4dOxwmOQJAUlKSy5McP/74YwwaNAjNmjVz2H/58mU0a9YMjRs3xu23345d8q9VBRQUFDhM2tRy2bQvowdFj46e58iNueaOHhU9ANoremlpQGkp0KwZ0LixJib4LK1aCYW8oEBHCrnJO04V8dxzz2Hjxo04duwY9u7dixkzZmDdunUYPXo0LBYLJk+ejFdffRXLly/Hvn37MG7cONSoUQMPPPCAZjZru9zRDc6dO4eSkhKPJzlmZWVh5cqV5ZY4t2nTBgsXLkT79u2Rl5eHuXPnIjExEbt378ZNN93k9FyzZs3CCy+84HlhCADtFT17BYKOnvvI9yw1VUwk99dmoScVvb/QWtHjoibPsVjEffvf/8QCJy1/j6joVc6ZM2cwZswYZGVlISIiAh06dMCqVaswePBgAMC0adNw7do1TJo0CRcvXkSPHj2wZs0ahIWFaWazzzh6Mp5Ocly4cCFq166Nu+66y2F/fHw84uPjrX8nJiaic+fOePvtt/HWW285Pdf06dMxZcoU69+nTp1CTEyMG6UggPaK3pYtVCCqQ4cOQK1aQG4usH+/+FsLqOgJtFb0uBCjevTpIxw9rTNkUNGrnI8//rjSzy0WC2bOnImZM2eqY5AL+MzQbb169eDv7+/RJEdJkvDJJ59gzJgxCKoiY72fnx+6deuGI0eOVHhMcHCww6RNLT11X0ZrRU9umKhAeEZAgG2lspbDt1T0BFoqekVFYugWYH3ylMRE8S4r5FpBRc94+IyjFxQUhC5dujhMcgSAlJSUKic5rl+/Hr///jvGjx9f5XUkSUJ6ejqio6OrZS+pGq0VPc7Pqz7yvaskypHiUNETaKno7dwpwuzUrWvL3Urco317ICzMppBrBRU94+Ezjh4ATJkyBR999BE++eQTHDhwAM888wwyMzMxceJEAGJIdezYseX+7+OPP0aPHj0QGxtb7rMXXngBq1evxp9//on09HSMHz8e6enp1nMS5dBS0bNXIOjoeY69oydJ2thARU+gpaJn32ny86lWRT/oTiE3ecfJSPjUHL1Ro0bh/PnzePHFF5GVlYXY2FisWLHCuoo2KyurXEy93NxcLF26FHPnznV6zkuXLuHvf/87srOzERERgbi4OGzYsAHdmd1ecbRMgZaeDly9CtSpA7Rtq/rlDUOPHqKBOnUKyMwU8x3VhinQBFrWJ6rj3qFXL2DNGnE/J03Sxgb5+SkuLdY80C/xDj7l6AHApEmTMKmCGrBw4cJy+yIiInD16tUKzzdnzhzMmTPHW+YRN9CDApGYSAWiOtSsCXTuLDJkbNqkjaPHoSaBVgq5JNHR8xZ6iE1p//wUlxZrGueUeAc2cUQztEyBxobJe2jdOJk1ZVNZtEqBdugQcO4cEBICdOmi6qUNR/fuQiE/cUIo5Fpg//yYvU4ZBTp6RDO0WoxBBcK76MXR49CtNoqevBCnRw+giqAGpApkhRzQsD7ZPT9mr1NaMODTAbh0/VK5/XkFeRjw6QCPzklHj2iGVkNNv/8O5OQAwcFA166qXtqQyGEh9u0DLl5U//ocuhVoNRWCgZK9i1yftO44AaxTWrDu2DoUlhSW23+9+Do2ZnoW3sDn5ugR46CVoif/gHbvLpw9Uj0aNABuvhk4fFgEe739dnWvT0VPoJWiR3Xcu/TqBcyZo52j5+/nDwsskCCZvk6pyZ4ze6zbGWczkH3ZFjO4pLQEq35fhUZhjTw6Nx09ohlaKXqM4O99evUSjt6mTRo4elT0AGij6J0+Dfz5p1jQJIcGIdXDXiG/dAmoXVt9GwL9A1FYUmj6OqUmnd7vBIvFAovF4nSINjQwFG8Pfdujc3vk6G3cCHzwAfDHH8A33wCNGgGffw60aMHGk7hGqVSKUqkUgHaKHp9V79GrF/DJJ9qoEFT0BFooevL33bEjEB6u2mUNTWQkcNNNwJEjwObNwNCh6tsQ6PeXo2fyOqUmR58+CgkSWs5tia0TtqJ+jfrWz4L8g9CgZgP4+3mWUNztOXpLlwJDhgChoSIhfEGB2J+fD7z6qkc2EBNi31NUs2E6c0b8gFosVCC8iTw/a9s24Pp1da9NRU+ghaLHNILKoPkCJ9Yp1WlWuxma126O0udL0bVhVzSr3cz6ig6L9tjJAzxw9F5+GXj/fWD+fCDQ7vekZ0+RBocQV7DvKarZMMkJw2NjRbBk4h1uvFEoEYWFwPbt6l6bip5AizmvVMeVQXNHj3VKUz7f/TkSP0lEwzcb4vil4wCAOZvn4LuD33l0PrcdvUOHgD59yu8PDxfzCQhxBa0UPTZMymCxaNc4MdetQO05r7m5wJ6/5o+zPnkX+X5u3WobNVMTKnra8d629zBlzRTc2upWXLp+CSVSCQCgTmgdJG9J9uicbjt60dEiPEVZNm0CWrb0yAZiQuwbZTVTNjEUhHJo5ehZU6CZvFFSOwXa5s1Aaan43Y+OVuWSpuGmm4D69cU0CC1GyphWUDve3vo25t8xHzP6zHAYru3asCv2ntnr0TnddvQefRR4+mlgyxbRiz99GvjyS2DqVO1y8xHfQ4647mfxg59FnXCOV67YfjSpQHgf+Z7+9ptwANSCmTEEamfGkKdBsC55H4tF23h6rFPacfTSUcRFxZXbH+wfjCtFVzw6p9st7LRpwF13Af37A5cvi2HcRx4RDuATT3hkAzEhWswn2rIFKCkBmjYFmjRR7bKmoVMnEdn/0iVg/371rsuhW4HaQ7eyoyc7JMS7aDlPj0O32tGidgukZ6eX27/y95WIqR/j0Tk90vhfeQWYMQPIyBA995gYoFYtj65PTIoWMfQYP09ZAgKA+Hjgl19E49S+vTrXtU4cN3mjpGbnqahIdJwAOnpKUVYh91MxjxUXY2jHP3r+A4+veBzXi69DkiRsPbUVi/YuwqxNs/DRnR95dE6PJ3PUqMH0UcRzuELQmPTqZXP0HntMnWtS0ROo2XnavRu4elWsXG/bVvHLmZK4OBHG7Px5sQhSzftMRU87/hb3NxSXFmPaz9NwtegqHlj6ABqFN8LcW+bivtj7PDqnS47e8OGun3DZMo/sICZDbUWvuFhMHgeoQCiJvMhFzeEmKnoCNTtP8rBtz57qKk1mIigI6NEDWLdO1CdVHT0qepoyocsETOgyAeeunkOpVIoGNRtU63wuVdGICNdfhLiC2orenj1iMUZEhIihR5ShRw/A3x/IzBQvNaCiJ1Cz88T5eeqgecgik3eetOBa0TVcLboKAKhXox6uFV1Dcloy1vyxxuNzuqToLVjg8fkJcYpWE8cTEqhAKEmtWmLIaft20Tg98IDy16SiJ1ArM4Yk2RwPOnrKIt9f+fdLLajoacewxcMwvO1wTOw6EZeuX0L3j7ojyD8I566ew+yk2Xism/tzYtjkEU1QW9GjAqEeajdOVPQEauW6PXYMyMoSmZG6dVP0UqYnIUGEWvnjD3HP1YKKnnbszNqJ3k3FHJhvMr5BVK0oHJ98HJ/d9Rne2vqWR+d0ezFGXJx48MpisQAhIUCrVsC4cSL8CiEVwVAQxiUxEZg7V0VHj4oeAPUUPfl77dxZLBYgyhERAXToIBa//PYbMGKEOteloqcdV4uuIiw4DACw5o81GN5mOPwsfohvHG9Nh+Yubit6t9wC/PmniJfVvz/Qr58YrvnjD9G7y8oCBg0CvvMsJRsxCWoqepmZwMmTYu5Y9+6KX870yM703r1AXp7y16OiJ1BL0WOnSV20mKdHRU87WtVthW8PfosTuSew+o/VSLoxCQCQcyUH4cHhHp3TbUfv3Dng2WdFTLI33wRmzwY2bBCZMa5cAdasAf7v/4CXXvLIHmIS5EZZjXRNcsMUFyc6KERZGjYEmjcXsb/S0pS/HlOgCdSqU3T01EULR48p0LTj333/jalrpqL53Obo0agHEpokABDqXlx0+YwZruC2o/f118D995fff9994jNAfH7okEf2EJNgTdfEFYKGxD7Yq9IwXZNAjRRoly4B+/aJbdYndZDv865dIhuVGrBOqcueM3tQKom8kSNiRiDzmUxsn7Adqx5cZT1mYMuBmDNkjkfnd9vRCwkBUlPL709NFZ8BoicfHOyRPcQkaBHziw2Teqi5IINDtwI1hm7T0sSq2xtvBCIjFbsMsaNJE/EqLbVlI1EaDt2qS9wHcTh39RwAoOXclgj0C0RcdJxDHvjujbqjTb02Hp3fbY3/ySeBiROBHTvEnDyLBdi6FfjoI+C558Qxq1eLYTJCKkKtxRj5+SKGHkBHT03ke52WJoJVByg4msjFGAI1FmPIjjuzy6hLYiKweLG4/wMHKn89LsZQl9ohtXH04lE0qNkAxy4ds6p73sLtn9//+z+gRQtg3jzg88/FvtatgfnzbTGzJk5UL/0R8U3UUvTS0kRPuHlzMXeMqEO7dmLFYG6uWDHYpYty16KiJ1BD0aM6rg32jp4asPOkLve0vQd9F/ZFdFg0LBYLus7vCn+Lv9Nj/3z6T7fP71E/e/Ro8aoILrknVaGWoseGSRv8/EQMsFWrxHegqKPHRgmA8opeUZFt6JD1SV3k+715M1BSIiIIKAk7T+ry4R0fYnjb4fj9wu94auVTmNB5AsKCwrx2fo8HVAoLgZwcoZbY07RpdU0iZkAtRc8+JydRl8REm6P31FPKXYeNkkBpRW/3buDqVaBOHaCNZ1OFiIe0by/CmOXni8UwHTsqez12ntRlz5k9SLoxCbe0ugU7snbg6R5PW2PpeQO3F2McOSISl4eGAs2aiWHcFi3E0FiLFl6zixgcNRS94mJbeA8qEOpjvyBDkpS7DhslgdKKnn2niWkE1SUgAIiPF9tc4GQ87BdjrD+2HoUlhV49v9vVddw4Ucl//FEsyNi5U7x27RLvhLiCGore3r0iHEF4OBAbq9hlSAV07y6GmE6dEkGrlUJulEqkEkhKepQ6R2lFj/lttUXVlezsPKmKvBgDgD4WY6SnCweP0j2pDmooevIPYny88nNaSHlq1hSr77dvF99Fs2bKXMe+s1BUWoQg/yBlLqRzlFT0JInzXbWGIYuMi+4WY8TEiOwYhFQHNRQ9Nkzak5hoc/TkVfnexr6zUFRiYkdPQUXv2DGR3jIwUITVIuoTHy9G044fFyp5o0bKXYuKnrrobjHG668D06YBr74qJogGlvlNCfcsFRsxGWqka6Kjpz2JicDcucqqEPbPkJkVCCXrlPz9de7MqApaERYGdOggRtV++w0YOVK5azEFmvrc0uoWAFBkMYbbvwiDBon3skEbJUkETy4p8YZZxOgona7pxAnx8vcHevRQ5BLEBWQne+9eIC9PmY6g/TNk5pRNStYpdpr0QWKiOo6erAqbuT5pxYJhC6zbJ/NOwgILGoVXT75129H79ddqXY8QAMpPHJcbpo4dRVgCog0NG4rV+EePihXQSUnev4a/nz8ssECCZOqhJiXrFB09fZCYCLzzjvLz9JgZQztKpVK8vOFlvLn5TVwuFMmNw4LC8GzCs5jRZ4ZDWjRXcdvR69u34s/S092+PjEpaoWCYMOkPYmJwtH77TdlHD1AODeFJYWmbpiUqlOXLonYbQDrk9bI9z89XUQUUKoTy1y32jHjlxn4eNfHeG3ga0hsmghJkvDbid8wc91MXC++jlcGvuL2OasdDSk3F3j3XTF3Q8no98RYqKXosWHSHjVWC5p98nipVGoNyeDtOpWWJqbmtGoFREZ69dTETZo2BRo3FlOktm5V7jpU9LTj092f4qM7P8Jj3R5Dh8gO6BjVEZO6TcL8O+Zj4e6FHp3TY0dv7VrgwQeB6Gjg7beBW28Vq+uU5t1330WLFi0QEhKCLl26YOPGjRUeu27dOlgslnKvgwcPOhy3dOlSxMTEIDg4GDExMVi+fLnSxTA9Sip6+fkiij9AR08PyN9BWpoIYq0EZg8HYe/gertOsdOkL1TpOFHR04wL1y6gTb3y8eva1GuDC9cueHROtxy9kyeBl18GWrYE7r9fpMIpKgKWLhX74+I8ssFllixZgsmTJ2PGjBnYtWsXevfujaFDhyKzimishw4dQlZWlvV10003WT/bvHkzRo0ahTFjxmD37t0YM2YMRo4ciS1yUkeiCErG0duyRaTmk3u/RFvatQMiIoArV2wOuLcxu6Jn7+B6u07R0dMXqirkJu04aUnHqI6Yt3Veuf3zts5Dx0jPct+57OjdequIoZeRIRS806fFu5rMnj0b48ePxyOPPIK2bdsiOTkZTZo0wXvvvVfp/zVo0ABRUVHWl79d9Nzk5GQMHjwY06dPR5s2bTB9+nQMHDgQycnJCpfG3CgZR48Nk77w8wMSEsS2Uo0TFT1lFL2iItFxAlif9IL8PWzerFyUCyp62vHGoDfwya5PEPNODMZ/Nx6PfP8IYt6JwcLdC/Gfwf/x6JwuO3pr1gCPPAK88AJw223qZxooLCzEjh07kFRmNndSUhJSU1Mr/d+4uDhER0dj4MCB+LXMsuHNmzeXO+eQIUMqPWdBQQHy8vKsr/z8fDdLQ5RU9Ojo6Q+lVQgqerZyezOO3u7dwNWrYvSG2ZD0QYcOIutMXh6wf78y16Cipx19m/fF4ScP4+42d+NSwSVcuHYBw9sOx6EnDqF3s94endPlX4SNG4FPPgG6dhUVfswYYNQoj67pEefOnUNJSQkiy8wGjoyMRHZ2ttP/iY6OxocffoguXbqgoKAAn3/+OQYOHIh169ahT58+AIDs7Gy3zgkAs2bNwgsvvFDNEpkbpRS9khIxFwygo6cn7B09OeamN6GiZwuWbPHizZX7uwkJQpkl2hMQILJk/PKLqE8dOnj/GlT0tKVhWEOPVtdWhMtVNyEBmD9fpMF59FFg8WKRgqW0FEhJERPg1aDsj5gkSRX+sLVu3RoTJkxA586dkZCQgHfffRe33XYb/vvf/3p8TgCYPn06cnNzra+MjAwPS2NelFL09u4Vz2JYmMjcQvRB9+5iFODUKaCKKbUeQUVPmY4T1XF9oppCbtKOk9Fwu49Wowbw8MPApk2iUX32WeC114AGDYA771TCREG9evXg7+9fTmnLyckpp8hVRnx8PI4cOWL9Oyoqyu1zBgcHIzw83PoKC/NeqhKzYK9AeBNZgYiPV396AamYmjVti7WUaJzMnrJJifokSXT09IrSjp61Ppm042Q0qiXGt24NvPGGWI27aJG3THJOUFAQunTpgpSUFIf9KSkp6Nmzp8vn2bVrF6Kjo61/JyQklDvnmjVr3DoncR+l0jWxYdIvSjZOZk/ZZK1PXlTIMzOFAhsQAHTr5rXTEi8QHy+G0o8dEwsjvY3Z65PR8Er3z98fuOsu8VKSKVOmYMyYMejatSsSEhLw4YcfIjMzExMnTgQghlRPnTqFzz77DIBYUdu8eXO0a9cOhYWF+OKLL7B06VIsXbrUes6nn34affr0weuvv45hw4bhu+++w88//4xNmzYpWxiTo9TQLR09/ZKYCMydq5Cjx6FbAN7tOMnqeFycGMkh+iE8XExN2b1b1Kd77/Xu+Tl0ayy8O26mMKNGjcL58+fx4osvIisrC7GxsVixYgWaNWsGAMjKynKIqVdYWIipU6fi1KlTCA0NRbt27fDTTz/h1ltvtR7Ts2dPLF68GP/3f/+Hf/3rX7jxxhuxZMkS9OjRQ/XymQklFmOcOgUcPy56uvz69IfsfO/dK1YMhod779xcjOH9jhM7TfomMVFBR4+LMQyFTzl6ADBp0iRMmjTJ6WcLFy50+HvatGmYNm1aleccMWIERowY4Q3ziIsooejJCkSHDmIxBtEXDRsCzZuL4aa0NO/mvaWi5/2OEx09fZOYKNKPKqqQm7TjpCVxH8TBgvKLQS0WC0ICQtCqbiuM6zgO/Vv0d/mcXDBPNEEJRY8Nk/5Rap4eFT3vdpzy84E9e8Q2pyvrE7ku7dolss54Eyp62nHLjbfgz4t/omZQTfRv3h/9mvdDraBa+OPCH+jWsBuy8rMw6PNB+O7gdy6f0+cUPWIMlFD06Ojpn8RE4MsvFXD0qOgB8F7HSU4j2Ly5UGKJ/mjaVIQ4O3UK2LoV6O+6wFMlVPS049zVc3g24Vn8q++/HPa/vOFlHL90HGvGrMHzvz6Plza8hGFthrl0To8Uvc8/Fz/YDRuKOVEAkJwMfOe6g0lMjrcVvStXRM8WoKOnZ+TvJi0NKPbigj4qet7tOLHTpH8sFhUUcpN2nLTk64yvcX/7+8vtvy/2Pnyd8TUA4P729+PQ+UMun9NtR++994ApU0Tu20uXbLn2atcWzh4hruBtRW/bNvEsNmoENGnilVMSBWjXTizCuHLFNjToDajoebfjREfPN1DM0bNT9CRJ8u7JSaWEBIQg9UT5FKypJ1IREhACACiVShHsH+zyOd0eun37bZEh4667RKBkma5dgalT3T0bMSveVvTsGyZvp9ci3sPfX2TZWb1afGedO3vnvFT0vNdxsk8jyPl5+kZ29DZvFkPt3kpTZ/8clUglCLBwlpdaPNn9SUz8cSJ2nN6Bbo26wQILtp7aio92fYTnej0HAFj9+2rERce5fE63v72jR20R7u0JDvb+hFBiXLyt6FGB8B0SE4Wjl5oKPPmkd85JRc97Had9+8RijPBwIDa22qcjCtKxo8g6k5sL7N/vvbSP9s9RUUmR1zMYkYr5vz7/hxa1W2Detnn4fM/nAIDW9Vpj/h3z8UD7BwAAE7tOxGPdHnP5nG5/ey1aAOnpwF+h66ysXAnExLh7NmJWvJmyqbRU9GgBOnq+gBLDTUyB5r36JH8vTCOofwICRMzQtWvF9+YtR8/+OSoqLUIoQr1zYuISozuMxugOoyv8PDTQve/D7V+Ff/wDePxx4Pp1kQtx61aR/mzWLOCjj9w9GzEr3kyBlpEh5ovWqCFi6BF906OHcCBOnBAvb8yplJ8js6Zs8mYKNNnR47Ctb5CYaHP0/koSVW3snyOz1imtKSwpRM6VHJRKpQ77m0Y0dftcbjt6f/ubWC03bRpw9SrwwANiAvzcucB997l9fWJSvDl0KwdK7tEDCPRuRjWiADVrAp06ATt2iMbJG78bZl8l6M2hW7k+UR33DZRQyP0tNinXrHVKK46cP4KHv3+43IIMSZJgsVhQ8u8St8/pkc4/YYJ4nTsnhs0aNPDkLMTMeHMxBufn+R6JiV529Ewe98tbizFOnxaZS5hG0HeIjxcL0I4eBbKygOjo6p/TYrEg0C8QRaVFpq1TWjHuu3EI8AvAj/f/iOiwaKdZMtzFbUfv2jUxZFujBlCvnoijl5ws5ud5M6URMS6SJKFEEr0Sbw410dHzHRITgbfe8p4KQUXPOx0n+fvo2JFpBH2FiAgxN2/PHvH9eSubZ6D/X46eSeuUVqRnp2PH33egTb02Xjun24uxhw0DPvtMbF+6BHTvDrz5ptj/3ntes4sYGPseYnUbpjNngD/+ED3a+PjqWkbUQp7/tXu3WOFZXajoeUfR4/w830SJ4Vuz1ymtiKkfg3NXz3n1nG47ejt3Ar17i+1vvgGiooSq99lnoodOSFXY9xCr2zDJ84natRNBu4lv0LixSOFUWirSbVUXKnreUfQ4P883UcTRM3md0orXB72OaSnTsO7YOpy/eh55BXkOL09w29G7etUm6a9ZAwwfLuZzxMfb0qERUhneVPQ4bOu7eLNxMrv64I05r1evMo2gryJ/X7t2ie/RG5i9TlXErFmz0K1bN4SFhaFBgwa46667cOiQYzoySZIwc+ZMNGzYEKGhoejXrx/279/v0vkHfTYIaSfTMPCzgWjw3wao83od1Hm9Dmq/Vht1Xq/jkc1uz9Fr1Qr49lvg7rtF0NNnnhH7c3JEgE1CqsKbih4dPd8lMVGEZvKKo2f2zBheWMW+dauIqCCrrcR3aNZM5J4/fVp8j/36Vf+cVPScs379ejz++OPo1q0biouLMWPGDCQlJSEjIwM1a9YEALzxxhuYPXs2Fi5ciJtvvhkvv/wyBg8ejEOHDiGsismvvz70q9dtdtvR+/e/RUiVZ54BBgwQ6YwAoe45y5hBSFnkRsnP4gc/i+c5e65dEys3Ac4p8kVk5zwtTaTdqk5wXtNnxvCCosf5eb6LxSLq0//+J75Hrzh6VPScsmrVKoe/FyxYgAYNGmDHjh3o06cPJElCcnIyZsyYgeHDhwMAPv30U0RGRuKrr77Co48+Wun5+zbv63Wb3Xb0RowAevUSy7g7drTtHzhQqHyEVIW3ovjv2AEUFQGRkUDLlt6wjKhJ+/ZiGkh+PrB3r4it5ymmz4xRWv06xfl5vo29o+cNrHXKJJ2n/Px85OXZ5sAFBwcjODi4yv/Lzc0FANStWxcAcPToUWRnZyPJLgxJcHAw+vbti9TUVKeO3p4zexDbIBZ+Fj/sObOn0ut1iHQ/K4BHvwpRUeJ14oToSTRuLFbfEuIK3g4FkZgonkPiW/j7i7m9KSniu6yOo2f2YabqrrotLaWj5+vI39vmzeL79PN8sASA+aZDxJTJ4fr8889j5syZlf6PJEmYMmUKevXqhdi/EkNnZ2cDACIjIx2OjYyMxPEKFjJ0er8Tsqdmo0HNBuj0fidYLBZIklTuONUCJhcXAy+8IFbYXr4s9tWqJZKTP/88MxOQqvFWuibOz/N9EhOFo5eaKlIregpToFUvpeCBA0wj6Ot07Ci+v0uXRFrIv/wOjzFbncrIyECjRo2sf7ui5j3xxBPYs2cPNm3aVO4zSxn1Qc5s4YyjTx9F/Rr1rdvexm1H74kngOXLgTfesM3P27wZmDlTZMp4/30vW0gMhzfmE0mSTYHgnCLfxVsrb82mPpSluosx5PsfH8/Ouq8SGCiymfz6q/g+q+3omUwlDwsLQ7gbK0qffPJJfP/999iwYQMaN25s3R8VFQVAKHvRdmlKcnJyyql8Ms1qN7NuH889jp5NepabhlFcWozUE6kOx7qK2+LuokXAwoXAo4+Knl+HDmL7k0/EZ4RUhTdWCB4+DJw/D4SEAJ07e8syojY9eoghpuPHgVOnPD+P6RdjVHM6BNVxY8CQRcojSRKeeOIJLFu2DGvXrkWLFi0cPm/RogWioqKQkpJi3VdYWIj169ejpwuqRP9P++PCtQvl9udez0X/T/t7ZLPbjl5ICNC8efn9zZsDQUEe2UBMhjdXCHbrxufOlwkLsy3qqk7jZHpFr5pz9OSRJzp6vo38/cmjHdXBbIqeqzz++OP44osv8NVXXyEsLAzZ2dnIzs7GtWvXAIgh28mTJ+PVV1/F8uXLsW/fPowbNw41atTAAw88UOX5JUlymt/2/LXzqBlY0yOb3R66ffxx4KWXgAULAHkIu6AAeOUVMaxLSFV4Q9GjAmEcEhNFoNfffgNGjvTsHFT0PO88ZWcDf/7JNIJGICFBfI9//CHSQ1YwUugSVPSc895fuV77lYlhs2DBAowbNw4AMG3aNFy7dg2TJk3CxYsX0aNHD6xZs6bSGHrDl4hQLBaLBeO+G4dgf9scwRKpBHvO7EHPJp7NU3Lb0du1C/jlF7HSVu6J794NFBaKECt/hY0BACxb5pFNxOAw5hexJzERmDePil51qI6iJ9/3Dh2AiAhvWkXUJiJCzM3bu1d8r/btsbtQ0XOOs9WwZbFYLJg5c2aVq3btiQiJsJ4/LCgMoYGh1s+C/IIQ3zkeE7pMcNtewANHr3Zt4J57HPc1aeLRtYlJqa6id/YsIGecoaLn+8jOenq6WMlfq5b756Ci53nnieq4sUhM9JKjR0VPVRYMWwAAaB7RHFN7TkXNIM+GaZ3htqO3YIHXrk1MSnUVPXn+Sdu2wF8xKokP07SpGCE4eVKkbxowwP1zUNHzvPPE+XnGIjFRRL/w2kp2k3aetOL5fs97/ZzVS01AiAd4KxREr17esohoTa9ewOLF4rv1yNGjogfA/c7T1atiOg5AR88oyN/jzp0iTWRoaOXHVwQVPW04c/kMpqZMxS9//oKcKzmQ4DhUrFjA5M6dxby8OnVEPtvKshDs3Om2DcRkVDcFGhUI4yE7ek7ijrqE6VOgeVintm4VQfAbNxbKKvF9mjcHoqNFmtJt24A+fTw7j9lSoOmFcd+NQ2ZuJv7V51+IDot2ugLXXVz6VRg2zLbC9q67qn1NYnKqE8X/+nWR4xagomck7NM3lZSI9GjuIKvDZoniXxZPs80wjaDxsFjE9/nNN+L79dTRM1tmDL2wKXMTNv5tIzpFdfLaOV1y9J5/3vk2IZ5QnaHb7dvFCu/ISKBlS29bRrSifXsRUy8/X0wkdzfvLYduPRu6pTpuTOwdPU8x+7xXrWgS3sSllb3uUM20x4S4T3UWY8gNU69eVCCMhL+/bfWtJ8O3Zm+UPFmMUVoqFFSAjp7RsM+QUVrq2TnM3nnSiuRbkvHPX/6JY5eOee2cLil6deq43qheKJ+5gxAHqqPoMRSEcUlMBFavFo6eu8HXzd4oeaLo7d8P5OaKcDYdOihlGdGCTp2AGjWAS5eAAweAdu3cP4fZO09aMeqbUbhadBU3vnUjagTWKFenL/w/950slxy95GS3z0tIhXiq6JWW0tEzMvKcy02bAElyT7E1e6PkiaInK6fx8UAA4y8YisBA8b2uXSu+Z48cPZN3nrQieUiy18/pUvV+6CGvX5eYGE8VvYMHgYsXRbiAuDglLCNa0r27cDhOnQIyM4FmzVz/X/uJ45IkwWKycX1PFD12moxNr142R+/RR93/f7N3nrTioU7ed7jcnqO3YoUYXinLmjXAypXeMIkYHU8VPVmB6NFD9FiJsahZ0+bAuzuJ3L7TYMZVgp4oenT0jI29Qu4JVPTUI68gz2G7spcnuC3Y//OfwGuvld9fWio+GzrUIzuIifB0hSADJRufXr1E7K9Nm4AHHnD9/+yfpaLSIo+Dcfsq7tapU6eAY8cAPz8xxEeMR3y8+H6PHRNZZxo3du//qeipR53X6yDr2Sw0qNkAtV+r7XREQh6p8CRgstuK3pEjQExM+f1t2gC//+729d3m3XffRYsWLRASEoIuXbpg48aNFR67bNkyDB48GPXr10d4eDgSEhKwuowcuXDhQlgslnKv69evK10U0+JpuiYqEMbHUxXC/lkyowLhbp2S61LHjiKsDTEeYWG2MEWehFlhZgz1WDt2LeqGinyevz70K9aOXVvuJe/3BLcVvYgI4M8/RfRte37/XQy9KMmSJUswefJkvPvuu0hMTMQHH3yAoUOHIiMjA02dhHXfsGEDBg8ejFdffRW1a9fGggULcMcdd2DLli2Is5vkFR4ejkOHDjn8b0hIiLKFMTGeKHrZ2cAff4gJ+gkJSllGtEZ24vftEysGa9d27f/KKnpmw906xU6TOUhMFNmqNm0CRo1y73+Z61Y9+jbv63TbW7jt6N15JzB5MrB8OXDjjWLf778Dzz4rPlOS2bNnY/z48XjkkUcAAMnJyVi9ejXee+89zJo1q9zxyWWWC7/66qv47rvv8MMPPzg4ehaLBVFRUYraTmx4kq5JbpjatxedDWJMIiOBVq3Eb8rmza5PBfGz2AYnzNgwuVun6OiZg169gLff9myentnTCmrJpeuX8PHOj3Hg3AFYYEFM/Rg8HPcwIkI8a/zcHrr9z3+EctemDdCihXi1bQvccAPw3/96ZINLFBYWYseOHUhKSnLYn5SUhNTUVJfOUVpaivz8fNStW9dh/+XLl9GsWTM0btwYt99+O3bJWb4roKCgAHl5edZXfn6+e4UxOZ6ka2IEf/PgyfCtxWIxdcomd+rU5ctAerrY5nxXYyP/Xu7ZA+S5OY/fzPVJS7af3o4b37oRc9Lm4MK1Czh37Rxmp83GjW/diJ1ZOz06p0dDt6mpQEoKsHu3CHXRoYPn+fRc5dy5cygpKUFkZKTD/sjISGRnZ7t0jjfffBNXrlzByJEjrfvatGmDhQsXon379sjLy8PcuXORmJiI3bt346abbnJ6nlmzZuGFF17wvDAmpzqhINgwGZ/ERGDhQs9W3haVFplOgZAkCSWSmKDtSp3askXkE27a1P0J+sS3aNRIiDFHjwJpaUAZnaRSOHSrDc+sfgZ3tr4T8++Yb1VVi0uL8cj3j2DyqsnY8LcNbp/TozCZFot4YNx5aLxF2dUorsbMWrRoEWbOnInvvvsODRo0sO6Pj49HvN2ys8TERHTu3Blvv/023nrrLafnmj59OqZMmWL9+9SpU4hxtkKFOMXdieNXrgCyyEpFz/jIzvyWLSKvcVCQa/9n1nAQ9o6tK3WKw7bmolcv4eht2uSmo8fFGJqw/fR2BycPEMPo0xKnoeuHXT06p8tDt7feKtLlyLzyipgsLXP+vPPVuN6iXr168Pf3L6fe5eTklFP5yrJkyRKMHz8eX3/9NQYNGlTpsX5+fujWrRuOHDlS4THBwcEIDw+3vsK4bM0t3FX0tm4FiouF+uBkzQ0xGK1bi6kg16+LieSuYtZwEPaOrSt1io6euajuSnazdZy0Jjw4HJm5meX2n8g9gbBgz3wNlx291auBggLb36+/7pjXtrgYKLNw1asEBQWhS5cuSElJcdifkpKCnnI2dCcsWrQI48aNw1dffYXbbrutyutIkoT09HRER0dX22biHHczY9g3TCZLeGBKLBbHpOyuQkWv6jpVUiIWuQCcBmEW5O85LQ0ocqNqUNHThlHtRmH89+OxZN8SnMg9gZN5J7F432I88sMjuD/2fo/O6fLQrSRV/rcaTJkyBWPGjEHXrl2RkJCADz/8EJmZmZg4cSIAMaR66tQpfPbZZwCEkzd27FjMnTsX8fHxVjUwNDQUEX8t3XzhhRcQHx+Pm266CXl5eXjrrbeQnp6Od955R/0CmgR3M2NwIYb56NUL+P578d0/+6xr/0NFr+o6tXcvkJ8PhIcDsbFKW0b0QJs2QN26QpjZtUukGnQFKnra8N+k/8ICC8Z+O9a2yMovEI91fQyvDXKSrcIFfCqV9ahRo3D+/Hm8+OKLyMrKQmxsLFasWIFmfyXFzMrKQmamTfL84IMPUFxcjMcffxyPP/64df9DDz2EhQsXAgAuXbqEv//978jOzkZERATi4uKwYcMGdHe1NhC3cUfRowJhTuTv+rffRKfSFSXX7Iqev8W/yvnKskIaHw/4+yttGdEDfn6ik/zDD6Lj5LKjR0VPE4L8gzB36FzMGjQLf1z4AxIktKrbCjUCa3h8TpcdPYul/I+tFsNokyZNwqRJk5x+JjtvMuvWravyfHPmzMGcOXO8YBlxFXcUvf37RViAWrVEDD1iDjp3BoKDgbNnRTaem2+u+n/Mrui50nGiOm5OevWyOXp26wgrhYqeulwtuop/rPkHvj30LYpKijCo5SC8NfQt1KtRr9rndmvodtw48eMLiInSEyfasmHYz98jpDLcUfTkhikhAQjwKf2ZVIfgYKE8bNwongGXHD2TK3pVdZwkSdxPAOjdW2mriJ6QHftNmzxQyE3WcdKK5399Hgt3L8To9qMREhCCRfsW4bGfHsP/7v1ftc/tctP50EOOfz/4YPljxo6trjnEDLij6HGFoHlJTLQ5eg8/XPXxVPQqr0/HjwOnTokOU48ealhG9ELXrjaF/PffgQpCxDpARU9dlh1cho/v/Bj3xd4HAHiww4NI/CQRJaUl8Per3jwLlx29BQuqdR1CrMgNsSvpmmRFj/PzzIf9PD1XsKZsMlnD5Gp9ktW8Ll2AGp5P9yE+SHAw0K2b+D3dtMk1R48p0NTlRO4J9G5qk9q7N+qOAL8AnM4/jSYRTap1brdToBFSXVxN13TyJJCZKSaNU4EwH3LUpMOHgZycqo83a8om+5V5lcFhW3Pjbjw9s9YnrSiRShDk7xgdPsAvwCv3n7OeiOq4OnQrN0ydOonFGMRc1KkDtGsnFuSkpgJ33VX58Ry6paNHKsZtR49Dt6oiSRLGfTcOwf7B1n3Xi69j4k8TUTOwpnXfslHL3D43HT2iOq4uxmDDRHr1Eo7epk0uOHpcjFHhMWfPAgcPim3OdzUnZRVyu0ygTuFiDHV5qNND5fY92MHJYggPoKNHVMddRY+Onnnp1Qv44APbs1AZVPQqrk/yPMd27UR6OWI+6tQRQbL37RPPw913V348FT11WTBMuYUQnKNHVMcVRe/8efGDBHAhhpmRnfydO4ErVyo/lopexfVJdpRZl8yNO8O3VPSMAx09ojquKHqyAtGmTdVDDMS4NGsGNGkicmmnpVV+LBW9qh09quPmxi1Hj4qeYaCjR1THFUWPDROR6dNHvG/YUPlxVPSc16fLl4UiCrA+mR3Z0XNHIZcgoaS0RGHLiJLQ0SOq44qiR0ePyMjPQFXz9KjoOa9PaWkiZ3TTpuJFzEvTpkCjRkIh37q18mPtnyez1SmjQUePqE5Vit6VK8COHWKbjh6RFb3Nm4HCwoqPo6LnvD7Jw3SsS8RicaPjZPc8ma1OGQ06ekR1qlL00tJEj7NxYzFHi5ibNm2AevVEfm25A+AMs04er0rR40IMYo/LUyGo6BkGOnpEdapK2SQ3TH36uJZ8mxgbexWissaJKdDK16eiItsiFip6BLA5eqmplSvk/hZbflWz1SmjQUePqE5VKdA4P4+UxZXhJvl5MlvKpspSoO3cCVy9CtStC7Rtq7ZlRI+0bStiKV67Zluk4wyLxWLtPJitThkNOnpEVSRJqrRhogJBnCGrEJs2iYUFzuDQbfn6ZD9s68dfewLxHLiikAPmrVNGg1WfqIp9z9BZw0QFgjijY0eR7zg31xZIuyxmjftV2WIMLsQgznB3np7Z6pTRoKNHVMW+Z+isYZJ/eKhAEHsCAmw5WitqnMyqPlSk6JWW0tEjzpGfh8oUcsC8dcposCklqmLfM6xsqIkNEylLVfP0zKo+VKToHTwoUgmGhgJxcVpYRvRKp05VK+SAeeuU0aCjR1SlMkXPXoGQhxYIkbEfbpKk8p+bVX2oKFyR7BDHxwNBQWpbRfSMKwo5YN46ZTTo6BFVkRslCyzw9/N3+CwjA7h4EahRgwoEKU+3bsJhOXMG+P338p+bNjNGBQHIqY6TynBlnh4VPWNAR4+oSmVZMeSGKSEBCKw4OxoxKSEhQI8eYttZ42TazBhVKHp09IgzqlLIASp6RoGOHlGVyrJiyI03GyZSEZXN06OiZ6tTmZni5e8vhm4JKUu3bkBwMJCTAxw+7PwYKnrGgI4eUZWKFD1JogJBqqay4SYqerY6Jc91jYsTk+4JKUtwsK0TwJXsxoaOHlEVuVEqm67p2DHg1CkxSZgKBKmIhAQRdufoUeDkScfPrCnQTNYoOUuBxk4TcYWq5umZNa2g0aCjR1SloqwYcsPUtatYjEGIM8LDbQt1yg7fmj4Fmp1KTkePuEJVjp5Z65TRoKNHVIUrBEl1qWienmmHbsvE0Tt/Hti/X3zWq5dWVhFfID5ezOPMzASOHy//OYdujQEdPaIqXCFIqktFKoRpF2OUyYwh35eYGKB+fa2sIr5ArVpAly5i2+m8Vy7GMAR09IiqOFP0zpwBDh0S23IQT0IqQlap9u8X6pUMFT1R/vXrxf5+/TQyiPgUcsfJ6Up2KnqGgI4eUZXKVgjGxgJ162phFfEl6tcH2rYV2/KzA1DRk8u/bp3YT0ePuEKlK9mp6BkCOnpEVZwpenJPkmnPiKs4m6dHRS8QFy4Ae/aI/axPxBV69QIsFjGqcuaM42dU9IwBHT2iKs4UPVmBYMNEXMWZCkFFL9Ca5aBtWyAyUmPDiE9Qpw7Qvr3Yrmglu9k6T0aDjh5RlbKKnr0CwaEm4iqyordzJ3D5stimohfIYVviERUucKKiZwjo6BFVKavorV9PBYK4T9OmQLNmQEkJ8NtvYh8VvUAuxCAeUaWjZ7LOk9Ggo0dUpWwUf1mB6N9fI4OIzyI7M7/+Kt7NGsVfrlPXrgRg926xr29fDQ0iPoeskO/ZA1y8aNtv1mwzRoOOHlGVsisE5UaaCgRxF7lzID9DZh1mkuvUoYxASBLQpg3VceIeUVHATTeJ0RVZIQc4R88o+Jyj9+6776JFixYICQlBly5dsNFZ8B871q9fjy5duiAkJAQtW7bE+++/X+6YpUuXIiYmBsHBwYiJicHy5cuVMt/02KdAO3cO2LtX7KcCQdxFdvR27ADy8sybrkku7749ovzsNBFPcLrAyc+cdcpo+JSjt2TJEkyePBkzZszArl270Lt3bwwdOhSZmZlOjz969ChuvfVW9O7dG7t27cJzzz2Hp556CkuXLrUes3nzZowaNQpjxozB7t27MWbMGIwcORJbtmxRq1imwn4xhjyfqF07oEEDDY0iPknTpkDLlmKe3saN5p1PJNep3bvo6BHPkR09+XcZMO+8V6PhU47e7NmzMX78eDzyyCNo27YtkpOT0aRJE7z33ntOj3///ffRtGlTJCcno23btnjkkUfw8MMP47///a/1mOTkZAwePBjTp09HmzZtMH36dAwcOBDJyckqlcpc2C/G4Pw8Ul3sh2/tGyVJkjS0Sl3kOvX7IVF+quPEE+QOwvbtQG6u2DZr58lo+IyjV1hYiB07diApKclhf1JSElJTU53+z+bNm8sdP2TIEGzfvh1FRUWVHlPROQGgoKAAeXl51ld+fr4nRTIl9ooe5+eR6uLg6NnFZiyRSjSySH2saktJINq0EfOtCHGXpk2BVq2A0lJbPD0qesbAZxy9c+fOoaSkBJFlZhlHRkYiOzvb6f9kZ2c7Pb64uBjnzp2r9JiKzgkAs2bNQkREhPUVExPjSZFMidwzLC4IxP79Yh8VCOIpsqO3axdwOc/m6JlJgbCWtTSQdYlUC7k+rV0r3qnoGQOfcfRkLBaLw9+SJJXbV9XxZfe7e87p06cjNzfX+srIyHDZfrMj9wzPnhE/IO3bA/XqaWkR8WUaNgRuvlmsFtyy2c7RM5ECYa/oUR0n1WHAAPFudfSo6BmCAK0NcJV69erB39+/nNKWk5NTTpGTiYqKcnp8QEAAbrjhhkqPqeicABAcHIzg4GDr33l5eW6VxczIPcPsU+IHhPPzSHXp3x84fBjYtD4QqCP2mUmBKCymoke8g/x7vHs3cP68eUMWGQ2fUfSCgoLQpUsXpKSkOOxPSUlBz549nf5PQkJCuePXrFmDrl27IjAwsNJjKjonqR7yD8apE1whSLyD3Dit+9Xfus9MDZPs6LVsFojoaI2NIT5NZKSIggCIYPaMo1eeDRs24I477kDDhg1hsVjw7bffOnwuSRJmzpyJhg0bIjQ0FP369cN+eZ6SRviMowcAU6ZMwUcffYRPPvkEBw4cwDPPPIPMzExMnDgRgBhSHTt2rPX4iRMn4vjx45gyZQoOHDiATz75BB9//DGmTp1qPebpp5/GmjVr8Prrr+PgwYN4/fXX8fPPP2Py5MlqF88UyD8YF84GwmLh/DxSfeTOwt49FlPOKZKd2p7xgVUcSUjV2A/fUtErz5UrV9CxY0fMmzfP6edvvPEGZs+ejXnz5mHbtm2IiorC4MGDNV206VOO3qhRo5CcnIwXX3wRnTp1woYNG7BixQo0a9YMAJCVleUQU69FixZYsWIF1q1bh06dOuGll17CW2+9hXvuucd6TM+ePbF48WIsWLAAHTp0wMKFC7FkyRL06NFD9fKZAesPRmkAOnQA6tbV1h7i+0RGAvJ6KItkrpRNkiRBsogVxokJPjMTh+gY+wUZZk0rWBlDhw7Fyy+/jOHDh5f7TJIkJCcnY8aMGRg+fDhiY2Px6aef4urVq/jqq680sFbgc78MkyZNwqRJk5x+tnDhwnL7+vbti507d1Z6zhEjRmDEiBHeMI9UgTXCekkg5+cRr9G/P5CRAaAkEPC7ZppI/ucu2MrZpxcVPVJ9+vYFLBbg4EHgSr55MmPk5+c7zLcvOxffFY4ePYrs7GyHkG3BwcHo27cvUlNT8eijj3rNXnfwKUWP+D72oSA4P494C7nTUFJkrqHb9Zts5WzaiI4eqT516wJxcWL78EHzDN3GxMQ4hE2bNWuW2+eQF3a6G7JNaXxO0SO+Td4Vm6Mnp9whpLrIcz1LCgOBYHM0TACwfmMRECa27QNGE1IdBgwAdu4EDuwLBOqZo+OUkZGBRo0aWf92V82zx92QbUpDRY+oyqls8YPRKCoQdepobAwxDPXqAR06ACg1l6K3MdVWTnmFJCHVRVbI9+0xj6IXFhaG8PBw68sTRy/qr7Q07oZsUxo6ekRVsnPED8bNrdgoEe/Svz/EHD2Yo2G6dAnYs1+U08/iBz8Lf86Jd+jdG/D3B3KyzNVxqi4tWrRAVFSUQ8i2wsJCrF+/XtOQbfxlIKqSc078YLRtTUePeJf+/WEqRW/TJkCy/JU7msO2xIuEhQHdu8NUHSdXuXz5MtLT05Geng5ALMBIT09HZmYmLBYLJk+ejFdffRXLly/Hvn37MG7cONSoUQMPPPCAZjZzjh5RjVOngCvXxQ9GzM1smIh36dMHwGrxXGWdLQKaa2qO4qxdC8DvL0ePw7bEywwYAGz+0jwdJ1fZvn07+tuFjJgyZQoA4KGHHsLChQsxbdo0XLt2DZMmTcLFixfRo0cPrFmzBmFhYVqZTEWPqMe6dbA2TBFhbJiId6lTBwgNFs/VznTjN0wpKQD8qegRZTDbVAhX6devn4hfWeYlh3ezWCyYOXMmsrKycP36daxfvx6xsbGa2kxHj6jGunVgw0QURe5ApO8xdsOUlQXs2wdbfaKiR7xMz55AwF+/09cKjF2fjA4dPaIav/4KDjURRakTLp4reZGCUZHnerdtx44TUYbQUKBje/FcXb5m7PpkdOjoEVXIzAT++ANWBUJOrUOIN6lbWzxXZ84W4cQJjY1RENnR6xbP+kSUI76beK6uF9LR82Xo6BFVWL1avNcME6l0qEAQJZDn6MGvWCjIBkSSbI5e125/1Scq5EQBEnqI56qwuBilpRobQzyGjh5RhTVrxHvNcA7dEuWwdiD8isSqVAOydy9w5gxQowbQOoZDt0Q5OncSz5VkKcL+/RobQzyGjh5RnOJi4OefxXZITTZMRDmsHQj/IqxZI9QvoyGreX37AhYuxiAKUjPEVp+M2nEyA3T0iOJs2yai+NeuDQQEsmEiyiF3IAJDipCVJdQvoyGr44MH28JesONElMAMCrkZoKNHFEdumAYNYsNElEXuQLS6WTxnq1ZpaY33uX4d2LBBbCcl2QLZsuNElMD6XPmVYt36UpSUaGsP8Qw6ekRx5IUYQ4bYOXpsmIgCyB2Im9uI50x+9ozCb78JZ69hQyAmhh0noiz2z1Xe5SJs366hMcRj6OgRRbl0CdiyRWw7KBBsmIgCyM9Vy5vEc7ZxI3D5spYWeRf7YVuLhYoeURaH58q/yHAKuVmgo0cU5ZdfgNJSoE0boGlTKnpEWeTnKrxOEZo3B4qK/srIYhDkhRiDB4t3KnpESRyeK78irFypnS3Ec+joEUWxH7YFqOgRZZGfq+LSItxyi9hnlOHbs2eBXbvE9qBB4p2KHlESh0Dc/kXYuhU4d047e4hn0NEjiiFJtqGmpCTxTkWPKIn8XBWVFFk7F0YZbpJDFHXsCERGim0qekRJLBaL1dlrE1Pk8JtOfAc6ekQxDh8Gjh8HgoJEzC9JklBcKiL5M2UTUQL5uSoqLcKAAUBAAPD773+l3/Nxyg7bAjZFj/WJKIX8bPUdIJ41Dt/6HnT0iGLIPb9evYCaNYESybY2nwoEUQLb0G0xwsOBnj3Ffl8fvrVPe2bv6MkdJyrkRCnkOtW7r3jWVq8G06H5GHT0iGJUND8PYMNElMF+6BaAYebpHTwInDwJBAcDvXvb9nPoliiNXKfadypCWJiYK7pjh8ZGEbego0cUoaAA1qTyVkev1M7RY8NEFEB+ruRnTX721q4FCgu1sqr6yGpe795AaKhtPxc3EaWxz44hLwLi8K1vQUePKEJqKnD1qpg03r692EdFjyiNVdH7y9Hr1AmoX1/E0ktN1dCwauJs2Bbg4iaiPPYq+dChYh8dPd+Cjh5RBHmoLCkJ8PvrKbNX9Pwt/hpYRYyOVdH7q1Ph52dT9Xx1+Law0KaOy6vXZajoEaWxV8llR2/rVuD8eQ2NIm5BR48ogrwQQ25kAcdGyWKxaGAVMTplFT3A9x29tDTgyhWhTHbo4PgZFT2iNPaKXuPGQGysWIwhq8xE/9DRI17nzBlbYFeHUBBslIjClFX0AJsKtmuXeDZ9DbnTNGiQTR2XoaJHlKbsvFcO3/oedPSI15F7enFxQIMGtv1slIjSOFP0GjQAOncW274Y7FWuT2WHbQF2nojylF3JLjt6q1YxzIqvQEdP5xQV+d5qwbLZMGTYKBGlcaboAbYwK76WJePMGWDbNrFddiEGwM4TUZ6yil5iIlCrFpCTYxu5IfqGjp6Oee45oUZ8953WlrhOaanz+XkAGyWiPM4UPcD2LK5Z41sqxPffi2DJ3boBjRqV/5ydJ6I0ZRW9oCAwzIqPQUdPxxQXA5cuAcuXa22J6+zdK1SImjVtWQlk5EaJ6ZqIUlhToJVR9BISgLAwkZDdl1SIb78V73fd5fxz1imiNPZpBWVkhZyOnm9AR0/HDB8u3n/8UQQg9gXkobF+/UQUf3uYrokojX0KNIf9gcDAgWLbV4Zv8/OBn38W2xU5etY6RZWcKISzOiXP00tLAy5c0MIq4g509HRM9+5AdLT4wV+7VmtrXGPZMvF+++3lP+PQLVGaioZuAd8Ls7JqlZife9NNQNu2zo+x1il2nohClB26BYCmTYGYGIZZ8RXo6OkYPz/g7rvFtuxA6ZkTJ0QgTYvFuQLB+UREaSpajAHYHL3UVODiRTWt8gz7YduKwk4y1y1RmrKLMWQYZsV3oKOnc2RH77vvgJISbW2pCtkZTUwEoqLKf05FjyhNZYpeixYiHV9JiVjkoGcKC4GffhLbFQ3bAlT0iPI4U/QAhlnxJXzG0bt48SLGjBmDiIgIREREYMyYMbh06VKFxxcVFeH//b//h/bt26NmzZpo2LAhxo4di9OnTzsc169fP1gsFofXfffdp3BpXKdvX6BOHeDsWeC337S2pnKWLhXv99zj/HMqekRpKlP0AGDECPH+zTdqWeQZ69cDubkiV3R8fMXHUdEjSlORoterl1h0d+YMkJ6ugWHEZXzG0XvggQeQnp6OVatWYdWqVUhPT8eYMWMqPP7q1avYuXMn/vWvf2Hnzp1YtmwZDh8+jDvvvLPcsRMmTEBWVpb19cEHHyhZFLcIDATuuENs63n17ZkzwKZNYlteRFIWKnpEaSpT9ACbo7dmjXCk9Ipc14cNK58Nwx4qekRpKlL0goNtC5w4fKtvfMLRO3DgAFatWoWPPvoICQkJSEhIwPz58/Hjjz/i0KFDTv8nIiICKSkpGDlyJFq3bo34+Hi8/fbb2LFjBzIzMx2OrVGjBqKioqyviIgINYrlMrLjtGyZiKmlR7791hbvq2lT58dQ0SNKU5WiFxMjXoWFwA8/qGmZ65SW2mJnVjZsC1DRI8pTkaIHALfdJt71LEIQH3H0Nm/ejIiICPTo0cO6Lz4+HhEREUhNTXX5PLm5ubBYLKhdu7bD/i+//BL16tVDu3btMHXqVOTn51d6noKCAuTl5VlfVR1fXZKSgBo1gMxM/cYAq2rYFqCiR5SnKkUPsKl6//ufGha5z/btwOnTIvvAgAGVH0tFjyhNZZ2nu+8G/P2BHTuAI0fUtoy4ik84etnZ2WhgnzT1Lxo0aIDs7GyXznH9+nX885//xAMPPIDw8HDr/tGjR2PRokVYt24d/vWvf2Hp0qUYXtHY41/MmjXLOlcwIiICMTEx7hXITUJDbRNf9bj69sIF4NdfxXZlt46KHlGaqhQ9wOborV4N5OWpYZV7yKttb721fCzKslDRI0pTWeepfn1blowlS9S0iriDpo7ezJkzyy2EKPvavn07AMDiJL6AJElO95elqKgI9913H0pLS/Huu+86fDZhwgQMGjQIsbGxuO+++/DNN9/g559/xs6dOys83/Tp05Gbm2t9ZWRkuFly97EfvtUb338vsni0by9iflUEFT2iNK4oerGxQOvWIgi5vLJVT1SVDcMeKnpEaarqPI0aJd7p6OkXTR29J554AgcOHKj0FRsbi6ioKJw5c6bc/589exaRkZGVXqOoqAgjR47E0aNHkZKS4qDmOaNz584IDAzEkUp06ODgYISHh1tfYWFhrhW4Gtx2m1iYceAAcPCg4pdzC1eGbQGmayLKU1EKNHssFv0O3x46JOp4YKBQ9KqCdYoojbMUaPbcfbd4XvftA/bvV9My4iqaOnr16tVDmzZtKn2FhIQgISEBubm52Lp1q/V/t2zZgtzcXPQsm1DVDtnJO3LkCH7++WfccMMNVdq0f/9+FBUVITo62itl9BYREbYVTnqa+JqXJ1YwAlU7ekyBRpSmohRoZbn3XvG+ciVw+bLSVrmOvAhjwABR56uCKdCI0si/1xXVqdq1bblvqerpE5+Yo9e2bVvccsstmDBhAtLS0pCWloYJEybg9ttvR+vWra3HtWnTBsv/8oKKi4sxYsQIbN++HV9++SVKSkqQnZ2N7OxsFBYWAgD++OMPvPjii9i+fTuOHTuGFStW4N5770VcXBwSExM1KWtlyMGT9eTorVghVjDefDPQrl3lx3LoliiN3ChJkFBSWnGE8Q4dgFatgOvX9TV8686wLcChW6I8rsx7lUPPLl6s38gQZsYnHD1ArIxt3749kpKSkJSUhA4dOuDzzz93OObQoUPI/Ss41smTJ/H999/j5MmT6NSpE6Kjo60veaVuUFAQfvnlFwwZMgStW7fGU089haSkJPz888/w9/dXvYxVMWyYGHbatk2kG9MD9sO2VU2X5MRxojT2z1Zl8/Tsh2/1Ejw5KwvYvFlsOwn36RTWKaI0rsx7vfNOsWjwyBH9RoYwMz4zsaNu3br44osvKj1GsutKNG/e3OFvZzRp0gTr16/3in1qEBkp0ott2iR6/k8+qa09V68KRQ+ofLWtDNUHojT2z1ZRSRFCAkIqPPbee4HXXhOK3pUrIsq/lshp2Xr0ABo2dO1/WKeI0lQWR0+mVi0xj/ybb8TwbefOallHXMFnFD0i0NPq29WrhbPXrBnQpUvVx1N9IErjqqIHAHFxIv/ttWv6iOzv7rAtwDpFlKeizBhlkYdvlyzh8K3eoKPnY8jz9DZsAM6d09YWedh2+PCqh20Bqg9EeexXn1bVMOlp+DYvD/jlF7HtlqPHOkUUxhVFDxCrxGvVAo4fB7ZsUcMy4ip09HyM5s2FElFaahvq0YKCAlsKqapW28pQfSBKY7FYqgwHYY+8+vbHH4WypxU//AAUFQFt2oiXq7BOEaVxVdELDRXzyAGxKIPoBzp6PogeVt+uXStUiOhoICHBtf+h+kDUwJVVgjJdu4qpB1euAKtWKW1ZxXzwgXiXh79cQZIkhiwiiuOqogfYnt+vvwZKKl70TlSGjp4PIitoq1cDLmaA8zrysO3ddwN+Lj5FVB+IGriySlBGD8GT9+8HNm4UOUMfecT1/7OPa8Y6RZTCVUUPEHnZa9cWK8g3bVLYMOIydPR8kJgYoaIVFQHz56t//WvXbGqiK6ttZajoETVwR9EDbI7eDz+IuHpqI6t5w4YBjRq5/n/2jizrFFEKdxS9oCBbm8DhW/1AR89HeeIJ8f7++8LhU5OvvgIuXACaNgX69nX9/5iuiaiBO3P0AKB7d6BxY5EhY/VqJS0rz5UrwKefiu2JE937X3tHlnWKKIUraQXtkYdvv/lG5EAn2kNHz0cZMULE1Tt92haWQQ0kCZg7V2w/8QQQ4Eb7wnRNRA2qStlUFj8/YORIsS2ra2qxeLGY63rjjbYUh67CoVuiBu7Wp/79gfr1RVSItWuVtIy4Ch09HyUoCPj738X2vHnqXXfdOmDvXqBGDffmEwF2c/Q4zEQUxN2hWwB47DExX2/lSiAjQynLyvP+++J94kTX57rKyPXJAgv8/fSXyYcYA3eGbgHR+ZenQ3D4Vh/Q0fNhHn1UTODesAHYs0eda8pq3tixQJ067v0vc90SNXBnMYZMq1a2+HWzZytglBO2bxevoCBg3Dj3/59zXokauLMYQ2bUKPG+fLm2YYuIgI6eD9OokW3i6zvvKH+9P/+0xe576in3/5+KHlEDTxQ9AJg6Vbx//rk6q9llNe/ee4F69dz/f65iJ2rgrqIHAL17i5ivly4BH32kjF3Edejo+TiPPy7ev/hCVColmTdPzNFLSgLatnX//6noETXwRNEDgJ49gfh4oLBQ+Y7TpUvAokVi+7HHPDsHFT2iBp4oen5+wP/7f2L7jTdEgH2iHXT0fJw+fYDYWJFzduFC5a6Tnw98/LHYfvppz85BRY+ogaeKHgA8+6x4f+89UaeU4vPPxfljY4WD6QlU9IgaeKLoAcDf/gY0bAicPGlbWU60gY6ej2Ox2EKtvPOOSI2mBJ9+KlYH3nwzcMstnp2Dih5RA08VPUAEAG/RAjh/XrnGSZIcF2G4kifaGVT0iBp4ougBQHAwMG2a2J41S/0wYMQGHT0DMHo0EBEB/P47sGaN989fWgq89ZbYfvJJ91cHylDRI2pQHUXP3x945hmxPXu2MmmcNm4UK3tr1gTGjPH8PFT0iBp4qugBwIQJItTKsWO2qQpEfejoGYBatYRMDigTamXVKuDIESA8HHjoIc/PQ0WPqEF1FD1A1KXatUXH6YcfvGjYX8hq3gMPiDrlKVT0iBp4qugBIgyXPB3i1VeZ/1Yr6OgZhEmTxPuKFcAff3j33HJIlfHjgbAwz8/DzBhEDdyN5F+WWrVsWSrefNNbVglyckTGAMD9TBhlYX0iauBuppmyPPaYCMV16JAtRzpRFzp6BuGmm4AhQ8T8n/fe8955DxwQw8H2cwE9hQoEUYPqDDXJPPkkEBgoErNv3eoty4AFC8Rcpe7dgc6dq3cuKuREDaozFQIQqrW8gO/ll5WbR04qho6egZAdsY8/9t6KQXlu3p13Ai1bVu9cTIFG1MDdlE3OaNgQuP9+se0tVe/MGdu5Hn20+uez1id2nIiCeKM+PfWUGA3au1eZ6RCkcujoGYihQ8WKwUuXxCqn6nLxIvDZZ2J78uTqn4+LMYgaVFeBkJHnFn3zDXD0aPVskiSRMvDsWaB9e7GAqrpwMQZRA/n5KpFKIEmSR+eoU8cmRLz8sqgPRD3o6BkIf3/glVfE9iuvVG8FriSJ4aurV4EOHYC+fatvH4eaiBpUdzGGTIcOwODBYqhJnqfqKR9+CPz4owg58eWX4r26cCoEUQP756s6deqZZ4DQUJH2T4noEKRi6OgZjPvvB/7+d+GojR4NnDrl2XnefFM0SP7+YvjW01hf9lDRI2rgLUUPsKl6774LrF3r2TkOHbKFbJk1Syh63oCKHlED++erOnWqfn3bAqSXXqKqpyZ09AzI3LlAp07AuXPAffe5H6hy1Spb+pq5c72j5gFU9Ig6eGMxhkxSEjBypKhDd98N7Nnj3v8XFQEPPigSuw8c6HlWGafnpqJHVMBbih4g8kkHBQG//SbaGaIOdPQMSEgI8L//icmvmzYB//d/rv/v4cPCOSwtFXOK5LAt3oCKHlGD6sT9KovFIjJk9OkjMsMMHQpkZrr+/y+9JIaq6tQRKQo9DTbuDCp6RA28pegBYpHThAli+557gJUrq3U64iJ09AxKq1bAJ5+I7TfecG2lU14eMGwYkJsr8m/Om+edIVsZKnpEDbyp6AGi4/Ttt0C7dsDp0yIF4IULVf9faqptzuwHHwCNG3vFHCtU9IgaWCwW+Fv8AXinTr3xhugwXbsmojkwY4by0NEzMCNGiGXtgMhocexYxceWloo5fQcPAo0aicCW3pgwLiNJEhU9ogreVPRk6tQR6kOjRiK25LBhwPXrFR+fny+GbEtLRZqze+/1milWqOgRtfBmnapRA/juO5EZprhYtDvvvFP5/+TnC+HiypVqX95rvPvuu2jRogVCQkLQpUsXbNy4UWuTKoSOnsH5z39EcNaLF4FRo4DCQufH/fvfYlWgrF5ERXnXjhLJlvuGDRNREm8rejJNmghnLzxcTIl48MHyKZ0kSah+kyaJkCzNmgFvv+1VM6xQ0SNq4e06FRgIfP65CLkiSeL9hRccF2iUlgLr1gmRIipKZGZatswrl682S5YsweTJkzFjxgzs2rULvXv3xtChQ5HpzrwOFWHuHIMTFAQsWSKi8G/dCrRuDTRoINI8hYWJd4sF+OILcfz8+UDXrt63w74nyJRNREmqmwKtMtq3Fx2hW24RqveECSIMS0YGsH+/eL90SRxrsYjGLCLC62YAYAo0oh5K1Ck/PxHRoV49YOZM8Tp3DpgyRdSbhQsd41e2aePdUabqMHv2bIwfPx6PPPIIACA5ORmrV6/Ge++9h1neCGLrZfgLoWNe3vAyvsn4xivnqv1P4OIx4JgEHHN2wESx/P2/l4H/vu+VSzrgoOhRgSAKIj9fX2d8jc0nNytyjegXgOPHgQUAcAiAP4AOf70gGqT6DYAn9wPYr4gJOHPlDAAq5ER55Dp115K7EBoQ6t2TRwKNXhKhwOYVA/Pe+Gv/EOEM1q4N3HADEFwD8I/9F4B7vHv9v8jPz0deXp717+DgYAQ78SwLCwuxY8cO/POf/3TYn5SUhNTUVEVsqy509HTMybyT2H1mt/dOGFn5x2cBnD3jvcs5o2FYQ4QEhCh7EWJqWtVtBQC4cO0CLlxzYdWEp1QyvaEAwMki4KTC9QkAbqxzo/IXIaamVd1WyLmSg8PnDyt3ESf1qRTABQAX8gHkA+evnVfs8jExMQ5/P//885g5c2a5486dO4eSkhJERjo2qJGRkcjOzlbMvupAR0/HPN3jadzTVpnei1Z0jOoIPwunhhLlGNVuFFrVbYWL1y5qbYri1AisgfjG8VqbQQzOytErsfXUVo9ToLlKVpYI0t+ggfPP29Zvq9i1MzIy0KhRI+vfztQ8eyxlQlJIklRun16go6dj2tZvq+iDTYgRsVgs6NpQgYmmhJiU8OBwDGo5SPkLaShOh4WFITw8vMrj6tWrB39//3LqXU5OTjmVTy9QWiGEEEIIcYGgoCB06dIFKSkpDvtTUlLQs2dPjayqHCp6hBBCCCEuMmXKFIwZMwZdu3ZFQkICPvzwQ2RmZmKinMxXZ9DRI4QQQghxkVGjRuH8+fN48cUXkZWVhdjYWKxYsQLNmjXT2jSn0NEjhBBCCHGDSZMmYZI3k8EriM/M0bt48SLGjBmDiIgIREREYMyYMbgkRyatgHHjxsFisTi84uMdV6gVFBTgySefRL169VCzZk3ceeedOHnypIIlIYQQQghRB59x9B544AGkp6dj1apVWLVqFdLT0zFmzJgq/++WW25BVlaW9bVixQqHzydPnozly5dj8eLF2LRpEy5fvozbb78dJWVzGxFCCCGE+Bg+MXR74MABrFq1CmlpaejRowcAYP78+UhISMChQ4fQunXrCv83ODgYURUkbs3NzcXHH3+Mzz//HIMGiaXjX3zxBZo0aYKff/4ZQ4YM8X5hCCGEEEJUwicUvc2bNyMiIsLq5AFAfHw8IiIiqkw5sm7dOjRo0AA333wzJkyYgJycHOtnO3bsQFFREZKSkqz7GjZsiNjY2ErPW1BQgLy8POsrPz+/GqUjhBBCCFEGn3D0srOz0cBJqOwGDRpUmnJk6NCh+PLLL7F27Vq8+eab2LZtGwYMGICCggLreYOCglCnTh2H/6sqlcmsWbOscwUjIiLKpU4hhBBCCNEDmjp6M2fOLLdYouxr+/btAMqnGwGqTjkyatQo3HbbbYiNjcUdd9yBlStX4vDhw/jpp58qtauq806fPh25ubnWV0ZGhoslJoQQQghRD03n6D3xxBO47777Kj2mefPm2LNnD86cKZ8d/OzZs26lHImOjkazZs1w5MgRAEBUVBQKCwtx8eJFB1UvJyen0gjXwcHBDnnw8vLyXLaBEEIIIUQtNHX06tWrh3r16lV5XEJCAnJzc7F161Z0794dALBlyxbk5ua6lXLk/PnzOHHiBKKjowEAXbp0QWBgIFJSUjBy5EgAQFZWFvbt24c33njDgxIRQgghhOgHn5ij17ZtW9xyyy2YMGEC0tLSkJaWhgkTJuD22293WHHbpk0bLF++HABw+fJlTJ06FZs3b8axY8ewbt063HHHHahXrx7uvvtuAEBERATGjx+PZ599Fr/88gt27dqFBx98EO3bt7euwiWEEEII8VV8IrwKAHz55Zd46qmnrCtk77zzTsybN8/hmEOHDiE3NxcA4O/vj7179+Kzzz7DpUuXEB0djf79+2PJkiUICwuz/s+cOXMQEBCAkSNH4tq1axg4cCAWLlwIf39/l20rLS0FINRAQgghhPgGcrstt+NGxCJJkqS1Eb7Otm3brEPKhBBCCPEttm7dim7dumlthiLQ0fMCxcXF2LVrFyIjI+Hn573R8Pz8fMTExCAjI8NBhTQTZr8HZi8/wHtg9vIDvAcsv3LlLy0txZkzZxAXF4eAAJ8Z5HQLOno6Ji8vDxEREcjNzUV4eLjW5miC2e+B2csP8B6YvfwA7wHLb+7yVxefWIxBCCGEEELch44eIYQQQohBoaOnY4KDg/H88887BGc2G2a/B2YvP8B7YPbyA7wHLL+5y19dOEePEEIIIcSgUNEjhBBCCDEodPQIIYQQQgwKHT1CCCGEEINCR48QQgghxKDQ0SOEEEIIMSjGzPfhwxw/fhzZ2dmwWCyIjIxEs2bNtDZJdcx+D8xefoD3wOzlB3gPWH5zl9+rSEQXzJ49W2rcuLHk5+cnWSwWyWKxSH5+flLjxo2lOXPmaG2eKpj9Hpi9/JLEe2D28ksS7wHLb+7yKwEdPR3w4osvSuHh4dJrr70m7dq1Szp9+rR06tQpadeuXdJrr70mRURESC+99JLWZiqK2e+B2csvSbwHZi+/JPEesPzmLr9S0NHTAY0bN5aWL19e4efLli2TGjZsqJ5BGmD2e2D28ksS74HZyy9JvAcsv7nLrxRcjKEDzp8/j9atW1f4+c0334yLFy+qaJH6mP0emL38AO+B2csP8B6w/OYuv1LQ0dMB3bt3xyuvvILi4uJynxUXF+PVV19F9+7dNbBMPcx+D8xefoD3wOzlB3gPWH5zl18pmOtWB+zduxdJSUkoKChA3759ERkZCYvFguzsbGzYsAHBwcFISUlBu3bttDZVMcx+D8xefoD3wOzlB3gPWH5zl18p6OjphPz8fHzxxRdIS0tDdnY2ACAqKgoJCQl44IEHEB4errGFymP2e2D28gO8B2YvP8B7wPKbu/xKQEePEEIIIcSgMGCyjjlz5gwKCgrQtGlTrU1RjcuXL2PHjh3WQJlRUVHo3LkzatWqpbVpmsBngM8AnwE+A2Z7Bvj9exktl/wSQV5enjR69GipadOm0tixY6WCggJp0qRJ1kCRffr0kXJzc7U2U1GKioqkp556SgoNDZUsFosUHBwsBQUFSRaLRQoNDZWefvppqbCwUGszFYPPAJ8BPgN8Bsz+DJj9+1cKrrrVAc899xx27NiBqVOnIjMzEyNHjsSGDRuwceNGrFu3DhcuXMDrr7+utZmK8uyzz2Lp0qVYsGABLly4gOvXr6OgoAAXLlzAggULsGzZMvzjH//Q2kzF4DPAZ4DPAJ8Bsz8DZv/+FUNrT5NIUpMmTaS1a9dKkiRJp06dkiwWi/T9999bP//pp5+k1q1ba2WeKtSrV0/65ZdfKvz8559/lurVq6eiRerCZ4DPAJ8BPgNmfwbM/v0rBRU9HZCTk4NWrVoBABo2bIjQ0FCHoJHt2rXDiRMntDJPFa5du4Z69epV+PkNN9yAa9euqWiRuvAZ4DPAZ4DPgNmfAbN//0pBR08H3HDDDTh79qz172HDhqF27drWvy9fvozg4GANLFOP/v37Y8qUKThz5ky5z86cOYNp06ZhwIABGlimDnwG+AzwGeAzYPZnwOzfv1Jw1a0O6NChA7Zt24bOnTsDAL766iuHz7dt24a2bdtqYZpqvPvuu7j11lvRuHFjxMbGOgTK3LdvH2JiYvDTTz9pbaZi8BngM8BngM+A2Z8Bs3//SsE4ejrgwoUL8PPzc+i52bNy5UqEhoaiX79+qtqlNqWlpVi9erXTQJlJSUnw8zOuAM1nQMBngM8AnwFzPwNm/v6Vgo4eIYQQQohBoWtMCCGEEGJQ6OjpjBYtWmDw4MEO+wYNGoSWLVtqZJH6mP0emL38AO+B2csP8B6w/OYuvzfhYgyd8dBDD6F+/foO++6++26cO3dOI4vUx+z3wOzlB3gPzF5+gPeA5Td3+b0J5+gRQgghhBgUDt0SQgghhBgUOno64cCBA1iwYAEOHjwIADh48CAee+wxPPzww1i7dq3G1qnDyZMnMWPGDPTv3x9t27ZFTEwM+vfvjxkzZhg6GryM2ctfFSdOnMDDDz+stRmaYZbyX7t2DZs2bUJGRka5z65fv47PPvtMA6vUw+zlZ1vofTh0qwNWrVqFYcOGoVatWrh69SqWL1+OsWPHomPHjpAkCevXr8fq1asNHRF806ZNGDp0KJo0aYKkpCRERkZCkiTk5OQgJSUFJ06cwMqVK5GYmKi1qYpg9vK7wu7du9G5c2eUlJRobYommKH8hw8fRlJSEjIzM2GxWNC7d28sWrQI0dHRAER2hIYNGxr2Hpi9/GwLlYGOng7o2bMnBgwYgJdffhmLFy/GpEmT8Nhjj+GVV14BAMyYMQPbtm3DmjVrNLZUObp164ZevXphzpw5Tj9/5plnsGnTJmzbtk1ly9TB7OUHgO+//77Sz//88088++yzhm3kzF5+QEy2Ly4uxoIFC3Dp0iVMmTIF+/btw7p169C0aVPDOzpmLz/bQoWQiOaEh4dLR44ckSRJkkpKSqSAgABpx44d1s/37t0rRUZGamWeKoSEhEgHDx6s8PMDBw5IISEhKlqkLmYvvyRJksVikfz8/CSLxVLhy8/PT2szFcPs5ZckSWrQoIG0Z88eh32TJk2SmjZtKv3xxx9Sdna2oe+B2cvPtlAZOEdPZ/j5+SEkJMQhBU5YWBhyc3O1M0oFoqOjkZqaWuHnmzdvtg5fGBGzlx8Q92Dp0qUoLS11+tq5c6fWJiqK2csPiPlpAQGOUb/eeecd3Hnnnejbty8OHz6skWXqYPby22PWtlAJGEdPBzRv3hy///47WrVqBUA06k2bNrV+fuLECcM38lOnTsXEiROxY8cODB482CGZdUpKCj766CMkJydrbaZimL38ANClSxfs3LkTd911l9PPLRYLJAPPNDF7+QGgTZs22L59O9q2beuw/+2334YkSbjzzjs1skwdzF5+toXKQEdPBzz22GMOcy5iY2MdPl+5cqXhJ59OmjQJN9xwA+bMmYMPPvjAej/8/f3RpUsXfPbZZxg5cqTGViqH2csPAP/4xz9w5cqVCj9v1aoVfv31VxUtUhezlx8Qc9QWLVqEMWPGlPts3rx5KC0txfvvv6+BZepg9vKzLVQGLsYguqOoqMga/bxevXoIDAzU2CJ1MXv5CSGEeA86eoQQQgghBoWLMXRCVlYWvvjiC6xYsQKFhYUOn125cgUvvviiRpapx7Zt2zB69Gi0aNECoaGhqFGjBlq0aIHRo0dj+/btWpunOGYvP8B7YPbyA7wHLL+5y68EVPR0wLZt25CUlITS0lIUFRWhcePGWL58Odq1awfA+EEyAeDbb7/FyJEjMXDgQAwZMsQhYPCaNWvwyy+/4Ouvv8awYcO0NlURzF5+gPfA7OUHeA9YfnOXXzFUD+hCyjFo0CDp4YcflkpKSqS8vDxp0qRJ0g033CDt3LlTkiTJ8LGTJEmS2rVrJ82aNavCz1977TUpJiZGRYvUxezllyTeA7OXX5J4D1h+c5dfKejo6YA6depIhw4dctj3+uuvS3Xq1JG2bt1qCkcvODi43D2w5+DBg1JwcLCKFqmL2csvSbwHZi+/JPEesPzmLr9ScI6eTrh+/brD39OmTcNzzz2HpKSkSgPpGoUbb7wR3377bYWff/fdd2jZsqV6BqmM2csP8B6YvfwA7wHLb+7yKwXj6OmA2NhYpKamokOHDg77p06dCkmScP/992tkmXq8+OKLuO+++7B+/XokJSWVCxi8Zs0aLF68WGszFcPs5Qd4D8xefoD3gOU3d/kVQ2tJkUjS/PnzpQcffLDCz19//XWpefPmKlqkDampqdKoUaOkpk2bSkFBQVJQUJDUtGlTadSoUVJqaqrW5imO2csvSbwHZi+/JPEesPzmLr8ScNUtIYQQQohB4Rw9QgghhBCDQkePEEIIIcSg0NEjhBBCCDEodPQIIYQQQgwKHT1CCCGEEINCR88HOHPmDF588UWtzVCFkydP4vLly+X2FxUVYcOGDRpYpC5mLz/Ae2D28gO8Byy/ucvvdbSO70KqJj093fAp0E6fPi1169ZN8vPzk/z9/aWxY8dK+fn51s+NngbO7OWXJN4Ds5dfkngPWH5zl18pqOjpgD179lT6OnTokNYmKs4///lP+Pv7Y8uWLVi1ahUyMjLQr18/XLx40XqMZOCQj2YvP8B7YPbyA7wHLL+5y68YGjqZ5C8sFovk5+cnWSyWci95v9F7MQ0bNpS2bNli/fv69evSsGHDpE6dOknnz583fE/O7OWXJN4Ds5dfkngPWH5zl18pqOjpgBtuuAHz58/H0aNHy73+/PNP/Pjjj1qbqDi5ubmoU6eO9e/g4GB88803aN68Ofr374+cnBwNrVMes5cf4D0we/kB3gOW39zlVwo6ejqgS5cuOH36NJo1a+b01ahRI8PL1S1btsSePXsc9gUEBOB///sfWrZsidtvv10jy9TB7OUHeA/MXn6A94DlN3f5lYKOng549NFH0bx58wo/b9q0KRYsWKCeQRowdOhQfPjhh+X2y5W8U6dO6hulImYvP8B7YPbyA7wHLL+5y68UFsnoUhHxCYqLi3H16lWEh4c7/bykpAQnT55Es2bNVLZMHcxefoD3wOzlB3gPWH5zl18p6OgRQgghhBiUAK0NIIKTJ0/ivffeQ2pqKrKzs2GxWBAZGYmePXti4sSJaNKkidYmKo7Z74HZyw/wHpi9/ADvActv7vIrARU9HbBp0yYMHToUTZo0QVJSEiIjIyFJEnJycpCSkoITJ05g5cqVSExM1NpUxTD7PTB7+QHeA7OXH+A9YPnNXX7F0CCkCylD165dpcmTJ1f4+eTJk6WuXbuqaJH6mP0emL38ksR7YPbySxLvActv7vIrBRU9HRAaGor09HS0bt3a6ecHDx5EXFwcrl27prJl6mH2e2D28gO8B2YvP8B7wPKbu/xKwfAqOiA6OhqpqakVfr5582ZER0eraJH6mP0emL38AO+B2csP8B6w/OYuv1JwMYYOmDp1KiZOnIgdO3Zg8ODBiIyMhMViQXZ2NlJSUvDRRx8hOTlZazMVxez3wOzlB3gPzF5+gPeA5Td3+RVD67FjIli8eLHUo0cPKSAgwJrnNiAgQOrRo4e0ZMkSrc1TBbPfA7OXX5J4D8xefkniPWD5zV1+JeAcPZ1RVFSEc+fOAQDq1auHwMBAjS1SH7PfA7OXH+A9MHv5Ad4Dlt/c5fcmdPQIIYQQQgwKF2MQQgghhBgUOnqEEEIIIQaFjh4hhBBCiEGho0cIIYQQYlDo6BFCCCGEGBQ6eoQQQgghBoWOHiGEEEKIQfn/cq0vA2p7i9gAAAAASUVORK5CYII=",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnoAAAHNCAYAAACJjdZcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9oUlEQVR4nO29eZgU1dm/fw/MDArDFhGGVTGyxI1dARFQAyhJBJeg0SRqTDQkxoW84RVMXN64fY1BNArEhJ8LcSMxRhMhDioism+CrC6IIMIgKJssA0P9/jhd3dNMz0x3T9f+ua/rXF1dXV39nKo6XU99znOekwdYCCGEEEKI0FHHawOEEEIIIYQzyNETQgghhAgpcvSEEEIIIUKKHD0hhBBCiJAiR08IIYQQIqTI0RNCCCGECCly9IQQQgghQkq+1waEhW7dulFaWuq1GUIIIYTIgBYtWrBs2TKvzXAMOXo5oFu3bixdutRrM4QQQgiRBd27dw+tsydHLwfYSl737t2l6gkhhBABoUWLFixdujTU9245ejmktLSUzz//3GszhBBCCCEADcYQQgghhAgtcvSEEEIIIUKKHD0hhBBCiJAiR08IIYQQIqTI0RNCCCGECCly9IQQQgghQoocPSGEEEKIkCJHTwghhBAipMjRE0IIIYQIKXL0hBBCCCFCihw9IYQQQoiQIkdPCCGEECKkyNETQgghhAgp+V4bIATtgEFAgdeG+I06QHOgPrAF2O+tOX5kG/AyYHltiM8YDJzktRF+5FigCaYt7fTUEl9yBJgNrPHaEJFL5OgJ7+kGtPXaCD9yBNjqtRH+phh4F+PwCUMh0NdrI/zKfvTAVANnIkcvZMjRE95jX4WL0B8MHYBfAKfG3n8ObAR6x94vBv4AfOW+aX7jUqAB+hc7mroVlqcQUbUzDzgHI232IHFQDgJrgS6x9/8AnnDdOl/SFjgXtacQolMqvMeOFP0CWO+lIV5yPHAf8BPMAdkL3As8jLk5/RR4BNPH/VPgGmCaF4b6hzKMo6dI42Rsn8YCPvbSEC/5C3BdhffvAk8DU4HdwM3AeEx76g38DCh310S/YV83ak+hQ6dUeI/9BxPZ/9m2wCqMA1cH+BvQCXgA4+QB/BWjTLyHcQpfwzh+9Vy21UfY10vdareKHva/emTb07kYJ+8I5mGpA0bd+yvGyQPTdn4MHAauBf5OpNsSmMMFak8hRI6e8B77KjxS7VYh5n6M87YGOBv4EabL9mjWYtSH8bH3NwHPumCfT7GvF/2LJWPfqCPZnuoBk2LLE4HfAh9Vse0U4BLgAHAx5uGpyGkD/Yv9YKD2FDp0SoX3RFrR6wVchbkrXwXMrWH7g8CtwHcwasSlRDbyXopeaiKt6N0GdMSMUh+bxvb/Bi4E9gDnA28CDR2zztdI0QstcvSE90Ra0RsXe30GWJbB96YBT8aW78upRYFBil5qIqvodQTGxJZvJtFNWxNvY7p7t2OGnI7KuWWBQIpeaNEpFd4TWUXvEqAfsA+4PYvv/x+m22kAZnRhxJCil5rIKnqTMF230zAxd5mwBPh5bPlmIqnqSdELLXL0hPdEUtErBB6MLf+B1DF5NfEZMCG2fB8mpUSEkKKXmkgqej/GqHL7gF9muY9/AquBppgURxFDil5o0SkV3hPJG9MvgW9iYon+UIv93I+JL+qBideLEFIgUhO5B6dvAA/Flu8GNmS5H4tEGMSvMTPSRAi1p9AiR094T+S6mr4B/C62fDvwdS32tR34Y2z590TqX1oKRGoi154exIxaf59EzGu2vIBJPng8JrdehJBCHlp0SoX3RE6BuAPTPbQck8S1tozDOHydMV1YEUE3ptRESiE/h0Ri5BswI9FrQzkmfyXAbzAhFhFBD06hRadUeE+kBmPYU5yB6R7Kxd14D6YLF+AuIpP4VYMxUhMZRa8OiZx5fwbm5Wi/zwCbgNaYGWgigrpuQ4scPeE9kVL0HgQKgP9gcnbligmYwRntSIweDDlS9FITGUVvCHAK8CUmf16uKCMxUOo2IjNTqBS90BKoU3rOOefw6quvsnnzZizLYtiwYdVuf/HFF1NSUsK2bdvYtWsXc+fOZfDg5DQUV199NZZlVSr16kVEFfEDkVH0+gPDMd1Lv8nxvg9gAtHBJIqNQIZ/KXqpiYyiZ3fZPgPszPG+/wqUAu2BK3O8b59S8cFAbSpUBMrRa9CgAcuXL+fGG29Ma/v+/fszY8YMhg4dSo8ePZg5cyb//ve/6dq1a9J2u3btori4OKkcPHgw9U5F7omMomcnc/0zZjqzXPMk8AHQHLjFgf37DCl6qYmEotcMuCi2PNmB/R8gMZJ3LJG4yCo+GESgulEiUJr0f//7X/773/+mvf2tt96a9P72229n2LBhfO973+O9996Lr7csi9LS0lyZKTIlEopeS2BQbLm2IwOrohwzmvdF4H+Ax8i90uEjpOilJhKK3o8wIRALgZUO/cYkzMNZJ+AyYKpDv+MTjlb0DnlliMg1kfLb8/LyaNiwIV9++WXS+qKiIjZs2MCmTZtSKn5HU1hYSMOGDeOlqCgC3WROEglF70rMv+e7wHoHf+fvmBtfY+ByB3/HB0jRS00kFD2729YJNc9mLzA+tvxbQp+QXIpeaInU6fz1r39NgwYNmDo18WS2du1arrnmGi666CJ+8IMfcODAAebMmcPJJ59c5X7GjBnD7t2742XdunVumB9eIqHoXR17fcbh37GAp2LLVzn8Wx4jRS81oVf0zgJOxcyC8YLDv/UnzJy5pwPfc/i3fIBG3oaSyDh6V1xxBXfddReXX345X3zxRXz9ggULePbZZ1mxYgXvvvsuI0aM4IMPPuBXv/pVlfu6//77adSoUbx06tTJjSqEl9ArEF0wN4oDZD4HZzY8jzmY5wAnuPB7HiFFLzWhb0+2mvcPjBPmJDsxIRBg0iGFHI28DSWROJ0jRoxg8uTJjBgxgjffrD6lhWVZLFq0iA4dOlS5TVlZGXv27ImXvXv35trk6FDxCgztjclOYvwq7sTMfQ7MjC2HeMSg1IfUhDoUogFwRWzZyW7bijyOOZj9gTYu/aZHqE2FktA7eldccQVPPfUUV155JdOmTUvrO127dmXLli0OWyaA5CswlF1NdUl0oTrdbVuRZ2OvIe6+lfqQmlB33X4faAh8CLzj0m9+Dsyu8PshRip5KAnU6WzQoAFdunShS5cuALRv354uXbrQtm1bAO677z6efjoxpdQVV1zBM888w69//Wvmz59PixYtaNGiBY0aNYpvc8cddzB48OD4viZPnkzXrl2ZNGkSwgVCr+gNBloA24DXXfzdlzBdxadiuo5DiG5KqQl11+1PYq//n8u/+2Ls9Ypqtwo8engKJYE6nT179uS9996Lp0Z5+OGHee+99/i///s/AFq2bEm7du3i299www0UFBQwYcIEtm7dGi+PPPJIfJsmTZrwxBNPsGbNGkpKSmjdujX9+/dn0aJFrtYtslTsIgilAmF32z5H7efhzITdwL9jyyFV9TQYIzWhVfQ6YuJOy8nNHNGZ8I/Y754JnOTyb7uIum5DSaDy6M2aNYu8vKqHuF977bVJ788999wa9zlq1ChGjRpVa9tEloRa0WuMmQkD3O22tXkW09V0JWYqp5AdYCl6qQmtomeredMBt0NrvgDewuTCHAE84PLvu4QUvVCi0ym8JdSpVS4DjsHktVvmwe9PB77CTM4+wIPfdxgpeqkJpaKXTyJFkVuDMI7GTuUS4u5bKXqhRI6e8JZQjxC0u229UPPATM5u54wMYfetFL3UhFLRGwoUY+af/Y9HNryMmS6iC9DZIxscRopeKNHpFN4SWkWvPSYdwxESI2C9wP7ty4B6HtrhAFL0UhNKRc/OnfcM7sa6VuQrEgOqQjrrjBS9jLjtttuwLIuHH344af2dd97J5s2b2bdvHzNnzuSUU07xyEKDHD3hLaFV9H4Ye30Dk57BK94FNmLiBb/roR0OIEUvNaFT9Ioxih64P9r2aOzRtyF19KTopU3Pnj25/vrrWb58edL60aNHM2rUKG688UZ69erF1q1bmTFjhqdTpep0Cm8JraLndbetjYUZ8Quh676Vopea0Cl6V2Fi9OYCaz225RVM2qJvAWd4bIsDRFjRKyoqSprDvrCwsMptGzRowLPPPsvPfvYzvvrqq6TPbrnlFu69915efvllVq1axdVXX039+vW58krvktfL0RPeEkpFrw9wMmZS9Jc9tgXgb7HXoUBTLw3JLVL0UhM6Re/i2Ovfqt3KHfYAduL9EKp6EVb01q1blzSH/ZgxY6rc9vHHH+e1116rNNNW+/btadmyJSUlJfF1ZWVlzJo1i759+zpme00EKr2KCCGhuylBQs37B2bida9ZBSzHBJFfBvzFW3NyRYTVh2oJ1cNTM8yDEyTyQnrNC8AlmNG3t3tsS46JcJvq1KlT0oxYBw8eTLnd5ZdfTvfu3enVq1elz4qLiwEoLS1NWl9aWsoJJ3g373gE/XbhK0LXzVRI4knf627bioRwSrQIqw/VEqo29R1MhZYCn3lsi81rwNeYxMk9PbYlx0RYJd+7d2/SHPZlZWWVtmnTpg2PPPIIP/zhD6t0BAEsy0p6n5eXV2mdm0TwdApfESr1AUy+uqaYhK5ve2tKEs9jDvIAoK3HtuSICN+UqiVUKvlFsddXPbUimX0k7AlZTj09PFVLjx49aNGiBUuWLOHQoUMcOnSIgQMHctNNN3Ho0KG4kmcrezbNmzevpPK5iU6n8JbQDcawR7b+BzMQwi98BsyKLf/AS0NyhwZjpCY0il49YEhs2U+OHiRG344Aqp6tKXBEuOs2Hd58801OO+00unbtGi+LFi3i2WefpWvXrqxfv54tW7YwaNCg+HcKCgoYMGAAc+fO9cxuxegJbwmdolfR0fMbzwPnYoLbH/TYlhwgRS81oVH0zgMaYB5SvJhZpjr+C+zCqON9gTnempMrpOhVy969e1m1alXSuq+//podO3bE148fP56xY8fy4Ycf8uGHHzJ27Fj27dvHc889l2qXriBHT3hLqBS9zpi4nYPAmzVs6wW283kmJsh9u4e25AApeqkJjaL3vdir39Q8MG38X5hp2a4gNI6eFL1a8+CDD3LssccyYcIEmjZtyoIFCxg8eDB79+71zCY5esJbQqXo2WreTEywtt/YglFGugEX4I90FbVAil5qQqPo2fF5fhltezQvYBy97wO3EALPWopeFpx77rmV1t19993cfffdHliTGp1O4S2hUvT83G1r81rs9TueWpETpOilJhSKXnegNSYX5UyPbamKN4AdQAvgbI9tyRFS9EKJHD3hLaFR9JqQ+LN/rZrtvMa2bQiB/zeXopeaUCh6tpr3Oqab1I8cBqbHli/00pDcIUUvlOh0Cm8JjaI3BBMJsQrY4K0p1bIQE5vXlEQi2oAiRS81oVD0/JhWJRUhc/Sk6IUSOXrCW0Kj6AWh2xbMgf5vbDng3bdS9FITeEWvDSaOtJzEdGN+5XXMge4CtPLYlhygNhVKdDqFtwT+pgSmEvYTvd8dPUh03w711IpaI/UhNYF/eLJH287D/yPDdwCLYssXeGlIbpBKHkrk6AlvCUU3U2/gOOBLzM3J77yOOeBnEOhZMuxrJo9Q5aytNYFvU0HptrWxu29D4OhJ0QslOp3CWwKvPkCiC3Q6wbi7fkXCIQ2wqlfxmtE/WYJAq+QNMYmSIXiO3iACL4VpMEYo0ekU3hKKwRh2fJ6fR9seTQi6byteMwG/v+aUQCt6g4FC4ANgnce2pMtiTBdzEwI/wEnhEKFEjp7wlsAreicAp2Puqv+tYVs/YQe5n4+ZUzSASNFLTaAVPT/PhlEVRzDhEBD40bdS9EKJTqfwlsArena37RxMl2hQWIGZQ7QBMNBbU7JFil5qAqvo1SXRnvw6G0ZVhCTNihS9UCJHT3hL4BU9+8YUhNG2R2OregHuvlXweGUCq+j1wczB/CXBmzvWTrPSDSj22JZaIEUvlOh0Cm8JtKJXn0TgeJDi82xCMB2a0kFUJrBtyh5t+xrBM347JlYPAj36VopeKJGjJ7wl0Ire+cAxwCfAao9tyYY3MdNLfRPo5LEtWSJFL5mKxyFwbSqI8XkVCUH3rRS9UKLTKbwlsOoDBGc2jKr4GpgVWw5o960UvWQq/qMHqk2dAHTGzB9b4rEt2RKCNCtS9EKJHD3hLYFW9IIcn2cT8O5bKXrJVLxBB6pNnR97XQDs9tKQWrCIxDzSvT22JUvUnkKJTqfwlsAGjncFWgN7SahiQcR29PpjktUGDCkQyQS26/bbsdc3PLWidhwhoUYGtPtWCnkokaMnvCWwqSBsBewNTJxbUPkYk5y2gMTNNkAopiiZQDp6eSQUvSA7ehD4OD0peqFEp1N4S2C7bm2nKEhJkqsiwN23ujElE8iY1zOA5sAeYL7HttQWO3Fyd6CFl4Zkhx6cQolOp/CWQN6Y6gN9Y8tvemlIjqiYTy/PS0MyR11NyQRSIbcfmmZhBmMEmS8wsXoAQ7w0JDsUChFK5OgJbwmkotcPMx/nRuAjj23JBe9gYg1bAqd5bEuGSNFLJpAxr2GIz6tIgLtvpeiFEp1O4S2BVPTseKIwqHkAZcDs2PL51W3oP6ToJRM4Ra8QMxAIwufoDSZwF6YUvVAiR094SyAVvbA5epCoy3nVbuU7pOglEzhFrw8mFGIrsMpjW3LFQsw0bt8AzvTYlgyRohdKdDqFtwRO0WuKmc8SwuXovRV7HUCgHuel6CUTOEUvbN22EOg0K1L0QkmgHL1zzjmHV199lc2bN2NZFsOGDavxO/3792fx4sXs37+fjz/+mBtuuKHSNpdccgmrVq3iwIEDrFq1iuHDhztgvUhJ4BS9czFGr8KoEGHhPWAH0Ajo6a0pmSBFL5nAKXqDYq9hcvQgMRo/YCmLpOiFkkCdzgYNGrB8+XJuvPHGtLY/8cQTmTZtGrNnz6Zbt27cd999PProo1xyySXxbXr37s2LL77IlClT6NKlC1OmTGHq1KmceWbAJPegEjhFL4zdtgAWMDO2HKA4PSl6yQRK0WtC4qEibI6erZD3IlCJyKXohRYriMWyLGvYsGHVbvPAAw9Yq1evTlo3ceJEa+7cufH3L7zwgjVt2rSkbaZPn24999xzadvSqlUry7Isq1WrVp4fl8CVX2JxFxYn+sCWtMpaCywLLvKBLbkuI2N1e9MHtqRZfoC5frr7wBY/lJNix2OkD2ypsQy3wLJgtUe/73T5IFa/oT6wJc3SBHP93O4DW1wqUbh/B0rRy5Q+ffpQUpI8Qfbrr79Oz549yc/Pr3abvn37UhWFhYU0bNgwXoqKinJvfFQIVNdta6ATRi4J8rRnVWGrlH2BY7w0JH3UdZtMoNpTGOPzKjIz9hqgAU7qug0loT6dxcXFlJaWJq0rLS2loKCAZs2aVbtNcXFxlfsdM2YMu3fvjpd169bl3vioEKiuW7tLczGwy0tDHOIDYDPGyav6QcdXqOs2mUB13Ybd0bO7b8/11IqMUNdtKAm1owdgWVbS+7y8vErrU21z9LqK3H///TRq1CheOnXqlEOLI0agFIiwxudVJGBpVqToJROYwRhtSajjb3trimPYil5XTKqVAFDxAUFtKjSE+lRu3bq1kjLXvHlzDh06xI4dO6rd5miVryJlZWXs2bMnXvbu3Zt746NCoBQ9W4GIgqMXkAEZUvSSCYyiZ7elhcBuLw1xkG2Y0fl1MGmLAkDFBwS1qdAQakdv3rx5DBo0KGnd4MGDWbx4MYcPH652m7lz57pmZ6QJjKLXGWgFHADCfG1UHC3YyEtD0kOKXjKBUfTC3m1rY7engCjkUvRCSaBOZYMGDejSpQtdunQBoH379nTp0oW2bdsCcN999/H000/Ht580aRInnHACf/zjH+ncuTPXXnst1113HQ899FB8m0ceeYTBgwczevRoOnXqxOjRo/n2t7/N+PHjXa1bZAmMomcrXHMwzl5Y+QwTq1eXxNRUPkaKXjKBUPTySDh6M7w0xAUCFqcnRS+0eD70N90yYMAAKxVPPvmkBVhPPvmkNXPmzKTv9O/f31qyZIl14MABa/369dYNN9xQab+XXnqptWbNGuvgwYPW6tWrrYsvvljDs90qv8UM52/sA1uqLf+0wLLgNh/Y4nSZGKvrwz6wpYZyAeb6Od8Htvih9Igdjyt8YEuV5XQLLAv2WlDgA3ucLE0tKI/Vt4UP7Emj3IG5hop8YIsLJQr3b5NjJCDMmjUrPpgiFddee22lde+88w49evSodr8vvfQSL730Uq3tE1kQCEWvDjAwthzm+DybN4GfE4juJil6yQRC0bPVvFnAIS8NcYGvMLPOdMeoei94ak1aHMFcR2pToSFQXbciZOTFCvg8pqg7Zo7bncASb01xhZmx1zOA4700pGYUo5dMIGL0ohKfZxPQOD21qdCgUym8o+ITo68VCDs+7218fgfNETswKgT4/uYkRS8Z3yt6BSRGoEbN0QtYnJ7aVGiQoye8o+LV52v/KQr5844mIPn0pOgl43tFrw/QACgFVnpsi1vMBg4DJwPtPLYlDdSmQodOpfCOQDh69YB+seUoOXq2CuHzfHq6KSXj+3RFtqr1FiZOPArsBRbFlgOg6qnrNnToVArvCETXbR/gWOBzYI3HtrjJO5hA+W8CJ3hsSzWo6zYZ33fdDoy9vu2hDV4QoDg9dd2GDjl6wjt8rz5AQtF6q9qtwsdezKwF4OubkxS9ZHzddVsP6B1bnuWlIR4QIEdPil7o0KkU3hGI1CpRmPasKgLQfStFLxlfK3pnAscAW4F1HtviNnOBg0AbTKyej5GiFzrk6Anv8L2iVwT0jC1H0dELwIAMKXrJ+FrRs0fbRk3NAzObzrzYso/bE0jRCyE6lcI7fK/o9QXygfXAJo9t8YL5wH6gJfAtj22pAil6yfha0YuyoweB6b6Vohc65OgJ7/C9omffmN7x1ArvOAi8G1v2afetFL1kfKvoFWAenCC6jp6diNznI2+l6IUOnUrhHb5X9PrHXqN6Y4KECjGg2q08Q4peMr5V9HoC9YEvgNUe2+IVC4B9QHPgVI9tqQYpeqFDjp7wDl8resdigschuooeJOrev9qtPEOKXjK+VfQGxl6j3JYOYZIng6+7b6XohQ6dSuEdvlb0egOFwGeYGL2oshgTp9cc6OyxLSmQopeMbxW9qMfn2djdtz529KTohQ45esI7fK3oqdvWUEZitKAPVT0pesn4UtHLB86OLUe9PdmhEAPx7UWrNhU6dCqFd/ja0Yv6QIyK+Lj7VjelZHzZprpjUhV9CbzvsS1esxTYBTQBzvDWlKpQ123o0KkU3uHbrttCopvBPxX2MfDhgAx13Sbjy67big9NUZnftirKgTmxZR8+OIG6bkOIHD3hHb5UHwB6YQZjlBK9DP6pWIDpwm0DtPfYlqOQopeML7tuFZ+XjI8VcpCiF0J0KoV3+FbRU7dtMvuBRbFln6l6UvSS8Z2iVxfoF1uWo2fwuaMnRS90yNET3uFbRc/+A5ajl8C+Sfvs5iRFLxnfKXpdgcbATmC5p5b4B3sk+/H4eiS72lRo0KkU3uFLRU8jBFPjUxVCil4yvlP0bAX4XXzkfXrMIQIxkl1tKjTI0RPe4UtFrxuJEYIrPbbFT8zBeA/fBFp7bEsFpOgl4ztFT/F5qfHpgxNI0QshOpXCO3yp6Nk3ptlohGBF9mJSQ4Cvbk5S9JLxlaJXBzgntixHLxnb0fNZzCtI0QshcvSEd/hS0VOi5Krx4c1Jil4yvlL0TgeaAntIPCQIw3xMF24b4ERvTTkaKXqhQ6dSeIfvFL2KCoQGYlTGhwMyKt6U8rw0xCf4StGrGJ/nC4N8xH7MoAxI/Of4BCl6oUOOnvAO3yl6Z2Ay1u8G3vPUEn/ybuz1W5gRgz6g4rWjfzOfKXqKz6sen8bpSSUPHTqVwjt85+jZf7j2wAORzFfAitiyT25OcvSS8U2bykOOXk341NFT123o0KkU3uG7rlvdmGrGZ923Fa8ddTX5qOv2VOA44GsSXZQimTkYj7wjUOyxLRVQ123okKMnvMM36oONEiXXjM8GZEjRS8Y3Xbf29TEXOOylIT5mF4kk0j6K05OiFzp0KoV3+ErROwVoBuxDCkR12I6ePaLSYyykQFTEN4qe1PH08GH3rdpT6JCjJ7zDV4qe/Uc7F5P2QKRmG7AWc/LOrmFbl1DweALfKHpKU5QePnT0pOiFDp1K4R2+UvRsBULdtjXjs+5bJU025JFIMeNpmzoZaAEcBBZ5aUgAmB17PQNfKOQgRS+EyNET3uErRU9dTenjswEZUvQMFW/MnrYpO95sIcbZE1XzBbAmtuwThVyKXrX8/Oc/Z/ny5ezatYtdu3Yxd+5cLrjggqRt7rzzTjZv3sy+ffuYOXMmp5xyikfWGnQqhXf4RtE7GWiJuSkt9NiWIGAret0x8wJ7jBQ9Q8V/c0/bVL/Y67vVbiVsfNZ9K0WvWj777DNuu+02evbsSc+ePXnrrbd45ZVX4s7c6NGjGTVqFDfeeCO9evVi69atzJgxg6Ii7/4r5egJ7/CNomf/wS4EDnhpSED4DPgEyAf6emwLUvRsfKPo2Y7e7Gq3EjY+c/Sk6FXLf/7zH6ZPn86HH37Ihx9+yG9/+1v27t1L7969Abjlllu49957efnll1m1ahVXX3019evX58orr/TMZp1K4R2+CRzXtGeZ46PuWykQhor/5p61qRaYvHBHMAObRM3Y/zs9gAZeGmKIaHsqKiqiYcOG8VJYWFjjd+rUqcPll19OgwYNmDdvHu3bt6dly5aUlJTEtykrK2PWrFn07evdQ7EcPeEdvkkFIQUic3w0IEMKhMEXoRB2nNn7mDxxomYqKuR9PLaFyCrk69atY/fu3fEyZsyYKrc97bTT2LNnDwcPHmTSpElcfPHFrFmzhuJik/i6tLQ0afvS0tL4Z14QuFM5cuRI1q9fz/79+1m8eDH9+vWrctsnn3wSy7IqlZUrV8a3ufrqq1NuU69ePTeqE2180XVbjInROwLM89KQgGEremcCx3hpSGRvTJXwRXuy1XHF52WGj7pvI/rg1KlTJxo1ahQv999/f5Xbrlu3jq5du9K7d28mTpzI008/zbe+9a3455ZlJW2fl5dXaZ2bBOpUjhgxgvHjx3PvvffSrVs3Zs+ezfTp02nbtm3K7W+++WaKi4vjpU2bNuzYsYO///3vSdvt2rUrabvi4mIOHtRoMcfxlQKxAtjtpSEBYz2wBSgEenlrigZjGHyhkGsgRnb4yNGLaNft3r172bNnT7yUlZVVue2hQ4f4+OOPWbJkCWPHjmX58uXcfPPNbN26FaCSete8efNKKp+bBMrRGzVqFJMnT2by5MmsXbuWW2+9lU2bNjFy5MiU2+/evZvS0tJ46dmzJ02bNuXJJ59M2s6yrKTtvDwhkcIXCoRuTNljH7OqVXVXkKJn8DzmtQjoFltWGERm2I7eWZiHJw+JqKJXG/Ly8qhXrx6ffPIJW7ZsYdCgQfHPCgoKGDBgAHPnehezGphTWVBQQI8ePZKCHAFKSkrSDnK87rrreOONN9i4cWPS+qKiIjZs2MCmTZv497//TdeuXavdT2FhYVLQppfDpgONLxQ9OXrZY9/MPXb0pOgZPFf0emNOwgZgs1dGBJSPMAr5MXiukEdU0UuXe++9l379+nHCCSdw2mmncc899zBw4ECeffZZAMaPH8/YsWMZPnw4p556Kk899RT79u3jueee88zmfM9+OUOaNWtGfn5+1kGOxcXFXHjhhZWGOK9du5ZrrrmG999/n0aNGnHzzTczZ84cunTpwkcffZRyX2PGjOGuu+7Kui4ihueKXkUFQo5e5tjHrC/mZHp0IqXoGTxX9DSoqXbMBkZgBjjN8c4MKXrV0qJFC6ZMmULLli3ZtWsXK1as4IILLuCNN94A4MEHH+TYY49lwoQJNG3alAULFjB48GD27t3rqd1WEErLli0ty7Ks3r17J60fO3astWbNmhq/f9ttt1lffPGFVVBQUO12eXl51rJly6xHHnmkym0KCwuthg0bxkvHjh0ty7KsVq1aeX6cAlWux+IuLDp4ZcP5FlgWfOL9sQhkqWvB7tgxPN07O36MuY5O9/p4eFzaxI7DTV7Z8GbsWrje+2MRyPLL2PF7zVs7jsdcR6O9Ph7ulFatWoX+/h0Yn3379u0cPnw46yDHn/zkJ0yZMoVDh6qfsN6yLBYtWkSHDh2q3KasrCwpaNNrTz2weK7o2SMEpUBkRzmJkcoedt9K0TN4qujlY7puQe0pW2wVz1bIPUKKXugIzKk8dOgQS5YsSQpyBBg0aFCNQY4DBgygQ4cOTJ48Oa3f6tq1K1u2bMnaVpEmnsfoKT6v9tjH7pxqt3IUxegZPI3R6w7UB3YAa70wIAS8jxn53wQ41TszFKMXOgITowcwbtw4pkyZwuLFi5k3bx7XX3897dq1Y9KkSQDcd999tG7dmquvvjrpe9dddx3z589n1apVlfZ5xx13MH/+fD788EMaNWrETTfdRNeuXfnlL3/pSp0ijaeKXkUFQo5e9vjA0ZOiZ/BU0av40GR5YUAIsBXyIZjj+b53ZoDaU4gIlKM3depUjjvuOO644w5atmzJypUrGTp0aHwUbcuWLWnXrl3Sdxo1asSll17KzTffnHKfTZo04YknnqC4uJhdu3axbNky+vfvz6JFixyvT+Tx9MbUFTPd0JfAGi8MCAkLgENAG6AdsLH6zZ1ACoTB0wcnqeO54V0Sjt5Eb0xQewodgXL0ACZOnMjEiakbwLXXXltp3e7du2nQoOr5A0eNGsWoUaNyZp/IAE+7muwb0xykQNSGfcBSTP6vfoAHKQSkQBg8DYWQo5cbfJCbsuKDgoeD6UXuiPpfo/ASKRAhweObk7puDZ61p07A8cB+YInbPx4yFmIU8nZA6hmfHKfig0LU21RI0GkU3iEFIiR47OhpMIbBM4Xcjs+0u/FF9tgKOXj+4ARqU15wNamnD68X+ywL5OgJ7/BMgTgZaAEcABa7/eMhxE4LcTpmxKDLSNEzeBbzqkTJucVuTx4/OIHalBecSGoHOx8j9GaBTqPwDs8UPfsPdCFQ9cTVIl2+ANbFls92/+el6Bk8U/SkjucWjxVyO80uqE25SYtYARMJ0aJCKcZM4rQnu10HbjCGCBGeKXp2V5NuTLnjXUysVj/gNXd/WoqewRNFryXwTZKTZ4vaYSt6pwGNgV3um1CO8Q6i3qbc5OcknOxUXbSHgOnZ7TpLR68fcAOmgV8GfA78EPgET+foE8EhDykQoeJd4Do8USGk6Bk8aU/2+V5O1nKDOIptwAdAR6AP8F/3TVCKFfcZj7kv3gz8Bfi6wmflsfdZJojIwl+/BHgdM8KqGyZCEKAhMDY7K0T0qHjluapANMf8gR5BCkQuseOzepH4T3AJKXoGTxQ9TSPoDD4Z4BT1NuUmu4CdwN0Y7WxXhbKXWmUBy+I0/hajMV5P8giruZhpcIRIg4pPiq4qEHYM2UpMqxK54WNgK8bJ6+nuT0vRM3iq6Ekdzy0+SVkU9TblFWcAPwF+jem9BzORU6fsdpeFo9cJeCfFenuOPiHSwDNFTzcm5/Do5iRFz+C6otcIc0cCtadcYx/PM4FC939eip539MRMjvIhJs2KfQ4OkJi1M0OyOI1bMOkpjqYfsD47K0T0qPik6Imjp66m3OOxoxd19cH1wU19MAfdVnNF7vgQE6t3LJ70lKlNecdZwL8xt6iKbflzEqNyMyQLR+/PwCOYJw0LaAVcCTwETMjOChE9Kt6UXJuBrD6JP00pELnHPqZnY6KKXULqg8H1rls7DEJtyRk8zKcnldw7mmD0tKM5DBRkt8ssTuMfgH8BM4EiTDfuXzEO4OPZWSGihyepVc7CDDT/FPjMzR+OCO9hooabAqe697O6KRlc77q1HT1lWnAGD+P09PDkHTsxefOOpgMmZWkWZHkafws0w6h6vTHZ/e7IblcimniSLFn585ylHJgfW3bx5qTBGAZXFb18zIMTyNFzCo8UclDXrZfMAb6DeVbOA1pjbl3nY8a8ZkEt/HV7AutFJCd8ESINPFH0NBDDeTxQIaToGVxV9LoADYAvgTVu/GAEWYaZ+7YZWQ+3zBYpet7xHvA2MAjTVXspZoDGdEyyiCxIM2HySxns8tKsDBERw3VFry4meBykQDiJPchFip7ruKro2d22c3ExyDZiHAIWAOdi2tNa935aip63LI2V+hhVr5ZaWpr++q4MihBp4LqidwYmpnQnWT8WiTRYgIkaPgFo685PStEzuKroKT7PHTyK05Oi5x35JAZd7Iu9742ZiKwWu0yDn2T/C0KkwnVFz74xzUMKhJN8jely6oW5OT3v/E9K0TO4qujZjoccPWexj+/Z1W6Vc6ToeccPMNEQizF59H6GadP1MZOSLc58l/LXhTe4ruhJgXAPl29OUvQMril6J2LSapVhYrSFc8zDnNCTST0U0yGk6HlHS0xiCIBTMIkMxgMvkxj/lCFpKnoVWUpqRcTCpG7+CHgKE00oRBV4pujJ0XOeOcAtuOboSdEzuKbo2ed1KeY/XzjHbmAF0BVz3DOJl68FUvS8owDzDAWmu3YNxr36jKwnH8vCX/8vcBKmi2YmxqHbG7NoEcYdfQO4KDuLRDRwVdFrGyuHgYVu/GDEsZ3p04GGzv+cFD2Da4qeHprcxYM4PSl63vEl0Bkzw+A3MRPPgBnkfjC7XWZxGpsBfwT6A/+DmXV3AGZmjAaYSdruAX6XnUUiGngSOG6nKxDOsgX4BHOSs5ycMROkPhhce3iSo+cuHqYsinqb8oJZwGBMp8hmErn9v0nqGTPSIIuu2xFAjxTrX8Dk1bseE4A9KjuLRDTwJBWEbkzu8S7QHnPsZzj7U1IfDK60qcbAabFltSd3sI9zN4yY4kLeWqnk7tICM7WxBawGNmKSRJRW2OYTss6wk8VpPAD0TbG+L4l4jTpkrTGKaOBq160cPfdxcUCGbkoGV1Ty3pgD/RHmziSc5zPMnb8uWUfjZ4oentzlBsyoWoCbMcd/K8nDITYD27PbfRaK3p+ASRhVb1HMkjOBnwL3xbYZgukmE6IKXBuMUYTJoQdy9NzEPta9MSfbwROtwRgGVxQ923HX7DLuMgdohzn+bzn/c+q6dZcDmIEWX8deczzjXRaO3r0YDfFG4EexdeswyV7snFmTgIm1t06EF9cUPdvR+ISsAxxEFqzCJKdugpkua6lzPyVFz+CKoid13BvmYBKsuTySPeptyi3WANcCezDa2fVUne71kcx3n4WjB/BcrFSFhtyLGnBN0dONyRssTA6wCzHnwEFHT4qewXFFL59E16Hak7vYx7sP5kQ7/IQsRc9d/o1x9r6B+ctcSk6j37J09MAke2lOZZd/Uy3MEZHB9RGCc53+IVGJOSQcvT859zNS9AyOK3pdMIMBvsTVeVcF8D5G7mmEGQyzwtmfk6LnLi0waVQ+wmSom08il14OyOI0ngy8A+zHpG/+JFY2xF6FSANXFL2K6T2kQLiPSwMypOgZHFf0Kj40aRpBdynH3P3B1QFOUW9TblFxMMaJ5Py4Z6HoPYVJPPtdTMyTGrzIAlcUPTth7y5gpZM/JFKyEPNf0QYTSL7RmZ+RomdwXNHT/LbeMgcYhHH0HI6Bl6LnLv4bjNEVM+J2XW4tEdHCFUXPfvKdj4uT6oo4+zCj73thzoVDjl7Fa8jhAb6+xjVFT46eN3iQskiKnjv4bzDGaszsGHL0RC1wRdHTjcl75pBw9J6vYdssqXgN1SG6jp6jit6JQCtM4NAiJ35A1Mh8zMV9IuZcfO7cT0nRcxf/Dcb4X+BBYCwmQPTQUZ/vqbVRIgIoFUREmIOZy8dBFaLiNVSXyn9JUcHRhyf7/C1FWRW8Yi9mEEY3zPn4u3M/JUXPfT6KvfpjMMYbmAD3NzGZ0b+KlZ2xVyHSwPFuJjsu7DCwwKkfETViO9l2vKQDVLyGoqxAONqm9NDkD1zqvlXcq3e8QsLJa0RO/jazUPTOrf2vCuF41639R7gcV+aGFFWwBVgPnIR5QHRg3lsrVvKI9o3JUZVcjp4/mIOZrMClkexRbk9ekQf0x6RMLIytK8MMdp9NVuNfs3D03qnmsy6Z705EE8cHY+jG5B/mYBy9s3HE0QNzHeUT7a4mxxS9xpjcbaD25DX28e+KyWno0EOsum694zygO6bz1E5L3A4YiPmPy2IGvBz4642AkcCSWBEiDVxT9HRj8h4Xupui3tVUUc3MeZvqHdv5h5hwHeEdm2IlHzPHvENI0fOOrsCrwGKgNFYWxdZ1zW6XtTiN5wJTMF0zvwKmAT2z312ajBw5kvXr17N//34WL15Mv379qtx2wIABWJZVqXTq1Clpu0suuYRVq1Zx4MABVq1axfDhwx2uhXBW0SsioS7L0fMe+xzY8w47QNSTJlf8J895m9JDk79w8cEpqu3JS44FtqdYvz32WRZk6Oi1Bm7HzNXxPGbwRQFwKfA74L3srEiTESNGMH78eO699166devG7NmzmT59Om3btq32ex07dqS4uDhePvzww/hnvXv35sUXX2TKlCl06dKFKVOmMHXqVM4808GnJeGwoncW5h/qU2CzEz8gMmIVZrBWRQc8x0Rd0at4Q855m5Kj5y9ccPSk6HnHVlKLtWdi1L0syOA0vobJoXcKRsFrBdyU3a9myahRo5g8eTKTJ09m7dq13HrrrWzatImRI0dW+71t27ZRWloaL0eOJP4Jb7nlFmbMmMEDDzzAunXreOCBB3jzzTe55ZZbHK5NxHFU0dONyV9YwLzYskM3Jyl6CXLapvIxD06g9uQX7PPQB8c8MSl63jEDk0Hnl8BFsfJLTLdtSXa7zOAqGQz8FbgT003r7kwDBQUF9OjRg5KS5JqWlJTQt2/far+7bNkyPv/8c9544w0GDhyY9FmfPn0q7fP111+vdp+FhYU0bNgwXoqKijKrjHAp55duTP7BYRVCil6CnLapLpig/y+BtbncsciaFZiceo2BU535CSl63vEp8CdMAuVjMN21a4DHyHpyoQxO4zmYhC6LMdn8fomZIcMdmjVrRn5+PqWlydplaWkpxcXFKb+zZcsWfvazn3HppZdyySWXsG7dOt58803OOeec+DbFxcUZ7RNgzJgx7N69O17WrdMsIRnjmKJXBxMLBnL0/ITDjp4UPUPO25P9wDsPzWvuF8ox92Bw/MEpqu3Ja/ZgRtdOBV6MLddiLooMHL35mAnYWgJ/Bq7AxD/VwUy07I6qZVnJfzZ5eXmV1tl88MEH/PWvf2XZsmXMnz+fX/7yl7z22mv8z//8T9b7BLj//vtp1KhRvBw9uEOkgWOK3umYkeC7MTO3CH+wEJO82k5knWOk6BkUnxcRXHpwimp7ChlZnMb9wJMYhe904I/AbZhh96/k0LRktm/fzuHDhyspbc2bN6+kyFXH/Pnz6dChQ/z91q1bM95nWVkZe/bsiZe9e/em/fsihmM3JluBmO/EzkXW7AOWxZYduDlFXYFw7MFJjp4/cSkUIqrtKWTU0l//ADP3bRvgBzkwp2oOHTrEkiVLGDRoUNL6QYMGMXfu3LT3061bN7Zs2RJ/P2/evEr7HDx4cEb7FFngWFeTbkz+xcGbU9QVCEfaUzvMf/shTCIv4R/mY052e0wvW46JukIeMrKYGSMVRzBqnnOKHsC4ceOYMmUKixcvZt68eVx//fW0a9eOSZMmAXDffffRunVrrr76agBuvvlmNmzYwKpVqygsLOSHP/whl112GZdcckl8n4888gjvvPMOo0eP5pVXXmHYsGF8+9vfrjY/n8gBUiAiyBzgFhxV9KJ6Y3JEIbfV8WWYnhzhH/ZgQlO6YtrTP3K7+6g/OIWMHDl67jB16lSOO+447rjjDlq2bMnKlSsZOnQoGzeaoSgtW7akXbtE/E9hYSEPPfQQrVu3Zv/+/axatYqhQ4cyffr0+Dbz5s3jiiuu4J577uH3v/89H3/8MZdffjkLFy50vX6RwpHBGK2AE2M7XZDLHYucYDvfp2MGdtUiuvhoNBjDkNP2pIcmfzMHxxw9dd2Gijw0lKrWtGrVis2bN9O6dWs+//xzr80JBj/D5N9+DhMBkBMuA/6OUSC652qnIqesx3Q3DSan895eHdvtP4CVudttYGgD/BSTw/6RXO10KSah12XAS7naqcgZP8D8gS4i59OhHY9JrPE18Ifc7tpv+O7+fUMV6y3MeLYvMXNTbEh/lxJmhTc4ouhJgfA/DsXpSdEz5Kw9FQFnxJYVr+xP7LbUDaif211L0fOOj4CmQBnwCcahKwO+AXyO6Qz5MZBBso9Add2KEOFIjJ4cPf8zB/ghOXf0FKNnyFl7sqcR/AQzn7nwHxuBzzBy7pnA27nbtWL0vKM+5tnqnaPW98fkyJ4CDAQGAGmm8M3yNP4QeBeTR8+OibsZM1eHEGmQc0WvPubJFuTo+Rn73PQmp3KBFD1DztqTHpqCgUMKuRQ97ziV1OEnK0lMhLISOC79XWbh6P0cGIeZBq0JiSthJ2ZEnRBpkHNFrxdGoP4M2JSrnYqcswrYRXLXYA6QomfIWXuSoxcMFAoROg4DbVOsbxv7DMzoigwe6rL4W/wVJpL+vqN+aTFmNJ0QaZBzRU83pmBwBDOdFuT05hT1G1NOFb2K0wgqPs/f2P93fTB3/xxR8YEhqg9PXrEQ+C5wAeZZ+PTY8ndIJJP4JhlFVGRxCtuTyHBfkYOYya+FSIOcK3py9IKDfY76VrtVRkjRM+SkPZ2GmUZwF9EcwhwklgN7Mb1rp1a/aSZUfGCIapvyineAVzFZKS4EhsaW/w3Mjm2zGHg+/V1mMRjjE0zuno1Hrb8QWJ357kQ0yemNKQ/zRAty9IKAA91NUY8pyumDk31eNI2g/7Fzhp6POW85cswrnva6JLoMhTu8T/VTtWd4PrLw1f8APA6MwNxgzwTGYrpyQ55wR+SOnHY1nYIZj/41sCIXOxSOsgDzT2VPsZUDoj5KMKftyXb01G0bDBx8cILotimvqYsR1hsfVbIgC0XvqdjXHsSMdHwOM/r2ZuDF7KwQ0SOnCoTdBWg7EMLf7MNk/OyJuTnl4H9DXbeGnLYnqePBQI5eqPgGMIzKAzLs6S3+L/NdZplH76+xchzmKvgiu92I6JLTwRiKzwsec8ipo6fBGIZat6eWmDhsTSMYHOwu9pOAYmBrbnZbjmlPUW1TXjEcczqfw4Rf5mDusix89WOAY2PLO2LLNwODam+NiA6OxBTJ0QsOOVYhpOgZat2e7PNhB/kL/7ObRECXAyPZo9qmvKIY+A9mhoytQOlRJQuyOIWvYObfANNhvBD4dWz9z7OzQkSLik+ItVYgmgMnY+5w82u7M+EadvxXF0xOvVoiRc9Q6/ak+LxgogFOoeELcj6jXRaOXncSY3wvw7icJ2Ccv5tyZZcIMxWvulorEHY8kZ2IVwSDzcCnmLvIWbXfnRQ9Q87ak9TxYOGAoydFzxvewHSQnojpMK13VMmCLE5hfWBPbHkw8E9MJ/J8jMMnRA3kVNFTt21wyeHNSYqeoVbt6Vg0jWBQsc9XNxKhVbVEil5KbrvtNhYuXMju3bspLS3l5ZdfpmPHjpW2u/POO9m8eTP79u1j5syZnHLKKen9wI8xyQh+DPwG+N9YuS32mgVZOHofYaIF2wBDgJLY+uaYWAEhaiCnip4cveCSQ0dPip6hVu3pTKAAM4WgphEMFp9iVPICzHnMAVL0UjJgwAAef/xxevfuzaBBg8jPz6ekpIT69RP9raNHj2bUqFHceOON9OrVi61btzJjxgyKitIIU3kqVp4+qtjrssTKrFxqwUELDltQUmH9bRZMy3Bf4SitWrWyLMuyWrVq5bktgSgNsbgLiztqu69jLHMtWhac5H29VDIsXWLnbpcFdWq3r7Mw19RlXtfJo3J+rP5DarOfsbHz8YL39VHJorwYO39jc7O/mzDXVFuv6+Vsqe39u1mzZpZlWdY555wTX/f5559bo0ePjr8vLCy0vvrqK+v666/3pI5Z+OovYRKd9sQoejZvArdmvjsRPXI24rYHUIiJE11f250J13kf0wvQiFrPky1Fz1CrNqX4vGCjkey1oaioiIYNG8ZLYWFhWt9r3LgxAF9++SUA7du3p2XLlpSUlMS3KSsrY9asWfTtW8W0jy1ITFXcooaSBVnm0bPH+bbBOIybgUXZ7UpEj5yngtCNKZjYI6UHY87l8trtCqIbT1Trh6c85OgFHfu89SGRXbcWRCzudd26dUnv77rrLu6+++4avzdu3Dhmz57NqlWrACguLgagtDQ5F0ppaSknnHBC6p38HHgIM7nTzzGnLi/FdhZuJUyuC9yJGWFr9zfvBf4E3I1mJhA1kvNUELoxBZc5GEevLzAh+91EPZ6o1m3qW2gawaCzHHP+mmKmhVxVu91FTNHr1KkTW7Zsib8/ePBgjd957LHHOOOMM+jXr1+lzywr2dHOy8urtC7OeMyps5dzTBaO3mPAxcBoYF5sXR/gLqAZMDI3lonwkrOuW1uBUM6v4JKj7qaI3ZQqUWuV3D7+89HDelA5jJnN5DzM+ayloxexh6e9e/eyZ8+emjeM8eijj3LRRRfRv39/Nm/eHF+/dauZmaS4uDi+DNC8efNKKl+cipnBmmDGQh3dlutgpkXLIotYFqfwB8A1wBOYGJv3Y8s/iX0mRA3kZPqzjpgHi/3A0tpaJDxjAeZCOBFolf1uItbNVIlaK3pSx8OBAyPZo9qmquFPf/oTl1xyCeeddx4bNmxI+uyTTz5hy5YtDBqUmC2soKCAAQMGMHduGqLE1aTOkFMv9lkWZOHoHQA2pFi/ASjLzgoRLXKi6Nl/ZIuAQ7UyR3jJXhKxebW4OUnRM2TdpuyuJzl6wcY+f1UE/WdCxBS9dHn88cf54Q9/yJVXXsmePXto0aIFLVq04JhjjolvM378eMaOHcvw4cM59dRTeeqpp9i3bx/PPfdczT9QVXhlfbK+1WXRdfs48DvgWhKOXSFwO6ZbV4gayImiJwUiPMzBzLhzNvD37HYhRc+QVZtqAXwTTSMYBuZhzuPJmNy227LflRS9lPziF78AYNasWUnrr7nmGp5+2iS6e/DBBzn22GOZMGECTZs2ZcGCBQwePJi9e6uZP/ry2KuFSVVcsS3nYZpplukts3D0ugHnA5+ReBLvgnH23sSkX7G5NDurRLjJqaKn+LzgMwf4FVL0akGtFD37uK9ASe+Dzm5gJXAG5ry+nP2upOilJC8v1XDYytx9991pjdqNc8D+AYyGVlG9K8e4XFlGKWXh6O0k2ZkDZVEXGVFrRa8Z0Dm2LEUv+NjOelegAYnhZxkgRc+QVZuSOh4u5pATR0+Knru8EnvdiflLzGFEUhaO3k9y9+simtRa0bPjT1YDX9XaHOE19pRbbTHTN83MfBdS9AxZtSnF54WLOZjsF7UckCFFzxtm1bxJpmSZMFmIWlBrRc/+A3u39rYIn/AuZtT+2WTl6EnRM2Tcpo7FhOOAHL2wYJ/H7sAxJPoEM0SKnjc0wKQWPSm2fDTOJUxegonL24npJK4u43aPzK0Q0aLWip4UiPBhO3qVE4+mhRQ9Q8Zt6kygAKOobsylRcIzNgCfY9IV9QJmZ7ebqLcprxgONMYoe3up9QQnkLaj9wpgZ4n+V+1/VUSbWjl69Ug8TEjRCw8Vp2+qQ8YXR9RvSlm3KcXnhZM5wPcx5zdLR09dt97QDngSM4V7jkjT0fu/KpaFyIJadd32xDh7W4H1ubJIeM77mBGDjYDTyXjeW3XdGjJuU1LHw0lFRy9L1HXrDQ4MfJevLtynVoqefWOSmhcujpAYfZtF923UFb2sum7zMAoqyNELGxVnyEgvHUglpOh5w3+Bb2OmQssRaSp6X5J+R/Fx2doiokKtFD11NYWXOcAFGEfv8cy+KkXPkFGbOhVzN9mDyaEnwsN7mDRFTYFvYTIUZIgUPW+4DBM2exMmxcrRD2//L/Ndpuno3ZL5noWoiqwVvTzk6IUZW6WVopcxWSl69nGeTy2nqRG+4zDmvJ6POc9ZOHpS9Lzhv7nfZZqO3jO5/2URXbJW9DoD3wD2ActyaZHwBQsxj7BtMBHJGYwClaJnyKhN6aEp3LxLwtF7IvOvS9HzhgzDk9MhC1/9QkySl6MZhOl2EaIGslb0bAViAeaJVYSLig58hkHkFa+lKCoQWSl6cvTCTS0UcpCi5yb1jlqurmRBFgmTHwBuS7G+TuwzB3RHES6yVvSUKDn8vIvJ7dYPeD79r1W8lupSy3mUA0jGil4roH3sC/OdsEh4jt0l3x5oDWzO7OtS9Nzjf4E/YsIqbyP1kIi82PosEp9k4at3IHV//1rg5Mx3lyEjR45k/fr17N+/n8WLF9OvX9VPKxdffDElJSVs27aNXbt2MXfuXAYPTlYjr776aizLqlTq1cvSdRY1o5xfokqyVCGk6BnSblN2W1qOycoqwsdezKAMyCrNihQ993ga2B9bfir2/uhir8+CLE7hLszcHEdzMllNRp4BI0aMYPz48dx7771069aN2bNnM336dNq2bZty+/79+zNjxgyGDh1Kjx49mDlzJv/+97/p2rVr0na7du2iuLg4qRw8eDDlPkUOyErRa4G5xo4A83JtkfANthN/GiY9fJocrehFjYwVPT00RQP7/NZigFMU25PbfErieH9aQ8mCLLpuXwXGAxeTSFj7TYzu+Gp2VqTJqFGjmDx5MpMnTwbg1ltvZciQIYwcOZKxY8dW2v7WW29Nen/77bczbNgwvve97/Hee+/F11uWRWlpqaO2iwpkpejZNyY7sa4IJ9uADzE9B31IOxSkYldHFBWIrBU9OXrh5l1Mng6NZA8Ux2CmoD4e89/2BSZ8OUv9KYtT+BuMcrcW4+itB9YAO4D/yc6KNCgoKKBHjx6UlJQkrS8pKaFv375p7SMvL4+GDRvy5ZdfJq0vKipiw4YNbNq0KaXidzSFhYU0bNgwXoqKijKqS+TJytFTBv/okGX3bZS7mjJqUw2ArrFlxbuGG/v/8gygYWZfjXJ78pJWGN+8D3AsUD+2fDPQMrtdZnEKdwN9ge8AEzBK3vmxsis7K9KgWbNm5OfnV1LeSktLKS4uTmsfv/71r2nQoAFTp06Nr1u7di3XXHMNF110ET/4wQ84cOAAc+bM4eSTq443HDNmDLt3746XdevWZVepqJJV160GYkSHiln9MyDKKVYy6ro9C9OZ8ykZB+iLgPE5RoypC/TO7KvquvWGIcA6TMfpi7HyCPABWSc2qYWvPgN4CJPBPstJk7PAspKHo+Tl5VVal4orrriCu+66i8svv5wvvvgivn7BggU8++yzrFixgnfffZcRI0bwwQcf8Ktf/arKfd1///00atQoXjp16pR9haJIxopefYyODVL0ooDtzJ+FSRGfJlHtaqp4I06rTanbNlpIIQ8UrTBNs2JbPhJb1yq7XWZwCl/DTDhuM5bkYOlvAKuysyINtm/fzuHDhyupd82bN68xvm7EiBFMnjyZESNG8Oabb1a7rWVZLFq0iA4dOlS5TVlZGXv27ImXvXs1ai0jMlb0zsTc8DeRURJdEVDWAdsx/Rbd0/9aVBW9iv/iabUpOXrRopYj2aPWnrzmIKnHoTXCjRi9ISRn6/tfjHNnkw84p2wdOnSIJUuWMGjQoKT1gwYNYu7cuVV8yyh5Tz31FFdeeSXTpk1L67e6du3Kli1bamWvqIaMFT3dmKJHFt23UvTSaFN1MAE/oDCIqGCf595kNP5Sip43rAIuwkxF3ShWToutW5ndLjM463k1vHeecePGMWXKFBYvXsy8efO4/vrradeuHZMmTQLgvvvuo3Xr1lx99dWAcfKeeeYZbr75ZubPn0+LFi0A2L9/P7t3m5Gbd9xxB/Pnz+fDDz+kUaNG3HTTTXTt2pVf/vKXrtcvMmSs6GkgRvR4FxiGOffj0vuKFL002tTpmDvHLrK+a4iAsRYzWPI4TAjMovS+JkXPG0owI20vJlkUWQS8kd0us0iv4h1Tp07luOOO44477qBly5asXLmSoUOHsnGj6c5r2bIl7dq1i29/ww03UFBQwIQJE5gwYUJ8/VNPPcW1114LQJMmTXjiiScoLi5m165dLFu2jP79+7NoUZqNQWRORoqeFIhoYp9rKXo1klFqFft4zk/3CyLwWJiH5IswD05p3tuk6HlDOSar1JtAU4ym9iVmGvAsycDRs6g8L0fNgyByzcSJE5k4cWLKz2znzebcc8+tcX+jRo1i1KhRObFNpElGit6pmICFPZgceiIaLAUOAM0xOfU+rPkrUVf00mpPUsejybskHL2H0/uKFD13KQAGAZ0xx3w9MB0zBXgtybDr9ikS0YDHAJNIzIahKcNEmmSk6Nk3pnlkMTmuCCxlwEKgP+YaSMPRk6KXBufEXt3LlCD8QBYzZEjRc5eBmPSW7wOHMXF53wH+XvtdZ+DoHT3J2t9SbPNMbWwRUSEjRU8DMaLLHBKO3pM1by5FrwZOANpg+oAWOGmR8B2LSSjkJwMf1fwVKXru8i3M5GJ26OwK4CcYja2WnacZOHo/qd0vCWGTlaKn+LzokWGcnhS9GrDVvCUkZlAX0aAME5t3DuY/NQNHL2rtySsakzyX7WbMOWhIrWf91CkU7pO2o9cao0IcRgpEFLHTJnXCTPpYA1G9MaXdntRtG20yzKenrlt3yaOyKn+EnBz/QI26FSEh7a5b+8b0HolYUBEddmL6MU7DTLv4SvWbq+u2BuToRZsMHT113bpLHjCc5HacD3yX5BG3L2a+a/nqwn2kQIi0yeDmFFVFL62u22aYICBQvGtUyVAhl6LnLu9h9IwDFcoKTMKJiuuyQIqecJ+MFT05etHlXeDnJK6FapCiVw12nONKTFIuET12YoZ0no65Hv5V/eZS9Nylhg6L2iBfXbhPWoreNzB/SKCBGFHGdvK7A/Wr31SKXjXYjrLaUrTJQCGXohcadAqF+6Sl6NkKxBrgC0fNEX5mY6wUYObqrAYpetUgdVxAVqEQUWtPIUSOnnCftBQ93ZiEzTux1/7VbyZFrwoaYBRRUHuKOrajl4ZCbj845OHF1PYih0TtL1H4gbQUPTl6wsa+BmqI05OiVwW9MeHYnwKb3LBI+JaNwGcYhfzM6jet+OAQtTYVMuToCfepUdGrD/SILcvRE7ai1wdzg6oCKXpVYHfTqS0JyPjBCaLXpkKGTp9wnxoVvd6YG/omklOFi2iyFhOneSyJB4AUSNGrAg3EEBXJMBQCotemQoYcPeE+NSp69o3pnao2EJHDViGquTlJ0UtBPolBLFL0BCT+V/uSlkIO0WtTIUOnT7hP2o6ebkzCJo3upqg6etW2p+6YwRg7MCPYhVgDbMeEyHSvflOlWAkFOn3CfartupUCIVJhqxD9qPJvS123KajYbWu5Yo7wOxZpKeSgFCshQY6ecJeKV5wUCJE2yzFzATXBzH2bgqgqetV23WoghkhFmnF6UvRCgU6fcJeKT4YpFQj7j0cKhKhIOYk5Wqu4OUnRO4o85OiJ1NjXQzUKOUjRCwly9IS71KjoKT5PVEUNcXpS9I6iM9AM2Acsc9Mi4Xveo0aFHKTohQSdPuEu1Sp6FRUIjbgVR1NDd5MUvaOwHeL5wCHXzBFBIA2FHKTohQQ5esJd7CvOIkXP7CnAN4CvkQIhKrMIOAgUAydX/liK3lFIHRfVkUacnhS9UKDTJ9yl2hG39o1pHnDYFXNEkDgILIgtp7g5SdE7Cjl6ojrScPSk6IUCOXrCXarN+WX/4ejGJKqimjg9KXoVaAucgHlgmu+2RSIQLAIOAC2Ajqk3kaIXCnT6hLukpejJ0RNVUY0KIUWvAnas6zJMKIQQR1NG4iGgClVPil4okKMn3KVKRe9EoA0maFwKhKiKeRiP5iSgdfJHUvQqoIcmkQ41dN9GtU2FDJ0+4S5VOnr2jWkxsN81c0TQ2ENioM5R3bdRvSmlbFNy9EQ6pDmSPWptKmTo9Al3qbLrVjcmkS5VxOmp6zbGN0jkRnvXdXNEkJiPieM8AWhX+WN13YYCOXrCXWpU9OToiZqoQoWIqqJXqevWPi6rMJPXC1EVXwNLYsvVxL1GrU2FDJ0+4S4pFb3mmCz+kEjiKURV2CrVaRj1KoYUvRgDYq9vu26KCCL2g1M1I9mj1qZChhw94S4pFT17hOD7wFeumiOCyHZgdWy5X2K1FL0YA2Ovb7ttiQgkaYxkj1qbChk6fcJdUip69pOkpj0T6ZIiTk+KHtAUOCO2Qu1JpMO7mKeEzpjelQpI0QsFcvSEu6RU9AbGXnVjEumSQoWQooc5HnUwiuc2rywSgWInpjcFqhzgFLU2FTJ0+oS7VFL0KioQb7ttjQgstqLXHWhgFqXooW5bkR01DHCKWpsKGXL0hLtUUvQGIAVCZM4mYAOQD5xtVknRQwMxRHZU4ehJ0QsFOn3CXaoMHJ/puiki6Lwdez3XvERVfYg/PDUAusTezPLIGBFMbIX8DKBJYnVU21TIkKMn3KVSKojYTVoKhMgY++Egdg1FVX2Ih0Ocjqn8GqSOi8woBT7AXD9nJ1ZHVSUPGYE7fSNHjmT9+vXs37+fxYsX069fv2q379+/P4sXL2b//v18/PHH3HDDDZW2ueSSS1i1ahUHDhxg1apVDB8+3CHrRXLX7XEk4vOkQIhMsR29HkDD6N6U4m2qW2zhbY8MEcEmRfdtVB+eQkagTt+IESMYP3489957L926dWP27NlMnz6dtm3bptz+xBNPZNq0acyePZtu3bpx33338eijj3LJJZfEt+nduzcvvvgiU6ZMoUuXLkyZMoWpU6dy5plnulWtaJE0GMOOJ1oJfOGJOSLIbAI+xsTpnaPBGOU9Ygtve2SICDa2ozcgsUpdt6HBCkqZP3++NWHChKR1q1evtu67776U2z/wwAPW6tWrk9ZNnDjRmjt3bvz9Cy+8YE2bNi1pm+nTp1vPPfdc2na1atXKsizLatWqlefHyPelNxZ3YXEpFjxqgRV79YFtKgEsf7HAsuAPFkWYa+sur21yudwcq3ObObFj0cJ7m1QCWNpaYFlw2IJGZt15mGvrAq9tc65E4f4dGEWvoKCAHj16UFJSkrS+pKSEvn37pvxOnz59Km3/+uuv07NnT/Lz86vdpqp9AhQWFtKwYcN4KSoqyqZK0SRJ0VN8nqgtM2Ov5yYn4Q7MP1sOiCt69TDxeaUeGiOCyybgQ8yfdCyfnhS9UBCYv8NmzZqRn59PaWnyn1hpaSnFxcUpv1NcXJxy+4KCApo1a1btNlXtE2DMmDHs3r07XtatW5dNlaJJPJ7oGMxcpaD4PJE9tqPXDY40TqwOzD9bDoiPZC9AbUnUDrs9nWdeFKMXCgJ3+izLSnqfl5dXaV1N2x+9PtN93n///TRq1CheOnXqlLb9kSeu6LWKLawAdnhkjAg+W4B1QB0orzAwK0oKRFzRK0DquKgdb8VeY46eFL1QEBhHb/v27Rw+fLiS0ta8efNKipzN1q1bU25/6NAhduzYUe02Ve0ToKysjD179sTL3r17s6lSNIkrevYAmplVbSlEmsSuoSPnJlYF5p8tB0jREznD/j/uCnxDil5ICMzpO3ToEEuWLGHQoEFJ6wcNGsTcuXNTfmfevHmVth88eDCLFy/m8OHD1W5T1T5FLYkreifGFt72xg4RImxH7/zEqigpEHVif+PlnwJbPTVFBJ1tmCwIAAOl6KXgnHPO4dVXX2Xz5s1YlsWwYcMqbXPnnXeyefNm9u3bx8yZMznllFM8sDRBYBw9gHHjxvHTn/6Ua6+9ls6dOzNu3DjatWvHpEmTALjvvvt4+umn49tPmjSJE044gT/+8Y907tyZa6+9luuuu46HHnoovs0jjzzC4MGDGT16NJ06dWL06NF8+9vfZvz48W5XLxrEFb1izL+IFAhRW96OvXaNpgIRV/QWeWqGCAsVum+j2J5qoEGDBixfvpwbb7wx5eejR49m1KhR3HjjjfTq1YutW7cyY8YMzwdtej70N5MycuRI65NPPrEOHDhgLV682DrnnHPinz355JPWzJkzk7bv37+/tWTJEuvAgQPW+vXrrRtuuKHSPi+99FJrzZo11sGDB63Vq1dbF198cUY2RWF4ds7KUMxw/fNut2CZ9/aohKSstMCyuL2uub6aem2Pi+WuWGkw3HtbVEJQhltgWbDaohvm2rrSa5ucK7W5f1uWZQ0bNixp3eeff26NHj06/r6wsND66quvrOuvv96zOpocIwFi4sSJTJw4MeVn1157baV177zzDj169EixdYKXXnqJl156KSf2iRpIChyf6aUlIlTMBE4111VBeXQUiDqNgN1muXyep6aIsDAL09vyrdhI9l2RaE9FRUU0bNgw/v7gwYOUlZVltI/27dvTsmXLpJRtZWVlzJo1i759+/LEE0/kzN5MiMDpE74i3nWrEYIil8QeGo4cY16j8s9Wt+K8pMqfJ3LBV8Ays1geiy2LQHtat25dUtq0MWPGZLwPe2BnpinbnCZwip4IOHWPAQ5AeT6JKXeEqC2xWM/ymKMXleDxOn2A6Wa5vNothciAt4AecKQLMC8S7alTp05s2bIl/v7gwYNZ7yvTlG1OEwE/XfiKOs3N65FtwE4vLRGhYgewPKYUE51/trp9EstHqt5MiMyIKeTlXc1rBNrT3r17k9KmZdptCyZdG5BxyjanicDpE76i7nHmtXy9t3aIEDIzFvtJJBQIaAx1OpvFI5iwayFywmzgcCLfaSTaU+355JNP2LJlS1LKtoKCAgYMGOBpyjZ13Qp3qdPUvB75yFs7RAiZGTFFrx/Ujcl4UvNETtkLLEw8OEWiPaVHgwYNOPnkk+Pv27dvT5cuXfjyyy/ZtGkT48ePZ+zYsXz44Yd8+OGHjB07ln379vHcc895ZrMcPeEiraBuPbNYLkdP5Jp3oLyNWaz7DeBLT61xnvOgziGzqPg8kXPegiOxaQWl6MXp2bMnb7/9dvz9ww8/DMBTTz3Ftddey4MPPsixxx7LhAkTaNq0KQsWLGDw4MGezqAlR0+4yECos80sHtnvqSUijOyEIy3MYp3TCX8y7kFQN+boSdETOWcmlMemFZSiF2fWrFnk5eVVu83dd9/N3Xff7ZJFNaPTJ1xkYOLGJAVCOEH5PvNa91Rv7XCcYuB0qBMbGaj2JHLOXDgSC/ysK00oyMjREy5ybqKrSQqEcIIjse6ROt/y1g7HiQV7111hXtWeRM45AOWrzWKdQm9NEbVCjp5wibbAyVA3NmRdNybhBEdis0TUbQa08dQUZ4k5enViI/nUnoQTHFliXqXoBRo5esIlhpiXOvZ0Td5ZIkJMeezCqnMYONdTU5zFdvQWmFe1J+EERxaZ1zp1gOrj0oR/kaMnXGKweamz07xKgRBOYF9XdQ4B53lpiYOcjonR+xrqvm9WqT0JJyiPXV91DgNhj3sNL3L0hAvUBb4dW5SiJxzEvq7qHiL+cBE67GSss2I3YNSehDMciV1fdcP84BR+5OgJF+gFNAW+gjoHzCopEMIJ4oreXqAVRv0KG7YDOyOR30ztSTiB/QARaoU8/MjREy5g35jeSNyYpEAIJ4gremtjCxd4ZYlD1AP6x5ZLEv/gak/CCeIPTkcg7xzkMgQTnTXhArGBGLyeuOKkQAgniN+YVsUWhlS1ZUA5GzgW2AyslqInnKXiA0SdBkBPrywRtUCOnnCYxsBZseUSKXrCWeKK3rrYwjlAA4+McYIK3bYgRU84S8UHiLqHCJ9CHg3k6AmHOR/j3a0BNknRE84SV/R2AJ8AhcBAz8zJPfZAjJijJ0VPOEmSoncIuNArS0QtkKMnHKZCty1I0RPOElf0AP4bexOW7ttmQPfY8hvmRYqecJJKit6ZwHEeGSOyRY6ecBi7q6nEvEjRE04SV/Qg/nARmu6mWIoi3gO2mUUpesJp4iNvl2MaVljTFoUXOXrCQToCJwIHgVlmlW5Mwkns66ouwFvAIaADcJJXFuWQo7ptQQ9OwnnibSqmIqv7NnDI0RMOYj/5vQvsS77a1NUknCCuPgDsAWJzwYai+7YaR0/tSThFXCV/O7YwBE2HFizk6AkHOSo+r+LVJgVCOEFS1y2EJ06vM9AWOADMTqyWQi6cJv7wtATYDTQHenhnj8gYOXrCIQpJTCp/1EAMkAIhnCFpMAYk4vTOAwpcNyd32GrebIyzF0OKnnCaeNdtOfFBQOq+DRRy9IRD9MXkL9sK2BNjV/hYCoRwgkqK3nuYgQsNMddkUEnRbQtS9ITzJIVDTI+9kaMXJOToCYewu8pKAMssVlT0dGMSTlBJ0bNIqHpB7b4tIKGOlyR/JEVPOE3SACfb0TsT+IYn5ojMkaMnHMIeiPF6YpVuSsJpKil6EHxHrzdQhFEmVyR/JEVPOE2SorcZ00NTl4TKLPyOHD3hAM1JJHat0NWkZMnCaSopepBQwbpjrs2gYT80vUFcHbfRw5NwmiRFD9R9Gzzk6AkHsJ/0lgJfJFYr55dwmpSK3hfAkthyEJO92u2ppPJHUvSE0yQpepBw9C5AaVaCgRw935NP8EYLHjUbho0UPeE0KRU9SKRZCdosGc2BXrHlGZU/lqInnKaSojcHk6OyBdDNC4tEhsjR8zX3YuJyhnltSAbkkTI+D6ToCedJqehB4locTLBUiIswlVkIfF75Yyl6wmkqKXqHUJqVYCFHz9fkA02Bi702JANOB4qBvSRmJYihm5Jwmkrqg808TLLX4wmWCjE89vqv1B/r4Uk4Tco2ZSvkcvSCgBw9X/PP2Ot3MQmIg4DdNfY2UJb8kbqZhNNUUh9sDgNvxpaD0n1bBHw7tvyv1JuoTQmnSamS23F6vTFihPAzcvR8jd1d0wiT2T8IXBJ7/U/lj6Q+CKepsusWgpdm5QKgHvABsCb1JlLJhdOkfHjaBKxCaVaCgRw9X2MBL8eWL6luQ5/QBjgLc9f5V+WPNRhDOE2VgzEg4ej1BZq4YU0tGR57/VfVm0jRE05TZTiE0qwEBTl6vsd29Ibh/9NlO6NzgNLKH0vRE05TraK3AZNwOB8zyMHPFADfiS3/q+rNpOgJp6kyHEJpVoKC3z2HOE2aNOGZZ55h586d7Ny5k2eeeYbGjRtXuX1+fj4PPPAAK1asYO/evWzevJmnn36ali1bJm03c+ZMLMtKKs8//7zT1cmAWcCXmDQLZ3tsS01cGnt9KfXHUvSE01Sr6AH8I/Z6mfO21IoBGNVxKzC/6s2k6AmnqVLRexcz6K4Y6OqiQSJTAuPoPffcc3Tt2pULLriACy64gK5duzJlypQqt69fvz7du3fn97//Pd27d+eSSy6hY8eOvPrqq5W2feKJJyguLo6XG264wcmqZMhh4N+xZT+Pvm0O9Ist/zP1JlL0hNNUq+hBwtEbjIl99St2W3+FSrNhVESKnnCaKhW9MhIDnNR962fyvTYgHTp37syFF17IWWedxcKFCwH42c9+xvz58+nYsSMffPBBpe/s3r2bwYOTs+D/6le/YtGiRbRt25ZNmzbF1+/bt4/S0hRdjb7hn8DVmK7RUR7bUhXDSeT72pR6Eyl6wmlqVPTWYILITwW+BzzrglGZkkcid+a/qt9Uip5wmioVPYDXMNfqxcB9blkkMiQQil6fPn3YuXNn3MkDWLBgATt37qRv375p76dx48YcOXKEnTt3Jq2/6qqr+OKLL1i5ciV/+MMfKCoqqnY/hYWFNGzYMF5q2r72lABfAyfg3xxgNXTbghQ94Tw1KnqQUPW+76wtWdMTaI2ZfeCt6jeVoiecpkpFD0wM+WHMNXuyWxaJDAmEo1dcXMy2bdsqrd+2bRvFxcVp7aNevXo88MADPPfcc+zZsye+/tlnn+UHP/gBAwcO5Pe//z2XXnop//xnFV2PMcaMGcPu3bvjZd26dZlVKGMOkAh89ePo26bAubHlao6dFD3hNDUqepBw9IYADR01JzuGx16nUSkX5dFI0RNOU62it53ELBmXu2KOyBxPHb0777yz0kCIo0uPHj0AsKzKcSp5eXkp1x9Nfn4+L7zwAnXq1OEXv/hF0md//etfefPNN1m1ahUvvvgil112GYMGDaJbt6qVs/vvv59GjRrFS6dOnTKseTbYDpQfHb2LMKMEVwAfVb2ZFD3hNGkpeiuBtcAxJEa2+onhsdd/1bypFD3hNNUqegAvxl7l6PkVT2P0HnvsMV544YVqt9mwYQNnnHEGLVq0qPTZ8ccfX2NsXX5+PlOnTqV9+/acd955SWpeKpYuXUpZWRkdOnRg2bJlKbcpKyujrCzxpN2woRuqwGuYp/tTgE6A0ypiJqTRbQu6KQnnqVZ9qMg/gN9ium+r/w9yl46YNl6GUfRqQA9PwmlqbFMvA3/GTH95CrDaBaNEJnjq6O3YsYMdO3bUuN28efNo0qQJvXr1YtGiRQCceeaZNGnShLlz51b5PdvJ69ChA+eeey5ffvlljb916qmnUlhYyJYtW9KviCvsxoxwuhAT+PqAt+bEaYgZwQg1OnrqZhJOU6P6YPN3jKN3IdAAEwPrB+xBGG9h2nwNqE0Jp6lRJd+Fmfv2Ioyqd6cLRolMCESM3tq1a5k+fTp/+ctfOOusszjrrLP4y1/+wr///e+kEbdr1qxh+PDhANStW5d//OMf9OzZk6uuuoq6devSokULWrRoQUFBAQAnnXQSv/vd7+jRowcnnHACF154IX//+99ZunQpc+bM8aKqNWAnT/ZTmpWhmGma1mFGM1aD1AfhNPa1lUcNOVxXAB8Cx+Kv7tvhsdd/pbe5VHLhNGk9PNmq+BXO2iKyIhCOHpiRse+//z4lJSWUlJSwYsUKfvSjHyVt07lz53gS5TZt2jBs2DDatm3L8uXL2bp1a7zYI3XLyso4//zzef3111m3bh2PPvooJSUlfPvb3+bIET/+c76C+Uc/EzPdmB9Is9sWNBhDOE/Fayut7lvwT/LkYsz0bACV832mRIqecJq0wiFeBfZhQg/8mhkiugQijx7AV199VcmxO5q8vMQj/Keffpr0PhWfffYZAwcOzIV5LrENM73YOZgn/8c8tcaoIUNjy9WPVAak6AnnqXhtpdV9Owaj6NXH3Ki8xJ6WbT6QZuiIFD3hNGkpel9j4si/j+m+TR3fLrwhMIqesPHT6NshmPimDcCSmjeXoiecJiNFbxmwHuPk+SGz//DY67/S/4oUPeE0aQ9wsrtvNfrWb8jRCxx2nF5/4DgvDSHRbZuGmgdS9ITzZKTogX+6bxsC58eW/5X+16ToCadJe4DTNEyS7xOBsxw0SGSKHL3A8SmwFPMPf1EN2zpJIWYKKUgrPg+k6Al3SCtpss3fY6/fxeTV84rvYdrUGjJKnSRFTzhN2oreAUwcOWhQhr+QoxdI/DD69jygMfA5MC+9r0jRE26QVtJkm8WY0IMi4AKHDEqHG2KvGeb0k6InnCZtRQ8S1++IdL8gXEBnIpDYCtoQoHIiaXewu21fBmqenQSQoifcISNFD7yf+/YUTCjGYeCv6X+t4r+32pRwirQVPTDzsn8FtAL6OWWRyBA5eoFkDTAX09XzMw9+/xgSamKa8XkgRU+4Q0aKHiQcve9hckK6ja3mvYJRyNOk4o1XbUo4RUaK3iES9wR13/oFOXqBxU6t8nPcz5JzJWYgyKfArPS/pm4m4QYZKRAAC4FNmAERQ5ywqBrqA1fHlidl9tWK/95qU8IpMm5PdvftZZl8STiIHL3A8g9gK9CaRFoGt7g59voYGfUZKXBcuEFGCgSY0IOpseUbqtvQAa7AxLp+hJniMAPUdSvcIGOFfCYm5+vxmFhu4TVy9ALLIeCJ2PKNLv7uQOAMTILMDOKJQF23wh0yvjEBTIx9cSjwrVxbVA0/j71OIu1YVxtbLLEy/6oQaZPxg1M5iXAIdd/6ATl6gebPmADuAcDpLv2mreY9A+zM7KsajCHcIOPBGAAfk8hfNyqX1lRDD6AXcBB4KvOvSyEXbpBx1y3Ai7HXi/E2bZEAOXoB53MSga+/dOH32pPI3fdo5l+XoifcICtFD+Ch2OuPcGc0u63m/R3YkfnXFfMq3CBjRQ9gNvAJ0BT4aa4tEhkiRy/wPB57/SEm1sdJbsRcMq8DazP/uhQ94QZZKXpg8kHOw4y8dfrBqTHwg9jyxOx2IUVPuEFWip4F/L/Y8mhMhgjhFXL0As87wPuYOWevcfB3ioDrYsuPZLcLKXrCDbJW9AD+GHsdCRybE3NS8yNMm30fkyopC6ToCTfIStEDeBLYDLQlMbJceIEcvVBgp1r5JZDn0G9cjVEh1gH/zW4XUvSEG2St6IFJAL4eaIazN6eKgzCyRIqecIOsFD2AMuDB2PIY3E8DJmzk6IWCZzEDIzoAgx3Yfx5wU2z5T2Q9xE+KnnCDWil6R4CHY8ujst1JDZwDnArsBaZkvxspesINslb0AP6CSbXSnkSognAbOXqh4GuMTA7OpFq5AOgI7AKezn43UvSEG9RK0QPTlr7CPDh9LxcWHYWt5j0H7Ml+N1L0hBtkregB7CcRDjEWuRzeoKMeGibEXocCJ+V433ZKlckYFSJLpOgJN6iVogfmwcnuUv11rc1J5njMjAFQq25bkKIn3KHW7Wki8CXQmcQc6cJN5OiFho8wsXN1MIHkuaIzZlqoIyRiAbNENybhBrVSIGz+hIkxOgeT6y5XXIsZgbgAWFa7XenBSbhBrRXyPSQG8P0W5+LIRVXI0QsVtiN2HbkbMWjH5r2KyYtUC9TVJNygVjFFNluA52PLuVL1mlfY159rvzu1J+EGtVb0wORd3Y2ZVcmJcAhRHXL0QsV0zIjBpphRTrWlCfDj2PL42u9OCoRwg5zcmCARW3QZcGJtd4aZMrA5sAIzgKqWSCEXbpCTB6edJISI39ZmRyIL5OiFiiPA7bHl24FBtdzfnzC5vpYDs2q5LzQYQ7hDrbuabN4HSmI7urmGbWvieoyScQC4CtMtXEuk6Ak3qPggUas29TCwDxMK4UR2CFEVcvRCxwuYbqE6GNWgVZb7+TVmto3DJLpva4kUPeEGOVP0IKHq/QI4N8t9dCSRsmUMsLK2Rhmk6Ak3qPggUas2tZ3EAKTf1WZHIkPk6IWSmzGB3sdjHL9ME1UOITF9zc2Y2TdygBQ94QY5U/TAKHovYgZQvAycnuH384G/AfWBN8h6VplUSNETbpAzRQ/MfNIHgX6YtF3CDeTohZKDwPcxwa/nAPdk8N0OGOewLibZ5YTqN88EKXrCDXKq6IGZIWMWZmaY6ZgpndLld5iuqi8xUxRmmWw8FVL0hBvkTNEDM8jpL7Hll5Cz5w5y9ELLx8BPYsv/C3w3je80BF7BDMKYQ86TL0vRE26QU0UPzIPTcEyXa2tMGqOmaXyvD4mY2Rsw837mECl6wi1ykrLIZjQwDaNyvwpckYudimqQoxdqXiLRVfQ0cEI12+ZhYvq+BXyGSWyZg4DxikiBEG6Qc0UPzKjBCzFt4xTMA1G9arYvwnTZ1gWeAf6RS2MMak/CLXIy8tZmPzAMc78piL3+oobvFGFyUNbPhQE5YeTIkaxfv579+/ezePFi+vXr57VJVSJHL/T8BpOc9RuYWKOCKrb7P8yowP0Y9aI0t2ZUvNKkQAgnybmiZ/MZxtnbhQmJ+Bup/0JbYkIeTgI2AL/KtSEGKXrCLXKq6IEZ5PcjTGaHOsDjwB1HbZMHDACeArYC/x9wSa4MqBUjRoxg/Pjx3HvvvXTr1o3Zs2czffp02rbNJKzDPTKN0heB4xBwObAUOAtYh5lkei8mY/leTNzQj2Lb/wxYknszKt4PpUAIJ3FE0bNZiXkQ+i8mv95fMHnxTgFOjb3a3bpHMO1qtxOGSNET7uFIm7IwGR22A3fHSjNgHKbdXEPydJ5rMGEU3jNq1CgmT57M5MmTAbj11lsZMmQII0eOZOzYsR5bVxk5en6mP+a+UWs+Bdpjkr5WNf3MHzEO4JZc/GBlKv6sbkzCSezr61QyGzeRNm8DxSSHQrx91DYHMe3pSycMMDSIvao9CaexVeMrMGJcTvk/jKLXJva+MSZ271XMxf0Vph3tM2Oi1uT69w1FRUU0bNgw/v7gwYOUlVUOXyooKKBHjx488MADSetLSkro27evM8bVEjl6fqYR5n6SE3ZjlAeP2Y0DfxRCVMD2rerjYEjPzljxAQ76kkIA5horwghujrAjVmrAwRC9devWJb2/6667uPvuuytt16xZM/Lz8yktTQ5vKi0tpbg4ZzfsnCJHz8/MB1Z7bUSOKSWnGSaEqMRKzI3pGK8NcYFDmNBBIZzkWcyAc8cpxsiHX6T+eLtzv9ypUye2bEn0aB08WH03sWUl38jy8vIqrfMLcvT8zHYcvbCFCC2fe22AECHiIGYadcfZ6saPpGTv3r3s2bOnxu22b9/O4cOHK6l3zZs3r6Ty+QWNuhVCCCGESINDhw6xZMkSBg1Knkt+0KBBzJ071yOrqkeKnhBCCCFEmowbN44pU6awePFi5s2bx/XXX0+7du2YNGlSzV/2ADl6QgghhBBpMnXqVI477jjuuOMOWrZsycqVKxk6dCgbN2702rSUyNETQgghhMiAiRMnMnHiRK/NSIvAxOg1adKEZ555hp07d7Jz506eeeYZGjduXO13nnzySSzLSirz5s1L2qawsJBHH32UL774gr179/LKK6/QurUrw4uEEEIIIRwlMI7ec889R9euXbngggu44IIL6Nq1K1OmTKnxe9OnT6e4uDhehg4dmvT5+PHjufjii7niiivo168fRUVF/Oc//6FOncAcGiGEEEKIKrH8Xjp37mxZlmWdeeaZ8XVnnXWWZVmW1bFjxyq/9+STT1ovv/xylZ83atTIOnjwoDVixIj4upYtW1qHDx+2Bg8enLZ9rVq1sizLslq1auX5sVJRUVFRUVFJr0Th/h0I2apPnz7s3LmThQsXxtctWLCAnTt31jjlyMCBAyktLWXdunU88cQTHH/88fHPevToQWFhISUlJfF1W7ZsYeXKldXut7CwkIYNG8ZLUVFRLWonhBBCCOEMgXD0iouL2bZtW6X127Ztq3bKkenTp3PVVVdx3nnn8etf/5pevXrx1ltvUVhYGN/vwYMH2blzZ9L3aprKZMyYMezevTtejp46RQghhBDCD3jq6N15552VBkscXXr06AGQcmqRmqYcmTp1KtOmTWPVqlX85z//4cILL6Rjx4585zvfqdaumvZ7//3306hRo3jp1KlTmjUWQgghhHAPT9OrPPbYY7zwwgvVbrNhwwbOOOMMWrRoUemz448/PqMpR7Zu3cqnn35Khw4d4u/r1atHkyZNklS95s2bV5vhuqysjLKysvj7hg0bpm2DEEIIIYRbeOro7dixgx07dtS43bx582jSpAm9evVi0aJFAJx55pk0adIkoylHvvGNb9C2bdv4xMVLliyhrKyMQYMG8fe//x0w3bmnnXYao0ePzqJGQgghhBD+wvMRIemUadOmWe+995511llnWWeddZa1fPly69VXX03aZs2aNdbw4cMtwGrQoIH1hz/8werdu7d1wgknWAMGDLDmzJljbdq0ySoqKop/Z8KECdbGjRut8847z+ratav1xhtvWMuWLbPq1KmjUTsqKioqKiohLlG4fwdmZoyrrrqKRx99ND5C9tVXX+XGG29M2qZz587xJMrl5eWcfvrp/PjHP6ZJkyZs2bKFmTNncvnll7N37974d2699VYOHz7M1KlTOfbYY3nzzTe55pprOHLkSMY2pupeFkIIIYQ/icJ9Ow/j8Yla0K1bN5YuXeq1GUIIIYTIgu7du7Ns2TKvzXAEOXo5olu3bhkNDEmHoqIi1q1bR6dOnZJUyCgR9WMQ9fqDjkHU6w86Bqq/s/Vv0aJFaJ08G8/7j1VSl4YNG1qWZVkNGzb03BYdA9Vfx0D11zFQ/VX/4JVAJEwWQgghhBCZI0dPCCGEECKkyNHzMQcPHuSuu+7i4MGDXpviGVE/BlGvP+gYRL3+oGOg+ke7/rVFgzGEEEIIIUKKFD0hhBBCiJAiR08IIYQQIqTI0RNCCCGECCly9IQQQgghQoocPSGEEEKIkJLvtQEimXbt2lFcXIxlWZSWlrJx40avTXKdqB+DqNcfdAyiXn/QMVD9o13/XOP59BwqWLfccou1ceNG6/Dhw1Z5eblVXl5uHT582Nq4caN18803e26fjoHqr2Og+usYqP6qfyCL5wZEvvz2t7+1du7caY0ePdrq0qWLVVxcbLVs2dLq0qWLNXr0aOurr76ybr/9ds/t1DFQ/XUMVH8dA9Vf9Q9c8dyAyJeNGzdaw4YNq/Lz4cOHW5999pnnduoYqP46Bqq/joHqr/oHq2gwhg847rjjWLduXZWff/DBBzRt2tRFi9wn6scg6vUHHYOo1x90DFT/aNffSTz3NqNeZs6caU2ZMsWqW7dupc/q1q1r/e1vf7NmzpzpuZ06Bqq/joHqr2Og+qv+wSqa69YHnHbaaZSUlFCvXj1mzZpFaWkplmVRXFxM//79OXjwIIMGDWL16tVem+oYUT8GUa8/6BhEvf6gY6D6R7v+TiFHzycUFRXxwx/+kN69e1NcXAzA1q1bmTdvHs899xx79uzx2ELnifoxiHr9Qccg6vUHHQPVP9r1dwI5ekIIIYQQIUUJk31M8+bNqVevHps2bfLaFNdo0KABPXr0iCfK3Lp1K0uXLuXrr7/22jRP0DWga0DXgK6BqF0DOv+5x/NAwaiXoqIia8qUKdaGDRusp556yiooKLAee+yxeKLIt99+22rYsKHndjpZ6tata40fP976+uuvrfLycmv//v3WgQMHrPLycuvrr7+2Hn74YSs/P99zO3UN6BrQNaBrQNeAzn/AiucGRL48+uij1urVq60bb7zReuutt6yXX37ZWrFihdW3b1+rX79+1ooVK6x77rnHczudLOPHj7c2bdpkjRgxwmrcuHF8fePGja0RI0ZYn376qfXwww97bqeuAV0DugZ0Dega0PkPWPHcgMiXTz/91Bo4cKAFWC1btrTKy8ut7373u/HPL7zwQmvNmjWe2+lk2bZtm3XuuedW+fl5551nbdu2zXM7dQ3oGtA1oGtA14DOf5CKEib7gObNm/PRRx8BsGXLFvbv35+UNHLVqlW0bdvWK/Nc4dhjj2X79u1Vfr5jxw6OPfZYFy1yF10DugZ0DegaiPo1EPXz7xRy9HzAjh07OP744+PvX3nlFXbu3Bl/X1RUxMGDBz2wzD1mzpzJuHHjaN68eaXPmjdvzoMPPshbb73lgWXuoGtA14CuAV0DUb8Gon7+ncRzWTHqZdq0adb1119f5edXX3219e6773pup5OlTZs21ooVK6yysjJr6dKl1vTp061p06ZZS5cutcrKyqz33nvPat26ted26hrQNaBrQNeArgGd/yAV5dHzAU2bNuXIkSPs2rUr5ecXXHAB+/fvZ9asWS5b5i55eXkMGTIkZaLMkpISLCu8l6quAYOuAV0DugaifQ1E+fw7hRw9IYQQQoiQohg9IYQQQoiQIkfPZ6xfv56SkpKkdTNmzODjjz/2yCL3ifoxiHr9Qccg6vUHHQPVP9r1zyWaAs1nPP3003zxxRdJ615++WWaNWvmkUXuE/VjEPX6g45B1OsPOgaqf7Trn0sUoyeEEEIIEVLUdSuEEEIIEVLk6PmEzp07c80119CpUycAOnXqxIQJE5g8eTLnnnuux9a5Q+vWrbnnnnt46623WL16NatWreKtt97innvuoU2bNl6b5zhRr39NtGnThsmTJ3tthmdEpf7HHHMMZ599Nt/61rcqfVavXj1+9KMfeWCVe0S9/roXOoPnyfyiXoYMGWIdOHDA2r59u7Vv3z5ryJAhVmlpqVVSUmLNmDHDKisrq3b+vzCUs88+29q9e7e1atUq6+GHH7Zuu+02a8yYMdbDDz9srVy50tq1a5fVt29fz+1U/b0rZ5xxhnX48GHP7VD9nSsdOnSwPvnkE6u8vNw6fPiwNXPmTKu4uDj+efPmzUN9DKJef90LnSmK0fMBc+bM4a233uJ3v/sdl19+ORMmTGDixIn89re/BeCee+6hV69eDBkyxGNLnWPhwoW8++67jBo1KuXn48aNo1+/fpx55pkuW+YOUa8/wPe+971qPz/ppJP44x//SH5+OMeQRb3+AP/85z/Jz8/n2muvpUmTJowbN47TTjuNgQMHsmnTJpo3b87nn38e2mMQ9frrXugcnnubUS87d+60vvnNbxrPOy/PKisrs7p16xb//NRTT7W2bNniuZ1Oln379lkdO3as8vNOnTpZ+/bt89xO1d+5YqsY5eXlVZYwqxlRrz9gbd261TrttNOS1j322GPWhg0brPbt24de0Yp6/XUvdKYoRs9nWJbFgQMHkiay3rNnD40bN/bOKBfYsmULffv2rfLzPn36sGXLFhctcpeo1x/MMbj00kupW7duytK9e3evTXSUqNcf4Nhjj+Xw4cNJ62688UZeffVVZs2aRceOHT2yzB2iXv+KRPVe6ATh1H8DxoYNGzj55JPjiSD79OnDxo0b45+3bds29Df5hx56iEmTJtGjRw9mzJhBaWkplmVRXFzMoEGD+OlPf8ott9zitZmOEfX6AyxZsoTu3bvzyiuvpPzcsizy8vJctso9ol5/gLVr19KzZ0/Wrl2btP6mm24iLy+PV1991SPL3CHq9de90Dk8lxWjXm644QZr6NChVX5+zz33WH/5y188t9PpMmLECGvevHlWWVlZvKuqrKzMmjdvnvX973/fc/tUf2dLv379rCFDhlT5ef369a3+/ft7bqfq71y57bbbrNdee63Kzx9//HGrvLzccztVf2eK7oXOFA3GEL4jPz8/nv18+/btlboywk7U6y+EECJ3yNETQgghhAgpGozhE4qLi7nqqqu48MILKSgoSPqsfv36/O53v/PIMvfo2bMnf/vb31i/fj379u3j66+/Zv369fztb3+jR48eXpvnOFGvP+gYRL3+oGOg+ke7/k4gRc8H9OzZk5KSEurUqUNBQQGfffYZF198MatXrwYIfe4kgGHDhjF16lTefPNNXn/9dUpLS8nLy6N58+YMHjyY888/nxEjRoQ2GDnq9Qcdg6jXH3QMVP9o199JPA8UjHopKSmx/vrXv1p5eXlWUVGR9dhjj1lffPGF1bVrVwvCnw0dsN5//33rf//3f6v8fPTo0dbKlSs9t1P11zFQ/XUMVH/VP2DFcwMiX3bs2GF16NAhad1vfvMba8eOHVbPnj0j4ejt37+/0jGoWDp27Gjt37/fcztVfx0D1V/HQPVX/YNUFKPnE4455pik93/4wx+47777KCkpqTaRblj4+OOPGT58eJWfDxs2jPXr17tnkMtEvf6gYxD1+oOOgeof7fo7RXiDvgLEypUr6du3L++//37S+j/+8Y/k5eXx/PPPe2SZe9xxxx288MILDBgwgJKSkkoJgwcPHswVV1zhtZmOEfX6g45B1OsPOgaqf7Tr7ySey4pRL9ddd531zDPPVPn5b37zG2v9+vWe2+l06d27t/X8889bGzZssA4cOGAdOHDA2rBhg/X8889bvXv39tw+1V/HQPXXMVD9Vf+gFY26FUIIIYQIKYrRE0IIIYQIKXL0hBBCCCFCihw9IYQQQoiQIkdPCCGEECKkyNETQgghhAgpcvQCQPPmzfnd737ntRmu0Lp1axo0aFBpfX5+Puecc44HFrlL1OsPOgZRrz/oGKj+0a6/E3ie40Wl+nLGGWeEfgq04uJia8GCBdbhw4etQ4cOWU899ZTVoEGD+OdhnwYu6vXXMVD9dQxU/6jX36kiRc8HnH766dWWTp06eW2i4zzwwAOUl5dz1llnccEFF3DKKafw9ttv06RJk/g2eXl53hnoMFGvP+gYRL3+oGOg+ke7/k7iubcZ9VJeXm4dPnzYKi8vr1Ts9WF/ivnss8+sXr16xd8XFhZaL7/8srV06VKradOmoX+Si3r9dQxUfx0D1T/q9XeqSNHzATt27OBnP/sZ7du3r1ROOukkvvvd73ptouM0btyYr776Kv6+rKyMyy67jA0bNjBz5kyaN2/uoXXOE/X6g45B1OsPOgaqf7Tr7ySee5tRL9OnT7duv/32Kj8/44wzrPLycs/tdLIsX77cuuSSSyqtr1u3rvXPf/7T2rBhQ6if5KJefx0D1V/HQPWPev2dKlL0fMCf//xnNmzYUOXnGzdu5Nprr3XPIA+YPn06119/faX15eXlfP/73+e9995z3ygXiXr9Qccg6vUHHQPVP9r1dxLPvU0Vlbp161oNGzas8vM6depY7dq189xO1V/HQPXXMVD9Vf8glbzYghBCCCGECBn5XhsgDK1bt2bkyJH07duX4uJiLMuitLSUuXPnMmnSJD777DOvTXScqB+DqNcfdAyiXn/QMVD9o11/J5Ci5wPOPvtspk+fzqZNmygpKaG0tJS8vDyaN2/OoEGDaNu2LRdeeCFz58712lTHiPoxiHr9Qccg6vUHHQPVP9r1dxLP+4+jXhYuXGiNGzeuys/HjRtnLVy40HM7dQxUfx0D1V/HQPVX/QNXPDcg8mXfvn1Wx44dq/y8U6dO1r59+zy3U8dA9dcxUP11DFR/1T9YRelVfMCWLVvo27dvlZ/36dOHLVu2uGiR+0T9GES9/qBjEPX6g46B6h/t+juFBmP4gIceeohJkybRo0cPZsyYQWlpKZZlUVxczKBBg/jpT3/KLbfc4rWZjhL1YxD1+oOOQdTrDzoGqn+06+8knsuKKlgjRoyw5s2bZ5WVlcXnuS0rK7PmzZtnff/73/fcPh0D1V/HQPXXMVD9Vf/gFY269Rn5+fk0a9YMgO3bt3P48GGPLXKfqB+DqNcfdAyiXn/QMVD9o13/XCJHTwghhBAipGgwhhBCCCFESJGjJ4QQQggRUuToCSGEEEKEFDl6QgghhBAhRY6eEEIIIURIkaMnhBBCCBFS5OgJIYQQQoSU/x8g1tNPy7W/fgAAAABJRU5ErkJggg==",
       "text/plain": [
        "<Figure size 640x480 with 2 Axes>"
       ]
@@ -680,7 +680,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.11.6"
+   "version": "3.12.2"
   },
   "toc": {
    "base_numbering": 1,
diff --git a/examples/Track_Corridor.ipynb b/examples/Track_Corridor.ipynb
index f7816e883cfe8204bd5a5e6ccddab55fd5142e45..d9f4c73f53682b8968179e01940c21a2e472674d 100644
--- a/examples/Track_Corridor.ipynb
+++ b/examples/Track_Corridor.ipynb
@@ -23,7 +23,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 16,
+   "execution_count": 1,
    "metadata": {
     "collapsed": false,
     "jupyter": {
@@ -44,7 +44,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 31,
+   "execution_count": 2,
    "metadata": {
     "collapsed": false,
     "jupyter": {
@@ -55,10 +55,10 @@
     {
      "data": {
       "text/plain": [
-       "'12.0'"
+       "'12.0.1'"
       ]
      },
-     "execution_count": 31,
+     "execution_count": 2,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -78,7 +78,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 18,
+   "execution_count": 3,
    "metadata": {
     "collapsed": false,
     "jupyter": {
@@ -93,7 +93,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 19,
+   "execution_count": 4,
    "metadata": {
     "collapsed": false,
     "jupyter": {
@@ -120,7 +120,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 20,
+   "execution_count": 5,
    "metadata": {
     "collapsed": false,
     "jupyter": {
@@ -137,7 +137,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 21,
+   "execution_count": 6,
    "metadata": {
     "collapsed": false,
     "jupyter": {
@@ -158,7 +158,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 22,
+   "execution_count": 7,
    "metadata": {
     "collapsed": false,
     "jupyter": {
@@ -180,7 +180,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 23,
+   "execution_count": 8,
    "metadata": {
     "collapsed": false,
     "jupyter": {
@@ -203,7 +203,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 24,
+   "execution_count": 9,
    "metadata": {
     "collapsed": false,
     "jupyter": {
@@ -227,7 +227,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 25,
+   "execution_count": 10,
    "metadata": {
     "collapsed": false,
     "jupyter": {
@@ -306,7 +306,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 26,
+   "execution_count": 11,
    "metadata": {
     "collapsed": false,
     "jupyter": {
@@ -328,7 +328,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 27,
+   "execution_count": 12,
    "metadata": {
     "collapsed": false,
     "jupyter": {
@@ -339,10 +339,10 @@
     {
      "data": {
       "text/plain": [
-       "<SpacecraftState: SpacecraftState{orbit=Cartesian parameters: {P(-991380.143740515, -1492419.3399035188, -6964235.596563474), V(-6937.698539626505, -2235.9593367839234, 1466.5430141485929)}, attitude=org.orekit.attitudes.Attitude@33b92d63, mass=1000.0, additional={}, additionalDot={}}>"
+       "<SpacecraftState: SpacecraftState{orbit=Cartesian parameters: {P(-991380.143740515, -1492419.3399035188, -6964235.596563474), V(-6937.698539626505, -2235.9593367839234, 1466.5430141485929)}, attitude=org.orekit.attitudes.Attitude@63e40188, mass=1000.0, additional={}, additionalDot={}}>"
       ]
      },
-     "execution_count": 27,
+     "execution_count": 12,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -360,7 +360,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 28,
+   "execution_count": 13,
    "metadata": {
     "collapsed": false,
     "jupyter": {
@@ -384,7 +384,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 29,
+   "execution_count": 14,
    "metadata": {
     "collapsed": false,
     "jupyter": {
@@ -393,14 +393,70 @@
    },
    "outputs": [
     {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAABFEAAAIyCAYAAAADqVVpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXgU59qH75V4Nu7uCRI8OMWlFCi0pUJbCqXuLfWvcuqn3lNqp0aNtlA4hUJb3CW4RZC4u8v6fH8MO8lGIEAgQOe+ruca2dnZmTfZ2ff9vY8oBEEQkJGRkZGRkZGRkZGRkZGRkZE5LcquvgAZGRkZGRkZGRkZGRkZGRmZywFZRJGRkZGRkZGRkZGRkZGRkZHpALKIIiMjIyMjIyMjIyMjIyMjI9MBZBFFRkZGRkZGRkZGRkZGRkZGpgPIIoqMjIyMjIyMjIyMjIyMjIxMB5BFFBkZGRkZGRkZGRkZGRkZGZkOIIsoMjIyMjIyMjIyMjIyMjIyMh1AFlFkZGRkZGRkZGRkZGRkZGRkOoC6owdqtVr0ev2FvBYZGRkZGRkZGRkZGRkZGRmZi46trS329vZnPK5DIopWqyU8PJyioqLzvjAZGRkZGRkZGRkZGRkZGRmZSwk/Pz8yMzPPKKR0SETR6/UUFRWRm5uLi4tLp1ygjIyMjIyMjIyMjIyMjIyMTFdTU1NDcHAwer2+c0QUCy4uLrKIIiMjIyMjIyMjIyMjIyMj849ETiwrIyMjIyMjIyMjIyMjIyMj0wFkEUVGRkZGRkZGRkZGRkZGRkamA8giioyMjIyMjIyMjIyMjIyMjEwHkEUUGRkZGRkZGRkZGRkZGRkZmQ4giygyMjIyMjIyMjIyMjIyMjIyHeCsqvPIyMjIyMjIyMhcWghCk5nNolnWz3bZ0X2C0HX3q1CIplQ2LTuy3tayLZrfW8t2bdkubVnLtrFst7f/XI5teY0WWt5fczuX15pvt3eMStVkln0yMjIyVzKyiCIjIyMjIyMjcwZMJjAYQK8Xl82t5T69HoxG0UympqXFWm4333cux5rNXd06MjJNNBdVVCpRdGm571xNrQYbG9Es67a21vvbsuavn05Ak5GRkekIsogiIyMjIyMjc9ljNIJOB1ptx5Y6nbX40ZYQ0nz7chcqWnoTCILYZjIyp8PWVvx/aemFdDpPJIvYd6miUJxeeLGza2329uJ7LOttHWMxtTy6kpG54pG/5jIyMjIyMjJdhiCIIkVDg2j19U3rzfc1Np5eFLmYgkDLQZetbdvbzWfPW86mn27/mY41m63vvbGxtTjUcqnVWtvFai+FwrpdmrdVy3tTq9vf15Fj2tpnCek5nbX0SrBstwzdactL6EyeQx31MGp+nNF4ZlHvYv399Hrxb2URDlouLcJCc7GhrXVo7VHVnpnN7b9mNLb2BGtrX8vXm7eXIDR9Vy4EKlVrYcXRERwcxKXFTretVsveMjIylzKyiCIjIyMjIyPTKZjNUFcHtbVNVlNjLYy0JZJ05oBQrW492DvdAPBMQkjL7c4c3JjNTW1UV9fUNs2Xzc2yz2DonM8H8X4cHJrapfm6nV3b4kfzbct6e6/Lg8ELg9ncJBBYBBZLGNnpti3WXIRsb93ifWURI2prz/16bW2bBAInJ+ulZV2jARcXcanRiPs763/H4nnVvF3aElsswmNbZmmb5u3X3CzPMZOp6dl2rqjVbQstzs5N7aPRWG93ZnvJyMicHllEkZGRkZGRkWkXkwmqqqC62loYaWu9ru7cE44qleKAofnAqvkAy8GhbTGk5T6VqlNv/6xpLoyczjqjvdoajFrapKPW1e0lc24olU1eDk5OnX9+i+jQ0uurLU+wxsb2BVKLkGARb6qqzu4em4sqLUUWy7qrq7iuPE3N0eYeUY6O59U07WIytS++WNrIsrRYW9uWtrc8KzqKUimKKs7OYnu0FFzc3JpMo5EFFxmZ80EWUWRkZGRkZP6hGI3ioKay0tqa76upObuBvkIhDuqaD3Zazji3JZLY2V36nXqzWRSTKiuhokI0y7plebbCiELRNKPs5GRtlrZpuX65tJfM5Utz0cHZ+dzPYza3FgraElssHmwWgbGxUXxvVVXHhBelUhQH3N1bm5sbeHicWWg5X1SqpmfauWIJNWpLZKmvb+3pZ9m2tJdFeCkoOPO1uro2iSqWdrIsLWZjc+73IiNzJSOLKDIyMjIyMlcolkFIaam1lZWJA/6Ouuer1WKHu/nsb1szwhYx4EIOVC4kgtDUXiUlojUXS6qqOpZg1iKMNG+r5u3X3C7n9pKRORMWj6mz9ZYxGlt7urXnBVddLX4vLd/V012Lq6soqHh5gbe3tV0K3hkKRZOXmIdHx99nNDYJKnV1TSGCzdvKIgDX1opeM2dqLxCFFC+vJvP2Bk9Pcenq2vXtJSPTVSgE4czzJTU1Nbi6ulJdXY2Li8vFuC4ZGRkZGRmZDiAIYse4oACKi63FkvLyM+cbsbGxnoVsy5ydr5zOskUosbSVRSwpKRG3z5RvRKm0bhsPD9Es666usjAiI3Mxae4hVlVlLXpa1i1Cy+mws2strPj5gb+/KLBcKZhMoqhiaaPm1nyfXn/686jV1uKKv79ofn6XhiAlI3O2nI3mIYsoMjIyMjL/GEwmEzqdDqVSiVqtRqVSobhMenqCIA4ICgtFwaT58nRVJlSqppnD5mYZ+Ds5XZmdXUEQZ1zz88V2am5abfvvUyqbBgU+PmLbNRdJLnRIgIyMTOdjCXWprBTF5ZbeeVVVpw/Dc3aGgABRJAgIaFq/ksSV5giCGD5UVtbaSkvF36LTiVKOjk2CikVc8fcXn6FX4u+NzJWBLKLIyMjIyPwjqKmpYf369fz1118cO3YMnU53WjOZTK3OoVKpUKvVnWo+Pj6Eh4cTFhYmLT09PTss2JhMojiSkwPZ2eIyP799sUSlAl9fscPaUixxd7/yB/1mMxQViW2VnS22VX6+OAhoC6WyqX18fZsEEx8fsZMvJ1uVkflnYTC0FldKSsTnSllZ++9zdoagIAgNhZAQcenldeULBWazKEhZwkOLi8XfrMJCsR3bG106OkJwsGghIaL5+l75v1EylweyiCIjI/OPwmw2U1xcTHFxMVVVVVZWW1uLwWDAaDRiMpnaXAqCQFRUFDExMdTX11NdXU1VVRXV1dWtzGQyYWdnh729fbvL073W1rGOjo64urri6uqKo6PjZeMZ0RnU1NSQlJTE0aNHOXLkCCkpKej1eknYUKlU7a4XFRWxfft2jEYj3bp1Y8CAATg4OGBnZ9em2draSuuCIGA0Gi+I6fV6iouLyczMpLZZ0hFnZ2fCwsKshJXw8HBCQ8NwcAinosJNEgHy8toOw7GIJc1nRP39xcH/P2XgLwhixz07G7KymkSmtgQmhUIUSAIDm2aPAwP/We0lIyNzfuh0opjS3PuvsFAUD9oaRTk4NAkqISEQGXl2+U0udwyGJlHF0m6FheK+NuYxsLFpEqIiIsT28vS88oUomUsPWUSRkZG5rDEYDAiCgK2tbZuvC4LAV199xZIlS8jOziYnJwd9G8G7jo6OaDQabG1trQbfLZeCIHD8+HFpwGtnZyeJGq6urri4uEjrarVa8mrQarVWS8t68/2W9bY8INpCrVbj4uKCm5sb7u7uhIeHExMTY2Wenp7n3rhdhNFoJC0tjSNHjkiCyZEjR8jKygJEb5DY2Fh69OiBk5OTJHI1F7xarms0GiZMmMDVV19NeHh4195gGwiCQGVlJZmZmWRlZUnL9PQc0tIM5ObaodMFAlGAI7a2tjg7a3Bx0eDsrMHDw4HoaHsmTIghLExFcPA/c8bObIbcXDh5EtLSxGVdXevj7OyaBi5BQaJY4ucH7TxGZGRkZM4LvV4UB3Jzm8Tc9gRwd3eIimqygIB/3rPcaGzysMzJEdstL69tAdzFRRRTLBYSIuZgkZG5kMgiioyMzGWFXq9nz549bNq0iU2bNrFr1y60Wi1qtRonJydcXFwYOHAgY8eOZcCAAbz66qusWrWKyZMnExcXR2hoKKGhofj7++Pu7o6bmxuurq7tijBtYTabqaioQKPRYGdn1+n3aDQa2xVf6urqWnm8VFVVUVFRQUZGBidOnCA3N1c61x133MF3333X6dfYUQwGA8nJyRw5cgQfHx/i4uIICQlB2U6PsLi4mGuvvZbdu3cD4O/vT3x8PL169aJXr17Ex8fTrVu3C9LulwJGo5m0NBMpKQIpKWJn22AQEAQzDQ2N1NTUUF9fSXX1YY4fX43BkAbkAKUAbNmyhauuuqpL7+FiIghiBzslBU6cgPT01p1stVp0Bw8LE0WT0FBRMPmnDUpkZGQuLUwm0VvFEoqZlSWKBS3zh9jbi2JK9+6i+fn9Mz0vzGbRszAnR2yr9HRxveW8k40NREdDt26iBQX9M9tL5sIiiygyMjJdSkNDA9nZ2WRmZlJRUSGJBw0NDZSVlVFaWmpl+fn5aLVaXF1dGTlyJCNHjsTLy4v6+nrq6+spLy9n27Zt7N69G6PRiLe3N99++y1Tpkzp6lu9YNTV1UlCxZEjR9i9ezd79+4FYNasWSxatEg6Li8vj4qKCmpra09rOp0OQRCwPPYt6823nZycGD16NJMmTSIwMBCz2czJkyfZu3evZAcPHkTbIjOng4MDMTExdOvWjbi4OGJjY/H398fV1ZWffvqJ999/n4kTJ/Lss89y1VVXtSu4XCrk5eURHx9PVVUVfn5+1NXVUdeW+0O7eAI9gO5AHGDf4vUaIB1IO2W5gBkbGxt69+7NwIEDSUhIYNCgQXTr1q0T7ujSpqZGFE2SkiA1tbWniYODOOCIjhaXoaHyrKSMjMzlgU4HmZmiJ11aGmRktBaG3dyaBJVu3cRcK/9UDAZRgEpPb7KWvwlOThAXJ7ZXfLxYFU1G5nyRRRQZGZku4d577+Wrr76irceKjY0N9vb2eHl54e3tbWWBgYEMHz6cPn36oDpNooLa2lr27t1LfHw83t7eF/JWLiilpaUcPHiQkpISSkpKJDHJsl5UVCSFuSiVSmJiYvD19ZVCkARBoLCwkLy8PKqqqtr8DHt7ezQajZXZ29ujUCgkA6y2FQoFpaWl7N27F0EQiI2NpaioiOrqagCioqJISEiQrHfv3pSVlXHs2LFWVlJScsZ2iI2NZd68ecyZM+eS+3vm5uYSEhJylu8KAfqcsoAWrzXg4JCFj08FlZWJ1NSktXmGBx54gBdeeAF/f/92P8VsNlNVVUVZWZkkSjZfNl8XBEHyzmpv2bdv3y5p/8JCOHhQtJwc69fs7cUOclycKJz8E13fZWRkrkzMZjGM5fhxUTw+edK6tLpCIYrFffqI5uXVVVd6aSAI4u9FaiocOyZ6KLassBYWBr17ixYQIHupyJwbsogiIyNz0TEajdjY2AAwaNAg5s6dy+TJk/Hy8sLOzu6S9zy40JhMJsaNG8fmzZvbPWbKlCl4e3vj4+NDt27dpDAXBwcHIiIiyMzMpHv37kRHRxMcHExQUJBknp6eaDQaXFxccHZ2lv4W50J5eTlr165l69atBAcHk5CQwIABA3B3d+/wOSorKyktLaWmpoaamhqqq6s5fvw4P/zwA6mpqa2O78BPUZeQlpZGaWmplAS4udnZ2ZOfb8f+/UoOHRIrFZhMJurr62hoqMPRsQhb25MYjUeprDxMXl4OhYWFBAQESB47cXFxdOvWjerqaq699lqqqqqYOXMmDz74ICdOnODkyZNkZmZaCSXl5eVt5tjx8PCQREovLy+8vLxQKpVUVlZSVVXVamk+5V/u4eHBjz/+yOTJky9oWwqC6NZ+4IAonBQVWb8eGirOKvboISYXlBO/XlwEQUBAwGQ2YRJMGM1Gab350iyYMQtmBARxKQin3T5blAolChTiUqFoc7v5PrVSjUqpQqVQtVqqleoLmqhbEASxnU61jdFslLYt7dS8TdozgSZvQOncCK0+qznN20ahUEjLlu1lWVcqlO22k0qpEl9XqKT3yVw8DAbRQyUlRbS8POvXAwOhb18YOFDMi/VPx2QSQ39SU+HoUXG9OV5e0L+/2F6BgbKgItNxZBFFRkamU/nll1+YNWsWAwcOxMHBAYPBgF6vR6/XYzAYiImJ4YEHHgDg1VdflcJufHx8uOuuu3j88cfx+odPpZhMJtzd3a2qtVhwcHDg8ccf5/XXXyc3N5f9+/ezb98+jhw5QnFxMeXl5RQUFKDVannhhRd47bXXuuAOOp+qqir++OMPQkJCGDVqVFdfTocpLIQ9e0RrXvrSzk4UAPr0gZ49RXfjjnDdddfx+++/t9qvUCgICwsjIiICHx8fSRxpa+nh4YG6g/Et1dXVJCUlsWvXLtavX8+aNWsA2Lx5MyNHjuzYRZ8FlZWwezckJoptZ0GtFj1N+vWDXr1Ao+n0j77sMZqNaI1atEYtepMenVEnLk06q+2W+4xmIwazAYPJYLVuMJ/aPrVued0iAsjIAKiUKmyUNqiVatRKNTYqcb29fbYqW8ns1HZW2y3NXm2PncoOe7U99mp7VMquVUu1Wq2Udyw/P5/8/HwKCgrIz8+npKSEHj16MGbMGMaOHUtQUNBFuabycjh8GA4dEr1UmudTCQ2FQYMgIUFMvioD1dVw5IhoqanWXj3+/qKYMnCg7NEjc2ZkEUVGRua8yc7OZsGCBaxfv57Dhw9L+2+99VZsbW2xsbHB1tYWtVrNxo0bOXLkCNHR0TzwwAMMHz6coqIiNmzYIIX3WESYvn370rNnT+ztW+aIuLIwGAycOHFCKt979OhREhMTKSkpwdbWlsGDBzNgwAA8PT2pq6vj4MGD7N+/n9JSMZmov78/ffv2JSAgAE9PTzw8PPD09GTixIkXrSMn04ROB3v3wrZt1rNednbiDGH//mIc+9k6AAmCQN++fTl8+DA33XQTAwYMICYmhujoaCIiIs4r2a5Op+P48ePS/5/lfzHnVOyMSqUiJiZGSvL7wAMPnJW30ekwGkWPk+3bRddrS0/DxkaMX+/XT1xeyY8Bo9lIg6GBen09jcbGVusNhga0Ri2NhkZJKLFYo7FREkOaIwjCRfUSUCgUbXostPQGac9jREHHr9UkmGgwNFCnr0NnbKNcRxuYzWYatY00NDTQ2NhIY2Mjgln0qLHke/Ly8sLDw4OcnBzKy8upqKigsaERjYsGV1dX3Fzd0Lho8PX1Pavr7WwcbBxwtHHE0caxzbaTQjBRNN1fi2VLjyDLfotnTEuPIpNg6nIvQBuVTSthxWKONo5W7eKgdpD2Odk4Sa+plR1PkGQ0Gtm/fz8bNmxg/fr17Ny5E92pBCVKpRJfX18CAwMJDAzE09OTgwcPcujQIQRBIDo6WhJUpkyZgoODw4VqFon6etHbYu9e0UvFIqgoFKJof9VV4rP0H+7sK6HTibm19u4V2615paS4OBg+XJzoOA9nXZkrGFlEkZGROWcqKyt56aWX+Oyzz3BxceH666/H398frVbLhAkTGD9+fKv3CILAjh07+PTTT1m6dCnGU79anp6eBAYGotPpKC0tpbKyEkEQUKvVxMbG0qtXL9RqNQaDAYPBgNFobHddpVJJ4SoajQZnZ2dyc3MxGAx8/fXXBAYGXuymapPExETeeust/v77bwynpkOaV6MxGo2kpqZy6NAhiouLAfD19WXAgAEMGDCA/v37079/fwICWubUkOkK8vJgyxbR68QSg61Uip4mAweK8deXQgldQRCor6+nuLiYn3/+mSVLlnDs2DHpuxgcHEx8fDzx8fH07NmT+Ph44uLiOr0iUlkZbN0KO3dCc6ermBgYPFgUTy7CuKPTMZgM1OhqqNPXSVZvqLfabm4NhgYMJoPVOQQEtFotjQ3iYL+h8dTAv8U2gLubO27ubni4e+Do5EhpYSnZGdnk5+Rjo7BB46TB1ckVV40rHi4eeLp54uXmhZ+PH1FhUXi4erTyFrBR2UjL5l4FNiqb04Z4nAtGs7FVm9TqapvW9eJ6vb7eSlDqKNu2byM1pXVYoIRCFBswg0JQoESJUW8EgdZ2ihnXzaBP7z6n3i4KFi1FieZeOy2XnYlFQHC2dW5lTrZOVtsaWw0aO805/60s4opFVLGEJVm8liyeS+3t05v0GMyGJo+oZt5RLU1n0qEz6tAata0EwvPBVmXbql2cbJq2S/JLOLzvMPt37GfXll3UltWicdYwcuRIxo4dS//+/YmIiMDX17dNj77y8nI2b97Mxo0b2bBhA8ePH8fT05N58+Zx//33ExYW1mn3cjpqa2HfPvH3KCOjab+7OwwbBiNGiAlqZUQaG8XQ0T17xFwqlhGvkxMMGQKjRsEllo5NpouRRRQZGZlzYtu2bcycOZPGxkaee+45Hn74YZw6GpNwirKyMlJTU8nOziY7O5usrCxpPTs7W5rxAVFk8fHxaTNHxtnw+++/M3369PM6x/kgCAIbN27kzTffZOPGjcTGxnLvvffSr18/evbsibu7O2+//TYffvghpaWlXHXVVVx11VWSaBIYGCjHoF9CCII447d2rdjxsuDjI3ZShwy5+KEne/fuZeDAgR061tHRkZkzZzJ48GDi4+Pp0aMHbhe4Z52eDmvWiO7Ull6Fm1tTe3l6XtCPPycEQaBWX0uVtooqbRU1upp2rdHQaPVes1kcXLcXilDfUI/JaMJsNmOjsMFWYcuOzTs4kXQCDIARMICdyg4PjQeerqII4uPhg8KkIONEBidSTlBdVg0msLezZ9y4cYwfPx6j0UhBQQGFhYWSFRQUUFNTI32+RTTr1asXYWFhzJo1C815/tMKgkCdvo5qXbXULtXaamm7Wtu0v8HQcM6fY6+2x8nWSfI+aO6FYK+2x8HGga0bt/Lay69hq7SV2i/5ULLYribYu2cvtra2JCcnM2vWrFafoVKp8PX1lSqIjRgxgueffx7b81BEjWajJBA0Gq29ixoNjehMOhoNjTQaG2k0NFJvaBKQLNZRD5yWKBQKSVBxsXPB1d4Vja0GV3tXXOxccLFzwc3eDTd7NxzUDpfE703z9mpuOpNOajOL11ajocl7q/m+RmPjGT1pCgoKWLVqVdMOBYSHh3PN+GvwdPaU2szFzgWNnQZXO1eprdzs3XC0cWzVXidPnuTzzz/n22+/paamhilTpvDQQw8xbty4i5b/rbhY9PTbsUP0VgFR4B84EMaPF0sAyzRRXi6K+zt2iCGmIHrz9O4N48aJiXwvga+FTBcjiygyMjLnxAcffMD8+fOZOnUq33//fae59lsQBIGSkhKys7M5ePAgTz75JOHh4TQ0NJCens7VV1+Nr68vRqPRyvR6PXl5eaSnp6NQKBgyZAjDhw9n+PDhDBo06KyFnnPFYDBYlWguKyujuLiYRYsWsWfPHvr168fzzz/P9OnTraoMFRYWSslDQezwBgUFERERQUREBOHh4URFRXHDDTecV0JYmfPDbBZdgFevhoICcZ9SKYbrXHUVxMZ2XSfr999/57rrrmv3dZVKxU8//YSrqytDhw7F9SLUexQEUTRZs0YUUSx07w4jR4p5TrrKxdwsmKnWVlPRWEFFYwWV2kqqtFVUNlZKokm1rrpdDwKL10hNTQ21NbXU1NZQV1NHQ2UD1WXV1JTWYK+y57Ybb2P8yPE4qhxxUDmgFtR88O8PWLF0hSiWNHNGUavVuLq6Ul5ejlqt5uqrr8bT0xOVSoVKpcLHx4fnnnsOR0dH8RoEgeLiYrKzs4mPj5f2t0dDQwMZGRkcPXqUPXv28NFHH0mv7dq1i8GDB7f7XkEQqNaJ7dW8nVq229l4D1gG9pbBvZX3hJ1G8hZoKZicq0fF888/z1tvvYWNjY3kBQig0Wjo3bs3Tz75JJGRkVIuodNVgusqTGaTVejX6bydmtvZhOTYqmwlgcDdwV1c2otLDwcPPB09cbJxuiSEljMhCAKNxsZWbVWvb1qv0daQeCCRvJI8iiqLKK8tp7S0lIDAACaMn3DGXFJqpdpKVLG0m4eDB/aCPetXrufrz77m6JGjREdH89hjj3H//fdftPYzGkVvi82bxeS0Frp1g8mTRS9AmSbMZnGSZONGSE5u2h8WBtdcI4ZGXQb/+jIXCFlEkZGROWcWLVrE/fffj1arZeTIkUybNo0RI0ZIpXUFQcBsNqPX6xkwYMB5zbocPXqUqVOnUlRUhNlslpLUXnvttUycOJERI0ZYzQxaPr+zZnrMZrMUS988pr651dXVsWXLFlauXEl+fn6rc9jY2DB06FCee+45JkyY0G7HyWQykZ+fT0ZGhmQnT55k+/btFJwase/du5cBAwZ0yr3JdByLePLnn+LsHoi5TkaMgDFjLj0vCkEQ+PXXX3nsscfQarW8+eab3HfffRdtUCgIYqz5H3+I1XZATBI7aJA4A3qa6sydeA0CVdoqShtKKa0vpaKxgvLGcsobyiXRpCMhFgqFAo2tBjd7N2kG38XOhSU/LeGXhb+ADtCBh5MH4cHhREZESsLnzp07+f7771udU6VS8fHHH9OtWzdsbW2lZ1hiYiJr1qxh48aNNDY2olKpcHZ2xsnJCScnJ7KysujZsycRERG4urri4uLS5lIQBBoaGqivr6ehoaHVemlpKatWraK6upqEhASmTJnCww8/jMJB0aqtmrdZRwQSizDiatfk4WBps+b7XOxc2pzBvxhotVoOHjyI2WwmOjoab2/vy0IQOFfMglkUC07jSVWtraZKW9VhDyE7tR0eDh6iqOLgKYkr3o7eeDt5XzYiS1uYBTOr1qzi5jtuJq53HE+98BRegV5SG1brqqnWVlOpraReX9+hc6qUKhrKGti+bjvpSeks+noRkX6ReDl64e3kjb3CnsbGRlxcXC5ou2Vlwbp1sH9/k0dgTAxMnSqLKW1RWAgbNohJzy26a3CwKKb06SOLKf9EZBFFRuYKwmAwMHv2bBYvXkzPnj3x8PCQzNPTk7CwMCIjxY59aGhop3gyFBYWsmzZMlauXMmmTZusZvWa88svv3DzzTef12cdOnSIefPmceDAAWmfi4sLNTU1PPjgg3zyySfndf7T0dHOTFhYGDNmzKBXr16tqqJoNJrTnqeyspLMzEwyMjJaLbOysqS2ff/993niiSc65b5kOoZFDFi2rKncrpOTKASMHAlnmPjvEnQ6HQ888ADffvstM2fO5KOPPrqo+XNOnID//Q8yM8VtOzsxrnzsWOhs5xezYKa8oZzi+mJK6ksorS+VRJOyhrIzDvqVCqU0Y2yZaW85++5i59JmSM6OHTuYMGECoaGhbNq0Cd926oru3r2bjIwMlEolKpUKpVLJ6NGjT+vFp9PpSExMZOfOnZJVVFSgUCiknE+2trYoFAoaGhqora2lrq6uzXMpFAocHR1Fc3LEzs0Oew97eg/tzYCrBmDjZiO2XUNpqxwtbZ3L4o1gaa/mbeXu4I6rnWuXV1OROXf0Jr3kidXcKhsrqdRWUt5QTo2u5oznsVfb4+3kLYkq3o7e+Dj54Ofsh4vdhRUKOovdu3dzzTXXUF5ejpubG0OGDGHYsGEMHTqUmJgYfH19ERSCJKo0by+Lh1tFYwXVumrJE2jrtq0UFRZx4403UldXx67EXZSVllFXXYdQL6DUKfFz9iMqIIrBPQczZtAYRg4c2emJ9svLxXDU7dubEqvGxcENN4gigYw1tbWi+LR5s5iYFkTPlOuvl8WnfxqyiCIj08VUVFSwdu1adu/ejYuLC2FhYURFRREXF4eXl9dZdTC0Wq1VBngfHx8iIiIQBIHS0lJycnKk5JFKpZKQkBBJVImOjmb27NmtBgApKSm89dZbqNVq7O3tsbe3x9XVlbCwMPr370/Pnj2la6ypqSH5lM/jqlWrePPNNwkMDOS+++7jueeeO6fZb6PRyKpVq/jiiy+k8qqurq5oNBrMZjPV1dXo9Xo2bdrEsGHDzvr8HWXJkiW899577N27V9r35ptvMm3aNBwcHCRzdXVt929WX19PVlYWWVlZZGZmSkuLVVVVScdqNBppFrt5KE+3bt0IDw+/YPcp05qcHPjtN1EUgCbxZPToS7diTFFREdOnT+fQoUN88cUXzJkz56J9dkmJKJ4cPChu29iIbTVxIjg7n9+5dUYdhXWFFNUVUVRXRHFdMUV1RZTUl5xWKFEqlHg5euHl6IWno6fVjLmngyeu9q7nHBoCsGXLFiZPnkxCQgLvvffeBfMSEwSBlJQUfvrpJ77//nsKm9WBjoyMJCkpCRsbG2pra6mursYoGGlQNFBtqqbSUElxfTGFtYUU1xefVihRKpRW7dNy6WbvJgskMhhMBklQaem1VFpfSpW26rTvt1fb4+fsh6+zL37OfpL5OPmcVRWdi0F9fT179uxhx44d7Nixg127dklhty0r9QQEBEhLZ2dnqqurqampobK6ktLaUkrrSlm/Yz2jrh5FcGww3/zyDTZuNkR0j8DFxQVbO1u0Wi1VVVWUl4shRSajCSVKAl0DiQ2KpV9MPyYOm0iMfwy+Tr7YqM5vUqyyEv7+WxRTTCbRs2LIELj2WjkBbVvU1cH69WKoj0VM6dVLFJ/a0dFlrjBkEUVGpovIzMxkyJAhUtWV9vj000954IEHOnze//znPzz99NPo9Xpp38mTJ3F2dkahUFBZWUl+fj7p6elkZGRIy2PHjmFra8vbb7/NXXfdJYXBfPvtt8ybN49+/foBolBTWVkpdd79/f2ZPHky119/PVdffbX0mWvXrmXixIkEBgYye/ZsZs+eTVRU1Bljii3k5+fz9ddf89VXX5Gfn49Go6G2tha1Wk1YWJgkLERGRjJy5EgSEhI63Ebnw65du7jrrrtITU1l/vz5vPvuu62OKSwsZMWKFa3EEktJYhBDe0JDQwkPD5fup7lg4uHhcVnM0F3JNDTA8uViBRlBEMNQxo2DSZMu/aoxTz/9NF9++SVr167tcJLZ80Wvh7/+Emc1LZ3wq66CKVPgbLsDRrORoroiCmoLKKgtIL8mn4LaAsoaytp9j1qpxtfZFx8nH6tZb28nbzwcPM5LJOkIW7ZsYc6cOWRlZTF06FAeffRRrrvuug4/806HIAg8//zzrFixgrS0NMkrTaPREBcXR2xcLNF9ouk7si/HCo6RXpxOma4Mj+D2nyNqpRovRy+xvZp5CHg7eePp4CmLJDLnjcFkoKyhTPIKsyyL64spayhrNz+LUiF6YQRoAgh0CSRQE0iAJgAvx7ObWLqQmEwmjh07RlZWFvn5+RQUFLRaNv/Nd3Z2xtXVVTKNRoOjoyPLly/nhhtu4Msvv0TjqqGiscKqrUrqSyioKeB47nEKiwspLi6muLiYuto6IiMjGTt2LAqFAh8nHwI0AZIFagLxdfY96+deWZn4u2eZL7KzE0N8xoyBSzA1UJdTUwOrVsG2bWK4r0oFEybA1VeLbSdz5SKLKDIyXcTChQu58847z3jctm3bGD58eIfPW1ZWhvdp6rAplUq6detG//796devH/369aN79+6YTCaeffZZFi5cyPTp0/ntt99Qq9WcPHmSHj16MGbMGL755hupPLBWq2Xnzp0sXryYH3/8kcbGRkpLS/Hy8pI+a+/evSxcuJBffvlF8rLQaDS4ubnh6uqKm5sbbm5uUr6R5rH6OTk52NvbM2nSJJYtWyads2/fvkRERNCjRw/uvffeixKeUFVVxeHDhzl8+DDbt29n5cqV6HQ6brnlFhYtWtTq+KFDh7Jnzx6Cg4MlkaTlMiAg4KJl5pc5OwRBLHP4229NpXcHDoQZM8DDo2uvraM88cQTrF69mpSUlIvyecnJ8PPPYgccoEcPcUauI1/PRkMjuTW55FbnklOdQ25NLoW1hZgFc5vHu9i5WM1aW2ayL4ZQciZMJhN//PEH//nPf9iyZQtBQUE8+OCDzJs377TP5TOxYMECHnnkEe6++2569u6JR5gH9r72HMw4yJufvAkaoI1bDwsPY+TQkcQFxhHgEmDVZl6OXl3eXjL/XIxmI6X1pZJXWXNrr4S1rcqWIJcgQlxDCHYNJtglmECXwEvOa8WCTqejsbERjUZj5Ym7f/9+Zs2aRV5eHh988AHTp0+nsrKSioqKdpcVlRUU1xVTpi2jQldBnVDHfU/eh52XXbv5a2xUNgRqAqW2CnYNJlATiJ36zKP7zExYsqSpPHJgINx2G0REdErTXHEUF4vtlZQkbnt4wK23Qs+eXXtdMhcOWUSRkbmImM1mlixZwpdffsmmTZusXnNycqKxsRGz2Xrg0NjYeNYxsAcOHKD21OjPUrXGYDBgNBopLS3lwIEDHDhwgMOHD0tlhBUKBW5ublSequf2wAMP8OmnnwKwceNGrrvuOqqrq+nduzc9e/YkKyuLlJQU6fghQ4Ywfvx4lEolSqWS8PBwxo4di7+/P1qtlg0bNlBcXExVVRVVVVVUV1dL60qlEkdHR5ycnKSY/fDwcK655hoefPBBli9f3u693nXXXTz99NNER0efVRudiaqqKh5//HE2btxITk4OAHZ2dvTq1YsbbriBWbNmEdRGXUCdToeDgwNKpZK4uDh69epF79696dWrF7169SIgIOCSmUmTaU11Nfz0k1hJBsTEp7NmXX6xzs899xyLFy8mw9IDvkA0Noodx507xW13d7j5ZjHRXlvoTXpyqnPIrMwkqyqLrKqsdr1LHG0cCXQJtJpZDdAE4GR7cSpsnS+HDh3i448/5ueff0an0xEeHk6/fv3o27cv/fv3Z/z48acNcTSbzSSlJPHHlj/410f/YvSM0QybPIyiuiJpBr+iooKlS5cCoHHScP2E64n0jiQuMI6StBKeuPsJdDXWpXBra2txPt+4KhmZC4QlEXR+bb7kgZZfm09hbWGbIXtKhZIATQChbqGEu4UT7h5OgCbgkhUI161bxzXXXIPBYEChULTrjePg4IC7uzseHh7S0tnZGXd3d3x9fRkyZAhjx46VqmUV1hZKnnuWNmurDLZCocDP2Y8wtzDJglyC2hSiBEF8ti9bJpZGVijEUNZp08QwTRlrLFXoFi8Wc80ADB4MN94ohgHLXFnIIoqMTAfQ6/Vs2bKFDRs2YDAYJKFApVLR0NBAfn6+ZIGBgey0jChasGHDBsaNGweI4RwTJkxg0qRJODg4SCE1e/fuJfdUGYs5c+awcOHCC3ZfBoOB1NRUTpw4QWVlpTTjcfDgQWbNmsUdd9whHVtRUcHq1av5+++/ycjIICIigj179nDCkiiiHV5++WX+9a9/ndP1NTQ0EB4ejk6n49FHH+XkyZOkpqZy7NgxtFrrmaqAgAByc3PPy7vDZDKRkpLC7t27ee+99yguLubuu++mT58+9O7dm5iYmA4l4z169Cg7d+7k8OHDHDlyhCNHjkiilqurKx4eHq28cSwuvo6OjlJ+FXt7exwcHBgyZIjkASRz4Th4EH74QQzjUanEMJQJE8QwnsuN119/nTfffJPvvvuOmTNnXhDh7vhxWLhQjKVXKER372nTmvLECIJAaUMpaRVpZFRmkFmZSUFtQZseJh4OHgS7BoszzC7i0s3e7YoQHEtLS1mzZg1bt27lm2++kYTyVatWcc0110jHCYJARWMF6ZXp7EjZwUsfvESdsg5UEBwczIQJE6QQGxc7F0JcQ/jzlz9Zs2QN1AD1cM899xAREYGTkxNJSUls2LCBtOa1TBEF4otR1lpGpjMxC2aK64qtvNZyqnPa9MKwVdlKokqEewRRHlFo7DRdcNWtSUlJ4b///S8uLi5WAoll6eHhgZOTE9nZ2SQlJZGUlMTRo0dJSkoiMzMThUJBdHQ0ffr0oU+fPvTt25chQ4a0+k5bnr+51blSm+XV5LWZp0alVBHkEkSEewSR7pFEeUTh7tCU8Lq+XvTM3LVL3Pbzg7vukhPPtodeDytWiNV8BEHMKTN3rpiwV+bKQRZRZGTaob6+ntWrV/P7779LJSADAgJwcXHBbDZjMpkwm83Y2dkRGBhIUFAQBw4coLGxkZMnT7Z5TkEQ2L17N7t27WL37t0kJiaSnZ0NiJ3k2NhYMb49Npa+ffte0ESp58u6devYunUra9euFRMYnvJ4MZlMmEwmKioqcHR0ZNmyZYwePfqszq3X68nLyyM7O5tvv/2Wn376iR9++IHbb78dEMWO7OxsUlNTOXjwIC+++CLDhg1j69at5ySi7Nixg0cffZTjx49LlS26d+/Od9991ym5VgRBIDs7my1btrB69WoOHz5MamrqWZ9D5sJgNIqJUDdsELdDQ2HOnI6FolyqFBUVMW/ePP766y8GDhzIO++8w8iRIzvl3IIgJiD84w9x3dtbbK+ISDM51TmkVaRJVqurbfV+V3tXacY41DWUENeQy8a75Hy4++67+frrrwEYMWIEH374Ib5RvqRVNrVXZaPo2bd69WoqKisYOXIkYQFhxPrEWrWXq704YMrMzOTLL7/EZDJZlUSvr68nLi6O3r17W1l7lYNkZC5HLMJjTnUO2dXZkodbW+FAPk4+RHlESebj5HNJibRGo5Hff/+djz/+mMTERKkIQGBgIPHx8fTs2ZP4+HgyMzNbTUzFxsZy8OBBq8IC7VGjqyGrKovsqmwyq8T2aqs8s7uDO1EeUUS6RxLrFYu/sz9Hjyr46SfRY1OthuuuE8XzS6gZLykyMuC778RQH4VCnJS59lo5t8yVgiyiyMg0w2w28+eff/L111+zdu1atFot8fHxzJgxgxkzZtC7d+92f3Rzc3OZOnUqkZGRVjk8zkRpaakUytKS1NRU9u/fj7+/P8HBwYSEhHR6ebuOUF5ebpXo9H//+x8zZ87Ezc0Nk8mEVquVwoIsuLu7M3HiRMaOHSu5jjd/hDg5OTFu3Dgcm9WGzcjIYPz48WRmZlod6+/vz6uvvspdd911Qe7vdPlp/vjjD6ZOnXren7Fx40bGjRsn3ZednR0hISGEhoZK5uvri729PSqVCq1WS2NjI42NjUycOJFevXqd9zXItKa8HL76qqkM7/jxYu6Ty6mTYzKZOH78OAcPHuTAgQMcPHiQnJwcdDodBQUFkufDokWLmDVr1nl9Vn09fPutGPctCAJxfSuIHXmQzLpjnCw/2WrwolaqCXMLI9IjUhJO3OzdzusaLlfKysr4dsm3/LHzD/Zl7UPnrMPB1YHgoGAxzE+pwGwyo6xVsmnZJt58+k3uuv6uc0qmaTKZzqkamsyVg0W8t5TWtuTXaG4DBw7klVdewc/Pr6svt9MQBIGiuiKyqrLIqMwgvTKdgtqCVhMRbvZuxHrFEusZS6xXLF6OXu2c8cKzfPlyHnvsMbKzsxk1ahQzZ86UhJOWJdA//PBDnnjiiTbPY29vzyuvvMLTTz+N0WjkxIkTGI1GFAoFSqUShULRypydnbF1syWzMpP0ynQyKjPIrc5t5THobOtMjGcMIY7dOLSmF5mpYiXCvn1FLws5iWrb6HSiF8+2beJ2bCzcc8/5V6qT6XpkEUVGBqirq+O7777jP//5D2lpaSQkJHDTTTcxffp0IiMjrY41mUwcPXqUxMRESkpKqKmpISsrixUrVuDs7MyiRYvo3r07GzZswMHBQRooBwQEdLhTu3jxYj799FO2WZ66p/D09CQxMZGoqKjzul+z2Sx5bAiCQEZGBjt37pQsOztbEnbMZjMZGRkMHjyYL7/8kvj4eIYPH86OHTuIi4tjwoQJDBs2DA8PDxwcHLCzs6OwsJAdO3awYcMG9u3b1+51aDQabr75Zp5++mmioqJIT08nKiqK2NhY+vXrR2xsLNHR0bi4uODg4ICnpydeXl54e3tjd+oXWxAEGhsbqa2tpaamxmppif23lB308fFp01NFr9fz0ksv8ffff3PEkgyj2d/ixhtvPK/2BjER73/+8x9+/PFHkpOT8fb25pZbbuHWW28lISHhkpoR+6eQlATffCOG7zg6it4UvXt39VWdHcuWLeP222+nsbERgJCQEBISEoiMjMTe3h47OztsbW2xt7fn+uuvx9/f/5w/KzsbFnyqIy2/impDGT6DNuAWk2x1jKONo9Vsb6hb6CWb9PFiUK+vJ7k0maSSJI6VHaNaK5ZENZlNFBcVU5BbQGFKIYXJhVAOVIGd2o5p06axePFi+bkg0y56vV4qndt8mZycLHm6lpSUAGLfwRIyYjFnZ2f+97//odfr+eGHH5gxY0YX39GFo8HQQEZlhuTxlVmZ2Sq/iqejJ929u9PDuwdxXnE42HRuCbbCwkJ2796NVqtFpVJJYeEGg4E777yTESNG8Oabb9K3b98znkuv11NVVdUqAe2aNWtYsmQJV199NZs3b5ZKMJ+JgIAABg8ezKBBgxg8eDA9e/ek1FBKemU6J8pPkF6Rjt7UVPFREKDmRF9K947ExcaTHpGuPP6IHZ6e59w8VzwHDoheKTodeHrC/ffL4VCXO7KIIvOPRhAExo8fz4ZTfvw33ngjjz/+OIMHDwZE98ri4mJSU1PZsWMHO3bsIDExUSq16+3tjYuLC+7u7tx4443U1tayZMkSkpOTWyUMU6lUBAUFSV4HISEh9OzZk8mTJ1t9V0pKSvDz80MQBN566y3uv/9+SktLyc3N5e6778bT05ONGzfi5OSEIAjo9XpsbW073Nnet28fQ4cOlUKRlEqlVQjL0KFDiYqKQqvVShVz3Nzc+OWXX8jOzua7777jmmuuYe3ataxfv55169ZJIUkt0Wg0XHvttTz00EP06NEDQLrOwsJCvvzyS959913uuusuvvrqKwRBYNiwYezZsweTyXTa+7Bku6+trT3jsRbUajX+/v5Wosrx48fZvXs39fX1qNVqKb546NChDBkyhJCQkA6du6MIgsDhw4f58ccf+fnnnykqKsLX15cJEyYwYcIE4uLi0Ol0aLVaycOn+bolbMoSOtV82/I3bZlTxcHBgaioKHr06NEp5VavBDZvhl9/FTuDYWHizNDl2AFMS0vjjTfeYPXq1RQVFaHRaBg3bhyTJ0/mjjvu6FAOn9MhCALZ1dks35jLrz86UtNYj71rHd0mbsXZuxJ7tT3RntHEesYS5xVHoEvgJZvQ8WIgCAKFdYUcLT7KkeIjpFemW/0O2KhsiHSPJM4rjjivOEJcQ1ApVdTV1aFWq7G1tb1sq3YJglja2mgUlwZD03ZzM5lEE4QmA7E8qOU8p9sG0VNMqWwyy7ZKJbrNN99ufpxaLSbEtLUV17tSozKbxTbS68X2MJtFE9tMIDc3n8OHkzh6NIWUlGMUF5dSV9dIXV0jtbX1GAwmmkoyNf2POTo6ngr96Env3vH07BmPu7s7lZUV5ObmkpubQ25uLtnZWWzZsgGjUcdrr73MrFk3olKJ7WJZNl+3tO2VgMFkIL0yneNlxzlefpzMykwrzwulQkmEewQ9fHrQy7cXgZpA8vPzqaiokDxEGxoapPXGxkaUSiXDhw8n5lQW8hMnTrB9+3a2bdvGtm3bTpvkOyoqigMHDqDRnF/elrq6Oq666irpd2D48OE4OjoiCIJkZrPZaru8vJw9e/awe/du9u7dS319PSqVivj4eCZOnMgjjzyCj58P2VXZHC8/zonyE6RVpGEwGagp8iLl75HoG+zxdLVl1pw6Jg+JItQ19B8jAFvaMC0tjby8PMrLy1Gr1VZmY2ODWq2mutqJLVu6YzJ54uRky5w5MGBAV9+BzLkiiygy/3iaP+jj4uIIDAyktLSUwsJCysrKpA6wu7s7Q4cOZdiwYQwbNoyEhAQp/jQ9PZ1bb72Vffv2ceuttzJt2jTGjx+PQqEgJyeH7Oxsadl8PS8vDzs7OyZNmsTMmTOZOnUqLi4ubNiwgXnz5lFWVsbbb7/N/fffj1KpZO/evYwePZr6+nrGjh3L4cOHKSsrk6rbhISEsGvXrtN+9zZt2sSYMWN46aWXcHd3x2g00qNHDwYNGoTHaeq36vV6hg8fTlhYGEuWLJH2C4JAZWWlVHGnuaWlpfH1119TWFjIxIkTWbJkidW1bd68mdGjR6NWq+nRowf9+/fnmmuuYcqUKahUKnQ6nWQNDQ2Ul5dTWlpKWVkZpaWlGI1GXFxccHFxwdbWFpPJhFqtltxWBUGgrKyM8vJyGhoaqK2tpbq6msrKSmpqaigtLSUyMlISTfr3728VXnShMZlMbN26lTVr1rBmzRoOHTp02uOb/xirVKpWP9QKhUIqqdjY2Ngq+a6TkxMJCQkMHjxYmnW6kty4O4IgwO+/w5o14vbw4XDLLZdn8tjmmM1mDh06xN9//81ff/3Frl27eOedd3jyySfP+lwNhgZSS1M5WnJU9KDYE0DGjv4IggLP8DzGXZdL3+A4evr0JNw9/B8tmoA4IDtRfoIjxUc4WnKU8oZyq9cDNAHE+8bTw7sHEe4R2Ki6tqyF2SxWVaqvF72wtFpxdlSrFQf0ba3rdOJ283WdrrU4crlhEVSaL1vuU6ubhJyWveDm2xbRBprEEYs137asn0p5gSAI1NRUn/pdKzv1m1UmhciKXpheaDTO2NraYWNjg62t7Smzwcamad1oNKHTaampqaWmpprq6hpqamqoqanGYDBI1+ro6IiLiwv+/gH07NkDB4eO/e41F1dsbcUQDovZ2opJpS3729t2cBA9/yxmZ9f14ozOqONkxUkOFx7mUP4h8qvzMRgMoukNlOWWsWflHigCKoA2qq9b+hwhISFotVpKSkpQKpX07t2bESNGMHz4cIYOHSrl1WueW8/V1VXyru1KjEajlFx/165dLFu2jMbGRubOncuCBQuwtbUFmkSo5JJk9mdksH5xNLWlHigUAtGjdhPTt5R433jifeLp4dMDW5VtF99Z5yMIAg8//DA//fSTlcePUqlsVWXTGgfgLhwcBuDq6kp8fBZjxmiJiYkmJiaGyMjIDuW2kel6ZBFF5h9PSUkJqampkhUWFuLj44Ofnx/+/v74+fkRERFBbGxsqxlCQRD44YcfeOihh/Dx8eHnn39m0KBBHf7snJwcli5dym+//UZiYiJ2dnaMHTuWwMBAzGYzixYtQqvVMnr0aH755Rd8fX3Zt28fX3/9NUVFRfTt25ewsDC0Wi3V1dU8++yzfPPNN8ydO7fdz0xKSiI+Pp6EhATJk6Ourg6VSsWOHTvaHVSbTCb69OlDbGysVFJTEASSk5M5ePAghw4d4tChQxw/fpyRI0dy7733MmLECAwGA0uWLOH222/n+++/Z/bs2Vbn3bdvH3v37uXAgQPs3r2bo0eP4u7uTnh4uORJYW9vj7Ozs1TBxtXVFaPRSHp6umTFxcUdbncQO5HXXnsts2bNYuLEiec9Y98ZFBcXU1BQIIVF2dvbS2bxGjobBEGQPIpSUlJITEwkMTGRXbt2UVhYCEBoaCiDBw/m8ccfP6v/3csRo1F0p927V9y+9lq4+uqu78BfCKZNm0ZtbW2rUurtoTVqOVx0mH0F+0guTcZkNiEIkLmrL0WH43G3d2fMaBWPzPPFw9Htwl78ZYDBZOBI8RH2FuwluSTZytVdrVQT5xUnDSI8HS+Mi5MgiCJITQ3U1orW0CCaRSCxLJuvn4r8uuBYPD9aeja09GpQKJqsI9tg7bVhWW++3dKzw7JspiN0GXq9nuLiYoqKiigqKqS0tAyj0QAYcXZ2xNfXE19fb/z8fPD398XV1dnKswZMVFWVU1ZWQmlpCSUlTUutVgcoAAVubm54enrh6el5KpxHXLq7e2Braye1SXPvoeaCmNHYWjS6ECiVorDi5GQtrrQ0jQZcXJqW56M5CIJASkoKmzZtYuPGjSQmJlJRUdGU280R8AZ8xKVCpWBAwgACAwNxsnWip3dP+vv3p3dAbzROGuzt7WloaGDLli2sX78eR0dHRowYwZAhQy7rsVB1dTWzZs1i3bp1FBUVtTvRVlZbw/ufl7IjUUeltpKQwXsJ6ismz7dV2dLTpyf9/PsR7xuPvfri5/W7ELz//vs8+eSTPPvss/Tv35/o6GgiIyNxdnZGEAQrL2GDwSAtCwoKOHbsBCtXqjlwwIvq6mrq61fQ2PgDIIpxwcHBxMTE8M4779C3b1/MZjPff/89DQ0NeHt74+3tLYW2e3l5yR7GXYQsosjInAf33HMPX331FR4eHnz00Uf06tULjUZj5UGh0+nQ6/VtbpeUlLB9+3YCAwN55plnWLVqFWvWrKGyspL6+nrq6uqor69Hq9Xy008/MX369Davw2Qy8fLLL/PGG2/w5ptv8txzz7V7zXq9nnvuuYfGxkacnZ1xdnamsrKSH3/8kQMHDrQbj/vpp5/y8MMPs3PnTgYPHkxDQwNz5szht99+AyAyMpI+ffoQFhbGH3/8wcmTJ+nXrx/Lli0jLCyMPn364O/vz19//XVaN8+UlBQWL158qkOolRKsWrxILKZUKomIiCAyMlIyX19fnJyccHJyknK6ODk5oVAoqK+vl6yuro5t27axaNEikpOT6d69OwcOHLgkZoIuBoIgkJeXR2JiIrt37+abb75h2rRpfP/99119aRcMgwE+/RRSU8VO+x13wKmovSuGgoICFi5cSFFREZs3b+b48eNUVVW1612lN+k5WnyUvQV7SSpJwmBqGmH6OvpTnngNZSeicbFz4boZSiZNujIFp45iMptILUtlT/4eDhUdQmdsSqbtZu9GL99exPvGE+sZi5363J4lFmGkurpJHKmpEbct6xarrT0/7w87O3Fw6uBg7VHQ3Hug5XpLDwNLeExbIsnFikoyGqGqqrVZ2qyuTrTa2ibvj4uJWE0ui8LCIoqKiigvLwcE7O0d8PPzw8fHBy8vL/z9PfH2dsDZWRQKXF3F0qi2to2kpu5i586/OHx4C5mZhzGd+q66uroSFxdnZbGxsdIkxPnSFF5kLa4YDNYeSRY73bbFk6mxsUnYO5+/h61ta2Gl5dJgKOXQoc2YTA3o9Xrq6urYvXs3mzZtoqSkBBsbGwYPHsyIESPw8/NDo9G0MjtHO8ooI602jSPFR6jR1UjXYK+2p7dfbwYFDqKbd7crwivPkidv/fr1rF+/nr/++otbbrlFqizW/vtEL8+/V5up1lYTNjAJZexfVGorpGPUSjW9fHsxOGgwPXx6XLb5spKSkujTpw/9+vXjf//7H0FBQed0ng0bYMkSsc179aqlV68jHD16mCeffBJBENi0aRNDhgzh3Xff5emnn27zHEqlEh8fHylMPSAgQFoPCgpi1KhRl8Qk4ZWILKLIyJwHjzzyCOvXrycrK0tK7Hiu5OXlSR4omZmZJCUlkZSURElJCXV1dZKgYllvuW02m3njjTd4+umnz9pjYd++fSQkJKBUKgkLCyMqKgqz2UxVVZVkFRUV3HXXXfz3v/8FYMKECaxbt45x48bx0ksvMWTIEEkNFwSB9evXM2HCBMaPH8/atWtZvnw5M2bM4JlnnmHgwIGEhYURGhpqVfXnYiMIAh9++CHz58/n888/57777uuS6+hqJk6cyNq1a+nRowfTpk1j2rRpDBo06IqJaW4uoNjZiQndunXr6qvqfH7//Xeuu+46QAxNHDVqFJ988olVQmuj2UhySTJ7C/ZypPiIlRDg6+xLQkAC/fwGsGaZP7t3iwPh2bNhyJCLfjuXBGbBTFpFGnvy93Cg8IBVKVBPR08GBAxgQMAAgl2CO/R90emgslK0igrRWq7r9Wc8jRUODk0DR0dH6xl9y3pbs/yXw+SlTidW0Covb1soqawUPWzOBrVabCtnZyTBovnSIiy1NFvb04uIgiD+7RobRbMIBgsXLuG99z7Hyyucbt0SCAvrSWBgLA4O3tTVKairay2GNTTUk52dQ3Z2Fnl5+ZjNJtzc3AkMDMTDw42AAA1hYe4EBTnj5qbAzU0UXDw9wcsL3N0v/b+vIIjPZoug0tzq65vEFosHVXNR8UweRSaTkSNHjnLw4MFTXj4NQAVqdS2hoa706xfO8OHdGTEinsBAB9zdRTHwTJgFMxmVGRwoPMD+gv1Uaauk11ztXRkUOIghwUMI0AScT9NcVCoqKti3bx979uyRrLi4GJVKxaBBgxg/fjyPPfYYbm5uZzyXIMDq1bB8ubg9dqzAwPE5HCw6wIHCA5TUl0jHOtk6kRCQwOCgwYS5hV1W/Y2CggLuuece1q5di8FgYMiQIdxwww1cf/31hIaGYjQaycrKIi0tjbS0NAoKCqQKSc1NoVCQmxvMoUO9AAVBQSUUFr7GkSMH+eOPPxgzZgwATz75JO+//770+f7+/kRERBASEoLJZKK+vl7yKk9PT7cKL/rhhx+4/fbbL3YT/SOQRRSZfyQGg6FdYcLJyYmgoCDCwsI6rN4KgkBJSQmZmZk0NDRga2uLnZ2dlW3YsMGqRO/AgQPp378/MTExGAwGUlJSSEpKIjk5WRJk3N3FTpOTk5PkNeLs7Gy1bVlPSEggISHhnNpDEAQSExNJTk7mxIkTpKWlYWNjg5ubG66urri5ueHj48OsWbOkWe033niDpUuXcuTIEcxmM2q1GhcXF2n2RqfTcfLkST744AMef/xxAO6//36+//57K8HJycnJqsxvQECAVIVHdD12x97eXoohbh5LrNVqpWo8zc2yr66uDjc3Nyksy93dnZycHE6ePMnJkyc5ceIEBQUFREVF8c0333DVVVedU/td7tTX17NmzRr++OMPVq1aRXl5OTNnzuSHH37okpLanYnBAJ9/DsnJooDyyCNwnsWtLmnWrl3L3XffTXl5Oe+++y733nsvSqWS4rpitudsZ1feLmp1tdLxXo5ekhAQ5BIEKPjhB9i5UxRQ7rkHOlAs4oqjsrGS7Tnb2Z6z3Wqg5GLnQv+A/gwMHEi4W3irjr/JJA74S0qgtFRclpU1iSQNDR37fEdHURhpyyyz7Jb1y3mS0WQShZCysrattvbM5wBRMLAICRZzdRXbp6VgciYxpDOpq6vjiy++4KmnnuLZZ5/lrbfeanWMIIBWK7Bv3zFWrNjAmjU7SErKRqFwJzZ2ED16DCUsrA9qtRfV1dYJdttDoRDbwMurSVixLL28xNcu0/zFkljVXFRpvty27TA//7yK6mqB3r2vIj5+AHZ2digUytMO1J2dRfHJ29vafHzE/S3fKggCGZUZ7C3Yy578PVYCa4hrCIODBjMwcCAau/NLFtvZFBUVsXTpUhITE9mzZw8nT54EwM3NjYEDBzJw4EAGDRrEiBEjcHV1PafP2LgRFi8W18eNgxtuABDIr80nMS+RPfl7pEplAD5OPgwOGsygoEFdWmr6bKmqqmLlypUsXbqUNWvWoNPpCAoKoqioCOMpNytbW1v8/f1RKBRS/9WS4Ndien0PtNpbEQQVGs1x/vhjOkOHWrvK1tfXc+DAASkJ8J49e05b1GHGjBncdNNNTJo06bJNVn6pI4soMv8I/vOf//D+++9Loom+A1N9KpWK8PBwIiIicHJykpK5NU/qZmNjg6+vL5MmTSI+Pv60P9BFRUXtlhd1cnKiR48e9OzZ08r8/PwueXW+vr6e/fv3k5ycTHV1NYWFhWRlZVFdXc2IESOIj4+XkqGq1Wrc3d3RaDTU19dbJdu1mMXd2XiWfr4KhUIScSzJZp2cnKiqqjoVe16EyWTC2dmZ6OhoyYYPH86ECRPkH5lTmEwmlixZwp133smAAQNYsWLFaRMOX8oYjaKAkpQkDpweeQSio7v6qjqXiooKRowYQUpKCqNHj8ZsNlNaWkpKSgooYcYDMxh2yzBOlJ+Q3uNq70pCQAIJgQlWVRQEAX7+GbZuFQcMd98N/ft31Z1dfMyCmaSSJLZlb+NoyVEpqbijjSN9/fuSEJBArFcsJqOSsrImkcSyLCkRhZIzDXLt7cHDQxyYtbe8nIWRlgiC2C5FRU1WXCyKJJWVZ24vBwdRAPDwaApxcXdvEkrc3UXR6VL5qTSZTGzcuJEff/yRZcuW0dDQwKhRo3j99dcZNmxYq+O3b9/OfffdR3JyMk5OTkyaNIlrr72WyZMn49miZJggiEJBdbV12FJVldjGFq+dM3lqKJVie/r5ga+vuLSYRnPptOW50Lt3b44cOcIrr7zCiy++iFarsPL+sqw33z5Tl1CtFsWn5sJKc6HFjJGkkiR25e7iaMlRTGbRtUipUBLvG8/I0JF09+7epf257OxswsLCpG1LVckRI0YwcOBAoqKiOvX6tm+HH38U16dPF/OPWTALZo6VHSMxL5GDhQetckrFecUxKmwUvf16X1bhUTU1Nfz5558cOnSI8PBwoqKiiIqKIjg42MobtD2SkkSPWbMZrroKZs068/ewqqpKKpRgKXGuVqsZNWrUZT8Bdjkgiygy/wg2btzIrFmzKC4uJj4+nsceewxXV9dWXh3Ozs5otVoyMjI4ceIEJ0+eJCsrC61Wi16vR6/XYzAYrNZzc3Opr68nJCSEGTNmMG/ePOLj49u8jrS0NKvyZyqVCo1GQ3BwcJcP4vV6PStWrKCwsPBUecR4vL29AbFTaAnpqaioICYmBnd3d+m9Op2Of//73yxfvvyMFWYsODo6EhYWRnh4OJGRkTzzzDMEBIgusGK1ghrKy8uprKxEp9NJ7o96vZ6yMrGCQU1NDePGjZOErrY6AIIgUFpaSkVFBf7+/ri4uKBQKCR3y6KiIhwdHVt5+nTkR+9KZteuXUydOhVvb2/+/vtvq87X5YAgiElkExPFAekjj8CpypNXFMXFxa2SQQ+fNBzn7s6U2pfiHehNSHAICoWCnj49GREygnjf+DY7p8uXw99/ix23O++EgQMv0k10MVXaKsnrpLKxUtof5RZHN/vReJh6UlKkpqAACgtF0eR0vSEbG3GQ1Xyg5eHRJJBcqYUXDAZRHGkulljsdIN6tbrJS8Lb29pjwstLFEguB44fP86LL77I1q1bKS4uJiYmhtmzZ3PbbbcRGhra6vi6ujqee+45Pv30UwYPHsyLL77I6NGjz3vwYxFayspEQcXi1WNZLy8/vXBlb28tqliEFh+fixMiJAgCFRUV5OTkkJMjlmMuLi5GqVRiY2MjTcpY1lUqFfX19VKFwOPHj7N69WoA7r33Xr744oszfJ4YOmTxFisttbaystPnHlKrxTby94eAAHD1aqBYcYjUhi3k1GRJx/k6+zI6bDRDgod0SXLV9evXM378eKt9KpWK6OhoaRIvICCAI0eOsGfPHiIiIvjhhx+kijwgVu8pKSmhsLAQhUJhlTvG0dGxVR9s/Xo4lTaPW28VxYGW6Iw6DhYdJDEvkWNlx9Ab9DQ2NOLn5sf46PGMCB1xyXnznC0nTpwgOTmZ8vJyysvLqa6uplevXowdO1bqZwPs2wdffy3+T06aBDNmdOFFy5wRWUSR+cdQVVXF3LlzWb58Of/61794+eWXO+W8Op2OLVu2sHLlSpYsWUJJSQkDBw7kscce45ZbbumUz2iPyspK5s+fT1lZGbm5ueh0OrRaLY6OjowfP57p06czcuTI054jKyuLL7/8km+++YaSkhJsbW0lTx0vLy+MRiNVVVVW7wkODiYxMZGAgACKi4uZMWMG+/fv58Ybb2TixImMGzcODw+PNjOTl5WVkZmZSWZmJp999hnp6enY29uzefNmq+owVVVV/PzzzyQmJlJQUEB+fj4FBQXU1NRYXcvXX3/NvHnzEASB3NxcqcpSSkqKtC4m8oPp06fz0UcfERoayvjx41m/fn277eLg4EBgYCBTp07luuuuY8iQIf84YeXEiRNcffXVNDQ0sGrVKvpfRm4JK1fCqlXijOtDD0GPHl19RRcGk8lESUkJa9as4bXPXiNDkcGgaYPo3as3AO4O7gwPGc6w4GG4O7i3e54dO+AHsTgAs2dDGxPmVxzZVdmsTV/L/vyD1FU401DhhqnGF1+hL866GBqrndsdbNrbtxZKLOuurpf3TP6ZEATR8yE3F/LympanE5dUKrF9mg/MLYLJldJeb7/9Ns8++6y0XVhY2G61u3Xr1nH33XdTWlrKm2++yUMPPXTRfl/MZtF7pbS0ySvIInaVl5/+b+jvD0FB1qbpxPHtTz/9xL333ktDs7g3W1tbfHx8EATBqi9hWTcajTg5OeHm5mYVguzq6srYsWOZN2/eeV2T2Sx6qzT3PLNYcXH7AqFaDQ6utdTaHadQOICNWwnO3hW4upsYGjKE0WGj8XX2Pa9rOxe0Wi35+fnk5uZKg/vmOfhiY2Pp27cvy5Yt44477sDZ2ZktW7ZQUFBASUkJ7Q0FlUolzs7OkjewRqMhNDSUqVO/Yft2DQqFGB7ar1/711beUM60h6exM28n2IJSpcTB1gFPvSeh5lACHAOkUtIW8/LyYvr06YwePfqSSqBqMBhYvnw5n332GZs3b5b2u7m54ezsTF5eHgB9+vRh/Pjx3H///YSHh7NtG/z0k3jsTTfBqbQoMpcgsogi849h6dKl3Hnnnfj5+bFixQq6dVJmybKyMtauXcu6devYtm0b6enpgPjDHxQURPfu3enTpw9jxoxh9OjR5/VZeXl5bNmyheTkZHJzc6mqqmLVqlWAOOi/8847cXFxITs7m59//hkQE2C1F0ZUUlJCcHAwer2eOXPm8NRTTxETE0NaWhpHjx7l2LFj2NnZ4eHhgbu7O3v27OG///0v1dXVLFmyhJkzZzJ//ny+/fZbVq9e3eESucnJyTz88MNs2rSJ6dOn8+GHH0qeDklJSbz33nssWbIEvV5PQkICwcHBVlnHFyxYQGJiIs8++yxvvPEGqampTJs2jYyMDADs7e2Ji4ujW7dudO/enW7dulFfX89zzz1HZWUlL7zwAh9//DEqlYp///vf9OjRwyovjsVSU1NZvnw5RUVF+Pr6cu2113Lrrbf+o3KnlJSUMHXqVJKSkliyZAnXXHNNV1/SGdm5EyyFhm6/HYYP79rr6QyKi4sZM2YMNTU1UifWbDZTUlqCyccEEYAbhIWFMX78ePr49+Gq0Kvo7t39jC7Rqanw8cfiYGHKFJg69cLfT1dhMglsSTrJ8t0HSD5RR12ZB3Wl7rjYeODn7I+XoydKRdNg1tGxaYa5uV3uIQ8dxWgUB9fNxZLc3PaTuTo6Wgsl/v7i0svr8s3B0RGOHDnCa6+9xtKlS7Gzs+O2225jwYIFOLRwOyotLeWpp57i+++/Z/To0Xz99ddERER00VW3Rq8XyMqqp7bWieJihZXAotW2/R5X1yZBJThYXPr5ndv344033uCNN97gxx9/JCQkhODgYHx8fE7rqSsIQhcmpxeFJ4uXmmVZWGgdImQyGymuL6GgtgC9sgpn7wqcvSvoFePG9YMTGBIXeUk8T/R6veR58sUXX3D//fej0Wi4+eabCQoKwt/fn4CAAEkcrK2tbWWWvHS1tbUsXryY6667Hj+/J0hN9cbeXsk991QRHq7GwcEBR0dHHBwcsLW1lf6GAwcOxMPbg+Ezh7O7ZDcF9QU0ahvRNmpRVivxrPDEudEZ5akcN+np6WRkZODu7s61117LDTfcwLhx47q82mJ5eTleXk35XeLi4qRiChqNhpKSEtatW0f9qYdpZGQkaWlpAKxZA//7n/gdevjhK3cS6HJHFlFk/hG89957PPXUU8ycOZOvv/76vP43zWYz+/fv56+//uL333/n8OHDgDhw157qZbi7uzN8+HCio6M5cOCApEL/+eefZGdnSw/9/Px8hg8fzuzZs+ndu7f0GSdOnODDDz/k2LFjXHfdddx00034+PgwdOhQdu3aRWBgICEhIWRmZlJUVCS9z9nZmTlz5rB582bS09P57LPPmDNnTqt7WLx4MdXV1bi6uvLFF19I1/fBBx/w2GOPtdkheeaZZ3jnnXdQKBS88sorPPvss9jY2HDnnXdy6NAhDhw40G6b7dy5k/3795OSkkJKSgo7duwgIiKCjz/+mEmTJknHJScnM3ToUNzd3bnnnnuYO3duKwHIaDQSGBiI0Whk8+bNlJaWct111xEaGsobb7xB9+7dCQ0NbXNWr7a2lldffZWPPvoIb29vFAoFBQUFTJw4kTvuuANfX1+ysrLIzs6mrKwMg8GAQqHg+PHjbNmyRTpPUlISPf5Bv2oNDQ3ceuut/PHHH7z44os8++yzl2y87cmT8MEHoiBw9dViLPaVgMFg4IEHHuDbb7/FbDbTrWc3Eq5PoNipGBzFvEpuGjdGR49mQuQEfJx8OnTewkL497/FAdKgQTB37pUjDpjNkJ8POTmQmWVmZ1I++48VUXMqsbUCBT5OPgS5BOKhcSYwsLVgcqV4SXQEy4AwM1O0jAxRMGkrPZVSKQ6ULYPm4GAIDPzniEsWVq5cyQcffMDmzZsJDAzkgQce4O6777Zy0Qex3/D1119Lnipvv/028+bN6/IwXgt79+5lwYIFbNiwgYKCAuzt7QkICGg2aPbH1TUcO7tIPD37oFAES95HAIJg5tix49TX1+Pv709kZCBhYRAe3mQd6XZ988033H333eh0ukvKq+BsseQBai6s5OVBfr5AWV0VBbUFVDSWYxlUeWqcGdIjkAHdfAgNVRAeLnpudeV3SRAEVq1axYABA9qdiDsT77zzDs888wygAB4CegCVwJtAU9ZohUKBg4MDDg4OVFVV8dRTT0lJmLOqstiUuYl9BfswmsWHUbBrMJOjJ9PXT8x6fvjwYZYuXcrSpUs5fvw4CQkJbNu2rUuFlPr6eubPn09mZia1tbUIgoDJZMJoNKLT6VAoFFI4WllZGWPGjOHbb78FxP8fS4J3Bwd49lnxeStzaSGLKDJXPJ9//jkPPPAAzz//PK+//vo5z1js2LGD//73v6xevZrS0lJUKhUmkwmFQkFsbCxXXXUVQ4cOZdiwYURGRkqfc/PNN7PYkqYcUKvVhIaGEhkZibe3N2vXrqW0tJT4+Hhuuukm9u3bx4oVK/Dx8aFPnz5s2LABQRCYP38+AwcO5IYbbrAqWVZdXc2OHTv46quvWLVqFUajER8fHzZu3NjmQL+2tva0302dTmcVA2thz549LFiwgDVr1lBaWoqLiwtXX30148aN4+6772bx4sXceOONVu+prKzkgQce4Ndff8XW1lbyDhk2bBj33HOP1Q9ccXExgwYNwsXFhe3bt5/2GjMyMrjuuus4efIkBoOB0aNH89tvv3X4mZOcnMwDDzzA1q1befPNN1m5ciW7du2SXvf09MRoNEpl4izx14IgoNVq2b59e5sJAq9kTCYTr776Km+99RahoaHs3Lmz1UChq6muhtdfF6s0JCTAvHmX94BOr9dLXl49evRg4MCB2DnY8er3r7KrdBchMSFMmjgJJ1snRoeNZlTYqLOKHddq4a23xFnm6Gh47LFLvyzq6dBqxYF/ejqkpYlCgFYrUFJfTHZ1DlqjKHLb2ZmJj3FjTJ9IekRrCA3t+gFLV6DVQlaWtWjSVjUce3tRJGkumPj7X1nJb8+FwsJCAgICGDBgAE899RQzZsxoc+B/6NAh7r//fhITE5kzZw7vvPPOJfXsLCgooFevXri7uzN9+nR69+5NeXk5BQUFFBYWUlhYKK1XVlbi4OBAbm4unp6eaLWiUHn0aCUzZjyEWh2OyeTHhAlTCA0Ns/ocT09rUSUkpPX/0J9//smUKVNITU0lLi7u4jXCRcJoFAWVnBxIPlnDxkMZJKdVYzSKDx8XOw3BriF42Hug0SiIjITISLGiXFvtdTlQXl5OfX09FRVaPvvMhZISBT4+tUyZcgK9voHGxkYr0+l03HbbbURGRlqdp0ZXw7r0dWzJ3oLOqAPAz9mPq6OvJiEgAZVShSAIbNu2jXHjxvHII4/w3nvvXfT7LS4u5ueff2bp0qXs3LkTGxsbnJ2dqaqqajMUysHBAQ8PDzw9Pa2W7u7eJCWNp67OD19fBXfdVUpgoDseHh54eHh0uaeNjCyiyFzhfP/998yZM4dHH32UDz/88JwElIyMDJ555hmWLl1KbGwsnp6e7Nq1i5iYGF5//XXGjRuHm5tbu+/ftm0b27dvZ8CAAURGRhISEoK62UjFYDCwZs0afvzxR1asWEFERATz58/n1ltvxd7enrKyMj799FP+9a9/8cknn7B7925WrFjBkSNHWiWra2ho4Omnn+aLL77gwIED9OrVq9X16PV6QkJCKC4uxsPDgxEjRnDVVVfRu3dvjEYjEydOPG17mM1mDhw4wGeffcbChQtJTU3lpZdeYt26dWzevBl/f38cHBxITExk7ty51NXV8emnn3LTTTdZ3XdLhg8fTkZGBrt37yY4OPi012C518cffxx7e3vee++9s561Wrx4MTfffDMff/wxlZWVHDx4kMzMTFJSUjAYDMTExPDggw/i7+/Pzp072blzJwcOHMBoNKLRaBg8eDDTpk1j5syZ+Ppe/LjmriAxMZFp06bh6OjI/v37W1WO6EpMJtEDJS1N9CB49lmxpPHlzLBhw9i5c6e4oQCCgRhw9HTEbDZjqDaw/r/rGRo8FFtVa+HzdAiCmMBu3z6xyskLL3RuboOLQUVFk2CSni7O9Fp6KYIgUN5YRl5DOkq3XJx9yvEN0HH1gB5c228IznZOXXvxXUB9PZw40WT5+a3zX6hUokgSHg4REeLSy+ufJzCdDr1ez9GjR9m8eTNPPvkkS5cu5frrr2/z2OLiYoKCgoiJieGLL75gxIgRF/lqT4/JZGLChAmkpqZy5MgRq/CDtigoKCAoKIgFCxbw4IMPWr3Wt29foqKiMJth5cr9LFy4GZMphMOHqzl8uITCwmIqKiowmUyYzSZMJgNKZQ4KxQlUqnSuuiqIUaOG8MILL+Dm5sb69etbDaSvRCoaqliyeyvrD56gqtiF2mJPqA4lWBOOh72H1G9Vq0Uhpbmwcrk9s4uLReG+sRFGj4abbz77c9Tr69mYuZGNmRtpMIi5c7wcvZgeN50BAQOkggP79++nqqrqoo9Fp06dyqpVq5g8eTI333wzU6dOxc3NzapAQ3l5eZvLlvvKy/XU1DwAeAKHgKYkyU5OTlaii2V92LBh3HbbbZd8Zc8rAVlEkbliWbJkCTfffDMjR45k9erVZ63ams1mnn/+eT788EO8vb157bXX2Lx5Mz/88AOvvfYazzzzTKe7mxoMBtRqdZsPv8cff5wFCxbw0ksv8fLLL/Pkk0/y7rvvtjpOp9PRt29fnJ2d2bVrV5thLVqtls2bN7Ny5Ur++OMP8vLycHFxYdKkSUydOpUpU6acVhgCePfdd3n11Veprq6murqauLg4SkpKrI7p378/y5Yta7MyQXPMZjOenp7cd999kgvnheb111/nxRdfBMQEujExMcTExBAdHc3YsWNJSEho5Wrd2NjI3r172blzJ1u2bGH9+vWYzWbGjBnDLbfcwm233damF8+VwM8//8ydd95J//79+f333/Hx6Vi4yMXit9/ESgD29vD882I1icudVatW8cGHH1CiLuE4xzHanoqr0EKUEEWUbRR///X3OZ170yb49VcxLOPJJ8VO+aVObS0cOybmcDl2TAw9aYmHh4CjbwE5qo00apJw9KjC2c6JSVGTGBU26qzFpsuZhgYxvO34cdHaEk08PJrEkogIUUC5HGe7LxYNDQ2EhIRIVfZ69+7NokWLiI2NbfN4vV6Pm5sbr7zyCk899dRFvtrTU1hYyAsvvMDChQtZt24dY8eOPe3xOp2Ou+++mx9//FHyhtVqtaxYsYLvvvuOtWvX0rdvX+bMmcPDDz/MmDFjSE9PJzs7G7AjLGw0ISEjMRiCaGz0w2RyQqlUolKpMJtN5OXlUla2BzgBnMDXt55161a1W+3wSqNGV8P6jPVsztpMo85AXakHLg19CTWPoSLfo00vsYAA6NYN4uLE6nOXaJStFUlJsGCBuH7//dCnz7mdR2vUsjlrM+sz1lOrExsnxDWE75/5npOJJ/n222+ZO3fuac9x8uRJ9u/fz6hRo9pNAn22bN26lTFjxvDEE0/wzjvvnPf50tONvP66gYYGLcOH5xMentWuCFNaWsrhw4eZPHky33zzTafdk0zbXDAR5fbbb8fW1paAgAD69etH//79CQoK+kcrY12Z/OqfyAcffMD//d//odVqsbOzIyEhgWHDhjFs2DCGDBlyxhmXXbt2MXToUJ5++mlefPFFbrnlFlatWsV1113H//3f/xETE4Ozs/NFuhsxF8jUqVNZvXo1CQkJLF++XCoJ3Na1Dxs2jC+++IJ77rnntOcVBIHDhw9Lgsq+fftwcXHh+eef55FHHrFKjJeTk8P27dvZvn07y5cvJyoqipUrV/Liiy/y6aef4u/vj52dHSUlJdTV1QEQFRXFI488wpw5c9CcZtrktttu4+jRo1KOmQtNQ0MDqampREREWJVrPhvKy8tZtmwZv/76K5s3b+aFF17g/vvvJzs7m+zsbLKyssjPz2fy5MlWuV8uN1avXs3VV1+Nq6srP/30E7a2tqSlpZGVlUX//v259tpruzRHSnKymBgV4L77oG/fLruUTiE9PZ3w8HAyqjL4NelXcqtzEQQBfZ2eyr2VrPlyDWqFmnvuuYcXX3zxrP9/c3PF2UCTCW68Ec4wduoy9HpRBDh2DFJSRE+T5iiV4qA/KkoUgey981md9ysnyk8AYKe2Y3zEeMZFjMPB5gqtK9wMo1H0yklKEtusuWeOBX9/cbAVEyO22xm0cpkWmM1mfHx86N+/P2+//Tbdu3c/o3A+btw4GhsbWbFixRn7HReDvLw83nnnHb766itsbW158803W3mVtKS8vJzrrruO3bt3s3DhQvr27cvHH3/ML7/8QlVVFUOHDmXOnDnceOONDBs2jPz8fKqqqhg1ahSPPPIIw4YNsxLeLfl3jh8XvaKOHxcr4NTV1Um/nQUFecTE2PDee3fSsyeEhv4zPKLq9fWsSV/DhowNUg6QgYGDGO45ncpCD8n7rqDA+n1KpSiGxsWJFhFx6YZnLl0K69aJiahffFEUc88VnVHHhswNrElbg9ao5cDBAxz4+wAR+gi+/ejbdr2/UlJSGDFiBBUVFYDoSTVp0iQmTpyIRqMhNTWVY8eOSUuDwSCFpFuWsbGxHDhwgIULF3Ls2DG8vb3x8fFhx44dpKWl8b///Y8ZnVCneONGWLxY/Hs+/bT4XWiPP//8k3nz5mEymZg7dy6TJ09m2LBhl3WOoUuR6upq1q1bx8yZMztfROnfvz8qlYqsrCyr2el77rmH//73v+d/9ZcJjY2N/Pnnn/zyyy/8/fffuLu7ExUVRVRUFJGRkYwYMeKSc++8ktDr9Rw6dIgdO3awc+dOduzYQWFhIQAzZ87k22+/xdnZGa1WS0pKCocPH7ayyspKcnJyCAwMZMaMGSQmJlr9P3t7e1NqyazWDEs1l86mpqaGJUuWcOutt7bK+t+SG264gaSkJFJSUs4qeV1+fj5vv/02n3/+OQqFQvpRKC8vJzc3FxCzjI8YMYI+ffrw+uuvU1NTw6uvvsojjzwihezU1dVx8OBBPv30U5YuXYqzszNffvllq7wpFpYuXcrMmTOZO3eu5I2jVCq599576XOuUxUXkdmzZ/Pjjz9a7XNxccHd3Z3s7Gyuv/56Pvzwww6FKl1qFBcX8+KLL/Lnn39ScKrnplar8ff3Jzc3F3d3d2699VbuuOMO+vfvf1HF4ro6eOUVMQ/KuboHX0oUFxfjF+aH3xg/YkfHEhUdhbOdMxMiJzA2fCx2alGkXLBgAf/5z3+YPn06P1hqE3cAgwHefFPsgPfuLc4EXioDE0EQ87McOSIKARkZrZOaBgWJM6/duokigJ2dOOj44/gfbMnegiAIqJVqRoWNYlLUpLPKEXM5UlkpttXRo6JwotNZv+7rC7GxosXEgJOTCaVS2eo7KggCVVVV5OXlkZeXR25uLrW1tfTv35+BAwfi6Oh4Ee/q0ubee+/lyy+/BEClUhEeHk5MTAx9+/bl//7v/1r9Ni9ZsoTZs2ejUCi49dZbefjhh60SyV8scnJy+Pe//80333yDk5MTjz/+OA8//PAZvU4Bnn/+ed566y1mzJjBd999x8yZMyXPk19++UXyxDl69Ci9evUiJiaG7OxsPDw8SE1NxdXV9bTnt4gqllCz48ehqEiHICB5ETs7i1VKLHYR57C6hPKGclYcX8HuvN0AqJVqxkaMZXL0ZOzV9tTWiu107JhoLbuiNjbi975XL9HOca7ogmA0wrvvijmZIiNFb8jzzbFcq6vlz5N/siVrC2XlZWzbto3ivcXM6jeLubfOZejQodJzLCcnh2HDhuHu7s7SpUvZu3cvq1evlnL+WQgICCAuLo64uDhsbGwkUSUnJ8fqs6OjoyVBpqSkhJKSEoqLi5k9ezaffPLJ+d0Y4vfjiy/g0CExf9eLL8LptNvS0lJefPFFli9fTnFxMa6urkyYMIFrrrmGSZMmndP4xGRq+7fjn0RjYyO//vorS5cuZd26dRiNRgRB6HwR5dlnn8VgMFBbW8u6devIzMwEYNSoUWzatKlz7uYSQavVsm/fPrZv305ubq4Um3bgwAGWL19OXV0dAwYMYMaMGTQ2NpKenk5aWhppaWlUVlZy00038dBDD7Fy5UoaGhqkDNUODg5SabFLKffA5YwgCGRnZ7NmzRqefPJJ/Pz8sLOz49ixY1KS2KioKHr37k3v3r0ZPHgw48aNszpHSUkJY8aMITk5uc3PSEhIYMuWLWcUOS4027dvZ8SIEVx99dXMmDGDyZMnExgY2OH3p6WlsWbNGunHwNnZmeHDhzNs2DApKd748eMpKSlh1apVpxUHcnNzefrpp/n111+lcKSWwk59fT3XX389+/fvp6ysDABHR0d+/vlnrr322nNogYtLVlYWf/75J8HBwYSGhhIaGoqbmxuCIPDrr7/yxBNPUFtby0033UTPnj3p3r073bt3v6w89ARBICUlBUdHR1JSUsjNzSU5OZmFCxdKZfqCg4N58MEHue22287q/+3crgf++184eFCcYf+//7u8QxEMJgPrM9Zz97t3k1+YD4BbjRtPTn2Sx+5/DCcn6zwe//nPf5g/fz7p6elnDJmzYJkB1Gjg5Ze7PqbebBZnVQ8fFsWTFhGBuLtD9+6iaBIba13hwyyY2ZGzg9+P/U69Xvz/6x/Qnxu634CHw3lMbV7CWNorKUm0/Hzr111coGdPsc1iYsTqQiAK+6+88gpff/01RqMRGxsbbG1tsbW1xc7OjtraWuk7DKBUKrGzs6OxsRG1Wk3//v2l539Lr4J/GoIgUFhYyPHjxzlx4oRka9as4eGHH+bOO+/E0dHRyiorK/nqq6/47LPPyMvL46qrruK+++5j5syZp80V1lnk5+cTGRmJs7Mz8+fP58EHHzyrkPuKigreeustPvnkE6655hoWLFjAo48+ym+//cbEiRP57LPPiIiIQKvV8umnn3Lw4EGSkpLIzMxk48aN9O/f/6yvubxcDN1LShKXzUssKxTibHzPnqIYHBx86YjBnU12VTbLUpdxvOw4AO4O7tzU4yb6+PWx6juUl1uHO7YM/wkObhJULgWvnrIyeO018e86cya06GqfMyX1JSw/tpx9Bfs4lnqM/Yn7adjXgE2xDUOHDGXMmDH8/PPP6PV6duzYYVV5yGw2c+jQIcnrpD3xr66ujhMnTnDs2DHCwsIYMmTIBe/HNTTAq6+KwvnYsaIX6Zmw5DD866+/+PPPP9m7dy+CIJCQkMC4ceOwsbGhrq6uQ6bX67G3t8fb29vKfH19ueGGGxg8ePAFvf9LgY8++ojHH38cEMd6Y8aM4e233+58EcXPzw8XFxecnJyIjIxk+PDhDB8+nN69e1+UH4wLRV1dHbm5uZw8eZKdO3eyfft29u7di16vx9nZmYiICCorKykvLycsLIybb76Zm2++mejo6FbnEgSBRYsW8fjjj1NWVoa3tzd+fn5ShuqKigoaGxtRqVQ888wzBAcHExQUhJOTE0VFRRQWFtLY2EhUVJSUz6FlJ/tKp7a2ljVr1hAWFkZcXNxZhdccPXqUf/3rX/j6+kqiSXx8/BnbUKvVMmTIEA4dOoRGo6FPnz706tULLy8vFAoFWq2WhgYx47hl2djYiIuLizS4bm6nC3E5HwRB4Msvv2TRokXs3LkTk8lE3759ueaaa5gwYQKDBg067/wd/fr1Y9CgQXz++ecdup5///vfPP/889xwww189913bbZ1eHg4WVlZBAcH8+uvv9KnT58rYha0urqaN954g/Xr15OamiqVw9ZoNHTr1o3u3bszePBgbrvttkv+e/zrr79yyy23oFKpsLGxwWw2o9fr2zy2tLT0grmw794N334rzmA995yYdO9y5XjZcb4/9D17U/ayf/9+KtMr+fqxr9nx1w5+/PFH3N3deeSRR3B0dCQvL4/8/HzS09PZv38/L774Iq+++uoZP+PECTH5riDAgw+KnemuQKsVB0aHD4vLhoam19TqptnT7t3B27vtzn5OdQ4/HfmJ7KpsAAI0AdzU8ybivK68ih4mkzgoOnBAnIk8FSkJiG0TESEOJnv2bD2YrK2t5f333+e9997D1taWxx9/HH9/f/R6PXq9Hp1Oh06nw8nJieDgYKmf4efnh1KpJDk5me3bt7Njxw62b98uzcDGxMRI/bqbbrrpinhGny8vvfQSr732Wpuv2dnZ4ejoiI2NjZU36xtvvMHzzz9/wa+toKCAwMBAvvjiC+69995zPo+lBHFqaiqxsbGsWrWKBx98kJKSEjZu3MiQIUM68aqbMJnE5NHJyeIzo2Von5eXGMbZr58Y0tLVAkFnIwgCR0uOsjhpMWUN4iRTL99e3NzzZjwdW0+yCoKlapIoTmdmWof2ubiIz9jevcXnbFcNy7Zvhx9/FCc/Xnyxc3OZpVeks+joIvJq8qiqrEJXpEO7V8vudbvRaDRs2rSJqKiozvvAi0Dz0OX580Wh/GwoKSnh77//5q+//mLr1q2o1WqcnZ07ZI6OjtTW1lJaWkpJSQmlpaWUlpaSmZlJfn4+EyZM4I033mDAgAGdf+OXCPn5+VL1MhBLc18QT5QrKbFscXExH3/8Md988w3FxcXSfn9/f0aMGCF1JOLj489JIKqoqGD//v2MHDnSalBrMpm4//77OXLkCAUFBRQUFGAymaTXnZycsLOzk+L5AAIDA4mNjSU6OhpPT0/pn1+j0eDs7Iy7uzuxsbEEBgZiNpspKCggOzubvLw8AgIC6Nu37wUb1J8LgiBQWloqzfjo9XrmzJkjeXnMnz+fDz74AABbW1uplHFb5QNramrYvn07V1999Xkrxjqdjpdffpnff/8do9GIyWSitLSUhuajgQ6ybds2hg8ffl7XcyYqKytZs2YNq1at4u+//6aiogInJydGjBjB2LFjGTt2LL1792437Een07F582Z69uxp5V0QGhrK7bffzuuvv97ha1m+fDm33XYbMTExbNiwoVU+h7S0NBYsWMB3331HTU0NAM7Ozvj5+eHn50dgYKAUDmdZ+vv7d8osQF1dHX///TcjRoy4oAm5TCYT2dnZpKSkkJKSQmpqKsnJyRw4cAA3NzceeughHn/88TO6QHcF5eXlhIeHM2XKFBYtWiT9iBQXF5OZmUlGRgaHDx/m3XffRaFQkJOTQ1BQUKdfR12d6ElRVwfXXguTJ3f6R1wUtEYty1KW8cvOX9i6dSu1ZbWQAt3dujN1ylTUajV5eXl8//33rd47dOhQRo4cyW233Ub37t1P+zkGgziLVVICw4fDqQrpFw29XuzM79snduybh+k4OTV16Lt1O31yRKPZyKoTq1iTtgazYMZebc+02GmMChuFStk6ifblisEgzigfOCCKTc1/WpycRMEkOlqL0XiElJS9HDhwgJqaGuzt7SVTqVT88ssvVFdX88gjj/Dcc8+dc/4nCz/99BOPPvqoVb/jm2++4c477zyv814JCIJAamoqNTU11NfX09DQIFnLbVtbWzw8PJgzZw4e55MQ4iy4+eabWbt2LUlJSe3mUzsTOp0Of39/HnjgAV5//XUEQZDyxR04cICYsx3VnSNVVeKA8uhRUVQxGJpec3MTk5X26yeWbj/fMJFLCYPJwJ8n/2Rt+lpMZhO2Klumxk5lXMQ4lIr2b7S2VmynI0fEdmse9ufgIApQAwaIuVTaqEVwwRAE+M9/xGddZ4X1NMdkNrExcyMrT6xEZ9ShVCgZEzaGqTFTsbe9DLLwtsGPP4rik5cXvPRS11chNJlMLF26lGeffRYbGxtOnDjRJddhNBo5duwY7u7u+Pj4XLAcMPX19TQ2NuLk5CQlDpdFlDZoaGjgqaee4ptvvsHGxoZ58+aRkJBASEgIYWFhF90N32QyUVxcTH19PX5+fpLYUVFRIbmTWsSGtLQ0qqqqqK2tpa6uDl2LQGmNRkNjYyPGFgHnCoWCmJgY+vXrR58+fYiMjCQsLIzw8HDc3d0v+P0ajUYSExP5888/2bx5M8eOHaOqqkq6NqVSSXBwME888QR79uzht99+46GHHuKmm27i77//5v3338dsNvPkk0/yxBNPoNFoqK+v55NPPuGdd96hoqKC7du3M2zYMEB0dVu0aBElJSWS0OTp6cnQoUM7LCY988wzLFy40CqO0sbGhsDAQPz8/DCbzWi1WhobG9FqtXh6euLg4IBKpSI+Pp4PPvjgoiblNJlMHDp0iA0bNrB+/Xq2b99OY2MjU6ZMYeXKla2O37x5M/fddx/Hj4uupN26dWPcuHFMnjyZO++8k/r6eq677jpuueUWxowZc1oh0Wg0snDhQv7v//6Pmpoadu/e3W5seF1dHbt376aoqIji4mKKioooKioiJyeH9PR08ppNRanVajw8PNBoNGg0Gjw8PPD29sbf35+AgADc3d1xc3PDzc0NV1dXnJycqK6ulkrKVVRUUFxczLfffktxcTE2NjbcfPPNTJgwAXd3d7y9vRkwYMBZ5ZY5F7Kysvjwww/5+uuviY6OZv369ZdEIsLmHD9+nLi4ODZt2sSoUaPaPc5sNrNnzx5WrFhBQEAADz/8cKdex8KFkJgIgYFiGM/F7Ph1FkklSfx05CcqGys5mXaSzM2ZaHI1mPVmjEajlRkMhlbVr9r7zrbFH3/An3+K4R2vvCJ2nC80RqPYYd+7V+y8N/8Z8vUVBzq9e4szxx35amVVZfHdoe8orBXzWg0IGMBNPW/Cxe7y7mtYMJvFwcTu3aJw0jx8wcUFwsKqKC7+i9zcDRw4sI/k5GRMJhM2Njb07NkTb29vtFqtlQ0dOpRXXnmFkE5y03r44YelGP9nnnmGW265hcDAQJYvX05SUhLXXnstI0eOvODPyn8KGzduJDU1lYCAAMn8/PzOaYBQUVFBz549GThwIMuXLz+n6zGbzTg7O/Pmm2/y2GOP8f777/Pkk0+yZMkSZs6ceU7nPF/0evE5c+CA+Jxp/r1xdhbFgSFDLo0Qls6isLaQRUcXcbL8JADh7uHM7TMXX+czu3IYjWLC7sOHxTarrm56zclJFJ8GDBC9HC7G17iiQvxN0mrhllvgNN2Kc6aysZLFyYs5WHgQAH+NP3P7zCXUrWNhsJcSWq3YXhUVMHEiXHddV1+RyPXXX09NTQ3r1q276J/d0NDA1KlT2bhxo7TP3d0dX19ffHx8Wi1VKpXkhanVaqV1R0dHunXrRo8ePYiOjj7jc1YucXwa3nzzTV555RVefvll7r///vOewelK9Ho99fX1lJWVSZmmNRqNFFISFBRETk4O+/fvl+zo0aNShRUQk2SGh4cTERFBeHg44eHhdO/eneHDh3coLKS0tJTNmzezceNGjhw5gqurKz4+Pnh7e+Pp6cnRo0dZvXo1FRUVeHl5MX78eHr27ElsbCyxsbFERUWRk5PDQw89xLp164iPj2fGjBk8/fTTUvhDWVkZ//73v/nkk0/QaDTccsst/Prrr1RVVTFv3jy++eYbnnjiCQYMGEBGRgZr165lw4YNuLi4UFtbi+VfXK1WM2TIECZOnMiECRPo169fm6WCAT755BOeeOIJAN555x1uvvlmfHx8LtlOZGJiIkuWLEGj0VBbW0t5eTkrVqxg3LhxLF26FBBd/hYvXszPP/9MYmIiw4YN45133iEvL4/169ezdu1asrOzpVCojIwM0tLSCAwM5M033+S2225r8/6feOIJPvzwQ0B0Bx84cCBBQUGEh4cze/bssxKTGhsbyczMpE+fPqjVagRBQKfT0YHHVCscHBzw8PBg7NixPPnkk6xdu5ZPP/1UyuUEMGjQIBYsWEBCQsJZn/9sSU5OZsyYMfj6+rJhw4Y2Pau6Cssz3pIEeMSIETg7OyMIAgUFBSQmJrJ69WpWrVpFUVERACNGjGDr1q2ddg2pqfDRR2KH+JlnxEH45YTWqGVx0mJ25u4EwMvRi9m9ZxPrZV0m1VI5a9myZSxbtozU1FQ0Gg1Tpkzh+uuv5+qrr+5QGEVhoRh7bjLBvfeKneQLhSCIOTt27hRz1TQ2Nr3m5QUJCWIHPTCw4wMao9nIH8f/YG36WgRBQGOnYVb8LPr5X8AbuYgUFMCuXaJ40nxA4+Ym/q1cXNJYuvRtfvrpBwRBID4+nv79+0sWHx8vJd+80AiCwOLFi3n66acpKipi8ODB7Nq1C7PZjK+vL4WFhQQHB3P77bcze/bsdkv/ypweg8HAHXfcwS+//IJKpbLyQlYoFPj4+FgJKz169GDo0KH06dOn3Y5/aWkpPXv2JCoqimXLluHp6XnWYkx6ejpRUVGsWbOGoKAg4uPjeeqpp/j3v/99XvfbWRiN1qFvzdL84OsLgwfDoEFwJaQZFASBXXm7WJK8hEZDIzYqG27ofgMjQ0d2eMLTkmNp3z6xzZrnUdFoxLYaNkwspXwh2bwZfvlFFPdffdU691VncqT4CD8e/pEaXQ1KhZLJ0ZOZHD35svNiPHIEPv1UFLlefPHC/306QkJCglTxaNiwYfTv35/i4mKOHz/O8ePHycjIkCbvm5uzszOBgYEEBgYSEBAgTUBb8qo2N5VKxb333tvK8/aOO+7ghx9+kEKfi4uLpXyOzRP9WsKQzGYzNjY22NvbY2dnJy2rq6ulnIxqtZqYmBh69OhB9+7dpWVcXJw0HpRFlBaYTCY2b97Mjz/+yOLFi5k7dy6fffZZV19WlyAIAuXl5WRmZrZpWVlZGAwGXFxcuPrqq5k2bRqTJ0+2yvRuMpn47bff+OCDD9i7dy8AsbGxDBgwgLq6OimmrrS0lPDwcK655hquueYaEhIS2hUtLPFnp8son5uby6uvvsrixYu56aabeOGFFwgNDWXAgAHs378fEEWh6OhoXn31VSZPnowgCDQ2NpKXl8eGDRtYs2YNGzdupLa2Fnt7e2JiYqQs3Raz5KFJTk7mrrvuIjExkTvvvBMvLy8yMzNpbGykT58+Ume3M72XKioqSE5Opry8nNraWmpqarCxsSE2NpZu3brh7e3d5mfNnDlTEktCQkLw9fVFo9Hw/PPPM/ZUrdPo6GjS0tIAePTRR3n//feljpxWq5USi7799tv89NNP9O3bl/nz57NixQqWLFnCwIED+eijj1rFR588eZK//vpLyumQl5dHdnY2OTk5/P3330yaNInU1FQ+//xzxo8fz5QpU07bXnq9Hjs7OxYuXMicOXMQBAGtVkt5eTmFhYUUFBRQWFhISkoKixcvpqSkhOjoaCZPnsy8efPw9PTE3d293STAjY2NVFZWkpSUxFNPPcXRo0e58847+fDDDy942FtSUhJDhw4lJCSE7du3d6iCwsVAEATmz5/PkiVLyM/Px8bGhpiYGHJycqg91QOLjY1lypQpTJkyhWnTpjF//nxefvnlTvl8k0mchSkuvjyr8WRXZfP1ga8pqS9BoVAwNnws02KnYacWB8F6vZ5t27bx119/sXz5cjIyMnBzc+Paa6/l+uuvZ/z48WclNgoCfPihWMWhVy944IELMxtbXS0KATt2WCeHdXMTRZOEhHObCS6pL+HL/V+SWy1WBhsYOJCbet6Es+3lXZqjpkb00Nm1Syw5bcHJCQYOhIQEgby8bbz//nusXLkSf39/Hn30Ue69995L4lnQ0NDABx98wM6dO7nmmmu4/vrr8fX1JTExke+//57FixdTVVVFjx49CAkJwcfHx2om0LLu7+9/QSrZXe7k5uYSFxeH0Wjk3Xff5YYbbqC0tFQK7c7Pz5fW8/LySElJQafTYW9vT0JCAqNGjWL69On07dtX+g397bffWlXHe+edd3jqqac6fF0rV65k2rRp5ObmUlNTQ48ePVi4cCG33nrrJVdCtbln14ED1iE/0dGioDJgwOnDBy8HKhsr+e7QdxwrOwZAD58ezO49Gzd7t7M6j9ks/k7s3y+2V3MBKixMFFMGDBDLEnc2ZjP8+9+QnS3+XebO7fzPsFCvr+fnoz+zr2AfAKFuocztMxd/jf8Z3nlp8dlnojdRdLSYH6WrvaySk5NZvny5VA21+tSMQEhIiJRmwtnZGZVKhVqtRq1Wo1KpqKmpsXqm5efnSxP4dnZ2UpSARqOhrKyMoqIibrnlFl5++WUpfHDRokXMnTuXQYMGsWTJEqtkwS0xm80A7U50l5aWkpKSQnJyshRyn5ycLHkCe3t7M23aNKZPn87AgQPx9fXtfBHlzjvv5IUXXiD8EpwibGho4P3336e0tBSDwSC5Suv1erZu3Up+fj5RUVHcdtttUkiITGtMJhNHjhxh5cqV/PHHH+zfv19S7nx9ffH19WXfvn2kpaUxYcIEbr/9dkaPHn3BK3acjpycHEpKSoiIiOhQeJLBYGD37t3s37+fY8eOSWaZYQcxD01oaCghISGUl5eza9cu1Gq1lLOmurpaSkIUERHBkiVLzpip3iIGVFVVUV1dTXV1NZmZmRw+fJgjR45w5MgRq3AWEEstCoIgPSDc3d2Ji4sjOjoaPz8/qfPq5ubGJ598wpo1a9qNZd+/fz/fffcdy5Yto7CwEH9/f5ydnSXhrHv37gwdOpQhQ4awf/9+PvvsMwYNGkRiYiJbt27lwQcfJCUlhby8vNM+zKAp4d2iRYvYt28fCxYskMJthg8fzttvv83QoUPbfG9FRQWenp4sXbqU66+//rSfYzQapXv+/fff2bp161mVF1+wYAGPPPKItH7//fe3K/SdC4IgcPToUTZt2sSmTZvYsmULVVVVODk5sXv3bnr06NFpn9UZCILAiRMnWL9+PUePHiUiIoJu3brRp08fgoODJbHlww8/ZP/+/fTrJPeHjRth8WJxluy11y5OWEpnIAgC6zPW8/ux3zGZTbg7uDOv7zyiPaPJz8/n77//5s8//2T9+vXU1dUREBDANddcww033MDo0aPPeYBy6BB8/rmYOPDVVzt3BtZkEnMS7NghxtufevRgZ9fkQh8Vde6du915u1l0dBE6ow4nWydm955NH78+nXb9FxtBEJP7btkieulY2kulEgWuIUMgLs7EypW/8+6777Jnzx66d+/Ok08+yaxZsy6at0lnoNVqWbVqFevXr281G1jbomxIbGwsU6dOZcqUKQwbNuyyLD5QU1PDzp07SUpKwsnJCUdHR26++eYO/c0sYczbtm1j5MiR0u9dfn4+L730EgsXLiQ6OpodO3a0G96p1+s5ePAgO3fuZMeOHWzYsIGqqipCQ0OZPn0606dPZ/jw4eTk5FBcXExpaSmPPfYYmZmZzJ07l5dffrlDFb4++OAD5s+fz6JFi7jllluYMGEC69evB8DV1ZWEhIQucec/E1qt+J1LTBSFAstoxs5O9La46ioxKfPliiAIbMzcyO/HfsdgMuBk68Sdfe+kp0/PczqfySSGSO3cKQ7ULc8qGxsxf8qwYWIC8M4cuGdliUKKIIi5Udqox9Gp7M3fy89Hf6bB0ICtypbbet3GoKBBF/ZDO5HycvjXv8RwtjvvFP+PLxXMZrPkrX4uScfr6+uxtbVt1e/R6/V8++23vP766xQWFjJ79myeeeYZSktLeeedd1i1ahXdunUjOTm509NPlJWVSRETy5cv58SJEzg6OtLQ0ND5IooFd3d3xowZw/z58y9Y1u6zoaqqiilTpnDgwAGioqKwsbFBrVZLy/j4eG677TYGDhx42ZQdvVTIy8tj1apVpKamSp0lX19fnnzyyXMqb3cpU1VVxfHjx0lNTSU9PZ3s7GyysrLIzs6mqqoKNzc33N3dyc3NpaKigt69ezNo0CD27dvHsWPHuOeee9DpdNTU1EheJDU1NZJgUl1djaH5tMkp3N3dMRgMklhiEQEtKBQK+vbtS0JCAoGBgZw8eZK0tDSpE9s8PGvs2LH8+eefp+3kmc1mdu3axffff09hYSF6vR6z2YzZbCY/P58TJ04gCALXX38977zzDhEREQDMmDGD48ePk5SUdMawpvz8fIKCglCr1djZ2fHCCy/w+OOPs3nzZp555hkOHz7MPffcw3//+99W7/3666+5++672bFjR7tCS0u2bdvGVVddxU8//cStt97aofeAdRJjEBXyuLg4evTowbBhw7j22mvPSyD8+OOPefTRR6XtW265hfvuu49BgwZdFoMnQRA4fvw4mzdvZsuWLWzZsoXCwkI+/fRTHnjggU75jPp6eOEFMcnmbbfBWWhgXUqtrpaFhxaSXJKM0WgkxDaEPoo+7N6+m7/++ovDhw+jVCoZMmQIkydPZvLkyfTu3fu8f4OMRtFrp6QErr4apk/vnPupqfl/9s46rIrsjeMfUpAQEEERDLCwFQPswu5c1y5sxY51zbUVXbu7u7BFUQm7xUBEUUKku+75/THLVVdUEC7g/u7nee7D5d6Zc86MOHPmPe/7/cLVq1Iw4B/tZ0ASBqxTB2xsMid2l5CcwL7H++TlTqXyl2JA1QEZXlnNLcTGSg9vrq7wWfydYsWkwIlUIRjD9u3bcXJy4tWrV9SvX58JEybQokWLXFsa+rPExcXJHR58fX3l5X9BQUEYGBjQokUL2rRpQ/PmzTNcRh0TE8P06dPR09OjSJEiWFhYyH9mpYPQhw8fuHbtmvx1//59+QJGKqmB+qdPnxIeHi5PX09JSSE5OZl3795x7tw5Ll68SEREBJqamiQmJtK6dWvmzp1LgQIFmDJlCtu3b6dy5cpcuXIl3WLjSUlJuLq6cuzYMY4dO8b79+/Jnz+/fAXV3t4eFRUVNmzYwNy5cwkLC2Pt2rUMGDDgu+2+f/+e4cOHc/z4cWrUqMGMGTNISkri+fPnTJo0iZYtW+Ls7PzT5zU7CAuDmzel4O9nXhFYWkrBlGrVpGDBr0hAVABb7m3hbcRbVFRUaFmyJa1Ltf6u6OyPiIqSsnnc3KTSw1RMTaVsUDu7rMvm2b1burcULSo57in6MSw8Ppxt97fhFewFQN2idelWrhsaar/GH8CZM3DsGBgZSYskv+rfbUaJj49n48aNzJs3T76obWhoSMOGDenevTudO3dW+BiePXvGuXPncHR0zPogiqurK+vWreP8+fPyVXhtbW06derEnDlzKFasWJYcREbp0aMHe/bswdbWlgEDBlC7dm1Kly79n5ukKMkdJCQksGDBAmbPno1MJqNKlSqUL18eNzc39PX15S89PT309fXJly+f/JUqgpovXz40NTXp3r07r1+/xt7enrp166KtrU3evHkxMDCgWLFi5M+fn2vXrnHixAlOnTpFiRIlmDdvHh07diQ6OprQ0FAiIyPR09MjPDyc8uXLp2t1+/nz51hbWyOEoHDhwmhra8tLffLnz0+lSpVwcnLC3Nyc8PBwgoODqVWrFhs2bGDgwIE/bD8qKopixYrRokULFi5c+EUgQiaTUbFiRbk2yOdcuXIFe3t7+vfvz7p16374wJlqsTx9+nSqVKnC6dOnMyTa6uvry8mTJ7l//z6PHz+Wu135+/tz69YtkpOTqVGjBh06dKBjx44ZdikICQlhy5YtnDt3jmvXrpGYmEjRokVp2rQpzZo1o2HDhtnm4pBRwsPDadSoEffu3UNNTY1q1apRv359WrRo8V3x2Yyybx9cvgzm5pKYbG65bKdql4SEhMg1eSIiInjz5g1P/J5wPeE6ofGhREdEE38nHiRXXvLnz0+LFi1o2bIlTZs2JX8WF+pfvAgHD0r15XPmZH6i6+srZQLdvi2tVILUtp0d1KoFWWFoFRwTzJpba/CP8kdFRYXWpVrTsmTLTD0E5BTv3kl/rzdvSquF8Gnlu3596e84ICCAVatWsW7dOsLDw+ncuTPjx4/PFu2l3IRMJuPOnTucPHlSfp1VU1OjTp06tGnThjZt2qTrmvrx40fKlSv3lQgzSP/fUm2cBw4cSNu2bdM1NiEEb9684erVq/KgSarQevHixalbty5169bl1q1bbNu2jcTEREaPHk3Lli1ZsGABly9fTrNdVVVVbG1tadasGc2bN6dKlSocOnSIP//8Ex8fH7S1tdHW1mbu3LkMHDjwpzMfZTIZt2/f5ujRoxw9epTnz5+jo6ND8+bNadOmDVu2bMHNzY3du3fTrVu3dLXp6urK0KFDefbsGb6+vsyePZsdO3bw+vXrHM02zghCSAKrrq5S+UpqDCxvXul61qjRr6mdkixL5sCTA7j6ugJgXcCaAVUGoJcnc1n1QsDbt1Iw5caNTwK+WlrSPaBhw8xbFEdGSgslCQkwaJAU0FI0MiHj9MvTnHpxCiEEFvkscLBxwETHRPGdZ5KkJEkTJSxMEpht1iynR5S9xMbG4uzsjJWVFZUqVcrS7PD0kC2aKG/fvmXp0qUcO3aM4OBg4uLiaNSoEf369aNjx45ZujrwI27fvs22bdtwc3Pj4cOHyGQyLC0tGT16NP369VOW7ijJMpydnZkyZQqPHj0CJGHSefPm0bBhQwC57WHqKzo6mpiYGMLCwnjw4AG3bt1CW1ubWbNmYW1tzZgxY9i6dSuJiYl06tSJNWvWfPOh+uHDh0yePJkzZ86gqqr6xQpZ/vz5adCgAQ0bNqRRo0aUKVMGFRUVkpKSCAwM5P3793z8+BFVVVXU1dUJDw+nW7dubNmyhX7/FKqGhIRw48YNPD09Wbx4sTylN9Xi2cTEhDdv3mTadejZs2dYW1uze/dufv/9d/nnN2/epEWLFlSpUoUzZ86kKxiUmvFiamrKo0ePMiTWGhQURJUqVQgJCaFEiRIUK1aMGzduEBISQq9evfj77785deoUR48e5ezZs8TFxTF79mymTZv2U9kEMTExXLlyhXPnznHu3Dm5ZZyRkdEX9s7NmjWTO03lFElJSbRs2ZI7d+6wY8cOGjRogK5u1utVBARIKy0yGYwZI1kx5jTv3r1j586dbNu2LU1bvzyWechrlxcdfR0KaBegiUETyhctT9GiRbGwsKBo0aIKu+lHR0uT0bg46N1bSr/+GVJSpAcMFxfw8fn0uZWV9JBRpUrWOSN5BXux4c4GYpNi0c+jzyCbQZTKnz2WqVmFEJKw5blzkh5DKmZmUuDE1lZ66Hjx4gXz589nz549aGpqMnDgQEaPHp1jC0y5jdTM1pMnT3Lp0iUSEhIoWbIkDg4OjB49+rvX/Ddv3tCmTRu8vb05duwYefLkwc/Pj7dv3+Ln58f9+/e5efMm27dvp2fPnl/tL5PJ8PLy+iJoklo+W758eXnQpG7dul/Ytzdq1Ah3d/cv3BArVKjA9OnTKVu2rFwHIPWV6ib3b5KSkti6dSv+/v6MHj06y00Nnj17Jg+o3Lp1C1NTUw4cOEC9evXS3UZsbCwVKlTA3Nycy5cvc/DgQX7//Xd69uzJli1bsv1hJrNERkrBgWvXpDIJkIL0NjbQtClkkblVtnLj3Q12PdxFYkoiBloGDKs+LMvcaOLjpey6y5e/zK4rWxaaNJF+/mwWibOz5CZnbCxlUmZXdZ9XsBeb720mKiEKLXUtHGwcKGeSu8qo08LDA7Ztk0qb//pLcqRSkj1ku7BsTEwMhw4dYuvWrbi6uqKvr0+3bt3o168ftra22VpCExkZ+YUImq6uLhMnTmTixIm/ZE2uktzF2rVrWbp0KX5+fiSmLkOCPGX3e5iamlK9enW5XXX//v3p1asXS5cu5cSJExgZGeHh4fHDlblr167x8OFD8ufPT/78+RFCcP36dS5fvoynpyfJyclyAdrg4ODvOtusWbOGoUOHfvV5oUKFCAwMpFq1aixcuJD4+HisrKyyxJXh5s2b1KlTh7Jly7Jr1y5Kly7NX3/9xdy5c7GxseHs2bMZmmAeP36cvn37YmhoiJub2w/1WlJp0aIFd+/e5f79+/J9kpKSaNeuHX5+fvJAGUiTy0WLFjFr1iyWLVuGo6Njho45LXx9ffH09OTVq1d4e3vz6tUrXrx4QVBQEP3792fJkiU54h4mhGDo0KFs3ryZ8+fPywOEiiBVRK1SJUkcNScRQrBy5UrGjx+Puro6HTt2pHfv3pQoUQIVFRUEAtcPrnh88EAFFcqblGdA1QHk1ci+BYP9+6XAh4UFTJ2a8aydpCSpHv7cuU8PFerq0spgo0ZSunVWkVrPf/DpQYQQFDcszpBqQ36p8p2UFClD58KFT0KxqqqSu07DhlLQKXV6c/jwYfr06YOBgQGjR49m0KBBuUIsNrcSExPDpUuXOHLkCDt37qRs2bJs3LgRW1vbNLeXyWS0b9+ea9eu8fjxY3lmxMaNG7l06RLv3r3Dzc0NFRUVHjx4QIUKFRBCsGnTJk6dOsX169cJDQ1FXV0dGxsbecCkdu3aP8wWE0IQGRlJUFAQ0dHRVK5cOVdnOgcEBMhFG9OLv78/vXr1ki9GlipVCn9/f9q3b8+tW7c4d+4cTZs2VeCoFYdMJmmBXLwoBUNTKVMG7O2hXLmcF/DMCAFRAay7vY7A6EA01DToX6V/lrqapQaNXVwkfazUKaSFhVRCWqVKxu89CQlSdkVEBHTtCv/4HWQL4fHhbLizgVehr1BRUaFbuW40LK64eU1WIJPBvHnSfadRI0hnMpmSLCBH3Xl8fHzYtm0b27dv5+3bt5QpUwZHR0d69+6NpqZmtkay/fz8cHJyYsWKFdja2rJ582bK5IalTiW/PDKZjA8fPshdaIKCgtDS0kJHR+eLl66uLjo6Oujp6ZE/f355dsi6deuYOXMmoaGhWFhYMG7cOAYOHCi3df5ZYmJicHNz4/r162hoaMitEgsXLkyBAgUQQshruGUyGVZWVmkGOQsWLIgQgtu3b2OhAGW2+/fv07NnT16+fEmJEiV4/vw5f/75J1OnTv0psc0jR47QqVMn7t+/T6VKldK1T+XKlcmXLx8LFiyQZwvt2rWLEydO4OjoKLdt/pwBAwawb98+fH19FWJRLJPJ2LhxIxMnTkRbW5uVK1fSuXPnbA1Ep4rtbtq06Ye19JnhzRtpkqCiIgmpZUXZyM8SERHBwIEDOXToEKNHj2b27Nlf3OsSkhPYeHcjj4KkwFqLki1oW7pttpajhIVJWSjJyeDoCNbW6d83Pl6qSb9w4ZPeiZ4eNGgg6QVkteleiiyF3Y924/bWDQA7Czt6VOjxy9SkJyXB9etw/jyEhkqfaWpK2jBNmnxZDpCSksKMGTOYO3cu3bp1Y/PmzZm+jv+/ce/ePQYMGICfnx/BwcFpbrN792569uzJkiVLGDdunPxzc3NztLS0qFmzJoUKFaJIkSIMHDiQvHnz4uLiQuPGjalfvz4NGjSgbt262NraKv99/sWpU6fo168fGhoa7N69m4YNG7J7924cHBzQ1tZm+vTpDB8+/JfLREkLPz/pOnjr1qdSHzMzaNVKylD5VYIp8cnxbLyzkccfHgPQvkx7mpdorgDhTSmYcu3ap/JFU1OpxKRmzYxllFy/Djt3Sm5lf/2lGEegb5EsS2bXw114+HkA0KBYA7qW65qrbZC9vGD5cilgNXs2KGDKqSQNcoXFsUwmw8XFhT///BNPT095+YGuru4XuhGpr/z589O7d2/q1KmTvqPMAG5ubvTq1YvXr19TsWJF2rVrR7t27ahatapSaFZJjhEWFsbdu3epV69errMRXLVqFba2tlRTYPFqfHw806ZN4+rVq6xevTrDegFJSUlcuHCB3bt3c+zYMfLnz4+vr2+6VwiPHj1Kx44dv/jM2tqa8ePH06dPn68mjNu2bWPYsGFYWVlx/fr1dIsB/gzv379nxIgRHDt2jPr162NpaflFcM7e3v6bK7aZpXPnzhw+fJguXbqwfPlyzMzMFNLP6tXw8KE0EUvDTCrbuH//Pl26dOHDhw9s3br1q7+JqIQoVt5cyZvwN2ioadCvcj9szLJfVHvvXrhyJWPWh7GxcOmSNAn+pyoPIyNpAly7tmIE6xKSE1h/Zz1PPkhK+l3KdqFR8Ua/xL02OVma6J85A+Hh0md6etJKYP360uT/c8LDw+nRowdnzpxhwYIFTJgw4Zc4zswgk8nw9/fH0NAwS4MR+/bto3v37nKNr3/j5+dH+/btefToEXPnzmXcuHGoqqpSrFgxTE1NWbJkCXXq1CE8PBxvb2+8vb1Zt24dQUFBeHl5/ef/XX6G+Ph4Jk2axIoVK2jdujVbt27F2NiYd+/eUbFiRRo2bMiWLVsUeq/LKUJDpWvjtWtSlgT8esEUmZBx6OkhLvlI2nK25rb0qtQLddWsz7qPjpbKfD6/lxgYQPPmkhh8eoIpMpkUDAgIgDZtoHXrLB/mdxFCcP7VeY4+O4oQAusC1gypNgQt9dzrh71ihZRFVbu2VMKrRPHkiiBKKoMHD2bTpk3IZDK6detGzZo15a4ln79Sb3r16tVj6tSpNG3a9KdvekII/Pz88PT05NatW0RGRhIbG8ubN28oUqQIzs7Ockef7du351phRyVK/h+5dOkST58+pUWLFpQoUeKL7xISErh37x67d+9m//79BAcHY21tTc+ePendu/cXtezp4dGjR6ioqMgzhoyNjb+67sTExDB8+HC2b9/OgAEDWLFiRZZoPslksh8GfA4fPsz69evl17CYmBh8fHzo2rUr+/fvz/QY0iI5OZkVK1Ywbtw4Fi9ezPjx47O8D19fmD9fWmGZNQtMslnrLTY2ljNnznD48GGOHDlC2bJlOXjwIFZWVl9s9yHmA397/s3H2I/oaOowosYILA0tFTYuIQTh4eHky5fvi7+Nz7NQxo2DH2lxvnv3gWXL7nP3rglCaKOurk6BAjKaNEmmb1/rLNM7+TeRCZGsurlKHnBysHGgomlFxXSWhSQnS2VOp09L5xrA0FBKXa9VK+1gk5eXF+3atSM4OJh9+/bR7D+u/hcVFUXJkiUJ+sf6REVFBUtLS8qVK0f58uXlP0uXLp0h57H4+Hi2b9/OokWL8PX1xd/fn7x58+Lh4YGOjg4GBgZYWFigr69PYmIiffv2Ze/evZw8eZLWrVtz4MABZsyYwbNnz9DV1f3Crc7Y2JhVq1alW1j1/wkvLy+6d+/Os2fPWLJkCeXLl2fXrl1cv36d58+fo6+vz7Nnz9JdHvurEhsrBQYuXpS0pkAKprRuLZXt/QrBFFdfV/Y93odMyChnUo7BNoPJo64Y97/4eCnwdOGCVJoDUmC+TRtJG+pHa1i3b8PGjVIWyvz5WecAlBEeBD5g873NJCQnUNSgKCNrjMy0QK+i8PGBhQul8zpnjqQpo0SxKDSIoqenx9u3b8mfP3+6hAY3bdrEmDFjiI6OpkePHuzatSvN7WQyGSdPnmTu3LncunULGxsbpk6dSvv27X/4oBEfH8+tW7fw8PDA09MTT09PAgICAChWrBgFChTg5cuX6OjocO3aNeLi4jh8+DCzZs3C3NycgwcP/t+p5itRkhv58OEDpUuXJvyfZeBSpUpRunRp/P398fPzk7szmJmZ0b17d3r06EHlypUVtsoYERFBnTp18PHxYe3atfT+yaWA6OhoRo4ciY+PDwEBAQQEBJCSksKUKVOYOHFiuh86XF1dadCgAWfOnKF58+Y/NZb0MGPGDBYvXszr168xzaw0fxqkrq7UqgV9+mR582kSFRWFs7Mzhw4d4syZM8TGxlKpUiW6devGmDFjvhJMfhP+hhU3VhCdGI1xXmNG1RyFqW7WngtXV1f+/vtv3r9/T0BAAIGBgSQlJVGqVClGjRpFnz590NXVlVtElioF9vYP2bNnD8HBwdja2lKrVi2sra0JDAzk0KFjbNnyggcPzAH9fzJA/YBTwD1AsqzOqMtUegiOCWa553I+xn5EV1OXETVGUNyweJb3k5UIITlSHD/+qWzHwEAKntSp8+3V1ePHj9OrVy+KFCnCsWPHvgr2/heJj4+nYsWKvHz5EoCiRYtSr149goKCePLkCe/fvwdATU2NkiVLfhVcKVGiBOrq6gQHB/P06VP568iRIwQGBtK5c2c6dOiAu7s727dvJyoqSt63pqYm7dq1o1OnTowdO5bChQtz5coVeTBbJpNx4cIF7t27h6WlpVyo+7+YQZEVPHz4EDs7O2JjY7G3t6dq1aosWbKEkiVL0qhRI+rUqUPDhg0pmJM1ltlMWsEUc3Po3DljpZM5xZMPT1h3ex2JKYlYGloyosYIdDQVV7aWGnh2dv6UtWdqCm3bfj+TRyaTFk4CA6F9e+lamxN8fn831TVldM3R5M+bO22bli+XSnvq1oU0NLOVZDEKC6I0aNCAO3fuEBUV9U3NgLSIjY3l+PHjFC9e/Icp6EIIXFxcmDZtGp6enlSsWBFPT0+0tbW/2M7f3x9nZ2dOnToldxDR0dGhRo0a2NraYmtrS82aNeUPAPXq1ePatWtp9lm5cmXu3buXrmNRokSJYoiKiqJjx47cuXOH27dv8/DhQ5ydneUOPObm5lhYWFCyZEns7OyypT67d+/eHD9+HDc3N8qXL//T7Zw4cYJ27drRrVs3zM3NKVSoEO/evWPVqlVYWlqyZs0aGn9HaS1VIHHcuHFYWVlx9+5dhaanW1tbExMTg7OzMxUqVMjStl+/hgULFFfnGxoayoMHD3jw4AEPHz4kICCA8PBw7t27R0JCAtWqVaNz58506tTpmw+/PmE+/O35N/HJ8RQ1KMqIGiPQz5O1wiHOzs506tQJa2trqlSpQqFChTAzM8PQ0JBjx45x5MgRdHV16dFjJEFBI/Hz8yc8fBovXjiTP39+ChcuzOPHj/8pk9UjOroMKiodKFy4EpaWxalSpSi//ZaXqlWTiYuLYevWrYwZM0auQ5SVBEYHssxjGeHx4RjnNWa07ehcbyX5/LlkFZ0qGJsv36fgybfKnFJSUpgzZw6zZs2iY8eObNu2Ldvc/8LDw78IPjx9+pS3b99St25dunXrRv369bPlmujt7c3y5cvZsmULQgiGDBnC0qVLiYiI4OnTpzx+/JgnT57If6YGvjU1NdHR0SHsn1QfDQ0NSpUqha2tLaVKleL8+fNcunQJExMTBg0aRI8ePeSZWZ6enmzdupXHjx9jYWHBzZs3/68e8LOaoKAg5syZg7e3N69fv+bdu3f069ePv//++z+he5IZUksgL178ZPdbrhx06gS53eXZJ8yHlTdWEpsUi5meGaNtRytcyDspSSozPXMGYmKkzywsJPHYb8Xqb9yALVuk8sj58yWL+JwgKDqI5Z7LCY0LxUDLAEdbRwrp5b7MK29vWLxYcsz76y8p80eJ4lBYEEVbW5vy5ctz69YtRo4cyeTJk3n37h1+fn5ERERgZWWFtbW13BkkPbx+/Rp/f3/Cw8MJCwsjPDwcLy8vduzYQUJCAj179mT9+vVfaEYMGDCALVu2oKKiQp06dWjdujXNmjWjfPny37wBvH79mmfPnqGhofHFS11dHQsLC4yVOVJKlOQY/v7+tGrVilevXpGSkkJiYiLm5uYsX76cdu3aZft4EhISCAgIoHjx4lSoUIH79+9nyo1h5syZ/PXXX5w5cwZ7e3v5548fP2bYsGFcu3aN7t27s3Tp0q/Sp319fRk0aBAXL15kwIABLF26VOErrHfu3KFPnz68ePGCGTNmMHHixCzT7Vm3Du7dAzs76Nv359sRQnDjxg0ePHiAl5eX/MEydUVcS0uL8uXLU6RIEfLly0f58uXp2LHjD+1mX4S8YNXNVSQkJ1Ayf0lG1BiR5TXTV65coWnTpqipqTFz5kysrKzkQcKCBQuipqbG27dvWb16NatXBxMTUxN1dR86d35Ljx49aNasGRoaGkRFRXHq1CN27IgnPr4wRYsWo0CBPLRq9XUmxdSpU1mwYAHjxo1j+vTpWfbw7x/lzzKPZUQmRGKmZ8YYuzFZHnDKSgID4fBhSY8HpHTyli0l3ZPv/YkHBwfTs2dPLly4wJw5c5g6dWq26GzExcUxceJEVq1aBYCqqipWVlaULVuWggULcu7cOXx9fTE1NaVz587MmTMnW1y9QkJCWLBgAUuWLOHBgwdUrJh22daHDx948uQJT548ISIiAmtra8qWLUuRIkX4+++/Wbt2LX5+ftjZ2TFixAg6deqUZmaeEELuSpfRsk0lSjJKTIyUZXHliuTSpaIiZU62bStlq+VW/KP8We65nIj4CAroFGB8rfHZ4ogWHy8Fni5c+BR8qlJFyuT59+OVTAYzZsCHD1JwKidNn8Liwvj7xt8ERAWgl0ePsXZjMdNTjA5cZnBykgL/DRpA9+45PZr/NhmSMBHpICIiQgACEEeOHBGjRo0SKioq8s/+/bK0tBTv3r37YbuvXr36al9NTU1RpEgR8ccff4j379+nud+uXbuEhYWFAETz5s2Fi4uLkMlk6TkUJUqU5DK8vLyEhYWFMDc3F1OmTBFqampi+fLlws7OTpiYmIgSJUoIOzs7sXfvXpGQkJCpvqKiokT37t1F9erVhY2NjahcubKoWLGiKFeunChVqpQwNTUVWlpaX12X7t27l+ljrF27tgBEs2bNxP379+XfyWQysW3bNmFsbCzU1dVFq1atxM6dO0VERIRYs2aN0NXVFRYWFuLs2bOZGkNGiY+PF1OnThVqamqiatWq4sWLF5luMyhIiMGDhXBwEOIbl/d0ERoaKrp06SIAoaamJkqXLi3at28vpkyZIvbu3SuePn0qkpKSMtzu0w9PxXDn4cLhhINY5rFMxCfF//wgv4Obm5to1KiRKFWqlNDW1v7ib01VVVX4+PgIIYSIiRFiyJBE0aqVn/D0jPqijYgIIbZv/3Q+R4wQ4tQpIeK/MeT4+Hgxd+5coa2tLQoXLiwOHjyY6ePwi/ATY8+OFQ4nHMTsK7NFZHxkpttUFLGxQuzbJ8SQIdL5GjJEiD17hIhMx5CvX78uChcuLAoUKCAuXLig+MH+w6NHj0T58uVFnjx5xKJFi8SDBw9EXFzcF9vIZDLh6ekpxowZI/LmzSumTZuWbeMLCAgQgDh27NhX36WkpIhbt26JkJCQNPd1c3MTgLC2thZ37txR9FCVKPkpgoKEWLdOumakXmfPnhXiJ24v2UZwTLCYenGqcDjhIKZdmibC4sKyre+oKOm6mnpfGjZMiCNHhPjXZUu4uUnfjx+f8+cyOiFazHGdIxxOOIhx58aJ95GZmJwoiOfPpfM1fHj67llKfp7UmEdERMQPt81QJkrnzp3Zvn07efPm5cGDB7x58wYLCwu56Je3tzdPnz5l8ODBVKtWjUGDBmFnZ0fhb+TA3bp1ixo1anDs2DFq1KiBoaHhV3Xp3yIpKYn9+/ezePFiHj58yKhRo1i2bNlPrRaHhITg5+dHXFwclStX/qp0SIkSJYohMTGR6tWrk5iYyMWLF+nQoQMFCxbkxIkT3Lt3j759+1K7dm2ePXvG5cuXyZcvH61ataJ9+/Y0a9YsQ0LXSUlJtGnTBnd3d3777TfU1NRQVVWV/1RXV8fAwED+ypcvHwYGBpiYmFC6dOlMH6sQgqNHjzJp0iS8vb2pXLky3bp1o2vXrlhaWhIWFsaePXvYs2cP7u7uckezwYMHs2jRogyLemcVt2/fpmPHjtja2nLgwIFMtZWq7VG+PIwc+XNt3Lx5ky5duhAZGcnatWvp0KFDhoQsv8WLkBesuLGCpJQkKphWYLDNYIVa8n748IGlS5fi6+vLo0eP8PLykn937tw5mjZtytmzcPSolEb+55/SaqhMJqWbnzr1acWvZk3o2DF9K6THjh2jY8eOqKmpERIS8tN/V/5R/ixxX0JMYgxFDYoyuuZohdbg/yxCSGKGBw58sneuVElaAf2R3I8QAicnJyZPnoytrS379u375nwmq/H29qZChQqUKFGCvXv3frOcMCkpiT179rBz506uXLlChw4dOHjwYLaMMSkpCU1NTbZu3Urfz9LK7t27x4gRI3B3d0dFRYUqVarQqFEjud6Gnp4eQgjGjx+Pk5MTe/bsobtyeVVJLubVKzh0SBL6BChUSMoIyIKpgUIIiQ1hqcdSQmJDMNU1Zazd2GzJSEnF31+65qbe1vT1pRKfatWk+1hKCkydKump9O0rZabmJDGJMSzzXIZfhF+uzEgRQip9evNGyoZq1SqnR/TfIz4+nrNnz3LmzBk2bNiQ9eU8qa4BP2Lv3r1MmTKFN2/eAGBubo69vT1jxoz5or7++vXr1K1bFy8vL8qUKfPDdtNCCMGaNWsYMWIE1tbWVKpUibJly1K2bFnMzc0JDw/n48ePBAcHExkZiY2NDQ0aNODo0aOcPHmSW7du8fr1a3l706ZNY86cOT81FiVKlKQfNzc3Ro0axcOHD7l16xYFCxakUKFC7N27l99+++2r7b28vNi/fz/Hjh3jwYMHqKurY2trS9OmTWndujVVqlT5bn9Dhgxh/fr1nD179odOGnPnzuXMmTP07NmTjh07YpKF9jGJiYmcPHmSAwcOcOrUKWJjY7G1tWX58uXUrFkTgDdv3nD8+HEqVapE/fr1s6zvn2X48OFcvXqVR48e/XQbUVEwZYpUQ50eh5lv0bBhQ4KDgzl9+jRFihT56fF8jm+4L04eTiQkJ1DBtAJDqg1RiE3k59y9e5emTZsSEhIi/0xLS4t27doxY8YMSpQowx9/qBARAf36Sc4Hb97Azp2fdDyKFoVu3eBfpkJp8vHjR6ZNm8aGDRsoW7YsK1asoFGjRj819g8xH1jstpjIhEiKGRTD0dYRbY3ct/gQGChZQz97Jv1uYgK//54+ociQkBAGDhzIsWPHmDBhAnPnzs1WK3p/f38KFy78zethbGwsmzZtYsmSJfj5+dGkSRM6duxI165dyZ8/+wQSdXV1mTNnDmPGjAEk3RgTExNCQ0PZtm2bXOfu0qVL+Pv7o66uTo0aNahfvz7v3r1j586dGBgYEBISkqmSSSVKFI0Q4OkplQOm6h7XqCGVrORGDeN/B1Im1JqQrS40Qkhlk4cOSaU7IOnL/P67VOKTukhgbi65z+W0E9LngRT9PPpMqD0hV2l73boFmzaBnp4UUMnG29F/inv37rF06VJ0dHTIly+fPAnk6NGjREZGUr58eR4/fpzzFscBAQHcuHEDDw8P9u7di5+fH/Xq1cPMzAwtLS3u3LnD8+fPeffuHQUyqS545swZTpw4wdOnT3ny5MkXE1OAvHnzoq2tTUhICGpqaqSkpFC7dm1q1qyJk5PTF8eaXUJxSpT8vyCEIDExkZiYGD58+MDcuXPZtWsXNjY2rFy5Ejs7Oy5dukSTJk1+6B4SHx+Pj48Prq6unD9/HhcXFyIjI3n16hXFixf/pk5B586dOXz4MIULF6Z9+/YkJyd/YbMeEREhfx/6j1WHmpoaQgjq169Ply5d6Ny5c6avVZ+TKt66ePFi7ty5w+HDh+nQoUOWtZ9VrFixggkTJhAeHv7TmXonT0rZE8WKweTJPz9hql69OlWqVGHDhg0/18C/eBf5jqXuS4lNiqWMcRlG1Bih0AyUz5HJZLx48QIPDw/c3d05d+4cfv9ESMaOPUR0dCcMDGD6dMl+99IlaWKaN6+USVG79rfPY2JiIrdv3+b69etcu3YNV1dXVFVVmT17NkOHDv3pgEBYXBiL3RcTEhuCmZ4Z42uNz3UZKMnJ0gT99GlpxVNDQ9I9adr02447qURFRfH333+zePFiVFVV2b59O23bts2egf9DTEwMa9asYcqUKYwdO5ZFixbJvwsPD2f16tUsX76csLAwunfvzqRJkzIlfJ0ZLC0tCQkJoU6dOtStW5e6devi7+/P4MGD0dXV5enTp+jq6iKE4OXLl7i4uODi4oKrqyumpqa0atWKLl26ULVq1RwZvxIlGSU2VnL0cnWVrsdaWlKWRa1aOR8I+DchsSEscV9CaFwoRfIVYVytcVmu8fUjUq/HZ85I7zU0JEtkOzv44w9ITIQxY+An19KzlJjEGJw8nHgX+Y78efMzsfbEbM3g+R4pKdL5CguTXA1r1crpEf2auLm50bp1a7kLqJGREaampnTt2pVu3bpRuHBhxVkc/2zqb1JSEgcOHODAgQNER0cTHx+PsbExU6ZMkTv2xMbGyi3rMktwcDDv37/HyMgIY2Nj8ubNixCCFy9ecOHCBUqVKkXTf9SMXFxcWLRoEefOnePChQs0adIkS8agRMn/M9HR0Tg5ObFmzRpCQkJITk6Wf1egQAHmz59Pv379UFVV5f379wwZMoQLFy4QHR2NehpPOomJiWzYsIHZs2eTN29ejh49SpUqVfjw4QOmpqaYmJgQGRmJtbU1EyZMoEuXLl+1c+/ePdavX8+VK1fQ1dVFX1//i1dqVFpfX59GjRqRP39+jh07xoEDB3BxcQGgSZMm/Pbbb7Rv3x6DdNRPyGSyH66wJicn07lzZzw8PHjy5EmuE7p+/vw5lStXpkePHmzatCnD+ycnS1kokZEwaJCU0vszvH37looVKzJkyBAWLFjwc418xsfYjyy8vpDIhEgsDS1xtHUkj3rOWAUsWbKEadOmkZCQgIGBIfXqnUdNrSi1a+chOFiPsDBpdl69ujRh//etOCoqCg8PD65du8a1a9e4ceMG8fHx6OjoUKtWLerVq4eDg0OmsqpiEmNY5LaIwOhATHRMmFB7Qq4TkfXzg23b4N076ffy5aW0+x/9l4qPj2ft2rXMmzePyMhIhg0bxpQpU7I0C+1HxMbGsm7dOhYuXEhoaCj9+/dn9uzZmJqa8vHjR5YsWcKaNWtITExkwIABjB8/nuLFc9ZG+uHDhxw/fpzr16/j7u5OdHQ0+fPnx8LCgufPnxMWFpYl5XZKlOQ23ryBPXvA11f6vVw5yYI2t7mnBEUHschtEdGJ0ZQxLsPImiMVnmmZ5jiCYNcuePFC+t3cHAwN4dEjqFgRhg/P9iGlSWRCJIvcFhEcE4yZnhkTak8gr0bWPJtmlvPnpUwoMzNpcSW3Be1+FYKDg5k6dSqbN2+mU6dOHDhwQL4AqzB3nswEUX7E1KlTmT9/vtzm09vbm6pVq9K5c2fs7e0xNjbOUiX8kJAQDh48iKGhIYaGhhw6dIiNGzcyevRoli9fnmX9KFHy/8i1a9fo3Lkz4eHhDBo0iHLlyqGrq4uOjg66urrUrFlTXhrYt29ftm/fLt+3TZs2zJw5U74yGR4ezsGDB1mwYAG+vr706tVLriHRsmVLSpcuzdGjRzE1NcXKyoodO3aQlJRE7969v2g3swQHB3P48GH27duHq6srIFkXt2nT5pv77N69m549ewKwdetW2rZti9E3ZlgBAQGUK1eOli1bsmvXriwbd1axbds2+vXrx/z585k0aVKGrsepaagGBjBvnmTVl1FiY2Np2LAhQUFB3LlzJ9MlCzGJMSx0W0hQdBDm+uaMqzUuRydKGzZsYM+ePfj5+eHnp0lS0jjAAniHqqpAXz+JkiVvUqZMChYWFpibm6OhocHt27e5efMmDx48QCaTYWxsLM8IqFu3LpUrV04zKJlRklKSWOa5jFehrzDUNmRCrQnkz5t9ZSM/IjlZWuk8fVrSjdHRkYInqTX43yI+Pp6dO3cye/ZsAgIC6N+/P3/++ScWFhbZNvbw8HB5ac7Hjx/p168ff/zxh9xJ6sSJEwwaNIi4uDiGDRuGo6NjrrT4TU5O5u7duxw9epSDBw9iZ2fHzp07c3pYSpQoDJlMcqU5cUIqVdXSkrIE69bNXQ+4b8LfsNRjKQnJCVQtVJVBNoNQVcn+8jkhwMNDKvGJiYGEBKnUx9wc5sz5sU5VdvEx9iOL3BYRER+BlZEVY2zHZFuG6veIjZUyeRMSck/2zq/MoUOH6NKlC+vXr8fBwQFQoDtPepRqf5a0HDHSeq1bty5D7d64cUPs2rVLODk5ia1bt4oXL16IDRs2iPz583/RbuHChcXMmTNFcHCwgo5QiZL/H/r16yesrKyEr6/vd7dLTk6W/9+3tLQUjRs3FsWLFxcVKlQQJ06cEF26dBF58uQRqqqqol27duLx48dCCCFiY2PFH3/8IRo3biwKFy78xf9lPT090adPn0w76nyPEiVKCECMGzdOREdHf3O7sLCwr65hTZo0EWvWrBH+/v5fbb927VoBiKdPnyps7JlhypQpAhAtW7YUQUFB6d5v0SJJWf7kyYz3GR0dLZYuXSoKFiwo8uTJI27dupXxRv5FYnKiWHh9oXA44SAmXZiUre4F6WHevBRRoUKiqFo1Qtjb+4g+fU4LR8dJolu3bqJ27dqiSJEiQk1NTaioqIhy5cqJfv36iQ0bNggvLy+FONXJZDKx/vZ64XDCQYw+MzrXuRf4+wsxe/YnB421ayX3om8REREh9u7dK7p27Sp0dXUFILp3754lDlQZwcfHR4wePVro6uoKDQ0N0b9/f/Hq1Sv597GxsWLAgAECEG3atBGBgYHZOj4lSpSkj8BAIRYu/HQN+vvv71+DcgKvYC8x7NQw4XDCQRx8knl3tswQESHE6tXSuapVS4gaNYTYvDlHh/QV7yLeCcczjsLhhIPYcHtDrnGB3bVLOm8bNuT0SP4bDB48WGhra4srV64IIRTozqPITJTLly9z+PBhtLW1MTQ0xNPTk5MnT3613ezZs/nzzz/T1eaOHTvo06cPADo6OsTGxpJ6uL1792bhwoVoaWkREBBAyZIls2S1TomS/0cSEhI4deoUb9684d27dxw6dIjq1atz+PDhDLd1+/ZtatSogRCCihUr0qtXL37//XfMzMwIDg5m1apVREVFoaqqioqKCpqamvTp04fo6Gg+fvxI3bp1Fe6wde3aNWbMmCEvC/r9999p06YN9evXR1dX96vtr169SocOHeRaK6nY2dnRqFEjatasSc2aNfnrr7/YtWsXb968ybXaTKdPn6Zv376oqKiwfft2mjdv/t3t372TVphUVSUxtPQ4yIBUnrJmzRqWLl1KWFgYvXv3ZsqUKZQoUSJT4xdCsPHuRu7430FbQ5uJtSfmGhV+mUxyNJgzR3rfoAGMGpW2EGpKSgqJiYnZ4iZ3+Olhzr86j5qqGqNrjqa0ce6wpBACrl2TzllSkpR98vvvYGPz9SpwcHAwJ06c4MiRI1y8eJHExESqVq1Kx44d6dy5c5Y4cKUXd3d3nJycOHr0KIaGhgwdOpRhw4ZRqFChz45N8Pvvv3P8+HFWrFjBgAEDsjQbV4kSJVmLTAaXL0tiqUlJkgBo375SSWFu4db7W2y6K5Xk9qzYk7pF6+bYWFKFeleuhHv3IE8eWLZMuu/llkvdi5AXLPdcTooshZYlW9KuTLucHhJ+fvDXX1JG78KF0t+Zkp8nNjaWpk2b4ubmxpQpU5g8efKvV86TFh8+fODcuXN4eHhQqVIlmjVrJk9v/RHu7u40b96ctm3bsn79enR0dAgPD8fT05MCBQpgY2Oj2MErUfJ/wq1bt+jXrx9PnjxBR0cHc3NzChcuzOjRo39akPHixYsUKFCASpUqAdIDxebNm5k4cSIpKSmYm5sTFhZGQEAAwFcWm98jKSkJFxcXvL29KVWqFNbW1hQuXPibDyjR0dGoqaml+bDq6+vLpk2b2LlzJ2/fvkVDQwM7Ozvs7e1p2rQpNjY2qP1Tu5KUlMTff//NzJkzSUhIwM7ODiMjIzw8PPjwj3S9iooKM2bMYMaMGRk9ZdlKYGAg/fr14+zZszg6OjJ//vxv2tPv2iU96NrYwD/Zkj/k/fv3VK5cmYiICPr168fkyZOzTPvh1ItTnHx+EjVVNRxtHSmV/ydtgrKYsDCp5MnFRaqxL1tWcuLJIpmwn8bdz53t96WyuP5V+lPTvGbODugfYmKk83PvnvR72bKSi9G/pyiurq7MmDGDa9euIYSgbt26dOjQgQ4dOlC0aNFsH/eGDRsYPHgwpUuXZsyYMfTq1StNLTgnJyfGjRvHwYMH6dy5c7aPU4kSJT9HQIB0LU/VZWrYUCrxyS1uKqn3QFUVVUbVHIV1gXTYlSmQjx8lna+AAKk8pVUrSVvmG1OKbMfDz4Nt97cB0KdyH2pZ5Lyi6/z50jyhY0f4gdlktvHs2TN8fX0JDQ0lNDSUMmXK5DqN0YSEBNzd3QkODqZIkSIUKVJEXho7duxYNm7ciK+vLyYmJr9+EOVnSEhIYMaMGSxevJiaNWty+vTpdIk/KlGiJGPEx8czc+ZMFi9eTOXKldmyZQsVK1ZUyGppYmKiXJxw48aNeHt7s3btWuLj4+nXrx9OTk5fPIicOHGCoUOHkpCQQJ8+fVi0aBFqamocPHiQIUOGEBoaKnfpAsmms0yZMpQqVQozMzMKFiyIuro6Z86cwcXFhTx58tCxY0d69epFo0aNvhKKFZ+JVl+4cIHLly8TFRWFoaEh1apVo1SpUvKXjo4O69atY8+ePVStWpVTp06RkJDAjRs3ePHiBaNHj87111mQBHNXrFjBpEmTsLW15dKlS19l8yUkwIQJ0s+M2BpHRERQrFgxunTpkmUuPAD3Au6x7vY6AHpX6k3tIrWzrO3M8PgxbNkC0dFSUMDCQjpvdnY5Oy6fMB+Wui8lWZZM61KtaVP62/o/2YmPD2zYIAWe1NSgQwdo0uTL1cuEhASmTZvG0qVLqVGjBgMHDqRt27bZKhT7b2JjY7G0tKRJkybs2LHju4LTY8aMYfPmzbx58wZDQ8NsHKUSJUoyS1KSlJFy6ZL0u7k5DBkCWWju99MIIdh6fys33t1AW0ObP+r+QQGdnB3YiROwfr10Ta9QQTpPDg5QpEiODkvO8WfHOf3yNOqq6kyoPYFiBsVydDxubrBjhySY/tdfOZ+5c/DgQbp27frFZ/Xq1ZPrB+YUQggePXokn5tfvXqVuLi4L7bR0NDA3Nyc5ORkYmNj8fLy+v8MogghaNGiBS4uLsyaNYsJEyYoS3SUKFEAQUFB2Nvb8/z5c2bMmMGECRN+2jI1PSQnJ9OqVSvOnz8PgJ6eHkOHDsXR0fGLFHiQstBq166NnZ0d2trauLi4cOfOHapWrcqsWbOYO3cunp6eVKxYEV9fX549e4aXlxfPnj3j5cuXBAQEEBgYSFxcHPXq1aNDhw6Eh4ezc+dOXr58SenSpZk0aRI9evRAU1MzzfEmJSVx8+ZNLly4wIMHD3j58iXe3t4kJCQA0kU7KSkJgKFDh7JmzRqFnTtFc/XqVRo2bMjcuXOZPHnyF9+5u8P27WBiArNnZ+xGP2/ePGbNmoW3t3eWiHy+j3zPQreFJCQn0Kh4I7qV75bpNjOLTAbHjsG5c9Lv2toQGiq5OyxenLMrl+Hx4cy7No+I+AiqFKrCYJvBOV5OIoRkK3rggGT3aGICAwfCvxNKkpOTqVmzJo8ePWLu3LmMHTtWnhGWkyxatIg//viDFy9e/DCzKjAwkBIlSjB8+HAWLlyYTSNUokRJVvL4seQWFhUlXd/795ecaHKapJQknDyc8AnzwVzfnMl1JueocGpoKEydChERUgAlIUGyo+/aFerVy/kggRCC9XfWcy/gHobahkyrNw1dza9Lt7OLhASYOBHi48HRMe2S38yQkpJCVFRUupIQfH19qVy5Mk2bNsXJyYnLly/Tu3dvzp49S7NsTpORyWS8e/eOy5cvc+HCBS5evEhQUBBaWlrUq1cPe3t77O3tKVKkCH5+frx9+1b+Cg4OZuTIkVhaWv43ynkyyrp16xg6dChnzpz5YZ2+EiVKfo6QkBAaNmzIx48fOXfuHBUqVMiWfoUQcnt0HR2db9qh+/n5Ubp0abkOUps2bdi7dy8qKiqcOXOGli1b8vLlyx9qayQnJ38RhBVC4O7uzuLFizl+/Djm5uZMmDCBESNG/NDCGKSbkp+fHy9fvuTFixe8ePGCa9eu0bdvX0aNGpWxk5HLmDx5Mk5OTty+fZuKn80QlyyBly+hfXto0SJjbR45coROnTpx48YNatSokanxxSfHM/fqXD7EfMC6gDWjao7KEWeCz4mJgY0bwctL+r1hQ2miffu2NGns0SPnxpYiS2GJ+xJ8wnww0zNjUp1JaKnnbG51YqJUGnbjhvS7jQ307p12yndwcDAmJiZs3LiRgQMHZu9Av0FkZCTFixena9eurF27Nl37/PnnnyxevJiPHz+mqbWkRImS3E94uJRl4eMj/d6yJbRpI+mE5SRhcWHMvTaXqIQoalnUonel3jkaKF+1SrI7rlcPIiPh/n3p89q1Ja2rnF4Tj0uKY/71+QRFB+WKecTevXDlClStCoMHZ3z/mJgYnj9/jo+PD69fv8bHx0f+3tfXl+TkZNavX8+gQYPS3F8IweXLlxk7diwRERHcu3cPbW1trK2tsba2xtnZOXMHmE4eP37MsmXLcHd35/Xr1yQkJKCiokKVKlXkQZPatWt/s+T832Qk5vGfStPYv38/Ghoa3Lt3j/r162eL4F5mSf0jPHr0KGPHjs2yun8lShRBeHg4TZs2JSAgAFdXV8qWLZttfauoqKCnp/dDwVULCwvu3LnDzp07+fDhA05OTvKJQerD+M2bN38YRPl3FpuKigq1a9emdu3aPHnyhEWLFuHo6Ii/vz+9e/dGR0dH/tLS0vpqMqKmpkaxYsUoVqwY9vb2GT38XM2sWbNwdnamVatWLFmyhK5du/LxowovX0orSLa2GWsvOTmZadOm0ahRI6pXr56psQkh2PlgJx9iPmCobcigqjlj7fg579/DmjVSLbimJvTpI4kPjh8vfV8rh0uujz8/jk+YD9oa2gyrPizHAyghIdL5evdOevDo1AkaN/726qSxsTG6urqEhYVl70C/w/r16wkNDWXixInp3sfQ0BBVVVV5KaMSJUp+PQwMpHLWQ4ck4dnTp+HNGymLLic1rwy1DRlYdSDLPZfj7ueOpaFljgrN1q0rBVHu3oUFC6RzdeSIVLri7y+VQ+WkOoO2hjZDqg1h/rX5eAV7ceL5CdqXaZ9j46lbVwqi3L8vLcCkV2BWCMHevXsZOXKk3OxAT08PS0tLLC0tadOmDZaWlly9epWxY8dib2//hR5pbGwsu3fvZsWKFTx+/Jjy5ctz6NAhDAwMWLhwIW/fvuX06dNZfrz/PoarV6+yaNEiTp8+jbm5OR07dpQfg52dHcbGxgodQ+pAfkh2WBxnBR8/fhSOjo5CQ0NDtGzZMqeH813i4uLE5s2bhbGxsdz61NDQUKSkpKS5fUpKinj27JnYu3ev2L9//3dtVZUoUQQxMTHCzs5OGBgYiPv37+f0cH6aEiVKiFGjRmVJW3PmzEnTil1dXV0cOXIkS/r4VfD19RVt27YVgLCzsxMjR14UDRs+Fz173hQ7d+4Uu3btErt3706X9fSmTZsEIG7fvp3pcbn6ugqHEw5iyMkh4lXoqx/voGDu3hVi5EjJonDqVCH8/KTPr12TPpsxQ4icdFJ8FPRIOJxwEA4nHMRd/7s5N5B/8PYWYtw46dyMGyfE8+fp269SpUpi8ODBih1cBrh06ZLQ1NQUbdq0EfHx8enap3PnzqJevXoKHpkSJUqyi5s3hRgxQrqeTZ8uxIcPOT0iIc68PCMcTjiIYaeGCd8w3xwbR0qKEBMmSOcmdYr55IkQjo7SZ+PHC/Eq52/h4ua7m/J75P2AnJ0Lz50rnRsXl/RtHxgYKDp06CAA0a1bN3Hjxg3x8ePHNO2bIyIiRJEiRUSjRo2ETCYTb9++FZMnTxZGRkZCRUVFtG3bVly6dEmkpKSI8+fPi+bNmwtAjB49OmsP8jMSEhLEnj17RI0aNQQgypcvL3bs2CESEhKyrI+MxDz+U5ko+fPnZ9myZaipqXH06FFkMlm60uyzm6dPn9KsWTPepUp3A6VLl2bUqFFpptINHDiQffv2ERMTI/9MR0eHjh070qNHDxo0aKBcqVKicNasWcOtW7dwc3OTu+b8iqSKoAohMp26Om3aNDp16kRoaCgxMTHyV9++ffHz88uiEf8aFC1alOPHj3Pp0iXGjZvAypW3AG9gI7t23fli227dujF//vw0M+/i4+OZNWsWXbt2zbSLml+EH/sf7wegg3UHLA0tM9VeZhACzp+XVtZAciFwcJBseUHSjwFJTDanMqrD4sLYcm8LAA2LN6RKoSo5M5B/uHlT0tRJTpbEdocPh/RqrFpZWfHq1SvFDjADNGrUiOPHj9O+fXvatm3Lxo0bKfID1cQ7d+6gqqrK+vXr6dSpU4ZW1uLi4ggPD//iuhQdHU3hwoUpV65cZg9HiRIlP0H16lCwIKxeDYGBksvK0KFQsmTOjamZVTN8wnx4EPiA9XfW82e9P9HWyP5MflVV6fxcvChZH1eqJLmuTZ0Ka9dKGZxOTpKuTNWq2T48OdULV+d1+Gsu+Vxi2/1tTK8/HUPtnBH/rllTymry9JRKgr+FEIIDBw4wfPhwVFVVOXToEJ06dfpu2/r6+mzatImmTZtSp04dbty4gY6ODgMGDGDEiBGYmZmxZ88eKlWqxOPHj6lSpQo7duyge/fuGT6OlJQUbty4wY0bN2jTps1XmeL+/v5s2LCB9evXExgYSKNGjThz5gzNmjXLWa22rI7KZCeXLl0SLVu2FPb29qJcuXLCyspKNGjQQLRs2VIAomjRomL69OkiPDw8p4cq58GDB6JAgQKiRIkSAhC///67CA4O/u4+tra2okyZMuLChQsiODhYvHr1SsyZM0eULl1aACJPnjyiTp06YvLkyeLUqVMiNDT0qzaSkpLSjDQqUZIeYmJihImJiRg4cGBODyXTuLi4CEA4OzsrpH2ZTCYAsWHDhgzvGxQUJHr37i22bNmigJFlH48fy8SAAcli5MgkERkZJ+Li4kRsbKyIjo4WW7ZsEWZmZkJTU1OMHTtWhISEyPdLSEgQixcvFmpqauJ5elMOvkFcUpyYdmmacDjhIFbdWJWj17+UFCF27ZJWjBwchNi7V/oslcBA6fMhQ4TIqdtViixFLLq+SDiccBB/uf4lklKScmYgQsrEOXHi0/lavVqIdCZvyJkwYYIoXry4YgaYCc6fPy8KFiwotLW1xcyZM0VMTMw3tz1y5Iiwt7cXampqQk1NTSxdujTN7eLj48WNGzfEypUrRe/evYW1tbVQUVFJM0sOEE2aNBFnz55VzgmUKMkhwsOFmDdPur4NHSqEh0fOjicmMUZMvThVOJxwEJvvbs6xcbx9K52TYcOE+PzSGB8vxKpVn+4J587lbMZmckqymHd1nnA44SCWui/NsWtpRIQ0b3BwkOYRaREUFCQ6deokANGlSxfxIYPpT2PGjBFly5YVK1euFJGRkSI5OVmsXr1amJiYyDNSLl++/N1zEBMTI16/fv3FZ5GRkeLQoUOiT58+okCBAgIQqqqqQlVVVfTo0UM8efJEyGQyMXHiRKGuri50dHTEsGHDxJMnTzI0/oySkZjHLy0s26hRIy5fvgyAlpYWLVu2xNXVlcjISE6fPs2hQ4fYuXMnefPmZfr06ZQoUUIu6Pj27VvatGlD//79s8XBJyIiglWrVrF48WKsrKxo3749M2fO5OXLl1hafrk6KpPJ8PX15eHDhzx69IgDBw7g6+tLWFjYV0KXDx48wNXVlevXr3P9+nUCAwMBKFOmDKqqqoSHhxMeHk5sbCympqZUq1aN6tWrU61aNapVq4apqanCj13Jr8/u3bvp2bMnr169+urv9VdDCEHt2pK1rZubW5ZHsWUyGbq6usycOTND+gdnz56lT58+REREkJSUxLFjx2jTJndYymaULVskAdAGDSCtRYmYmBiWLVvGwoULSUlJIU+ePMTExMgdiwYMGMCmTZsyNYbt97fj7ueOobYhf9b7Ex1NnUy197MkJEh2vI8fSxkmXbpIeh6fc/y4VCdfoQKMGJEjw+Tk85OcenEKLXUt/qj3ByY6OWMFLJNJArJubtLvzZpJFsYZ/W+6fv16hg8fTlxcnEKdw36GqKgo5s6dy8KFC+nYsSOHDx/+7vbBwcEsWLAAJycnRo4cSeHChXn9+rX85evrS1JSEhoaGlSqVInq1atjY2ODqampXKdJV1cXHR0dPDw8mDlzJs+fP6dp06acS7WGUqJESbaSlCQ599y+Lf3esSM0bZpzmYivQl+x2H0xQggG2Qyimlm1bB+DEJKTn78/9OoFdep8+k4mk5zZ/nnso149aX6RUwUHH2I+8NfVv0hITqBT2U40tWqaI+NYuVKaX7RsCe3affndwYMHGTZsGEII1qxZ85UNcUZxd3dn+PDh3L9/n379+jF58mRKlSoFSFnEx44dw8jICDMzM8zMzEhISGD16tWsXbuW0NBQ/vjjDwoVKsTJkye5fPkyiYmJlCtXjjZt2tCmTRsqVarEtm3bWLhwIX5+ftjZ2eHh4cGMGTMYM2YM+fLly9T408P/jbDsuXPnOHz4MKtWrcLd3Z0j/+RJW1lZUb16dZo0acKff/7J9OnTGT16NEIItLS0KFGiBMbGxgwePJi///6bc+fOYW5urpAxhoeHs2LFCpYtW0ZsbCyDBg3ir7/+onHjxrRt21b+QJqSksLFixfZsmULZ86cISoqCgAjIyNKlixJjx49vrJoVFFRoXLlylSuXFl+fK9fv+b69evcunULdXV1DAwMMDAwQE9Pj9evX3P79m1WrlxJSEgIAObm5tjY2FC1alXatGlDlSo5m76tJHfy4cMHdHV1f/kACkgXSFVVVe7cuUNsbCw6Oln7cK2qqkq9evVwcXFJdxDFxcWFNm3aYG9vz+bNmxkxYgS//fYbrq6uVKuW/ROZzJCU9ElVv2bNtLfR0dFh2rRpDBo0iB07dsg/09HRQV9fn5YtW2ZqDA+DHuLu546KigoDqw7MsQBKTAysWAG+vpJd8cCBULnyl9sIIZWtwLfPl6J5E/6G0y8lIbieFXvmWAAlKUlyLHrwQHqQ6NFDEs/7GaysrEhJScHX15eSP5ErHxQURIECBRRSEqynp0eBAgUA6Ny58w+3L1CgAEuXLsXExISpU6eiq6tL8eLFKV68OK1atUJVVRVDQ0MMDQ358OEDISEhhIaGUqBAAQoVKoSmpiYJCQkEBgbi4uKCj48PRkZGtG7dOsuPTYkSJekj9Z5gZPSp1DMiQgq050QgxcrIihYlWnD65Wl2P9yNlaFVtpeppArRHzkiLcR8HkRRVYVu3SQL5IMH4epViI6GAQNyxrnHRMeEruW6svPBTo49O4a1sTUW+SyytA/xjyvk1q1bCQ4OpmDBghQqVIhChQpRtGhR7O3tsbVV4/Fj6Xy1bfvpb+fy5ct07dqV8uXLc/HixUwtmgcFBTFp0iS2b9+OjY0Nnp6e1PzXhGXp0qVMmzbtq311dXUZOHAgenp6zJkzB3V1derXr8+iRYvkIrafM3z4cAYNGsTOnTtZunQpEyZMYObMmT89dkXyS2eifE5ISAgeHh6UKlWKkiVLfrW6/ObNG1RUVDA3N5dPiubMmcP06dN59uwZpUuXzvIxPXr0iLp16xIfH8+QIUOYMGEChQsXBqBVq1YEBQXRrl077t69i6enJ4GBgZQtW5bff/8dGxsbKlasSKFChbJ8pVwIwZs3b7h16xZ37tyRv8LCwmjTpg0zZ86kak4WHCrJdcyePZt169bh7++f00PJFP7+/rRo0YK3b99y7Ngx6tevr5B+Fi9ezMyZMwkLC0NTU/O72z59+pRatWpRs2ZNTp06hYaGBnFxcTRq1Ahvb28uXbr0hW1wbufuXcnOMX9+mDs3+yeDMYkxzLwyk8iESJpaNaVT2e/X/SqK8HBYvhwCAiTdk5EjIS3zNV9fqS5eU1OyhM5ueauklCTmXptLQFQA1cyqMcgmbTtDRRMbK+kEeHtLE+JBg74OOGWEsLAwTExMWL58OcOHD0/3fiEhIUyfPp1169bRqlUr9u/fn+VOf+fOnaNly5ZMmDCBBQsWZGjfhIQEnj9/zrFjx/Dw8ODGjRtyFyIVFRUKFSqEkZERvr6+REdHf7W/iYkJ48ePZ+jQoUrbZCVKcgkXL0qBAZB0Qfr1g3+tm2YLKbIUFrot5E34G8oYl8HR1jHbNSfCwmDyZOn9vHnSXOLf3L0LmzdLelnW1pKuTE5IQwohWHd7HfcD71NIrxB/1P0DkSL48OEDQUFB33wlJyeTL18+9PX15T8/f58vXz5evXrFxo0befr0KcWLF8fa2pqAgAACAgL48OEDMpmMixcvUrduYyZMgPh4yeEvdc0gJiaGfv36ybNRli5dmm6b38+Pb9OmTUyYMAE1NTXmzZvHwIEDv1rUj4yMxNLSks6dOzNlyhTev3+Pv78/sbGxtGvXTp5B8vr1a4yMjLIlo+RnyUjM4z8TRPkZxowZw8mTJ/H29iY+Pp4jR46wYcMGIiMjcXJy4tWrV/Tr1w9VVVWSkpJQU1NDVVUVf39/Ll26hJ6eHu3bt/9m+4GBgTRr1oynT58ybdo0pk+fLr8YrVixgtGjR2NoaEiVKlWoWrUqXbp0oXr16jkikpOcnMy+ffuYPXs2L1++pG3btsycOVOZmaIEgIkTJ7JhwwamTp2KhYUFFhYWWFlZUahQoZweWrp5+vQpLVq0QCaTcfbsWYWKK967d4+qVasyfPhw6tWrh42NDVZWVl9tFxgYiK2tLfr6+ly7du2LG0toaCj29vb4+vpy8eLFX+b/4vr10gSnWTMpPTm72XhnI7f9b8snNBpq2V/KERwMy5ZJ1rwGBuDoCN/6r3LwoDSBrl5dWpXMbo54HeGc9zn08ugxs8FMdDWz/8E6OloKOPn5gba2JCCbFUKLLVq0IC4ujitXrvxw25SUFDZs2MC0adNITk5m4MCBrF27lmrVqnHy5MlMT/ri4+O5e/cu7u7uzJ07l9q1a3P8+PGvJqPpwcbGhufPn1OvXj1sbW2xtbWlVKlSmJmZyYO2QggCAgJ4+fKlvGROS0uLsmXLZnlQSIkSJZnn1i3YuhVSUiRRVQeHnMmwCIoO4q+rf5GYkkjXcl1pbNn4xztlMUuXwosX0L49tGiR9jZeXpLgbEKCtEAxcuQnofbsJDoxmvGnxnPx2kUC3QKJuRXz1TaGhoYULFgQU1NTTE1NUVdXJzIykoiIiK9+JicnA6ChoUH79u1xcHCgUaNGX2RF3rlzh2rVqrFjxw4sLCw4ckSPhw91MDV9gZHRGd6+fSt/RUZGArB161b69u2b7uMKDg5m4MCBnDhxgn79+rF48WLypxHRev36Ne3ateP169c8efLkh4LpuZ0MxTyyWmTlV2LlypVCTU1N2NnZCSMjIwGI+vXrC319fbkAW9u2bcWSJUuEtra2KF++vChTpoz8u2bNmv2wj9evXwsDAwOhrq7+hZhPcnKyCAgIyHXCbklJSWLHjh1y4dv27dsLNzc3kZSUcyKDSnKe48ePi/Lly4t8+fLJ//7V1NTE+fPnc3po6SbVfm3Tpk0K7yslJUV07dpVFCxYUH6+Zs2aJbcwf/z4sRg7dqwoUKCAKFSokHj79m2a7YSGhorq1asLAwMDcfPmTYWPO7PExUmCcA4OkkBcdnPr/S25nXFOWTUGBn6yafzjDyE+fvz2tjKZEBMnfmnpmJ28Cn0lBp8crDCrRm9vbzF48GAxbtw4MWfOHLFgwQIxceJEMXDgQDFkyBCRmJgoIiKEmDXrk4VxquVzVrB582ahoqLyQ9E7V1dXUalSJaGioiL69+8vAv9R6HN3dxf6+vrCwcEhU+PYv3+/0NTUFIDImzevaN26daYE79u2bStq1qwpYmNjMzUuJUqU5C4ePxZi+HDpevj330JkoXNrhrjy+opwOOEgRjiPEB9jvnMTUxDXrknnYM6c72/n4yPEmDGfto2Ozp7xpZKQkCAWLVoktItqC+0u2qLazGpi0YZFwtnZWdy+fVv4+fllyH5XJpOJ2NhYERgYKMLCwr65naur678Ew60FrBN58qwUlSpVEW3bthUjRowQixYtEvv27RPu7u4iOTk53eM4ffq0MDU1FcbGxuLYsWPf3O7ixYvCyMhIWFpaikePHqW7/dzM/42wbGZ5//49c+bMISkpCVNTU/r06UPp0qU5fvw4CxcuxMHBAUdHRyIiIhg0aBDBwcHkz5+fnTt3UrBgQW7cuEHBggW/2f6FCxfo0aMHGhoa7N+/nzqfF/flcpKTk9mzZw9z5szB29sbPT096tSpQ7169eRRVHV1ddTU1NDQ0MDAwABDQ0MsLCzSjFQq+e8QFRWFn58f/fv3R01NjevXr+esxVg68fb2ZsiQIVy6dIkuXbqwfPlyzMzMFN7vx48fWbNmDTNmzKBZs2aEhYVx8+ZNjI2N6dWrFyNHjkzT6jeViIgIWrRowZMnTzh79ix2dnYKH/PP4ukpraQVLAgzZ2ZvKU90YjTTL08nJjGG1qVa06Z09ovyfvggraCFh4OZGYwZA9+7Zb58KZXwaGtLP7Nz1TEpJYk5V+cQFB2Erbkt/ar0y9L237x5Q926dUlMTERfX5/w8HD5CltYWBglS5bk2rVHrFmTh8BAyJcPxo6V/nayivDwcGxtbXn+/DlWVlb07t2bnj17AlK57aNHj/Dw8OD06dPUrFmTlStXUr169S/acHJyYuLEiTx58uSny367deuGl5cX27Zto2LFipkWs9+3bx+9e/fG1NSU/Pnz06hRI5ycnDLVphIlSnIHz55JpY2JiVCqlCQ2nt2lKkIIlnos5WXIS8qZlGNkjZHZOs+LjoYJEyQx2b/+knRQvoW/v5T5GRkJ5ubSfTc7KhUvX77M8OHDef78OSNHjqRE1xI8CnlEYf3CTK07FXVVxd3QU1JScHd3R1NTE0NDQ/T1DZk/34j4eDXGjZP+bn6GuLg4Jk6cyKpVq2jevDlbt2795nPuxo0bGTp0KI0bN2bv3r0YGRll4ohyD8pynizk7du3BAcHY2NjA0gTr4oVK3Lu3DmaNv1aiTkiIoJ9+/axadMmbt++TYMGDejWrRvv378nLCwMc3NzevXqJddGye0kJydz48YNXF1dcXV1xc3NjZiYr1PVUtHW1ubGjRtUqFAhG0epJCdwdnamdevWXL58mQYNGuT0cNKFEII9e/YwduxY4uPjuXDhAjVq1MiWvo8fP87IkSOpUKECAwYMoHXr1j/US0klKiqKli1b8vDhQ1xdXamcGbEIBZKqEt+mDWS3ZmWqG092TGDS4uNHKRASFiaV7owbB3p6399n7164cgVq1YI+fbJlmHJS3XjyaeVjZoOZ5NXIm2Vt+/v7U69ePYQQXL16VX6/e/PmDQ0aNEBNTY2TJ13Zu7cwQUFgaCgFUEwUoGcrk8m4evUq27dv59ChQ1/ohBgZGVGhQgX69etHr1690hSRjY+Pp1SpUtSoUYNDhw791BgsLCzo3r07ixYt+unj+Dfe3t5Mnz6dvXv3UqtWLdxS7YyUKFHyy+PtLd1P4+OhTBkpkJLdJmNB0UHMdp1NsiyZ/lX6U9M8e5XPly2TAkodO0rlwd8jMFBawMiOQIq/vz/jx49n79691K5dm9WrV1OpUiWiE6OZcXkG0YnRtCvTjpYlMyeQn1G2bwd392+7Iv6byMhIXFxcePnyJd7e3rx8+ZLHjx8TFRXFkiVLGDZs2HcDZyVLlsTCwoKzZ8+mey77K6As51EgCxcuFGpqaiLmMwPzoKAgsWXLFtG+fXuhra0tVFVVhZ2dnahfv77IkyePAESBAgVExYoVha6ursifP7+4fv16Dh7FzyOTyURycrKIj48X0dHRIjw8XHz48EG8fPlS3LhxQ5QsWVI0btw415UpKcl6ZDKZqFKliqhRo4a8TOVXITQ0VNSsWVMULlxYnrqf24mIiBA2NjbCxMREvHz5MqeH8xUxMUIMGSKl1QYEZG/fzz8+Fw4nHMTgk4PFq9BX2du5kEp2Jk+Wjn36dCHSc6tMSZHKVxwcpBTu7CQwKlAMOzVMOJxwEHf872R5+x07dhRmZmbi9evX8s/ev38vihcvLgBRtmw1UbDgKmFkdFCYmGwWNWu2En5ZWcfzDaKjo8Xhw4fF2bNnxfv379O8T8XHx4sjR46Izp07i6pVq4qEhASxbds2AQgPD48M9/n27VsBiKNHj/7UmCMjI8W2bdtE48aNhYWFhXBxcZF/l5KSIoyMjMTMmTN/qm0lSpTkXl69EmLkSOkesWqVEBmoxsgyTr84LRxOOIgxZ8eIyPjIbO3b1VU69nnz0rd9QIAQ48dL+8yeLc1JspLExETh5OQk9PT0RIECBcS2bdu+mvt6+nkKhxMOYtipYSIgKnsnQo8eScc+frw0v/gRI0aMEIDQ0dERlStXFl26dBFTp04VXl5e6eqvSZMm8hJVOzs7MWPGjMwdQC4hIzGPHHLX/vVwc3OjQYMGTJo0ibZt25I3r7Rqd/78eQoXLsyAAQP48OEDM2fOZM+ePXh4ePDu3TtmzpyJn58fHz58YOnSpRQvXpyQkBDu3LmTw0f0c6ioqKCmpkaePHnQ0dEhX758FChQgBIlSlCjRg2WLl3KpUuXOHnyZE4PVYmCUVFRYcWKFdy8eZNVq1bx+PFjjh07xpIlSxgzZgybNm3i2bNniB8nu2U7hoaGHDlyhJSUFLp06UJSUlJOD+mH6Ovrc+bMGQwMDLC3t891TkmPHkmpt2ZmWVuS8SOSZcnsfrgbgLpF6mJpmL023KGh4OQk/TQ1lTIq0pOw+eoVREVB3rzSSmN2IYRgz6M9JMuSKW9SnioFs1awOCwsjFOnTjFhwgSKFSsm/zzVRaZcORuEGImRUSWKFDGgWLGj3LjhnC3/B3V0dOjYsSPNmjXDzMxMvsoWHByMl5cX586do0KFCnTs2JHLly9z9+5dZDIZPXv2pHz58owaNSrD43R3dwf4qTK8O3fuYG5uTt++fUlJSaF48eK0aNFCfn998uQJoaGh1P1ZH2glSpTkWiwtP2WgPHwIW7ZI99jspKlVUwrrFyYmMYaDTw9ma9+VK0slwb6+kkj7jyhYUHKn0deHd+8+lURlBVevXqVq1aqMHz+e3r178+LFC/r06fNV9mKNwjUob1KeZFkyux7uytb5b5kyUmlwZKQ0v/geISEhuLq60qpVK6Kiorh37x4HDhxg7ty5lEnnhOTYsWNcvnyZ2bNnA5KLZ0pKSmYP49ciq6My/zXevn0rJk6cKNTV1UXVqlXF0aNHRUpKioiOjhYHDhwQVlZWol69eiIoKEi+j7+/v1BRURGOjo7i7du34u+//xaVKlUSgLCzsxNubm45eESKRSaTiebNm4s8efKIv/76K0OCSkp+Tfr37/+FwJWurq4oWbKkUFVVFYDInz+/aNu2rVi0aJG4c+dOrspSunz5sgDEuXPncnoo6ebNmzfC3NxclC9fXsTHx+f0cOSsXSutgnxHg0whOL9wFg4nHMS4c+NETGIWLz39gKgoIf78UzruadOE+I4O3FccOCDtt2WLwoaXJqkrZcOdh4vgmOAsb3/Tpk1CRUVFvH///qvvEhOFWLpUOu4xY4R4/16I3377TVSuXDnLx5EeZDKZGD58+BfXr4oVKwpPT09Ro0YNUaRIEfm2np6eQl1dXUycODFDfQwaNEhYWlpmeGzBwcGiSJEionr16uLNmzdCCClLpmPHjkJdXV3Y2toKS0tLoamp+UVmrBIlSv5bPHokxNCh0nVz2zZJkDw7eR32Wi5A/jIke7NglyyRjvvChfTv4+cnhKOjtN+KFUJkxhcjKChI9O7dWwDC1tZW3Lnz48zNkNgQMdx5uHA44SBuvsteQ4AtW6Tj3rfv29ucP39emJmZCSMjI3H58uUs6XfOnDnCxMQkS9rKaZSZKJlECMH169fp0qULxYsXZ926dUycOJHLly8THx9P165dKVCgAF27diVfvnysW7cOk8+KuQsVKsSUKVNYtWoVRYoUYdy4cVhaWuLs7Iybmxu1atXKwaNTLCoqKhw+fJjRo0czY8YMqlatqqzV/o+zfPly9uzZw/Xr1wkKCiIyMpIXL14QHh7OhQsXGDFiBDExMcyaNQsbGxsqVqyIk5MTwcHBOT106tSpg7q6Oj4+Pjk9lHRTpEgRbG1tCQgIkAt15jRJSfDkifQ+O52YP8Z+xPmFMwBdy3XNUl2PH5GYKK10BQWBkZGUgWJgkL59hYD796X32SlvE5sUK19NbFWyFcZ5jbO8j2vXrmFiYoLOv7wmU1Ik++vnzyWRxFGj4OrVfRw4cIDff/89y8eRHtatW8fq1atZsGAB165d48mTJ9y+fRuAmzdv0q5dOwICAgCoWbMm8+bNY9GiRZw9ezZd7T958oStW7cyYMCADI9tzpw5REdHc/jwYbllZJ48edi/fz/Tp0+nbNmyNG3alNWrV8szY5UoUfLfo3x5GDhQyspwd4cDB6R7SHZRzKAYdYpIxhj7Hu9DJrIvHaZqVelnRpL3zc0/ZfA8fgzbtmX8fMlkMjZs2ECZMmU4deoUGzduxM3NjaqpA/oORtpGcj2UQ08PkZCckLHOM8E/8p3cvZv2MV+7do2mTZtStmxZHj58mGV6hoGBgd81WvnPktVRmV+d8PBw0apVKwGI0qVLi9WrV4uoqCiRkJAgqlSpIgBRrVo1sWDBAuHt7f3dtl69eiW2b9/+hbXx/xP3798XNWrUEIBYs2ZNTg9HSQ6TlJQkzpw5I7p06SI0NTWFnp6e2LBhQ45mpnh6ego1NTWxevXqHBtDRknNnnF0dMw1WjT370urH5MnZ+8q2bpb64TDCQfh5O6UrX9HKSlSjbqDg7Ti5e+fsf39/KR9hw/PXgvLA48PCIcTDmK6y3SRlKIY2/q7d+8KAwMDYWtrK89ElMmkFdTUY37+XIg9e/YIVVVV0bt37wxZL2Yl1apVEx07dvzqc5lMJkqWLCkAoaenJx9fSkqKaN68uShQoECa9/W7d++K8+fPi7t37wo/Pz9Rv359UapUqZ/KGOvYsaNo1qxZxg9KiRIl/0k8PKRrqIODEOfPZ2/fkfGRwvGMo3A44SBcfV2zrd+wsE/HHBqasX0fP/6UwbN7d/rnJvfv3xd2dnYCEP369RPBwRnP2ExMThRTL04VDiccxOGnhzO8/8+SlCTEqFHSMb9KQx6ub9++omTJklkyd5TJZCIwMFB4e3uLZs2aCXt7+0y3mRtQZqKkEyEEp0+fZv78+Tg6OtK9e3eqVKnC9evXOXz4ME+fPmXo0KF4eXnRq1cvuR3irVu3mDRpElZWVt9t39LSkt69e1Pge95c/2EqVaqEu7s7Xbp0YdmyZblSG0NJ9qGurk7z5s05cOAA79+/p2vXrjg4OFCnTh3mzZuHi4sLUVFR2TaewMBAOnXqRM2aNRk4cGC29ZtZTE1NqVSpEsuXL8fa2poVK1YQGRmZo2P6PKsiu1wQX4a85G7AXVRUVOharmu22S8KAbt3SzXqGhrSilehQhlrI/V8lS0L2SVq/yHmA5d9LwNS1o6i3IuqVKnC3r178fT05OHDhyQnJ3PmjLSCqqICgwfDy5fO9OzZk7x581K0aNF0Z3ZkNWpqahgaGn71+f79+3n1T1F5s2bNOHz4MI6OjtjZ2eHh4UFYWBh79uz5Yh8XFxdsbGxo2rQpVatWxcLCAldXV1atWkWen/AnjYmJUWaYKFGiRI6tLXTpIr0/dEjKNsgu9PLo0bZ0WwCOPTtGTOK3XTqzEgMDSH3USr1vppdy5aB/f+m+4+oK5859f/uoqCjGjh2LjY0NkZGRXL16lS1btmBsnPGMTQ01DbqV7wbARZ+LBEUHZbiNn0FdHSpVkt7fu/fld/Hx8Rw5coTu3bun6USXUSZOnEjBggUpUaIE586do3jx4plu81fj/zKIIoTA2dkZGxsbWrVqxeLFizl//jy3b9/m9evXlC9fnhs3bjBjxgzKli1LjRo1uHbtGuvXr8fW1janh/9LoaamRr9+/Xj58iWPHj3K6eEoySUYGxuzadMmzp07h46ODgsXLqRx48bky5ePWrVqsWXLlu9aaWcGIQT79u2jSpUqyGQyDh48+EvZs1lbW3Pv3j2uXbtG5cqVGTt2LMWKFWPz5s05EqiUyeDBA+l9dpXyyISM/U/2A5KYbGH97LOMd3aG69elidmgQZ8meBkhdXKTnaVPh54eIkWWQnmT8pQzKafQvkqXLg3A8OHDMTRsxqpVfoBku1ihAqSkpFCzZk2KFCnChg0baN26NWfOnFHomNJCS0uL+Pj4Lz7bt28fPXr0oGfPnsyZM4dDhw7RrVs3Tp48SalSpTA0NCQlJYVt27bJ9wkJCaF37940bNgQHx8fbt68yenTp3Fzc8Pe3v6nxmZhYcHz588zc3hKlCj5j9G4MTRsKL3fsgWysxK5frH6mOmZEZMYw4nnJ7Kt39T7ZOo8IyNUqwbdpFgGR4+mHXgSQnD48GGsra1Zt24dc+fO5e7du5kW7K5gUoHyJuVJkaVw4MmBTLWVEVKDKP8+X2fPniUyMpLffvst0328fv2a5cuXM3r0aFxcXLhx4wbLly/PdLu/GioiHbPuDHkm52J8fX05duwYu3fv5vbt29StW5fevXsTFBTEoUOHuH//PmpqalSsWJHw8HDCw8Np2bIlvXv3pnHjxqipqeX0IfySJCQkUKRIEWJjY+nUqRN9+vShYepdQIkSpPpTLy8vPDw8OHz4MOfOnUNXV5dWrVphZGSEtra2/KWrq4uJiQmmpqYULVoUS8v0u7G8fPmSESNGcP78eTp27Mjff/+Nubm5Ao9M8bx//56pU6eyY8cOGjRowLRp06hQoQIFChTIluyM588ldxodHViyBLJggeOHuL11Y8eDHWipa/FXo7/Qy6On+E6Bmzdh82bpfY8eUK9extv4+BH++EM6T0uWSOdN0Tz7+IxlHstQVVFlev3pFNLLYOrMd4iIiCAoKIjo6GiMjIwoVqwYoaGh5M+fHzW1Mshko9DRycfWrb/TufPX+8tkMtq2bYuHhwf379/HwsIiy8b2I7p06cL9+/e5f/8+Ojo6xMTEYGBgQLNmzTh+/DjBwcGYmZnx22+/sXbtWvLly8fGjRtxcHAAoEyZMsTGxhIeHo6amhqPHj2icOGsCeht27aNfv36ERgYiKmpaZa0qUSJkl8fmQzWrpWyIXV1YfJkyK6E9+cfn+Pk4YSqiiozG8zEVFfx16agIJg+HdTUpLmGllbG29i3Dy5flrJHJ0yAokWlz1+/fs2IESM4ffo0bdq0YcWKFV+4ymV67NFBzLwyE5mQMdZuLKWNS2dZ298iPl7SaEtJgTlzIFWys1evXjx48ICHDx9muo+BAwdy8uRJfHx8vtI/+9XJSMzjP5+JEhcXx+bNm6lWrRrFixdn0qRJaGlp0a5dO6Kiohg0aBDz58+nTJky7Nu3j48fP3L37l18fHwIDQ1l165dNG3aVBlAyQR58uTh1q1bTJgwAXd3dxo1asRvv/1GSHo8y5T8X6Cqqkq5cuUYOHAgZ86cwcfHB0dHR968eYObmxsnT55k+/btLFu2jIkTJ9K9e3caNWqElZXVd1drZTIZN2/eZMaMGVSrVo1SpUrx/PlzTp48yeHDh3/5AApA4cKF2b59O+fPn+ft27c0adIEU1NTjI2NqVu3LoMHD+bixYsKy1JJTbGtVCl7AigJyQkce3YMgNalWmdbAOXNG9ixQ3rfrNnPBVDg0/kqWTJ7AigyIePgE0lMtn6x+lkWQImPj2fmzJmYmJhQunRpbGxssLKyYujQoSQnJzN48HTKlFmOEKp06mRJp05pt6Oqqsr27dvR0dGhW7du2Wo3/tdffxEQEMCYMWMAyQK5RYsWPHnyBJlMRsGCBVm0aBHHjh3DysqKGTNmMHr0aPr06cOECRNo2bIlffr0YcqUKbi4uPwwgBIfH8+NGzfw9fVF9i+vUiEER44cYeTIkVSpUkUuRvvu3TvFHLwSJUp+SVRVJaHZokUhOhpWrIDY2Ozpu7RxaSoVrIRMyDj67Gi29GlqKgUCUlLg6dOfa6NrV0mgNykJVq2CoKBE5s2bR9myZXn06BHHjh3jxIkTWRpAATDVNaV+sfoAHPY6nC3ZwlpaUKqU9P7zeImOjk6W3V9jYmKIiYnhwc+kB/2XyGqRldxCQkKCGDdunNDS0pJbF1paWor69esLbW1toaamJjp06CAOHz4sYmNjc3q4/zfIZDKxZ88eYWhoKNq0aZPTw1HyCyKTyURERIRYsmSJAEToN9TG1qxZI0xMTAQgDAwMRLdu3cSOHTv+03agSUlJ4unTp+Lw4cNizpw5onv37qJ06dICELVq1RI+Pj5Z2p9MJsTUqZKI2f37Wdr0N0m1NP7j0h8KE0f9N+HhQkycKB3nqlWSsOzPkmrZeOlS1o3ve7i/dRcOJxyE4xlHEZ0QnSVtOjs7ixIlSggNDQ0xdepU4erqKu7cuSOWLVsm8uXLJ/T1TUSLFjdFly4hQlNzhlBV1RIlSpQQLVq0EOPGjRNBQUFftenh4SHU1dVFt27dxJkzZ0RUVFSWjPVHTJs2TRgZGcl/P336tADE3r175XOe9+/fi0GDBglVVVVhbW2dbqFBmUwmHjx4IBYvXiyaNm0qtLW1v7CCr1Onjnj16pWQyWRi/fr1AhAlS5YU/fr1E5s3bxYvX2avnagSJUp+HSIihJgy5ZOVb3bpzPtH+sstj71Dvm+wkVUcOCAd59atP99GXJwQM2dK7RQvvkWApgCEvb29GDRokJg7d65C5oeR8ZFi5OmR2Wp5fPGidJxLl376bO/evQIQAQEBP9VmYmKiuHz5shg/frwoVaqUAET37t2zaMS5B6WwLPDixQuWLl36Rb1zcnIyefPmZdq0afj5+XHkyBE6duyItrZ2Do70v0lcXNwXK2gymYykpCRUVFTo3r073bt359mzZyQmJubgKJX8iqioqKCvr09gYCBFixZNUxgSpDKyDx8+YG1tzfPnz9m3bx+9evX6T4s1qqurY21tTceOHZk2bRp79uzBy8sLZ2dnfH19mTp1apb2Fxgolaeoq0OZMlnadJrEJMZwzltSh2tXup3CxFE/JzkZ1q2D8HBJQHbAgJ/PuImLA29v6X3Filk2xG+SLEvm5IuTADQv0Rwdzcylvnh5edGiRQtatWqFhYUFDx48YO7cudSrV4+qVavi6OjIixcvyZNnMOfOPcDcXA8Pj56sXr2Mtm3boq6uzpYtW6hTpw5v3rz5om1bW1vWrVuHi4sLLVq0oEKFCgrTRfqc1PKj8PBwQNIcMjU1pXv37hgaGlKjRg3y5MnDn3/+yaJFi+QZKi1btmTXrl1fiWHHxcXh7OzMsGHDKFq0KJUqVWL69OmoqKgwe/Zsbty4gbOzM3/++SfXr1/HysoKVVVVBg8ezO+//86LFy/YsmUL/fv3p0SJEgo/fiVKlPya6OvD0KGfrHxPnsyefgvpFaKWRS0AjngdyZbsitT75ePHUjnTz6ClJQnB6+uDpWU9mjTZSY8ePVFTU+Pu3bvMnj2bwYMHf3U8J0+eZMWKFezYsYPjx4/LRcf/TUBAAJMmTaJVq1by+wlIorzNrJoBkihvsiz55w4gA6Tqorx8+SlLKdXO+MqVKxlub8aMGRgbG9OwYUN27dpFnTp1OHz4MBs2bMiaAf+qZHVUJjdx/vx5sWXLFnHjxg0RGRmZ08P5v2LkyJECEFpaWqJgwYJCXV1d6Onpibi4OCGEEIcOHRJqamqiTJky4sKFCzk8WiW/Io6OjsLc3Py71rbHjx8XhoaGokWLFtk4stzJ6tWrhaqq6g+t2TPC+fPSasfff2dZk9/l0JNDwuGEg5jjOidbLI0/t+Z1dBQijQSKDHHnjtTW9OlZM74f4eLjIhxOOIgJ5yeIhOSf91KOiYkRo0ePFmpqasLS0lIcOXLkm+d/woSLAtaJevUep2mx6O3tLYoXLy7MzMzStAmWyWTi5s2bQkNDQ8ydO/enx5xefHx8hIqKipg4ceIXY/Dy8hIzZsyQZ46kvlq2bCmWLl0q6tSpIwChra0t5syZI9zc3MTvv/8uzzaxtLQUo0aNEufPn5ff9/7NrVu3xJYtW8TGjRvFpk2bfrk5lhIlSnIeT89PNsB372ZPn2FxYWK483DhcMJB3A9QfBpqcrIQo0d/27o3I7x6JcSQIVJbFy9++nzPnj0CEIMGDRInTpwQ79+/FwMHDhSAyJMnj/weoKmpKVatWvXVPXDRokXybf7+16QoPilejD83XjiccBCXfLInDXXGDOkYb36W/FKmTBkxePDgDLXz8eNHoaqqKvr27Stu376dJfbIuZmMxDz+00EUJTlHixYtBCAWLVokZs2aJWrXri1MTU2/uOg8fPhQ1K1bVwCiS5cu4uPHjzk4YiW/GhcuXBCAuPuDWcP69euFqqpqmg9s/0/ExsYKExMToaenJ2rVqiWmTp0qEhMTM9Wmk1P2laaExobKJ22Pgh4pvkMhxNWr0vENHizEkyeZby81IHPgQObb+hGfT9quvL6SqbaOHz8uADFy5EgRHx//ze2ePBGiZMlLQlNzq7hy5dO1PiAgQPj4+IjQ0FCRnJwsLl68KADh6en5zbZGjRol9PX101068y1kMpl4+fKluH37tnjy5IkYO3asqFixoihSpIgwMjISBgYGQkNDQ+zYseOrfaOiosTgwYPF7NmzxfHjx8Xbt2+/+N7X11dMmDBBqKqqCkBYWVmJBQsWCC8vr2wJ8ilRokSJEELs3y/dW0aOFMLfP3v6PPL0iHA44SBmXp6ZLde7DRukYzx6NPNtubhIbQ0ZIsTnVZPz588XhQoVkgdD8uTJI7Zs2SKEECI+Pl4EBgbKF4l/++23Lxbob926JQ+2VKxY8atz4urrKhxOOIjx58ZnalEjvRw+LB3jpk2fPhsyZIgoVapUhtrZsWOHAIR/dv1h5TDKch4lOU7nzp1RUVFBW1ubP/74g4SEBBo1avSFW0iFChVwdXVl586dnD17lsWLF+fgiJX8atSvX598+fJx7Nix727Xvn17gB9u919HW1ubK1euMHXqVIoXL87ixYvp1KnTVwKX6SU+XkoVBUmwTdE4v3QmKSWJkvlLUq6AYi16Ad69kxT9ATp0gLJlM9eeEFIqMkg2v4rG5bULkQmRGOc1pnaR2plqq3nz5hQtWpTAwEDy5MmT5jYhIbBpk3Sc5ua+1KsnXeujoqIoUaIElpaWGBkZoa6uTsuWLdHR0aFq1arf7HPatGkIIZg9e3aGx5ucnMzVq1cZP348pUuXpmTJklSrVo1y5cqxfPlyatSoQe/evTE3N8fY2BgPDw969er1VTu6urqsW7eOP//8k7Zt237lHFS0aFEWLVrEvXv3OH/+PC9evGDSpEmUKVMmW5yxlChRogSgUydJTDQhQXLu+Zdzu0JoVqIZWupa+Ef5cy/wnsL7Sy3pyQJzGRo0gOrVpdKgDRsgMlL6fPLkybx//57Xr1+zd+9e7t69S79+/QDJJMPU1JQVK1awf/9+Tp06RfXq1bl//z6///471atXp1ChQvz+++88fPjwKxecWha1yJ83P5EJkVx9czXzB/ED0iqBatiwIS9evMDf3/+H+wshCAoKYt++ffJjU/Ilii8oV/J/Sc+ePbl58yYjR45k37593L59W+428DkqKir07NmTY8eO4eHhkQMjVfKroqGhQbdu3Vi5ciVDhw6lYMGCaW5nYmJCgwYNOHjwIIMGDcrmUeYurK2tsba2BqQH4169euHl5UW5chkPSnh5SWr5JiafLPQURUhsCG5v3QBoX6a9wh9Q4+OliVVyshQgato08236+UkTtTx5QNFSF/HJ8Zx/dR6AtqXbZlo7RlNTk+nTpzNgwADu379P5cqVv/g+JQU2boSYGNDTC8XHZzUqKjMBuHTpEjExMezduxd1dXUiIiIIDw+nVKlSaGhofLPPAgUKMH36dCZOnEjRokWpWbMm1tbW5M+f/7tjDQ0NpXr16vj4+FCwYEHatGmDk5MThQsXJi4uDmNjY0r9Y13w559/oqqqirp65s5PxewQuFGiRImSb6CmBg4OMHeuZAm8dy/88+yvMPJq5KWxZWOcXzhz6sUpqhSsotB7c/nyoKIC799DaCgYGf18Wyoq0KuX1Ja/v3T/GjNG0jtTUVGhWLFi33Xq6dq1K5UrV6Zz587Y2dkRHx/PokWLcHR0BOD8+fPs2rWLSqniJIC6qjotS7Zk54OdnPM+R72i9dBU0/z5g/gBlpaSA2BMDPj4SPOO+vUlpyAXFxd69uz51T5v375l7ty5PHnyBC8vL0JDQwFYuXKlwsb5K6PMRFGiEDQ1NVm3bh3Ozs64uUkPP/PmzePFixdpbm9nZ4eHhwdDhw7FxcWF5GTFCy8p+fWZO3cu6urqjBw58rvbdenSBRcXFz5+/JhNI8v92NjYAMhvkhklO7Mqzr06h0zIKGNchhJGio1ACAG7dkkTUUNDaSKaFfPC1PNlbS0J8SoSV19XYpNiKahbkOqFq2dJm7VrS9ksp06d+uq7kyfh9Wvw9n7EvXuDmTNnuvy7Z8+eoa6uTqlSpejcuTMDBgxg3LhxtGnT5od9jh07lk6dOjFx4kTq1q2LsbExhQsX5vXr19/c588//yQ4OJjr16/z/v17NmzYQOvWralSpQq1atWSB1BAuk9lNoCiRIkSJbkBPT1J+FxFBTw9pZeiaVy8MVrqWryPfM/9wPsK7UtHB4oXl97/rNXx5+TJA0OGSIKzL16As3PG9i9VqhS7d++WG5h07doVDQ0N+QLf/v37v9rH1tw227JRVFWl+QZ8Ol+mpqZUrVqV06dPp7nPqlWr2LNnD0WLFmXs2LEcOXKEZ8+eMWLECIWO9VdFGURRolBatmzJqlWrAPDz86N06dLcuHHjq+2GDBmCo6MjZ86coXHjxpiZmSnLe5T8EGNjY1auXMmhQ4c4evToN7crXLgwKSkp+Pr6Zt/gcjmprkafq8inl89LUxRdyhMeHy7PQmlVqpViOwOuX4dbt6QJyKBBoKubNe0+eiT9VPT5SkhO4ILPBQBalGyBqkrmb/NxcXF069aNEiVKfBWwfPYMnJ2TefnyBa6uAxk+vPsX2wwaNIjChQvTuHFjnj9/nqF+VVVVOXjwIDExMTx8+JDJkyfj7+9PSkpKmtvfu3ePdevWMWvWLGrXro3qz9ooKVGiRMkvSMmS0Lq19H7PHmkxQJHoaOrQqHgjAE69OKVwp57UpNknT7KmPVNTSE3IcHaGbxjvfBPdzyYInztFWlpapjm3Ss1GATjnfY7EFMU6lKZ1vlq1asXZs2fTXKw+deoUXbp0Yffu3fzxxx906NCB0qVLK3SMvzLKGYYShTN8+HDOnz8vT/P7448/vtpGR0eHRYsW8fr1a27evEmBAgW++1CsREkqXbt2pW3btvTu3ZuVK1d+9YCVqqtgZ2cnz774f+fdu3fMmDEDkB6QM76/ZPmrqSlN2hTJ+VfnSZYlU8KoBCWNFNtZUBCkLh516ABWVlnTbkyMlKkBig+iXH97naiEKIzzGlOjcI1MtyeEYNiwYbx48YLDhw+TL18+AOLjvqpPIgABAABJREFU49m79xQdO55i+/YdXL48mzZtzFi+fLl8vxEjRlC6dGnevHmDurr6T2c9aWlpoaOjw61bt9DX18fS0vKrbWQyGSNGjMDa2lq5aqZEiZL/W1q2/KSPsnGjVJaqSJpYNkFLXYt3ke8Uno2Sqk327NnPWx3/m+rVwdZWWhzavPmTJXB6OHHiBCCVAH0eUElISEBTM+1SHTtzu2zLRkk9X2/eSPMQkIIoYWFheP4rVSm1hKd1ahROyQ9RBlGUZAv29vaEh4fz8OFDDh48+M3tVFRUqF69OnFxcVSrVi0bR6jkV0VFRYWdO3fSq1cvRo0aRZ06dXicmiYBHDx4kNu3bzN//vz/e7HHd+/eMXLkSEqUKMHu3btp0KABkZGR31zZ/xapqaFlysB3ZC0yTVRClHyS0apUK4X++6WkwJYtkJQkpcDa22dd20+fShO0woWlEiFFkZSSJNdCaV6ieZZkobx69Ypt27YRFxeHvb09VatWxd7eHmPjAvz++1mCguKoXduKBw+mcfTo0S/KY86dO0dsbCyOjo4cPnyYggULkpCQkOExCCGoXbs2d+7cYefOnV9lmAgh+Pvvv3F3d2flypXf1VpRokSJkv8yqqrQv79U/uLnB4pej8zObJRixSBvXinQkZWJxd27g7GxJJC+Z490v/4R165dY/z48bRu3RohxBe6jklJSQjJAfer/dRU1WhVUsqqVXQ2ioEBmJlJx+PlJX1WvXp1ChQowPHjxwFpAWLt2rXY2dlRpEgR7LNy8vMfRxlEUZJt6OvrU6FChS9S3r5FlSpVOHToEBEREdkwMiW/Ovr6+qxZs4Zr164RHh5O1apVGTduHK1bt+a3336jZcuWckGt/xeEEPj5+XHo0CEmTJhAvXr1sLS0ZOPGjQDExMRw5coVBg0aRFhYWIbaTr0Zp9bbKooLPhdISkmimEExrI0V29np09KkLG9e6NMna3RQUkk9Xz+h35shPN55EB4fjqG2IXYWdlnSZokSJbh27RpbtmxhxIgR1KhRAx0dHbp1W0nXrnP47bcu7NxZn4oVy3yxX2pwU0dHh+XLl1O/fn0sLS3R0tKiQYMGGRqDiooKffv2JTIyUi4sm5iYiJubG/Pnz6d69eqMHTuWIUOG0LBhwyw5biVKlCj5VTE0hL59pfeXLn1y0lMUn2ejPP7w+Mc7/CSqqtLiDWSNLkoqWlowcKDU/q1bkIbqwBcEBgbStWtXateuzaFDh6hWrRojRoyQL0jVqVOH0NBQXF1d09z/c20UDz/FmmqkZqOkni9VVVV69erF+vXrcXd3p0GDBgwbNozffvuNBw8eoKenp9Dx/JdQBlGU5EqWL19OVFQUkydPVniNpZL/DnXq1OH+/ftMmTKFlStX8v79ezZt2sShQ4dyemjZhkwmY+XKlVhYWFCkSBG6dOnC/v37yZcvH6ampmhqajJ27FjmzZsHwJIlSzA2Nk53+0lJnyZkigyixCTGcMX3CqD4LBRfXymIAvD771mbLSLEl5k7iiJFlsJZ77MANLNqlmlHns+pU6cO/fr1488//2TdunVs3nwMHZ2+GBgY0qEDmJunvZ+trS0PHz6kZs2aX3w+dOjQDPXv4uLCqVOnkMlkODk5Ua9ePfLly0edOnWYP38+BQsW5PLly6xdu/ZnD1GJEiVK/lNUrAi1a0v3oG3bpPIeRaGjqUO9ovUA5NmQiuLfQYGsonhxSNU737sXvre2tHPnTiIjI9m/fz958uRh1apV3L9/nw0bNgCSlXDp0qVZt25dmvurqarRxLIJIC0WyUQW1Salwee6KKmPU1OmTEFFRYXatWvj7++Pi4sLGzZswMDAQGHj+C+iDKIoyVVERkZSqlQp2rdvT8WKFVm3bh3Gxsa0b9+eRYsW4ebmJlfCVqIkLfLkycOsWbOIjo7m7t279O/fH21t7ZweVrbw/Plz6tevz6hRo2jatClHjx7F39+fR48e8fz5c1JSUrh+/TodOnRg1qxZ9OzZk7Fjx2aoD29vqcbawAC+4SqdJVx9c5WE5ATM9c2pYKI4C6DERKmMRyaTaqOrZ42ZjZwPH6TJmLq6YvVjbvvfJiQ2BL08etQpUkdh/QgBO3ZIE/ISJaBRo29ve+rUKSpWrMibN284e/asPL25fPny9O7dW549tmHDBhwdHWnWrBkWFhbkyZMHLS0t8ubNi46ODo0bNyZfvnxMnjyZ48ePY2pqyvz587l58yahoaGcOnUqw9ktSpQoUfJfp2tXyQr440c4fFixfTUq3ghVFVVehLzgTfgbhfWTGkR5/Tpj+iXpoXlzyRo4Pl5y6fvWGm5wcDBmZmaYmpoCULNmTRo1asTZs9JChoqKCkOGDOHIkSO8e/cuzTZqW9Qmr0ZegmOCFaolU7KkVHYdHg4BAdJnxsbGbNiwgRkzZvDw4UNlBudPovT2U5Kr8PLy4uXLl6iqqlLmn2Xb0NBQTp8+zcmTJ5HJZKipqdG1a1ecnJwoqMinOCW/NN8S9cotxMfH4+zszIcPHwgLC5OXrqmoqMhfurq6mJmZUahQIfkrf/78qKqqIpPJCAkJISAggMDAQDw8PJg/fz4WFhZcuXLli/KlwYMHExAQwL179zAyMqJKlSqULVuWTZs2ZTjD4/NSHkUlhyTLkrnsexkAeyt7hWahnDghCcoaGEh10VlN6vmyspKEeBWBEIKLPhcBaSKroaY4TRBXV0nUT0NDKntKywAnLi6OCRMmsHr1amxsbChbtixHjx7l3r17JCYmMn/+fIyMjNizZw8pKSmoqalhZWVF2bJl6dWrF2ZmZoCUVSWEoFixYrRt25ZatWrRvHnz7+pqKVGiRIkSCS0t6Tq9bJl07a5SRXEZpIbahtQoXAPPd56cf3WeQTaDFNJP/vySq05QEDx/Lh1TVqGqCr17w19/SQ6Enp5gl0ZlbFhYGEZGRl98pqamRp48eeS/9+/fn/nz5zN16lR27NjxVRt51PPQoFgDTr88zflX56lSsIpC5joaGlIg5elT6fXP7ZVu3bpleV//byiDKEpyFTVq1KBFixbcuXOHXr16UaxYMWJiYvD19eXVq1c8e/aMx48fc/DgQZydnZk+fTrDhg37v8k0UPLfIDg4mA4dOuDm5oaamhqGhobo6+vLgyMRERHIZDJSUlKIjIz8Yl8NDQ0MDQ0JDQ39wqJOTU2NMWPGMGvWLPLmzSv//PLly2zYsIE1a9ZgaWmJvr4+MTExvH37lhYtWuDg4MBvv/2W7rGnptAqspTntv9tIuIjMNAyoJqZ4gSmfX3hohR7oGdPSYgvq8kO/ZiXoS95G/EWDTUNeUq1Ivh8NbNTJzAxSXu7lStXsnr1anR0dHj69CmvX7+mSJEiHDhwgPDwcIYNG8aiRYuIiIggNDSUEiVKfDH5/JzQ0FCOHTtGy5Yt8fT0ZH+qfZISJUqUKPkhZcpAgwZw5Qps3w4zZ0rBFUVgb2WP5ztP7gTcoUNsB4zzpr9UOCOULSsFUZ4+zdogCkChQtC2LRw5AgcOSPfuf1e5hISEfKXvGB8f/8WziL6+PnPmzGHw4MFyPbF/07B4Q86/Os/rsNd4h3pTMr9i0lXLlfsURGnSRCFd/F+iDKIoyVWoqKiwZcsWevfuzfz58+UPkJs2bWLOnDkAuLu706xZM/LmzcukSZNYunQpU6ZMYdCgQWgp6s6gREkWkWohFx0djbu7O7a2tl+sPqS1wmFubk7FihWpW7cuenp6hIaGYmxsTMGCBSlUqBAFCxakYMGCX/39x8bGMmjQIOrWrcvgwYO5cuUKMf/43E2ePJkFCxbw/v17fvvtN6Kionj48CHVqlX75gNtVJSk9g+KCwp8nlXRsHjDLNX2+JyUFNi5U0rXrV4dKiigYkgmk1bKQLFBlNTzZWduh66m7g+2/jmEkNKbExMl+8zvVc8MHjwYmUzGsWPHaNiwIZMmTZLXWiclJcndc/LmzUuhQoWoWLEi1tbWTJgwgWrVqhEWFsbx48c5cOAAFy5cICUlhXr16rF+/Xo6d+6skONTokSJkv8qHTtKmRUfP8Lx46CoJARzfXPKFijL0+CnXPS5yG/l079AkxHKlYPLlz/pfGR1Aoe9Pdy9Ky207N4Nw4Z96kMIwY0bN75afIqLi/tqDjZgwABWr17N2LFjuXbt2leZJvp59LGzsOPam2ucf3VeYUGU1BKoFy8kXTulgV3WoNREUZLrKFiwIOfPnyc8PJw3b97Qo0cPBg4cSN26ddm+fTtVq1bl0qVLxMfHkz9/fkxMTHB0dKREiRKsWbPmpyw0lShRJKGhoWzcuJFGjRpRrlw5tLS08PDwoHTp0vj4+HD79m0uXLjAhQsX0NDQYO7cuV8EUt69e8fp06eZMmUKGzduxMbGhqFDh9KhQwdsbW0pVqxYmgHEGTNm8O7dOzZt2oSqqip169blxo0byGQyuY2dj48PDRs2xMrKijp16mBsbEyXLl04derUV+2lBgTMzUFfXzHn6nnIc/wi/NBU06RukbqK6QQ4fx7evZOyTxQ1ofT1hbg4yfGnSBHF9PEh5gMPgx4CyIXqFMHNm1JWjbo69Or1/Ulrqn6Jp6cn8+fP/0KsLi374eTkZA4cOED16tUpX748pqam9O/fn5iYGJYvX8779++5cuUKDg4OX9kbK1GiRImS75Mnj5RtCVLwISvtgf9NU6umALi9dSMmMUYhfZQqBWpqkiVxSEjWt6+qKpVBqavDw4dw796n7x49eoS/vz8tWrSQf5acnMzr16/lGimXL19myZIluLu7M3fuXNzc3L5ZhmpvKZUsPwx6SEBUQNYfDFJ2Tb58UgDFx0chXfxfopyNKMm1qKioUKRIEbZu3cr+/fvR0tKib9++NGvWjMqVK3Pz5k06duyIt7c3AAYGBowYMYKSJUsya9asHB69EiXSjXXUqFEULFiQIUOGoKqqytSpU2nSpAl16tQhf/78lChRgurVq9O0aVOaNm2KnZ0dNjY2vH37FicnJ5o0afJFec6DBw9+6G4ik8lYtmwZTk5OzJo1i1KlSgHSA2yNGjVQUVGhUaNG+Pn5sWLFCnR0dOjQoQNXr15l8uTJuLu707t376/azQ6XmdSsiloWtdDRVEB9DVIacGqMqGtXUJSj37Nn0s8yZdLWDskKLvlcQghBBdMKmOqaKqSPmBhInf+1avXtMp4fkZSUxNOnTzl16hR3794lOjoagObNm1OoUCEOHTpEpUqVcHJy4v3797i6ujJ8+HAKFSqURUeiRIkSJf+fWFtDzZqfsgplCjKEKWNcBnN9cxJTErn+9rpC+siTB4oVk96nLu5kNWZmktAswP79ktgswNmzZ8mbNy916nwScHd3dyckJIRWrVqRnJxMnz59mDBhAvXq1aNDhw4ATJw4kcTExK/6MdU1paJpRQC5I2FWo6ICpUtL7xV1vv4fUZbzKMn1aGho0LVrV7p27crVq1ext7fHzMwMe3t7mjZtyujRo9mzZw9z5sxhyZIlnDlzhpkzZ9KqVSuqVVOcnoISJd8jPv5/7J11WFR5F8c/Q4eAIiAgYHd3d3d3YXeua+va3bnq2l2vHahrt6IiKiqIKI0gINIw9/3jOqOsqMBcBPV+nseHWebOuWeu7tzffH/nfE8MXbp04fjx40ybNg1zc3OOHz/OnDlzMDU1pXv37tSpUwdzc3OyZctGtmzZ8PPzY9y4cTRu3JixY8eyaNEiRo8eTXx8PPfv3+f69evExsZS5htNwAEBATg6OuLk5MTo0aP5448/vnqsnZ0dgwcPTiLKVKpUiVWrVmFubk6/fv1YunQppqamCMInfw9VaajUBHwIwDXQFYVCQb289dLlHIIAu3eLE4aKFRMXlelFevvHRMVHccP7BpC+VSiHD4utXDY20LBh6l8/bNgwLl26xIsXL4iPj0/yXM6cOTEyMsLf359ChQqxa9cuibKWkZGRkfmcDh3A1VVsy/33X7FtRWpU9+9tD7dx+fVlGuRrgJZC+l2EQoXg5Utxs6JaNcnDA6KIcueOOGXv2DFx0+XMmTPUqVMnSfXvtWvXMDExoUKFChw+fBhvb2/u3r2LtrY2N2/e5ObNm7x584aYmJhkhx7UzVMXlwAXbvrcpE2RNhjoSG9NUKiQ+F5kEUU6ZBFF5qeiZs2a3Llzh4MHD+Lk5ESfPn0AsLS0BGDTpk24urqSN29e1q5dy+bNmzMyXZnflPfv39OqVSsuXbpEqVKlWLNmDUFBQVSpUoUtW7bQoUMHjJNxMQ0NDSUkJARDQ0MqfDZrV1dXl0qVKlEpBd/4Z82ahZOTE8OGDWPp0qWpzv3JkycEBgYSERHBpk2baNiwIR07duTtW3j3TixvzZ8/1WFThGoXpoRVCayM01ju8B2cncVFl44OdO2afhOGYmM/lc2ml4hy/c114hLjsDO1o1D2QulyDg8PuHpVfNytm3jdUoNSqWTjxo1UqlSJ5cuXU7RoUfLly4e/vz/Pnz/n2bNnPH/+HCsrK9kgXEZGRiYdMTGB9u3FMfXHjkHZsuK0G6mpYFuBg08PEhIVwuOgx+pKCykpVAhOnRJFgfTwRQHRO6RLF1ixAi5cACOjR1y7du2LtVXWrFmJjo4GRGP16tWrqzdxy5Qpw5AhQ779XrIXwjqLNQEfArjpfZM6eaQfOayqRHn1SlyffMX6TiYVyO08Mj8dpUqVYtasWdy5cwd7e3tA9JwA8PLyok2bNnTu3Jk9e/YkWzonI5OeBAYGUrt2bS5dugTAixcv6Ny5M66urty4cQNHR8dkBZSLFy9SqVIlDAwMcHZ2pmPHjqk+t1KpVLf+qM6fWkqXLs2rV68ICwujQIECnDx5Evi0e5EnT/rcfGMTYrnpfRMgXRYQIC4cVG0pjRuDRfoMDgBE8SExUVygftR4JUUQBC6/vgyI1ys9RiMqlbBnj/i4WjVxTGJq0dLSIm/evFhaWtKiRQtq166Nvb09FStWpEePHsyZM4eDBw9y7do18uXLJ+0bkJGRkZFJQtWq4md5XNynaWtSo6utSzV7sTzk4quL6XKOfPlEUT88XKwUSS+KFoXy5cHfP4D27Q9Ttmx5evXqleSYnDlzkpCQwPnz57l8+TLDhw9P1TkUCgW1c9cG4KLXRQRBkCp9NRYWkC2buC55+VLy8L8lsogi81Pj6OiIrq4uLi4u3Lhxg+nTp3P+/Hlu3bpFTEwMT548yegUZX4j3NzcqF69Og8+upDZ29tz7do1VqxYQfHixb/52qioKOLj49m2bRtF0li68OjRIxYvXkz27Nnp1q0bW7ZsYceOHezdu5cDBw6wbds2Vq1axZw5c/jnn3/w8PBQ36wjIiIYOHAgrVu3JiYmBl1dXQYNGsTu3bvx9PTkxQvxHIXSp+CBO753iEmIwdLYkiIW6VO6cfIkhIWJiwlVr3N64e4u/kyv6+UW7MbbyLcY6hpSwbbC91+QBq5eFc13jYzEkcZppXHjxvzvf//DwcGB/Pnz069fP3bv3i2L3DIyMjI/GIUCOncWfzo7p197R63ctVAoFDx9+5TAD4GSx9fVhbx5xcfp3aKSI8cVTp36H+bmZZg58zwm/zFSs7W1BVBXv+dVJZYKqthXQV9Hn8APgTwLfqZ50v9BofjkZye39EiDLKLI/NRMmjQJExMTtm/fTpUqVRg3bhzjxo3jypUrANy/fz+DM5T5XTh69CiVKlVSGx1XrVqVu3fvUrZs2RS9XtVje/bs2TTnUKpUKVq0aEF4eDgTJ06kT58+9OzZky5dutCxY0ccHR35888/WbFiBQMHDqRAgQI4ODgwd+5cypUrx86dOzl27BiHPm5P9ezZk4SEBI4fP6EWUT561ErK51UVtXLVSpeqioAAOC961tKpU/qP+FMtUtLjegFc9hKvV2W7yujrSF8aFBkpjsIEaNVKnGKUVpYtW0ZwcDCHDh2iadOm3L59m27dulG5cmUeP34sTcIymZ7Q0FCuXLnCqVOnMjoVGZnfGjs7qFVLfLx3b/qYzFoYWVDCqgSA+v4uNT/CLPXUqVN07NiQUqXe0KRJE86eNVKbzKp4//49AH/++Sdly5aladOmPHuWOiHEQMeAKnZVALEaJT1QXa9UpibzFWQRReanxsDAgC5durBz504SExMB8UNMRbFixTIqNZnfBKVSSc+ePWndujUREREA9O3blwsXLqjH3aUEIyMj6tWrx4kTJ/Dy8uLff//F29v7u687e/YsO3fuBMSS0GPHjhEfH49SqSQhIYGYmBg+fPhAWFgYMTExxMTEEBQUxJIlSwBxfPLkyZMxNjZm06ZNgOg9BLBr1y60tbWpVq01YWFi6WwaNli+y6uwV3iHe6OrrUtV+6rSnwA4eFAsYy1ZUvyTnsTGfhohmR4iSmh0KC6BLoAoOqUHx46JQkrOnPDxn4NGZM+enbZt27Jy5UpcXV1xdnYmNjaWcuXKsX37ds1PIJOpSEhIYNeuXbRp04aKFStibW2Nubk5tWrVolmzZrx+/TqjUyQ+Pp6jR4/SpUsXRowYwZkzZ4iIiCA0NBRvb28CA6XfPZeRySy0bCmK435+cDl9NA51i8oN7xvEJsRKHv9zESUdOmA4deoUrVu3pnHjxly+PIOcOXWJiBCrWj9HtVYrVqwYTk5OWFpaUr9+fV69epWq86mu16PAR4REST+7WXW93rzhCyFIJvXIIorMT0/37t3x8/Pj9u3bABgbG3Pv3j0uXbpE5cqVMzg7mV+dnTt3smPHDgBsbGxYtWoVGzduRD8NxiHt2rXj8uXLlC1blvr169OxY0cCAgK+evzly5dp0aIFs2fP/uI5hUKBtrY2+vr6GBsbY2ZmliSnNWvWqB8PGTKEmzdvqr2FFi9ezKxZs1iwYAHdunUjJsYBEP1Q0qOCQ1VVUd62fLqMNX72TJxIoKUlTidIb16+FHf2smdPH9O+q2+uIggCBbMXxMZE+vG/vr6fFtWdOqXPeOayZcvi7OxM9+7dcXR0VAuBMhlHaGgoGzduZOLEiXTu3Jn9+/en+LWurq5MmTKFwYMH07VrVwoXLkz37t05e/Ysd+/eTSJItG3bVm0G/6P58OEDFy5cYOzYsdjZ2dG6dWuePn3K0aNHadKkCaamppibm+Pg4ECuXLkISk+zBRmZDMTYWKwyBFE0/zhxXlKKWhbFytiK6Pho7vndkzy+ak0SEQH+/tLGTkhIYNiwYdSpU4cDBw5gbKyvXj/8+29SHxY/Pz+yZs1KfHw8gwYNokuXLujp6TF06NBUndPGxIZCFoUQBEE9eU9KzM1Fjzal8lPLsUzakafzyPz0lPy4rezu7k7VquIudrly5TIyJZnfiFatWnHq1CnKli2bqsqT5OjcuTNjxowh5uMWwa1bt7CxscHKyoosWbLg+XHcy7Nnz4iPj6dVq1ZoaWnh5+dHXFxcsqPzvoabmxthYWEkJCRgbW2tPv+7d+84ffo0K1euJHfu3EybNk39hTo9/D0i4yLViyvVLoyUCIJYhQJQuzZYpc/QnySkZ+tTojKRa2+uAWLPeXpw8KB43cqWTT9PFxArCTdu3IhCoaBXr15oaWnRtWvX9DuhzFdRKpW0bNmSGzduYG9vT3R0NM7Oznz48IGiRYtSpEgRzMzMvnjd5cuXmTFjBhcvXsTCwgIHBwdMTU2pXr06Bw4c4Ny5c4wfPx4zMzP2799PnTp10E3vXrpk8PDwoGvXrjg7O6NUKrGwsKBbt2707t2bUqVKIQgCbm5u3L9/H0NDQxQKBe3atcPJyYkePXr88HxlZH4ENWrAlSui99WpU+IIXylRKBRUd6jO/9z+x7U316jmIO0sYtW0QDc3sRrlozWJJGzbto1Xr15x+PBh9WdW8eJQrBg8eSLeJ1VDd/LmzUtYWBgtWrTgxo0bHDp0CBMTEyIjI1N93hoONXge/Jzr3tdpVrCZ5OOhCxWCt2/F61WihKShfzvkShSZnx4jIyNsbGzUXzBlZH4kZmZmNGnSRGMBBcDQ0JDRo0cTHR2NgYGB+vdBQUFJ/n37+fnRpEkTcuXKxcGDB4mMjKRYsWKp8lPR0dHBwsJCLaAAmJubM2XKFK5fv87bt2+5e/cuefPmS1d/j9u+t0lQJmBvZk8us1zSx78N3t5gaAjNmkkePlnSU0R5FPiI8JhwTPVNKW1dWvL4bm7w9Cloa2tmJptStLS02LBhAz169KBHjx6cOXMm/U8q8wXz58/n2rVrXLhwAS8vL/755x+USiX9+vWjSpUqZM2alZw5czJt2jSUnxko/Pnnn7x+/Zq9e/fi5+eHs7MzFy9eZOvWrZQpU4Y///yT7t27Ex4erjas/tFERUXRrl073r17x/r169Vj3JcvX06pUqUA8cte0aJF6d69O+3ataNt27bkzp1bbRIuI/MroqX16XP+0iUIDpb+HFXsq6Cl0MIz1BP/CInLRUgfX5RNmzYxaNAgunbtqv6MANGctUMH8bq5uHy611epInqZXLt2jePHj7Np0yZiY2PJli1bqs9d2ro0RrpGhEaH4vbWTZL38zmyL4p0yCKKzC9Bvnz5eCnP7JL5BZgyZQoXLlygXbt26Ovro1AoMDAwQFtbW31M3bp10dbW5vTp01SvXp327dvj4eHB5MmTJc/n7VvS1Q/l+pvrAFSzrya5oWxcHBw5Ij5u2hSyZJE0fLLExoKqDTo9RBRViW9lu8roaElbTCoIcPiw+LhWrfQdAf05WlpabNq0CVtbW42MlX8Ubm5uDBkyhEaNGjFgwAA2bNiQRFj42Zg/fz6TJ09mypQp1ProNtmiRQtevnxJZGQk//77LzVr1sTPz49Zs2Yl+TvKnj07Dg4OtGnTJlmBZPv27ezatYsBAwbQvHnzH/aenj17xsiRI6lXrx65cuXC3d2dw4cP069fP4oWLYrWd3rUYmJi8Pb2pmB6OUPLyGQSihaFIkVEz7Bjx6SPb6pvSokcYsnDde/rkseX0hdFqVQyceJE+vXrR9++fdm6desXx9jYiBU8IN4vBUGcxNikSRM2bNhAo0aN6NOnD66urixbtizVOehq61LJrhKAuupUSlTXy8dH9D2TSTtyO4/ML4GdnR0+Pj4ZnYaMTIqIiYnB19cXHx8f/P39iYmJIT4+nvj4eOLi4rC3t2fnzp2sXr2aPXv28OLFC6ysrMiRI4f6p7GxMbt27WLBggVERkYybtw4xo8fL3muqp2W9PBD8Q73xue9DzpaOlTMWVHa4Ih9y6Ghoi9JnTqSh08WT0+x39jcXHo/lPex73kcJE6zSQ8D3nv34PVrMDAQRacfiba2NhEREUkqozIbgiDQrl07Dh8+jLW1NRUqVGDjxo1s3LgRGxsbatasmWzLS2Zm1qxZTJs2jb/++ou//vrri+dDQ0OpV68eALVq1aJnz540aNBA/Xzz5s0ZPnw49vb2GBsbq40UR4wYQWBgIPv376dv376sW7fuu8KFVLi5uVGrVi10dXWpUqUKQ4cOpVmzZpT4Su16aGgohw4d4sGDBzx+/Jjs2bNjZWVFYmJikl1oGZlflbZtYc4csXKzQQOwt5c2fjX7argEuHDL5xatC7eWdAMgd27Q14eoKFEYSGvu0dHR9OrVi4MHD7J48WLGjBnz1Y2dZs3g5k3xfv/oEbi47OT06dPUrFkTQRBQKBQaCbDVHapz8dVFXAJdiIiNwETf5PsvSiFmZmBtLU4s9PAA+SMu7cgiiswvgb+/PzY20hssyshIza5du+jevfs3jylatCht27Yla9asDB48GIDw8HAuXrzI6dOnOXfuHO7u7mhra9O3b1+mTZtGzpw50yXf9GxNUe1KlbYuLbmhbEQEnD4tPm7dOv1HGqv4/HpJPan5ls8tlIKSPNnySG4om5DwqWqnYUMwkW7NliKio6MJDw/P9CLK8ePHGTRoEMuXL0dHRwddXV1sbW1p2bIlWlpaVK1alXPnziVpx8tsKJVKbty4gYGBAdOmTWPQoEFMnz492WNDQ0PVj2/fvo2BgQHNmjVTty/269eP4ODgL16/cuVKdHV1mTFjBpMnT/5hAoqHhwf16tUjR44cXLp0iewpUDIXL17MvHnzKFy4MCVKlODdu3fcvHkTCwsLteeajMyvjIMDVKwId+7AoUMwapS08UvkKIGpvinvY9/jGuhKGZsyksXW0hJ9UZ48EUWBtIgoQUFBtGrVChcXFw4dOkSbNm2+ebyZGdSrJ64xDh+Gc+c2YmVlxcSJE3nz5g2rVq1KUj2cWuxM7ciVNRevw15z2/c29fPWT3Os5ChQQBZRpEBu55H5JfD09CRvevQayMhIiK+vL8ePHwdgwoQJPHv2jNOnT9OoUSMAcufOzbp163B2dkahUODn58ecOXOoUqUK5ubmtGnTBicnJ+rVq8ehQ4d4+/Yt69evTzcBRRBINz+UBGUCd3zvAOlTVXHmjNhakysXVKggefivkl7X63O3/vS4Xleviv3wpqZQX9r1WopQTaHKzGJ4XFwc+vr6ODg4oK+vj7a2NiNGjMDX15cBAwYwadIkrl27xv379zM61W9y9OhRatSoQYUKFciZM+c3Rd1ixYqhVCp59OgRjRo14uzZs0RGRuLr68vUqVNxcHBg+vTp2Nvb07BhQ0aMGMGVK1cYO3YsCQkJHD16lJkzZ/IhPUZ//IfAwECqVauGqakp58+f/6aA4uvry65duzh//jwvXrygTJkyPH36lH379nHu3Dn8/f0JCgrC2Fj6aWEyMpmRVq1ELyw3N/GPlGgptKhi/9E3JB1aVPLnF3+mZeKMm5sblStX5tWrV1y6dOm7AoqKhg3ByAieP3/PjRuJrFixgo0bN7JhwwbatWtHVFRU6pP5jOoO1QHxegkSz29WXS8PD0nD/nbIIorMT09sbCw+Pj6yiCKTKUlMTOTixYv06tWLPHnycPr0acaOHcvUqVM5duwYTZo0wcfHh507d+Lu7s6gQYO4d+8e7du3x8HBgblz52Jvb8/ff/+Np6cnHh4erFu3jrZt26bJtCw1BAennx+KS4ALkXGRZDXIShHLIpLGDgv7NKK3dWvpK0K+RlwceHmJj6WeavM6/DX+Ef7oautSwVZaVSgmBk6eFB+3aCGWRv9oVCLKj65E8fLyYuHChQwbNowbN258c7EaEBBAZGRkki/WS5Ys4fjx46xcuZLx48dToEABqlWrxpMnT35E+mniypUrAJw5c4ZXr15Rrdq3J2YoFApKlCiBsbExgiDQoUMHcufOzfLly+nYsSPPnj3jzZs3ODk5sWLFCmrUqMGiRYu4cuUKfn5+zJgxAxMTE/Lly8fq1avT7X0plUqCgoLo27fvd42+V61aRffu3WnQoAEHDx5MduSy1B5NMjKZGQsLcYIdiNUoEn9vV4sCT94+ISwmTNLYn4sCqcn7woULVKlSBSMjI27fvk3FiilvKzYygiZNICDAH2hF/fpN6NevH8eOHePcuXMULFiQ+fPn8+7dO/VrLl++zIABA1IkKlewrYCuti7+Ef68CnuV8jeVAlTXy8tLXLfIpA1ZRJH56fHy8kIQBPLly5fRqcjIAOI0iNOnTzN06FBsbW2pW7cuV65cYd68eXh7e7No0SKMjIzw8fGhYMGCPHr0iG7duhEREUG/fv2oUaMGbm5uLF++HD8/P/bv30///v3JkyfPD30fql2dXLkgFdOTU4SqqkLl3C8lZ85AfDzkyyca5v0oPD1Fc75s2aT3Q1EZ8JaxLoOhrqGksS9eFNufrKzgO9+n0w1vb2/gx1aiHDx4kOLFizN9+nSOHj1KtWrVKF26NNOmTePhw4dfHJ87d24cHR2ZOnUqO3fuRKlUoq2tTfPmzdHX1ydLliyMGzcOgD/++OOHvY/Ucu3aNXr06EGjRo1SNS1n/fr1bN68mTx58rB06VJ8fX1ZtWoVhb6iGFavXh0fHx8OHjxIzZo18fHxYfjw4RQpUiRdPMxy5MiBo6MjEydO5LDKIfkrlCtXTv14+vTpbN68WfJ8ZGR+Npo2FT2xvL1Frw8psTK2okD2AkmqKqUiTx6xiiY8POUThrZu3UqjRo2oVKkS169fJ1eu1E8HrFMHwsNfkzVrHh4+FP2wmjZtirOzM40aNWL69OlYW1vToEED8ufPT+3atdm4caNayP4WhrqGlLMRP6dU93+pyJ4dsmYV/dteSavP/FbIIorMT49qKo9ciSKT0dy4cYNGjRphbm5O06ZNOXnyJD169OD27dt4enryxx9/YGpqqj4+S5YshIWF4eTkxM6dOylatCgHDhxg/fr1uLq6MmzYsAw1qlSVehYoIG3csJgwnrwVd+qlbk15905sTQGxPPlHbiarrlf+/NKeNz4xnrt+dwHpr1dMDJw7Jz5u3lxciH6PuLg4NmzYQO3atenSpQt//fUXO3fu5N9//+X8+fOcO3eOs2fPcuPGDUJCQr4bLyAggHHjxlG6dOkUeVhoQkxMDPPmzaNWrVp06NCB5s2bExQUxOvXr3FycqJQoUKsW7eO6tWrE5nM6IJly5ZRt25devToQZkyZTh//nyS53v37s3w4cNxcnJi/PjxmW5qj7e3Nw8ePPhu9UlyZMmShd69e3Pw4EGGDx+e5LPsa2hpadGuXTsuX75MZGQknTt35tmzZ+TOnZt58+al5S1881z//PMP7du3p1OnTly8ePGrx3bo0AEXFxeqVavGtm3bkq1EkZH53ciSBerWFR8fPy59NUo1e/Fz55bPLUlbVHR1RYNZ+H5LjyAILFiwgN69e9O7d29OnDiR5nWWri5ERe3DysqSM2c+VXUULlyYTZs28ebNG5YuXYqWlhaFCxdm8+bNmJub4+zsnKL41RzE6+Xs70x8YnyackwOhUKzFigZEdlYVuan5/Dhw+TMmRM7O7uMTkXmN8bFxYUmTZqQL18+5s+fT6NGjShcuPA3S8KLFSvG27dvafpxFErLli1Zu3ZtunmcpJbPRQEpUS2gCmQvgJWxlaSxT58WTVILFpS+peZ7pNf1ehjwkOj4aMwNzSlsUVjS2BcvimMOc+T4vndMQkICO3bsYObMmbx+/ZpGjRrh5+fH5cuX8ff3/+rrLC0tyZ07N5GRkYSFhZGQkICenh66urro6uoSFhaGtrY2x44dS1MLhVKp5MWLF9y4cYObN2/i5+dH7ty5yZcvH/nz5ydfvnzkzZuXGzduMHjwYLy8vGjVqhX//PMPffr0UZ+zYcOGNGzYkJcvX5I/f37OnDlDu3btkpwra9asHD58mJs3bzJu3DgaN27MgwcP1JNftLW1WblyJXnz5mXMmDEcOHCAtm3b0qFDBypWrJihLSI3b96kdevWaiPcH42Ojg579uxh6NChtGzZkkmTJuHu7s769etTVRHzLbS1tdmxYwfXr1/n8OHD1PnGWK6SJUuybt06SpYsyfbt2+nbt68kOcjI/MzUrw8XLnyqRpHSeLSMTRl2ue4i8EMgb8LfkCtr6qs/vkb+/PDyJVy75k9c3HNqq3qTPsPNzY25c+eyc+dO9USy1H4mh4SEsGTJEoKCgoiIiMDD4wj16w8hIgKuXEnqKWZlZcWwYcMYNmwYABEREWrfu5RQwLwA2QyzERodyuOgx5Ia8hYoIE7kk31R0o4sosj81ISFhbFr1y4mTpz4w9z/ZWT+i7+/P02bNiVfvnxcvnwZkxSONunatSsdOnQgMDCQqKgoChQokGn68CMiIDBQfCx1kddtn9sAVLGrImnc4GC49tGz7kd/R1QqxXYekF5Eue0rXq/KdpUl/ffxeRVK06bilIOv4eLiQvv27fHw8KBdu3YcP36c4sWLq5+PiIjg7du3KBQK9Z/w8HCePXuGm5sb3t7emJiYYGZmho6Ojnqcd3x8PEqlkr59+2KfhrEKY8eOZfPmzYSGhqJQKChevDi5cuXiypUrbNmyhejo6CTH16hRg6NHj1LkP31eUVFR/PPPPzRu3JiCBQtSokQJDh8+/IWIoqJKlSr8+++/lCxZkqFDh3L58uUkfzejRo2iYsWK7Nixgx07drBkyRJatGjBqlWr0lQ2rilxcXF06dKFvHnzcvToUayspBUvU0P16tUJDg5m0qRJLFmyhEuXLlGtWjWGDx+eKk+Cr6GtrU1ISEiK2h9LlChBhw4d+OOPP7h16xbNmzenXr16ZMmSReM8ZGR+RoyNxWqUU6fEapSSJaWrrDTQMaBUjlLc87vHbd/bkooo2bIFc/WqGxs3XkEQpjB69GgWLFiAjo4OZ8+eZfny5Zw5cwZra2v++eefNIumgwYN4vTp0xQrVgwTExPatWtNly4OnD4NTk5Qq9anaYCCILBmzRouXryIi4uLunL+8zHx30KhUFAxZ0WcPJy47XtbUhFFtU7x9BTXL/JXqDQgpIDw8HABEMLDw1NyuIzMD2P9+vWClpaW4Ofnl9GpyPzGDB8+XLC0tPyl/h0+eCAIAwYIwvTp0sb1CfcRBhwbIAw5MUSIjIuUNPa2bWLOy5ZJGjZFvHkjnnvECEFITJQubkRshDDo+CBhwLEBgn+Ev3SBBUE4fVrMecqU7+fs5OQkAELnzp0lzUET4uPjBQMDA6FDhw7CuXPnvlijKJVKwc/PT7h69aqwdetW4eDBg0JiMm/09u3bgoODgwAIQ4YMEQRBEObNmydoaWkJy5cvF5RK5VdzOH/+vAAIU6dOTTa2IAhCQkKCcODAASFnzpyCrq6u0LFjR+HcuXNfPT49+PvvvwWFQiE8fvz4h50zJdy4cUMYNmyYULhwYUGhUAhjxozR+LokJCQIDg4OQunSpYWwsLDvHh8YGCiMHj1aKFiwoAAI+vr6wsGDBzXKQUbmZ+bDB/FeNmCAIDx8KG1slwAXYcCxAcJYp7FColLzz8APHz4I06dPF4yMLAQ9vc1C5coPhfnz1wo6OjqCoaGhoK+vLwBCmTJlhO3btwuxsbFpPtfhw4cFQNizZ4/6d69fvxZmzJgjDBoUKgwYIAgXLnw6ftKkSQIg1K5dWxg1apSwZcsW4f79+6nKwTvcO13WTImJgjBypPh37OUlWdifntRoHrKIIvNTo/pAu3//fkanIvMb07VrV6FWrVoZnYakHDwo3lx37pQ27v+e/k8YcGyAsPbOWknjvnsnCIMGiTm/fClp6BRx4YJ47hUrpI172euyMODYAGH25dmSxo2JEYTRo8Wcb95M2WtmzpwpAEJISIikuaSVZ8+eCYDw77//pjmGr6+vYG5uLhQoUECoX7++UKlSJUEQBCExMVH4888/BUAYOHCgEB0d/dUYM2bMEBQKhVCvXj3B19f3q8eFh4cLS5cuFYoUKSIAQv78+YWNGzd+U6SRilatWgmFCxf+IedKC/Hx8cK8efMEQDhz5ozG8VxdXYVs2bIJNWrUECIjU/7Fw93dXahXr55QsGBBjXOQkfmZOXJEvD/MmiUIUn5sJCQmCKPPjBYGHBsgPAl6kuY4cXFxwtGjR4VWrVoJ+vr6wp9//ilMmBAlDBggCM7OguDs7CwsWbJEWLlypXDlyhVJPvtq164t1KxZM0msDh06CICgUNQScuc+I3Tp8lqIjVUK69atEwBh8eLFGp93xqUZwoBjA4QrXlc0jvU5K1eKf8fnz0sa9qcmNZqHXLwj81PTvHlz7OzsWLt2bUanIvMbkydPHu7evUunTp2ws7MjUNUH8xOj6pOVcuiVIAhqg9SKOTUv2/+cc+fEktRChaRvP0oJ6eWHcsf3DgAVcko71vjSJdELxcoKUtpBoTLvNjAwkDSXtKL3cWSUJuat58+f5927d5w/f57atWvz+PFjQDQpXbhwIf/88w9bt26lQoUKuLq6Jhtj2rRpnD9/Hjc3N0qVKsXSpUv5+++/2bFjB3GfzY80NTVl9OjRPHnyhGvXrlG6dGn69+/PpEmTiImJSfN7SAkDBgzg2bNnHD16NE2vf/36NTt27GDkyJEMGDCAvn370qtXL7p3706fPn04ceIEiYmJac5PR0eH8ePHU6RIEXbs2JHmOCqKFy/OqVOncHZ2pmPHjsTHp8yUMXfu3Hh6emJra8uBAwfo2rUr5cqVIygoSOOcZGR+JurXT59JPdpa2pS3LQ98au1NLYGBgdSvX59WrVpx9OhRlixZwsKFCylZUpxc5+EBZcuWZcyYMQwfPpwaNWpI0gprYWGBjo6OOtbjx485cOAAK1asYM2abkRE+LBnz2kKFerN0KFDGTFiBGPGjNH4vJVyVgI+rQekQjU0QDaXTRuyiCLzU6Ojo0ObNm24pjJCkJHJAMaNG4epqSn79+/H19f3pxf14uPh9WvxsZSigGeoJyFRIejr6FMyR0nJ4n748GkiT+PGkoVNMYKQPiJKaHQo7iHuKBQKKthKJ6LEx4NqqEyTJinvhY6IiEChUGQKESU2NpZVq1ZpHEdlPHrhwgWOHTtGlSpJfXr69u3LvXv3xL+DChVYuHBhEmFERd26dXFxcaF69eqMHTuWoUOH0rNnT3r06PHFsQqFgmrVqnHgwAFmz57N/PnzqVWrFgkJCRq/n6/RpEkTqlevzvLly7/wifkab9++ZcyYMeTKlYvcuXPTs2dPzpw5w4MHD3j69CkvX77E29ubO3fu0KJFC/LkycOsWbPw8/NLU44KhYKSJUvi5uaWptf/l8qVK3PkyBHOnj1Ljx49UnR9o6Oj8fLy4tKlS3Ts2JGnT5/y4sULFi9eLElOMjI/C8bGoPJmdXKSNrZKFHgQ8IC4xC8/T79FREQEjRo14vnz51y4cIFnz54xePBgIP0nzuTPn59nz55x6dIl/v33XyZMmEDu3LkZNGgQgwf3Z//+PjRt2gwdneb07NmHpUuXSiLeVMwpmpK/CHnBu+h3ErwTEZWI4uEh/SSm3wFZRJH56TEzM0t2FKWMjNQEBARw9epVDh48yPLly+nZsyd58uQha9asBAQEqI9r3rx5BmapOV5ekJgIZmYg5cRZ1S5KGesy6GpLM40DxEkCcXHg4AD/8Qv9Ibx7B2FhohihGrMoBaqqHZVDv1Tcvg3v30O2bCmvQgFwcHBAEAQePnwoWS6pJT4+ntu3b1OxYkXWrFnD4sWLqauayZkG7O3tadCgAf369ePOnTuMGDHii2OKFy/OnTt3GDJkCBMnTqR48eLs3buXR48eERwcrD7OwsKCw4cPo1Qq1RUt+/fvZ/fu3cTGxiZ7/smTJ9OkSRNeq1TLdEKhUDBo0CAuX76MtbU1ffr04ebNm7x+/ZqIiIgk40YjIyOZPXs2+fLlY9OmTbRp04YjR44QHBzM8+fPuXv3Ljdv3uTatWtcvnyZx48fc/fuXRo1asT8+fNxcHCgTZs27N69O8UVHHfv3qVr164cPHiQ1q1bS/a+GzRowL59+zh06BA9evT4brWMiYkJjT8qsUOHDuXhw4eMGjWK5cuXs23bNsnykpH5GahbF3R0xKk3Hz1RJSFvtrxYGFkQmxCLS4BLql577NgxXFxccHJyok6dOhQqVEg9WEIlonh7i8bpUlOiRAn8/PyoU6cO9evX5+TJk+TOnZvw8HAAatRQULSoHXXrtmfgwI1oa2tLct5shtkoYC4qHnd970oSEyBXLvHvNyIC5GK71COLKDI/Pfr6+ineWZORSS2JiYl07doVhUKBjY0NNWvWpEOHDowePRoXFxdat27N2rVrWblyJZcuXSIqKooK35sVm8n5vKpCKlf+RGUi9/zuAdK28sTEiGN6QayqyIjhRqrr5eAAHztMJEElOkl5vQQBzp4VH9evLy6gUkqDBg0oUKAAS5YskSyflHDs2DE6duxI8eLFMTY2pnLlyiQmJnLnzh3++OOPNE9mCwwM5NChQ+qxv7q6ul8dL25gYMDSpUt5+PAhDg4OdOnShVKlSmFlZcW8efOSiBAAhQsXZvfu3dSuXZtu3bphZ2fHhAkT8PLy+iL227dvadasGTqp+cv4iCAIeHp6cuTIEe7cuaMeIf05CQkJrFu3jvv371OnTh3ev3/Pli1bqFq1Krlz58bU1BQ9PT1y5MhBkSJFyJ07N7NmzaJfv368fPmS5cuX06pVK7J/Q1EtX748GzduxM/Pj5UrV/LmzRu6detGjhw5KF26NH/++SerVq1izJgxtG7dmvLly1O/fn169uxJ9erVqVixIrdv32bp0qWMHz8+1dfhW7Rp04a9e/eyf/9+5s6d+93jJ0+eDHxqF5s6dSq9evXC0dGRP//8U9LcZGQyM2ZmoCrOO3MmZa9xc3Pj0Xf6f1RTZyD1LSqqcei5k9mxyJZN3PgRhE/T8qSkS5cuzJ49W/3fZmZm3LhxQ119rKsL9eqJz509K211RyU76Vt6dHRANcRMHnWcemQRRean5/79+1+Mq5SRkQJPT090dHTYs2dPss+vWrWKZcuWMWjQIIYPH06tWrUwNDT8wVlKT3q0prgFu/Eh7gMm+iYUsZTu/9erVyEqCnLkgNKlJQubKlQ7dFJeL/8If7zDvdFSaFHWpqxkcR8+FEdXGxlB9eqpe62uri5ly5ZNc7tGWoiPj2f48OG4uLhQq1Ytli1bxoULF3B2dqZUqVIaxf77779p3749w4cPx9zcnCJFitC6deskVWX/pUSJEpw7dw4vLy9u3brF+PHjmTRpEvXr12fZsmWEhYUB4peELl26cPHiRdzc3OjevTt///03BQoUYMKECUmqJ728vJL9QvAtTp8+TfPmzbGysiJfvny0adOGSpUqkS1bNnR1dRk+fDgAHh4e1K5dm+HDh3P69GkiIiKo/bFG397enjNnzrBnzx5WrFjBiBEjaNq0KY6Ojjx//pylS5diYWGRqrzMzMwYMmQIzs7O+Pn5sX37dkqWLMnOnTsZO3YsJ0+eJDY2lrJly2Jubs7Lly8xMjLi8OHDvHjxghEjRqjFCylp164dkydPZsaMGRw7dozQ0NCvHlutWjUAli1bRtWqVfnrr7/U/ybWr19PRESE5PnJyGRWGjQQNycePQJ//+SPSUxMZPfu3dSsWZOiRYtSoUIFTp069c24KhHlydsnRMVHpSiXvXv38tdffwF8tT0vPX0+vLy8mDdvHr169cLX15fQ0FB69erFpk2b1FVuNWuCvj74+sLTp9Kdu4x1GbQUWvi89yHwg3S+e+ndAvUrI4soMj81iYmJXLx4kXoq6VdGRkLyfeaqamBgQKVKlRgxYgS7du3i5cuX1KxZMwOzSx8E4ZMoIKWprKoEtZxNObQU0tx6EhI+eXs0apRybw+pSQ/RSdXKU9yqOMZ6xpLEFIRPve21aommgal7vcDt27cpWLCgJPl8jw8fPtCyZUv8/f3Ztm0ba9asYejQodSpUwd9fX2N47ds2RKADRs2cP/+fU6ePEl8fDyjR4/+5usUCgW5cuWiUqVKzJs3jz179qCjo8PEiRNp167dF0a3wcHB3Lx5kwYNGmBmZsaCBQsoUqSI2stLX18/Rcay69ato2LFimoB5+TJk+jr63Ps2DF8fX25e/cu+/btw9zcnP379zNv3jwKFCjA9evXSUxMRFdXlw8fPqhbh5YtW0ajRo3o3LkzQ4YMYfLkySxZsoRFixalWtRJDhsbG3r06MH27dvx8/MjOjqa58+fc/r0aTZs2MD+/fu5fv06Z8+epXXr1pKVvn+NadOmUbFiRVq1aoW5uTkLFixI9riYmBgMDAxo164ddnZ2bNmyhaCgIFavXo2npycmJibpmqeMTGbi8w0KVRXj59y7d49KlSrRrVs3dHR02Lt3Lw0aNKBNmzY8ePDgq3FtTGywMbEhUZnIo8BvV64kJiYydepUunTpQv78+bly5cpXK+NU65b0qERZu3Yt+vr6rFq1CltbWxQKBf369cPb25tz584B4gZFjRri8cldr7RirGes3oC6739fsriqdYtciZJ6ZBFF5qdGpfz++++/si+KjOS0b98egJcvXxIdHc2tW7dYsWIFXbt2VU8q+dXw84PoaHEnxd5empgJygRcAsW+Z5UrvxQ4O4teJGZmUKmSZGFTRVSUeM1AWtHJ2c8ZkPZ6eXjAq1diCW9abEScnZ3x8vKic+fOkuX0NQRBoGXLlly7do1Tp05RuXJlyc9RpkwZrKys8PX1RUtLCzs7O0qWLPlV/5Kv0blzZ5ycnDhx4gQXLlygdOnSHD58GBD9RXr16kVYWBivX79W36e8vb0ZN24cIFY+rFixgoULF37Ts2PKlCncvXuXWrVqkTNnTkqXLo2vry+XL1/G1taW8uXL07FjRx48eEB0dDSTJk0CwNjYmP79+1OjRg2aNm1Kp06d2LhxI23btk3LZUsTCoUizW1XUqGjo5PEFHnChAnJ7mbfunWLmJgYTExM6N69OwEBAdy+fZuhQ4emujJHRuZXoFEj8eft26Aq4goPD2f48OFUrFiRhIQEbt68yYULFyhatCiurq5kz56drFmzJokTHx/PgwcPePPmDSBuqsCn+91/cXJyom3btuTIkYO5c+cyb948jh07Rg2VSpEMqqXZq1fixD4psbS0JC4ujixZsqh/V6FCBUqWLMnGjRvVv6tbV9zUefYMPr5VSVBfL//kr1dayJdPrDR6+1b0SpNJObKIIvNTo6enx8mTJ7l//36yUxBkZDRBV1eXokWL/rKCSXKoqlDy5pWusuN58HOi46Mx1Tcln7k0SoMgfKpCqVMndd4eUuLpKeZiZQWmptLE9I/wJ+BDANpa2pJOMVLtilWpkrZcz5w5g7a2NlWrVpUsp69x/vx5Ll68yL59+6hfv366ncfIyChJFYivry92dnZpilW/fn1OnTqFhYUFvXr1wt/fnxUrVuDp6cn48eO5c+cOgYGBNGnSBIBKH5W/jRs30rdvX8aPH//V6giARo0aYWJiQpYsWRg4cCCPHz+mQYMGtGjRIslxDg4O6pL3okWL8vjxYzZs2MDq1atZsmQJ8+bNo1+/fpJMjfiZiImJ4dq1a4wcOZK7d+8SHBycrA+NpaUl5cuXZ//+/QwYMCADMpWRyVzkyQMFC4qG8xcuwLt376hVqxZbt25l6dKl3Lt3j8qVK+Pq6kq1atUwNzfnzp075M6dmxMnTjBixAiqVKmCiYkJZcuWJX/+/IwYMYLQp6HExsby9O1TouOTehuOHz+exo0b4+3tzZAhQ7hz5w4TJkz47ueWra1YZRkb+2mDQyoKFSrEhw8f8P+sr0mhUNC8eXNu3bql/l327FD+4/6HlNUopaxLoaXQwjvcm6BIaZxgDQ3BxkZ8nB7VO78ysogi89NTtWpVZs2axcmTJ9N1RKTMr0+HDh2wtrbGx8eHlStXsmfPHoYMGZLRaf1QVCWdklZVfNw1KW1dWrJWHg8PcYdHV/dT6WxGkB6tPKpS3SIWRTDUlcZjJyhI7GkHscc9tWzfvp2pU6cycOBASVppvsfcuXMpX768WnBILwwNDYmOjiYhIQE3Nzd8fHy+ai6bEpo0acKhQ4cwMDBg+PDhNG7cmNKlS9OnTx+6dOmCqakpx48fZ+/evcyaNQsAU1NTVqxYQY0aNZgzZ85XW3uGDBlCZGQkxYsXJyYmhri4OM6ePUutWrWSHOfm5sbEiRMpW7Ys169fl6Q151fg7t27xMfH07NnT8qXL//VdoBixYpx69YtzM3NadWq1Q/OUkYm8yEIAiVLBhIaGsqBA/40atQSHx8fbt26xahRo9RipEKhICIigoEDB5KQkECzZs1o0aIFp0+fJm/evMyfP5+rV6/y119/sWvXLnq17cXhnYeJS4z7oqVnx44d9O3blzt37jBz5kzKlSuXoly1tD6ZpUotCqhavN3/YyCSmJiYpMoNoGFD8aezM4SESHP+LHpZKGRRCJC2pSc9W6B+ZWQRReaXoHTp0sTFxeEhN/XJpJILFy5QsGBBIiMjef36NYGBgdjb2zNy5EjGjRv324ooUokCSkHJw4CHAJSzTdkiKCX8+6/4s3Jl+Kyy9oeTHv4xqsWRlIayly6JP4sXF3vcU8uOHTuoV68eq1evliynb/HixQvs7OzSvVrC1NSUS5cuUadOHYoWLUp4eDi5cuXSKGa2bNlYvXo1hw4d4sWLF9y6dYvGjRvj4iK2tGlra9OpU6ckJeEgVqQkJCTQp0+fL3xVAKpXr86gQYPYv38/69at++q1yZkzJ5UqVcLFxYXt27dr9F5+FaKiopg/fz729vaULPn96q7w8HDevXvHrl27GDZs2A81U5aRyUzExcXRs2dPGja04cCBtezbdww3N1POnj1LsWLF1McplUqGDh0KwODBgylUqBCPHj3i6NGjuLu7s2vXLkaNGkX16tWZPHkywcHBNGnSBMFXHGHzeYuKh4cH/v7+bNq06buTfpJDVTws5VhmgMOHD6Ovr08BlXstooCyY8cOypQpk+RYe3soXFhsKbp8WbocvtcClRbSS3T61ZFFFJlfglKlSmFgYMCUKVO+2VMuI/NfunXrhru7O8+ePWPz5s3q3/fs2ZP58+f/ViXvYWHijolC8emmqikvQl4QGReJsZ4xBbNLY0gaHCxOmYFP4wQzgsREse8apBNR3ka+xee9D1oKLUpbl5YkZkwMXL8uPk6LFwqIUwlKlCjxw/5/mDt3LkeOHOHYsWPpep7Fixfz9u1b3N3dOXDgAP/73/9o3bq1xnHLlSuHnp4eGzZswMHBgTNnznxRMfJfChUqxM6dO9m7d+9Xx/zevHkT4JsT6UxNTbl48SJ58+ZlxYoVaX8TvxANGzbk33//ZdmyZSkaJW1ubo6Hhwdjxoxh48aNLF++PP2TlJHJhHTt2vWjcLuWFSta0759e4YN+x9lyiQV+W/cuMGVK1cAaNWqFYsWLeLp06dqA+//olQqOX36NG2rtEVLocWToCfEJIhVePny5WPfvn2UKFGCypUrp1oMVokoUooCoaGhLFmyhMGDB2NrawuIFTpDhw4lICAAR0fHL16jut9euwbx8dLkoarofRP+huCoYEliqq6Xl5e4rpFJGbKIIvNLYG5uzr59+zhy5AiDBw9GkHI4u8wviSAIeHp6YmZmBog738WLF2fGjBno6emxbdu230pAgU+CQM6cqZ/c8jUe+Ivu/FK28ly8KPqQFC36qZc3I/DxERdGRkZgbS1NTFUVSsHsBSWbynPzpiik5MghXrO0UKRIEQ4dOsT27dsJDw+XJK+v8erVK5YuXYqhoWG6T0KpXr06z58/5/nz57Rv3542bdp8UZadGgRBICgoiCVLlmBmZkZCQgK6urqcP3+eJUuWfPf1HTp0YNmyZSxevDiJUaGK48ePU758eVq3bs2sWbO+2vpz/Phx3N3dWbhwYZrfy6+Eu7s7EyZMoF27dil+jY2NDdOnT0ehUKTZJ0dG5mfnw4cPZM2alVatWtG/fzFsbLITGmrAs2dJj6tatSoeHh4kJCRw5MgRRowYgek3zLdGjRoFQKUilciRJYdoQB8gVuspFAo6duzI7du36dKlC7169eL06dMpzlklCgQFwYcPqXq7X2XJkiXEx8czYcIE9e+mTZvG+vXr2bhxI82bN//iNSVKgLk5REbC3bvS5GGib6LekJKqGsXaWlzHxMeL6xqZlCGLKDK/DC1btmTTpk1s3LiRoUOHEhcXl9EpyWRifH19yZcvH8+fPwegT58+rF+/njVr1nzT+f1XRrVrI5WPriAIkremxMaKuzoA6eg3miJUolOePGL1jhRIfb0EQRSdQNwVS2ueK1euJFu2bPTq1YsZM2ZIktvXGDlyJGFhYdy+fZs6deqk67lAnF6jElO/x+PHjylVqhTVqlWjZcuW9OnTh65du1KrVi3y5cuHoaEhOXLkYP369bx9+5arV6+ycuVK6tWrh5GRUYrOMWLECBwdHZk4ceIXbT3m5uZs3ryZYcOGMXPmTLWvyn9ZsGAB5ubmP8QE+GcgV65c3xy3+jV8fX2JjY1NMu5eRuZ3Ytu2bejo6NC0aVPWr1+OufkzBEHJhQtfHpsvX74UjSp/+vQpq1evpnHjxvTu3RuTDyYICF/4fBgaGvLPP//QtGlTtVl3Svh8Y0PTahSlUsmyZctYtGgRI0aMIMfHftiLFy8ye/Zs5s+fT58+fZJ9rZYW1K7Nx+PF+7EUqFqjpfJF+bz6WG7pSTmyiCLzS9GrVy82bNjA+vXradOmTUanI5OJsbOzY9GiRer/jomJYdCgQejp6bFnz54MzCzj+FwUkIKXoS95H/seQ11DClsUliTmnTtiVYWVVdqrKqRCatEpNDoUrzAvFAoFZWzKfP8FKeDpUwgMFCuLNJkSnDt3blxcXGjVqhVPnjyRJLf/IggCDx48wMnJidGjR1OiRIl0OY8m7Nu3Dy8vLwoWLIggCDx9+hRfX19y5sxJu3btmDVrFtra2mrBpFu3bqm+FykUCnr16kVISMgXfgAbNmygZMmSrF+/nixZsuDzlW3DxYsXo6+vT5kyZbh69Wra3uwvRP/+/Tl+/Dhubm6pel1gYCCAPNpY5rclR44cHD58GAMDAyZOnMiMGbV4/PgJrq7iWNy4uDhmz56NsbExVatWZf/+/d8d8mBpaUm5cuU4c+YMhoaGjOs+jj179nDm/hniEpNugGppabF161Z0dHTo0aNHsn5RySFFS8+rV6+oU6cOY8aMYciQIeqpZwABAQEADBs27JsxqlUTpwe+efNpjaUpZazLoFAo8ArzIiRKGtfa9GiB+tWRRRSZX47+/fszZMgQzp8/T2RkZEanI5OJGTt2LK9fv07yu507d2JpaZlBGWUciYliPyxIJwqodklK5iiJjpbmM4gF4ZNBW61a0lV/pBWpRRTV9cqXLR+m+tLMS1btFlarJk2LlpmZGaGhoZoH+g+bNm3CxsaGsmXLYmJiQseOHSU/x7eIi4vjyJEjLFq0iBMnThAUlPz4SG9vb96/f4+rqysNGjTg2LFjXL58md27d7Nw4UJsbGxITEzk/PnzhISEsHPnzjS1BVapUgUzMzN27typ/l1gYKDa4DQiIoIcOXJQ9CtKYvXq1Xnw4AEFCxakffv2hIWFpTqHX4lu3bphZWVF0aJFKVCgAD179kyRGFi0aFH09PS4ffv2D8hSRiZzUrFiRW7evMn79+8pUMAMX18nfHx8WL/+OWXLlmX69On07dsXAwMDOnXqhKWlJfny5aNVq1bJttdbWlpy9+5dxo0bR+nSpRk7cCzmhuacPnuaM/fOJHv8zp07uXDhQor9iVJjLisIAufPnycqKkr93xs2bKBEiRK8fv2aCxcusGzZsiStnipvpe8JRlmyQMWK4mNVVaimmOibUMBcNLdVGfdrijyhJ/XIIorML8moUaNQKBTMnTs3o1ORyeR8PiGjS5cu3zV//FX53N8jLdNb/osgCGo/FKlaU7y8wNtb3NWpUkWSkGkmIkLchQOQaoLsgwBpr1dICKi+J6pKijXl0aNHGBoacvDgQby8vJgyZQpt2rRh8uTJ7Nq1K03C9Z49e+jfvz/16tXj3LlzeHt7q437UosgCMTExKgNxgMCApg1axaVK1embNmylC5dmgoVKrB+/XoePXqEk5MTw4cPx9bWljZt2jB9+nRatGhBqVKlOH/+PD169ODuZ83s69ev5+DBg9jZ2TF27FhsbW2pX78+06ZN48WLF5ibmwPiBB7V47Sgr6/PkCFDWL9+vVq02r59OwsXLqRkyZJs3bqVZ8+efdWAFsQd5D179hAVFZVkB/V3xMjICBcXF/bs2UPTpk25ceMG5cuXZ926dV81o4+Pj+f169dky5aNW7du/eCMZWQyH7q6ukydOhW4zMmTJ5k69ST6+lm4d+8eq1ev5sKFCzx8+JCxY8dSvXp1jh079tU2OoVCwYIFC3jw4AGLFi7ir0F/YWRkxKAZg3j//v0Xx9etW5c+ffqwfPnyFA2QUIkCXl7ihJxvsW/fPho0aED58uU5e/YszZo1Y+DAgXTu3JlHjx4l21aqyuF7Igp8uv86O0Myby1NqIznXQJdJImnaksODpYux18dzbcGZWQyIfny5WP8+PHMnz8fR0fHJOPIZGQ+x9TUFCsrK4KCghgxYkRGp5NhSO3v4f3em3fR79DT1qOYZbHvvyAFfDT+p3x5MJbGczXNqK6XjY0oPGlKRGwEHu/E+dJStfJcuyZW7xQuLLY/SYGnpyfv379XT2HQ19enWrVqbN++HR8fHzp06MD+/fuTvMbd3Z2DBw+iUCjQ1dVFW1ubxMREEhMTef/+PQsWLKB79+5s3boVLa3k93ZUrTOPHz/Gz88PX19f9Z+QkBAiIiKIiIjgw4cPJCQkkC1bNnUri46ODq1atSJbtmxoaWnh7+/PoEGD1LFtbW3p27cvPXv2pGjRokyePJl58+bRoEEDQKy+qVChgvr9tmvXjnbt2hEcHMy+ffs4ffo0a9asYc6cOZQrVw6FQkH27Nk1vtYjR45k2bJltG3bliVLltCxY0cmTJjAkCFD6NWrV4pi5MyZk2nTpjFhwgSsrKzQ1dUlISGB/Pnz0759+yTX++TJk7i6umJgYICBgQEVKlSgXLnkx5InJiYya9Ysrly5Qu3atalbty6hoaFERkbSqVOnTGnKnSNHDjp37kznzp2ZP38+f/zxB0OGDGHEiBHY29uTK1cucuXKRVxcHI8fP+b58+dqb7XkTCNlZH5HevToQdeu3XF09MPfP4aZM0dQurQO8fHxbN68mVu3buHs7MzTp08B0f+kbNlvbwwolUou7LpAfHw8/on+bN+xnWFDv2yT6d+/P5s2beLSpUvU+85oPhsbMDSE6Gjw9RVHDifHhw8fGDt2LHXr1iUkJIRGjRphbW3NiRMnaNas2Vfjb9++neLFi6dILM+VS6yM8fSEq1fhG2FTTCnrUux/sh/3EHei4qMw0tVsIWJgIF4zPz8xz9KlNc/xV0cWUWR+WSZMmMD27dsZMWIEp06dypSLOpmMR0dHh1evXpEnTx6OHz9OZU2MI35ipG5NeRQoejkUtSyKrrauxvE+d7fPDMVCUvvHuAa5IggCDmYOmBumvYJBhVL5aayxlD7JFy9eRF9fn2zZsnH9+nXKlClD/vz5Adi4cSMDBgzg/v37lC1blqioKCZPnszq1asxMDBAT0+P+Ph4lEol2tra6j+dOnVi06ZNyQoobm5ubN68mcOHD/PyY122kZEROXPmJGfOnDg4OFCuXDlMTEzIkiULJiYmGBsb4+7uzp07d1i4cCGOjo5kzZo1Sdxnz54RFhZGjhw5cHBwSGKG2KRJE1xdXTlx4gT58+f/arWHhYUFQ4cOZejQocTExLBlyxbmzZtHmzZtyCPBPwyVF8GoUaMoV64cderUwcjIiHXr1jFw4MAUxxk5ciSnTp1iwYIF6OjooKOjw9u3bylTpgyLFi2idu3aXL16lRYtWmBiYkJiYiLR0dEIgsDIkSOZM2eO2uNFqVTy9u1bBgwYwPHjx2nQoAFLly5NUunSoEEDSUSk9MTQ0JC1a9fSs2dPHjx4wOvXr3n9+jXPnz9HR0eHqlWrMmDAAIoVK0axYsWwkkqFlJH5BdDWVtCpU06OH4cbN6BKFYFBgwaxdetWypQpQ5UqVRg2bBhly5b9qhD7OUqlkpM7TmLQ2IDKTSpTt23dZI9TxXrz5s13Y6rMUp8+FVt6viaizJ07l5CQEP755x9sbW3Zv38/TZs2/eZnmIuLC6dPn05Vu2bt2uI668oVaNJENJ3VBAsjC2xNbPGL8MM10JVKdpU0C4hYvSOLKClHFlFkflkMDQ1ZsWIFrVq14p9//qF///4ZnZJMJsXIyIgSJUqoJ/X8jqhEFKlEAdWowlLWpSSJd+uW2G5kZyddjpqQXqJTyRwlJYnn6grh4WBiIu1i6PMdxQ4dOiR5rlevXqxevZqGDRsyefJkjh8/zq1bt5g5cyajRo3C0NAwxeeJiopi4cKFzJ07l2zZstGqVStWrlxJ1apVMTMz01gUL1z460bHNWrUICEhgRMnTnDw4EHsv7b6/gwDAwMGDx7MoEGDkvUASCuNGzfm8ePHbNu2jWPHjlG/fn1KlUrd/1N6enpc/E8z/o0bNxg7diz169dHT0+PuLg4ihUrxoMHD9DV1SUxMZEVK1YwefJk9u3bR5YsWQgJCSE0NBRBEMiSJQvHjx+nWbNmJCQksGrVKsaMGcPkyZMzvYDyOZUrV/5thXMZGU2oVg1OnAAXlyi6d5/K7t2b2bZtGz179kx1LB0dHfr16cfaW2vJ3T43bqFuFLX50u9JJbSn9DM2b15RRPH0TL6l1cPDgyVLljBhwgS18N2jR4/vxlVV2dSsWTNFeQCUKwf79kFYmNhmK4VveinrUvhF+PEo8JEkIkqePGKljOyLkjJkEUXml6ZFixYMGTKEgQMHYmxsTNeuXTM6JZlMSv78+X/bvvfP/T2kECjCYsJ4E/4GhUJBCSvNVwqZzVBWqfxUiSKFiBKfGM/Tt+KiTCoRRdX6VLWq6CHzI9DT0+PMmTPY2toyZswYAHr27MmECRO+K3pERUWxevVqrly5gpubG69evUJbW5sJEyYwZcoU9PX1f8RbUKOaxjJnzhz27duXYtFGoVBIXvWoo6ND37596du3r/p3p06dIj4+npYtW6bpfFWrVuX69escP36cV69eUbx4cSpWrIiurlg1pq2tzZgxY2jevDmrVq1CX1+f7Nmzq/9YW1tz5coVqlatSrZs2Rg5ciSXLl1ixYoV/PnnnykeGS0jI/NzolCE4el5kQsX3qGvH6yu7EorQ4YMYfHuxXh4ePDQ7CFti7T94rNN9d8pndCTJ49AVFQ0Fy8Gk5joxIsXL4iKiqJkyZKUKVOGmTNnYm1t/U1vqeSo8tGU7cKFCylurdTRESfk/fuv2GoriYiSoxSn3U/zOOgxCcoEjQ38VesZLy9x2EAKplX/1sgiiswvjUKhYNWqVURHR9OzZ091P7uMzH+JjIxUj7P83VAJAtbW0vh7qKoq8mTNg4m+icbxXrwQx/Tq639yuc9I/P0hNlbMx8ZG83gvQl4QmxBLVoOsOJg5aBzvc0PZ6tU1DpcqDh48iJaWFs2bNyc0NJTt27cTEhJCxYoVCQkJ4cOHDxQtWpRKlSpRtmxZDA0N2bNnD+PHjycwMJD69evTpk0bihQpQo0aNShYsOCPfQMfKVGiBAsWLGD8+PEsX748zUa36UFERARdunTh/fv31KtXj1y5cvHu3Tv09PSwtramZMmSVKlS5auTe1QoFApatmz5zWMKFizIqlWruH//Phs3bsTf358NGzYQGxsLiDux1apVQ0tLi5CQEHLnzp3ErFtGRubXIzExkdatW3PnTjQlS66mcuVu9Oun2fi3PHnyYK9vT3hoOEGRQQR8CMDGJOkNVuXFlS1btm/G2r9/P4sWLeL5c28iImYAsGvXOPLkscDQ0JD169erjWEPHjyobldMCYIgMG7cOMzMzFI9iKB6dVFEefRING811XAIX+6suTHVN+V97HtehLygqOW3P/O/h2oNGBUlDhvIlUuz/H51ZBFF5pdHS0uLjRs3EhMTQ+fOnbl//z4lpJCAZX4ZVq9ezc6dO1mzZk1Gp5IhSFlVAZ9aeaSqqrh6VfxZsaI0Y3o15fPWJ037muGT6FQiRwlJqhiuX5feUDYlvH//nrlz59KjRw+2bt0KwPHjxxk+fDjOzs5kz54dAwMD9uzZQ3R0NAqFAgMDA6Kjo2nbti0LFy4kn2qkQiZAV1cXQ0NDrK2tMzqVJLi5uamnV/z7779fPc7d3V3tV5NWRo4cyZUrV3j48CG6uroUKlRILaCcO3eOatWqqY99+vQpY8aMSeIvIyMj8+sxe/Zsrl69yr//XuTMmQqEhsL9+1BJg44SX19fvF95U89BNIx1CXTBxsSGDx8+cOfOHe7cucOaNWuoWbMmrVu3/mqcNWvWMGzYMBo3bkz79u15+LAmiYnW/PlnbypU0AMgOjqax48fExwcTOPGjVOUX2JiIhcvXmTjxo0cOHCAAwcOkDuVo/lsbT8ZzN68CY0aperlX6BQKChlXYqrr6/iEuCisYii8pF58kTMURZRvo0sosj8Fmhra7N161aOHTvGmTNnZBFFhuDgYJycnDh9+jR79uxh1KhRDBkyJKPTyhCk9PeITYjlWfAzQBo/lKgoePhQfPyjqyq+hpSmsoIgqEcUlsqh+fVKL0PZlDBhwgQiIiKYOXOm+nctWrSgRYsWSY5LSEjg8ePH3L9/n/DwcCpUqED1zPKX+5Hw8HAOHz5MgQIFvjoxKKOoWLEiL1++5PHjx7i5uTFhwoQvjjEzM5PEDPXRo0c8fPiQ5s2bU69ePTZu3AjA6NGjqV+/fpJjHRwc8PHx0ficMjIymZeEhATmz5+PlZUVMTFRVKsmcOKEgqtXNRNRHj9+DED94vW5EnqF269vc2vnLZYuXUpERAQmJiZUqVKFDRs2JCvUhoaGMnv2bJYuXcro0aNZvHgxWlpa7Nghts94e0P58gLBwcG8ffuWcuXKffHZHhoayv3794mOjk7y5+XLl+zevRtfX18KFizI2rVrad++fZreZ/Xq4prr2jVo2FDz9uRSOT6KKIEudC7eWeONmLx5P4koyUx2lvkMWUSR+W3Q09OjVq1azJkzh+vXr2Nra0vevHkZMGAApprW1Mn8NCiVSiZMmMDixYsRBEHdF5vcF5Hfgc/9PaQQBdyC3UhQJmBhZIFNFs17Xe7dEw1lbW0zz66IlKKTz3sfQqND0dXWpbDF181OU8rjx6JxndSGst/j6tWrrFu3jpUrV+Lg8O2WJB0dHUqXLk3pTGr/7+bmRsuWLQkKCmLfvn0ZnU6y5M2bl7x589KyZUuGDRvGq1evMDMzw8zMjCxZskgm/CxfvpzmzZtz4sQJnJycaN26NcuXL/9ivOi7d+/w9fVVl8jLyMj8mujo6HDmzBkmTZpEkyZNqFixIblz78Hd3ZygoLRXP6rMvtdMW4NnXk9CQ0PhHAzrP4y+fftSuHDhZD/X3r9/z4oVK1iyZAnx8fEsWrSIP/74A0EQuHDhAseOPeLatTzs2eNC9+7ziY6OBuDs2bPqMfYAN2/epF27dvj7+yeJr1AosLCwoH379vTq1YuKFStqJFSULy8azAYFgYcHFCiQ5lAAFLYojJ62HqHRofi898He7PtG6N9CVQwqm8t+H1lEkfmt2LFjBwsWLMDV1ZXr16+zZcsW/v77bxo3bky1atXo0qVLRqcok04olUr8/f35888/2bt3L7NmzaJPnz7YSGFq8RPzub+HFLYPn0+ZkaI15eZN8WeVKhlvKAtiZYxqjSWF6CT1KGjV9apU6ccZyt65cwdHR0eqVq36S1Rzbd++HU9PT9zc3DLMkyU1GBsbU7x48XSJXapUKd68ecPz58/Jnj07lpaWXxwjCOJ408TExCSjjmVkZH5NatWqxbVr13BycmLIkCGEh++lVq0h3LwJrVqlLaaDgwNdunQhJCQEG2Mbctrl5K8pf9GyzNd9m8LDw6latSpPnz6lU6dOjB07FlNTUxYtWsTKlSvx9fUla9YihIWNAsyBGIoWLcrTp08JCAhQx/nnn38YMmQIFStW5Ny5c+rWU0NDQ/T09CQ1C9fXhwoVxEqUa9c0F1F0tXUpZlWMB/4PcAl00VhEyZNHXGsFB0vj2/Irk7lqVGVk0hlzc3MWLFjAqVOncHFxwdXVlRIlSnDu3Dm6du3KwoULUzR/Xubn4ty5czg4OGBnZ8f//vc/9u/fz+TJk397AQWk9fcQBEHSUb0BAWJ+Wlqiq31mwMtL/GlpKVZ7aIqU1ysyUjSsA1F0Sm/c3Nzo2rUrlSpVwtjYmK1bt/4SfhgtW7ZEqVTi6OjIxIkTJR1Z/DOiUCgoXLhwsgIKwJkzZzhw4AB///03dnZ2Pzg7GRmZjEChUNC4cWOmTZvG8+dbiIh4z61boh9XWuPt3r0bJycn/hr8F+XLlSdICPrq8SqfQ9W44X379lGhQgUKFSrElClTCAgIwNjYmLAwN3LlsqJHj75MmbKOp0+foq+vz+7du3n16hWDBw+mf//+9OvXjwsXLlCsWDGsra3JmjUr+vr6kk9bg0+tyc7O4saMpqimID4OeqxxLAODT4b5cjXKt5FFFJnfmvz583P48GEePXpEmzZtmDZtGqVKleKqyslS5qdnz549NGzYkCJFinDs2DHc3d3T3Mv6K/K5iKIpXmFeRMRGYKBjQIHsGm6vADduiD+LF888uyFStvKEx4TjFeYFIMko6Hv3ICEB7OzEP+nF1atXadmyJUWLFuXSpUts3LiRBw8eUEDTLbVMQuXKlZk0aRJWVlbMnz+f48ePZ3RKmZqlS5dSsWJFOnTokNGpyMjI/GA6duyIqekr3N1defdOnKanKar74ZOgJyiFpOOMT5w4QZcuXbC0tOTcuXMcOXKErl27AuKaft++fZibm1O9enVev37NH3/8QWTkE+7fv8+ePbewsbFh+fLlODs7kzdvXjZv3szGjRtZu3Ytenp6miefAnLnFit/4+NFIUVTilkVA8Q12Ie4DxrHU60HVZtGMskjiygyMoC+vj7/+9//CAgIoEyZMjRo0IATJ05kdFoyGnL16lXGjx9Ps2bNcHJyokWLFtjba1bq+Ksh5WQe1S5IUcui6Ghp1kuiVMLt2+LjqlU1zUw6pBRRnrwV5xDnypoLMwMzjeN93vqUXsyaNYuaNWvy8uVLNm/ezKtXr+jXr98vUYGiQqFQMGfOHA4fPkzdunVp1aoVderUYenSpbz4+A1BqVT+9hUqALdv3+b8+fOMHDkyXXZsZWRkMjdGRkYMGNAbF5dNhIeHq+9DmpAnWx6MdI2Iio/iVegr9e9DQkJo0aKFem339OlTWrVqxc6dO9m2bRv+/v6MHz+ewMBAFi9ezIQJE1izZg0FCuji5vYUf399zp49y6BBg3B3d2fevHlcvXqVfv36aZ50KlAoPlXXqtY5mpDVICt2pnYIgsCToCcax5NFlJQhiygyMp+RNWtWTp8+TY0aNX5bo9FfAT8/P7p160bNmjXVuw6ZbcJGZkBqfw+VKFDcSnN/hqdPRYNUY2PILMO0BEFaE17VYkeKKpTAQDE3LS1xFHR6sHTpUqZNm8bMmTN5/PgxvXv3Rl9fP31OlglQKBScOHGCrVu3YmBgwKRJkyhUqBC5cuXCxMSEbNmyUa9ePSZMmMDNmzdRKpXfD5oCPDw8GD16NDVq1MDW1pYqVarQq1cv5s6dy6lTpzKVeDNx4kSKFi0qV/fJyPzGTJ8+HWvrV1y+fBlnZ4GPU9DTjJZCSz2u9/MWlezZs9O9e3diY2MZMmSI2rNKoVDQs2dPGjZsiK6uLtra2jRs2JDt27czY8YM1q4dR9u27ejbd7baP8rMzIwJEyZQMb1umN+hYkVRTHF3h5AQzeOp1l2qdZgmqCY3e3mlvT3rd0D+ViEj8x/09fUZPnw4T548wdXVNaPTkUklhw4dolChQpw7d47Nmzdz8+ZN8ufPn9FpZUpUuwwWFpr7e0TGRapbU1SlpZqQEQap3yMoSBSedHU1b5dRCkqevhV7uaW8XsWKpU/r0/379/njjz+YMGECU6dO/W2qDgwNDenVqxenT58mJCSE48eP0759e6ZPn86ff/6JmZkZW7dupWrVquTOnZuxY8dy//79NJ0rISGBxYsXU6JECfbu3UvOnDnp27cvBQsW5Pnz5yxatIhmzZqxYMECid9l2ggNDeXSpUuMGTPmh5XBy8jIZD6MjY3Ztu0vAgJcuHv3EWn8CExCiRzi5oJrUNJ1+MKFC4mPj6dQoULMmDGDmJgYAAIDAzl+/DjDhw/H3d2d3r17U6FCBQYMGEDu3KInYlychcYCj1RkywaFComPpahGUYsoQU80FtptbcV1TnS0uO6RSZ5MsjSVkclcNG7cmJw5c7J8+XI2bdqU0enIpJBFixYxbtw4OnbsyPr168maNWtGp5SpUYkoUrSmPH37FEEQyGmak6wGWTWKFRMDDx+Kj3+EQWpKUVWhODiApt0rr0JfERUfhZGuEbmz5tYollIJt26Jj9Prep05cwYTExNmzZqVPif4CTA2NqZ58+Y0b948ye8TExO5du0a+/fvZ8eOHSxdupSrV69SrVq1VMUfOXIk69atY+TIkcyePRtjY+MkzwuCwJQpU5g4cSLz5s2jU6dO1KtXDwcHB/LkyYO1tbXG7zE1/PvvvwiCkGRMqIyMzO9JnTq1ad/+FQcP3mb9egVVqmhmll7MUtxc8A73JjwmXN3yamNjw4MHD5gxYwbTp0+nUqVKNG7cmG3btqGtrU23bt0wNzdnyZIlSeJlywahofDmjeYTcaSicmV49ky8fzdpotkEwrzZ8mKgY8CHuA+8Dn+t0bpCW1tc57x8Ka4Tc+RIe16/MnIlioxMMujp6TFy5Eh27tz5xcz4iIgI2rVrx5o1a4iMjFSr4DIZy549exg3bhwTJ05kz549soCSAlSigKp0UxNUJbdStPI8eCAapNrYQGaysFGJTlK2PhW1LIqWQrNb8YsX4uLQyAhKaj7k5wsEQWDXrl00bNgQncxSFpSJ0NbWplatWqxZswZfX19KlSqV6qk+t2/fZu3ataxYsYJly5Z9IaCAWLI+c+ZMdu7cyciRIzl27BidO3ematWq2Nrasm7dOnx8fHj9+jWenp5f3LtSQlxcXIrakpRKJQsWLKBixYo4ODik+jwyMjK/HmvX9iJfvrzs2HEHJ6e7GsUy0TchV9ZcwJctKnny5KFmzZooFAoqVqyIIAj8888/tG/fHnNz82TjqdY5r14l+3SGUKaMWPERGAivX2sWS1tLO9kWqLSSGa9XZkMWUWRkvsKAAQMwMDBg7ty5SX6/e/duDh8+zIgRI8iSJQvZsmVj4sSJhIeHZ1CmMi9evKBv3750796dOXPmyP4nKUAQPokCmooogiB8ak2x1Lw15c4d8aeqZzizkB5+KFK08qhKgcuXFxdkUnP27FmePn3K8OHDpQ/+i6Gjo8OcOXO4evUq8+bN4/HjxyQmJn73da8+/uNq3br1N49T7bTOnDmTgIAAwsLCePToET169GDIkCHY29uTO3du8uXLh62tLQUKFGDYsGEcP36cqGRmaSYmJrJw4UKKFStG9uzZ0dfXJ2vWrFStWpU9e/YQEBCQrKiyb98+7t27R6dOnVJ2YWRkZH55LC216N+/NsbGRqxceV3jeCq/MNfAL1vrz507R/HixcmWLRubN2/G3d39mwaxmdEs1cAASpcWH6uqSTVBtYmV3PVKLZnxemU25C0lGZmvYGZmxtSpU5kwYQIDBw5Um1EFBgZiYmLCzZs3uX79Ol5eXixfvpytW7fy7NkzzMw0n7IhkzqOHDmCtrY269ev/228GjQlNBTevxeNSDXdSPZ+78372Pfo6+iTzzyfRrHevwc3N/FxhQqa5SUlCQng4yM+1lR0ioiN4HW4uO2kqeiUkCBW7kD6Gcpu2LCBUqVKUbNmzfQ5wS9GkyZN6Nq1K1OnTmXy5MmYmJhQv359WrRoQdOmTcmRTG10w4YN0dbW5tSpUwwcODDF5zIzM6NEiRJs2rSJHj16kJCQgLa2Ntra2oSGhnL+/HlOnTrFmjVrMDAwoG7durRo0YJGjRpx7tw51qxZg6urKz179qRIkSJYWVnx9u1bTp8+rR4bam1tTdOmTSlXrhzZs2fHw8ODxYsXU7JkyVTlKiMj8+tTpYoOenp6BAdr3idc3Ko4J16cwC3YjURlItpan/po8+TJw969eylbtiwPHz6kc+fO1KpV66uxMmtlReXKcPcu3LsHHTpo1iqs2pR5Hf6aiNgITPTTbnanul7e3uI6Qy5C/RL5ksjIfIMRI0awYcMGRo8ezdmzZ1EoFLRu3Zq//voLPz8/+vfvD0CNGjVo0qQJfn5+soiSAdy6dYsKFSpgZGSU0an8NKh2F3Lm1Lx6QVVVUdiisMajjZ2dxSqZPHnA0lKzvKTEx0dcSBgbQ/bsmsVyC3ZDEATsTO00Hm385Ilo/pY1K6SXf7K+vj5GRkayQJlCFAoFu3btYv369dy7d49r165x6tQp+vbtiyAIVKxYkZ49e9K7d2/1Z9aDBw/Q1tZOUwsOiBUw9evX/+L37dq1A+D58+ecPHmSEydOMGzYMBITE9HS0qJZs2asW7eOqv+ZIz5w4ECyZs1KxYoVqVmzJidOnGDbtm0kJiaip6dH//79mTFjRrJtRzIyMr8njx49YsGCOYSE1MHBoRyBgZr5aeTKmgtjPWMi4yLxDPWkQPZPZiZz5szB1taWtWvXcvDgQfVn3Vdj5RIrW9+9Ezdr0sOAPS0ULSoa+0dEiPdzTVpyVaOOfd778PTtUyrZVUpzLAsLcb0TGQm+vuL1k0mKLKLIyHwDPT09lixZQsuWLTl58iTNmzenWLFi6Ojo4O7url60lipVCl1dXU6ePEmRIkUyOOvMR2JiIleuXOHly5cEBgaira1N7ty5sbe35/379/j4+ODt7Y2ZmRndu3dPdqf2W0RFRWFgYJBO2f+aSNqaIuFo489beTITn/uhaKolqPqVpWjlUV2v8uXTr/WpXLlyHDlyhISEBNkTJRVkyZKF2rVrU7t2baZMmaKu8Dhy5AgjRoxgxowZjBgxgtjYWBYtWkSdOnUYN25cuuRSqFAhChUqxJgxYwgODubChQtUqlSJXF9ZGZuZmRESEoKpqSk6OjosWrQIQRCIiIgAwDSzfANJIa9fvyY+Pl6e1CYjk44sW7aMM2cO0qnTSLJkKcO9e9CsWdrjaSm0KG5VnNs+t3ENck0ioigUCoYNG8awYcNSFMvAQPRZ8/MT7+fp4R+WFrS0xKrbCxfEahRN8ypuVRyf9z48eftEIxFFoRCrUZ48Ea+XLKJ8ibwakpH5Ds2bN6devXr88ccfNGzYED09PRwcHHB2dlYfY2NjQ7du3Vi2bBnDhw9HX18/AzPOXAQHB1OyZEn8/f1RKBRkz56dhIQEwsLC1MdoaWlhY2NDcHAwEyZMYNiwYSxZsgQtLS3CwsLYtGkT0dHRODo6YpfMbNmaNWsyb9484uPj0U0PU4hfEKn8UKLjo3n57iWgeWtKcDB4eoo37/LlNctLaqQy4f3cP0ZT0Sk2FlxcxMfpKTqVL1+e6Oho3NzcKFGiRPqd6BfH0tKSnj170rNnT16+fMmSJUuYM2cOAKNGjWLGjBk/5N5hYWFBx44dv3vcfw0aFQrFTyWeREREcO/ePZRKJZ07d+bdu3d0794dW1tb7t69y4YNG8grxWgyGRkZABwdHdm6dStGRk8QhArcvQtNm2om8Be1LMptn9s8C36mcX65c4siyqtXmUdEAXG9c+GCeD+Pj9esOri4VXHOeJzhSdATlIJSI+P6z0WUb3RK/bbI7osyMt9BoVCwbNkyXr58ycqVKwGx1HnTpk3s3LlTfdy4ceMICgpixowZGZVqupKYmMidO3dYsGABAwYMoH379ixfvpxXr17h6enJ2bNnOXHixBcmhEZGRrx7944iRYoQFxfH27dvCQ0NJSwsDFdXV968eUNsbCw+Pj74+/szc+ZMVq5cSadOnRgxYgR2dnZMmjSJBQsWUKxYMe7fv/9Fbo0aNeLDhw+cP3/+R12Onxql8pMTvKaVKG7BbigFJdZZrMlupFmfi6qqonDhzFNqq0KqyTxvwt8QERuBvo4+ebNp9gXu0SNxwWVpqbmvzbcIDAwEwEdlCiOjMfny5WPt2rX4+vri4+PD/PnzM6X4vmLFCho1apQic9zMxpIlS6hbty7169fHxsaGJUuWcPbsWf755x8ePHiQblU/MjK/KzVr1mTs2LFs3z6Gfft24+UVi6+vZjGLWIjV3W/C3xAZF6lRLNX9O7P5ouTNK45gjomBp081jPXZqGPvcG+NYmVWH5nMgiyiyMikgBIlSjBkyBCmTJnCmDFj6NatG71796Znz55s2LABgCJFijBjxgzmz5/P5cuXMzhj6VAqlcyZM4ccOXJQqVIl5syZw/379wkODmb8+PHkzZuXfPny0ahRI1q0aEHjxo3x8/NTvz4oKIjChQtjZmaWZGqOmZkZxYsXx97eXt0ioJp0tGvXLk6cOMGuXbsYPXo0r1+/xsfHh8KFC9O4cWOeP3+eJMeyZctSvHhxNm3a9GMuyk9OQIBYxaCvD9bWmsWScspMZm3liY4WrxloXtKqan2Swj9Gdb0qVEi/Vp5jx47RvXt32rVrl6znhoxmmJubk11Tk510ZOfOnZw9e5Z9+/Z98Vx0dDQtW7bk7NmzGZDZ92nVqhUAM2fO5ObNm4waNQpfX18CAwNZvnw5hw4d4vp1zSeIyMjIiCgUChYtWsSqVQuJjLyJQiG2qGiCmYEZtia2CIKAW7CbRrFUosDr16L3WmZBoYBy5cTHml4vbS1tClkUApDsegUEiAKPTFJkEUVGJoXMnz+fP//8ky1btlCqVCkGDhzI0KFDGThwIIsXLwZg/PjxVKtWjbFjx2ZwttLw4cMH2rdvz5QpU+jWrRtXr14lJCSEe/fucenSJd6+fcvhw4dxcnLC09OT06dP4+rqSrFixahRowa1atUib968uLi4cOvWLVxdUzZ2TVV67efnx6xZs7C2tsbMzIxTp05haWlJgwYN1LvjIN64+/fvz7Fjx3jz5k16XY5fBlVVRa5cYj9uWpFytLG/v/hHW/vTyL/Mgqpqx8JCNIDTBKlaeSIjxTJbSB/RKSEhgb///pv27dvTsmVL9uzZI7fK/YbMnTsXgG7dun1RjTJx4kSOHz/OqVOnMiK176KnpweIfjAqA1wtLS20tLTo1q0bZcqUYezYsQiZ6duUjMwvgIeHBzlzBqCnp8/du5oLFkUsxWoUt7eaiQIqI/2oKAgK0iwnqVGJKKqWHk1QVe9oer1MTUUjfUH4tA6S+YQsosjIpBAjIyNmzZrFy5cvKViwIPXr16dNmzaMHz+ecePG8ffff6OtrU2XLl14+PAh586dy+iU04wgCFy6dImqVaty/vx5jh49yooVK6hevXqSL1Kmpqa0bt2ahg0bkidPHho3boyrqysDBgwgT548WFlZsWbNGjZu3Mi+ffsomYomVENDwy/K27Nnz87Zs2eJiIhQL+5VODo6YmlpyfDhw+VF8XeQyt/jbdRb3kW/Q0dLh/zmmhk2qrq0ihaFzDZkSSr/mNiEWLV/jGqRk1YePoTERHFRaGOjWV7/5fnz55QqVYrBgwfTo0cPWUD5jalXr5768f79+9WPExISWLFiBYB6FHJmo0iRIhQqVIiDBw9+8ZyWlhaLFy/m1q1b7NmzJwOyk5H5dbl69SqVKxujry96nWn6BbyoZVHg02S7tKKt/an1VXVfzyzkyQPm5mKV8OPHmsVSiU4e7zyIT9RMkVFV32a265UZkEUUGZlUYm5uzrlz56hatSrNmzdn4sSJtG3blsGDB7N792769etHw4YNadWqFf/++29Gp5sqEhIS2LJlC2XKlKFOnTqAOD64ZcuWKY5hYWHBggUL2L59OwcOHGDw4MH069ePjh07SjIiNWfOnIwYMYK///6bmM/qC01NTVm5ciXHjh3j9OnTGp/nV0Yqfw+V0VvebHnR19HMz0ElopQtq1lO6YFUIor7O3eUgpLsRtmxMLLQKJbqekltwHv16lWqVKmCIAg4OzuzadMmWUD5jdHS0mL+/PmAKJaoPnNv3bqlPiazTqTT0tJi2LBh/O9//8Pb+0tvgLp169KhQweGDRuGr6bGDTIyMgC8efOGu3fv0rZtM7V5q6r1NK0UMC+AtpY2IVEhvI16q1GszOrz8bmhvqYtPTmMc5DVICsJygQ83nloFEu1TpRFlC+RRRQZmTRgbGxMp06diI6ORqFQsHr1ahQKBWPHjkVHR4eDBw9Sq1YtmjRpwq5du4jXtDbvBxAREUGLFi3o06cPdnZ2nD17FhcXF4oWLZrRqX3Bu3fvsLa2/qJSpW3btmTPnp2HDx9mTGI/AfHxoPIH1VQUUJWKqnY90kpgoJiTlhaUKqVZTumBVJU76utlUUQjQTEqCtw+VulqKjpFRESwfPlyhg0bRsuWLalfvz6lSpXi+vXrlM2MipbMD2fkyJHqxy1atCAqKkrtP5UlSxa2bt2aaY1nHR0dMTExUVfN/Jd169ZhaGiIo6PjF6boMjIyKSckJISWLVtSrlw59PT0aNasGRUqiM/dv69ZS4++jj75suUDPrXEppXMai4Ln1p6Hj2CuLi0x1EoFEmqdzQhs4pOmQFZRJGRSSUrVqygefPmjB49mjp16mBiYoK1tTUXL17E39+fc+fOYWhoyNGjR+nUqRPdu3fH0NCQP//8M6NT/yoJCQnUr1+f69evq6fsNGjQQJLKkfTg/PnzyeanUCiwsbFJsffK74i3tzidx9RUdINPK0pByfMQ0eC3sEVhjXJSVVUUKQIfrQsyDWFh4h+FQvMJOKrKHU2vl6ur2MpjY6OZMfCTJ0+oUKECEyZM4MqVKyiVSiZMmICTkxPZNPnHIfNLYWBggJOTEyB+9tra2rJ161Z0dHSwsLBg5MiRX7RXZhayZMnC4MGD2bBhQxLDcxXZs2dn69atnD9/npo1a7J48WKePdN8lKqMzO/GsGHDuHbtGkOGDOHy5cuYmZlRtKhoYB8aqnlLj1S+KCpRwMcHEhI0y0lqcuUSvdfi4jRv6VGtMzQVnXLlEtc/oaEQHq5ZTr8asogiI5NKdu7cycmTJ8mXLx9Hjx5Vf5GvVq0a1atXp3Xr1ty7dw89PT22bdvGlStX6N27NytXriQ0NDSDs0+eXbt2cefOHc6cOUODBg0yOp3vUqpUKa5du0ZCMndAR0dHDh06RFBmcw3LJHxeVaGJRuYd7k1kXCQGOgbkzppbo5x+hlaenDnFxWBaiYiNwOe9WAKkqYjy4IH4s0yZtMcIDw+nQYMG6Orq4uLiwqNHjzhx4gQzZsxQG3LKyKho2LAhbdu2BSAuLo6mTZvy4cMHXr16xbRp05g+fXqmnUo3fPhwdHV1yZs3LwsXLvzi+QYNGnDgwAGyZs3K1KlTKVKkCL169SIyUrNxqjIyvwsHDx5k7969rF69mhkzZlC5cmVANHEtUUI8RnXfSiuqyornIc9RCmmvGrOwEDdrEhI+VeVmFj6f0nP3rmaxVKKTd7g3H+I+pDmOvv4n3zW5pScpsogiI5NKjh07RpEiRfD392fHjh2Ef5RmdXR0OHfuHIUKFaJ37974+/ujpaVFjRo1mDlzJvHx8SxdujRTmp6eOnWKqlWrUrVq1YxOJUX88ccfvHjxgnXr1n3xnKOjI1paWmzZsuWrr3d3d8+Ufw8/Aqn9UApZFEJLkfZbSXAwvHkjtvJktqk8IJ0fiup62ZnaYaKf9hE/n5vOaSI6TZ48mYiICE6dOkWhQoXSHkjmt2HGjBkALF68mBMnTqjbKadOnUrNmjXp0qVLphSvbWxs8PDwwNHRkUmTJnH16tUvjmnfvj0nTpwgJCSEjRs3cvDgQSpVqvTVqhSlUsmVK1eYM2cOrVu3ZuLEiXh6eqb3W5GRyXQEBQUxePBg2rZtS5cuXb54XiX2a9rS42DmgJGuEdHx0XiFeaU5jkKRuX0+VL4orq6atfSY6puS0zQn8Gn9kVZU65/MeL0yEllEkZFJJTY2Nly8eJEqVaowYsQIsmbNSv369XFzc8PAwIDt27fz7t07ypcvz92PUrKNjQ2TJ09m9uzZ9O/fn/fv32fwu0hKfHw8pqamGZ1GiqlQoQIDBgxgypQpBAQEJHkue/bsdOzYkW3btql/t2DBAuzs7LCxsSFr1qwULFiQggUL8kQ1I/Y3QipRQNVnq+mUGVUVSsGCkCWLZjmlB5L5oXy8XppWoTx5IvraWFiAnV3aYty5c4e1a9cyc+ZM7O3tNcpH5vehePHitGnThmXLliXxD9HW1mb37t0kJibSvXv3TOmPki1bNpYuXUqFChWoWbMm/fv3T2JMrsLIyIh+/fpx584dEhMTqVChAiNGjODEiRNERESQkJDAzp07KVGiBLVq1WLhwoW8f/+e9evXU7VqVeI0+dYjI/MT8scffyAIAuvWrUu2Bbx4cdDREUcK+/un/TxaCi0KWYiCv1QtPZnR58PeXhwrHB//yfssrUg16jgzi04ZiSyiyMikgRw5cqgd/2vUqMG///5L6dKlmTt3LkWKFOHevXvY2trSsWNH9WJz1qxZbN26lZ07d+Lg4JBsFUVGoa2t/VOY337O3Llz0dPT448//vjiOQcHB3UptpeXFxMmTMDX15eAgAB15ZCHhwfFixdX//fvQGSkuJCBT2Pr0kJ8Yrza8V0qP5TM2MojCNKIToIgqHeCNDXh/fx6pbYdKyYmhkWLFtGoUSNKly7N8OHDNcpF5vdj8uTJeHh4JBl3DOJGwe7duzl//jyrVq3KoOy+jZGREdeuXWPNmjVs2rSJffv2ffXYYsWKcffuXfr378/x48dp0aIF5ubm2NnZ0aNHD/LkycOVK1dwd3enc+fOODk5ERgYyLlz537gO5KRyVguXLjAzp07WbRoEVZWVskeY2AAqvkEUrX0aGqWmpnNZRWKT1W5ms5IUPvIaDga+vNKlN+0iDtZZBFFRkYDbGxsuHDhAkFBQYwePZpp06ZRoUIFgoODWbx4MV5eXty4cUN9fK9evfDw8MDS0pKTJ09mYOZJsbW15eXLlz/VdAJzc3MWL17M7t27vxglHRERQZaPZQ329va0atWKZs2aMXr0aNauXcuGDRvUx5qYpL214mdDZexmZaWZgevL0JfEJ8aT1SAr1lnS7mz67p24iFEoNPP3SC+CgiAmRuzrtrVNe5zgqGBCokLQ1tKmgHmBNMdJSBBLfCH110sQBJo1a8akSZPo1q0bTk5O6OjopDkXmd+TcuXK0bRpU2bPnv2F8F6vXj369+/P7NmzM121pQptbW0GDx6MmZkZr1+/5sOHD8ybN4/Vq1d/cWyWLFlYunQpnp6euLu7s2LFCrp06cKDBw84ceKE+loMHDiQJ0+eULRoUfbs2ZMB70pG5scTGxvL4MGDqVGjBr169frmsar7laYiiqqy4uW7l8QkfFlJllJUm0iBgeK0u8yGSkRxcREHAaSVz0dDB0cFpzlOzpxiNVFUFLzVbML0L4UsosjIaIiOjg6WlpbMnz+f27dvExsbS+/evalRowb29vbs3LkzyfE5c+YkICCACqrZb5mA9u3b4+XlxenTpzM6lVTRs2dPatWqhaOjYxIhxc/Pjxw5cgDiovnIkSOcOHGCpUuXMnjwYIoVKwZAzZo10dL6fT4Gpfb3KGxRWKMJTi4u4s/8+cVpQZkN1S6VgwNoa6c9jmrXLG+2vOjrpN2d9ulTUdTJmjX1njb79+/nwoULHDt2jNWrV2NpaZnmPGR+b2bNmsXz58+ZN2/eF89NnTqVDx8+MHbs2GSNvzMDAQEBhIWFkT9/fsaMGcP06dMZPnw4a9euTfZ4hUJB/vz5GTJkCMuWLaN06dJ8+PCBZs2a4ezsDECRIkXo0qULR44cYe3atZw4cQIXFxeio6N/5FuTkflhLFiwAE9PT9atW/fddVTJkqLvmbe36IOWViyNLbEwskApKHkR8iLNcUxMxJZY0HxqUHqQP7+40RUZCR4eaY+jr6NP3mx5Ac2qd7S1P00nzIzVOxnF7/PtQUbmB1CuXDkmTZqEs7MzwcHB9OvXj82bNycZuatQKChbtizLli1j+vTphISEZGDGIj4fLcodNJ3h+oNRKBRs27aNvHnz0qhRIzw9Pfnw4QNOTk5Uq1btq6+rWrUqFy9eZPPmzT8w24xHMn+Pj/21mramqEpVM6OhLEhvwivlVJ7UalfLly+ncePGNGnSRKMcZGTKli3LpEmTmDVrFk+fJh2faWdnx/Lly9m8eTOTJk3KoAy/jbW1NQULFuSPP/5g48aNzJs3j3r16nHmzJkUvT40NJTGjRvj7OxMmTJlsLS0pEKFCvTs2ZOcOXMycuRIWrRoQenSpTExMaFMmTIMHDiQDRs2cPXq1VTf8wVBICwsjKdPn3Lu3Dm2bdvGvHnzmDp1Km/lbWGZDODKlSvMnDmT8ePHqzelVAQGBn5R1Zwli+h7BppXo6juo8+Dn2sUJzP7fGhpQalS4mONW3ok8kVRrRszo+iUUcgiioyMxOTLlw+At2/fMm7cOAoWLEjfvn2T3FQOHTqEo6MjCxcuJFeuXOzduzej0kUQBJYuXUr9+vUpoZpF9xORK1cuTp06hYGBAW3atKFNmzZERkbSv3//L45ds2YNDg4OXLt2jdq1a6v/rn4HPvf30EQUiIqP4nW4eBfVRBSIioIXHzeSSpZMez7piRSiUxI/FA1MeJXKT5U7aWl9CgkJoXjx4mk+v4zM50yePBkHBwfGjBnzRa/9oEGDmDp1KitWrMDb2zuDMvw6CoWC3bt3q03J69ati5GRUYpMYT09PalSpQpubm6cO3cOR0dH3r9/j1KpxMHBgefPnxMTE4Ovry83btxgzZo1lC1blhs3bjB48GBq1qyJhYUFVlZW1KpVi0GDBjFw4EBatmxJ+fLlsbW1xdjYGAMDA3R1ddHS0kJLS4ts2bJRrFgxGjZsiKOjI0uWLGH58uXUqVOHwMDA9L5kMjJq/P396dSpEzVq1GD69OlJntuzZw85c+akRo0avHiRtFJEqpYelbmsJpUokLnNZSGpL4omPiSqza5nwc8k8UXJrNcrI5BFFBkZiVEZmiqVSgwMDPj777+5e/cuu3btUh9jYWHB8uXLef36Nc2aNaN379481FRuTiNPnz7l3r17jBgxIkPOLwXGxsYcPHiQggULEhERwbZt276oqnnx4gXDhg3D29ubyZMnZ1CmGUdoKLx/L+5waDKQ5XnwcwRBwDqLNVkNsqY5zpMnojBgYyN6tGQ2EhLgY4GWRqKTz3sfIuMi0dfRJ3fW3GmO4+kplvYaGUGBVNqqeHh44OHhQZEimlUOycio0NfXZ+nSpTg5OSXrJ9KmTRvi4uK4d+9eBmT3fcqVK0f37t0BcHV15dKlS1SuXPmbr7l37x6VKlUiMTGRW7duUalSJUqWLElsbCzXrl1TH6etrY2trS1VqlRh4MCBbNq0CVdXVyIjI3F1dWX//v0MGzYMW1tbbt++zb179xAEgXLlyjFgwADmzp3L4sWLWblyJX///Tf//PMP+/bt49q1a3h6ehIdHU1wcDB3797l3bt31KlT54spdTIy6UF8fDwdO3ZES0uLvXv3JvHV2rBhA926daNVq1Y8e/aMiRMnJnmtShR4+RI08fMvmF0safF+701UfNoNTT43l82MZqlFioh+bCEhn9YiaSGXWS70dfSJio/CN8I3zXFU1+vNG8iEA9gyBNlVTkZGYnLmzImJiQmVK1dm3LhxTJw4kZIlS3L27FlatWqVZJSwpaUlW7dupVq1arRs2ZKjR49S5gc7bF66dAldXV3q1av3Q88rNY0bN6Zx48Zfff7UqVMADB8+nFWrVvHo0SNKZtYSiHRAVYViZyfemNPK8xCxhFbT1hRVVYWqZDWz4eMjCinGxuK4wbSi6kMumL0g2lppN1Z59Ej8WaKEKISl+PxubgwaNAhLS0u6du2a5vPLyPyXVq1aMXr0aEaPHk3x4sWpU6eO+rn8+fNja2vLnj17aNOmTQZm+XVWrFjBmzdviI2NJSIi4ou2hM+5ffs2jRo1okiRIpw4cYLsHz8UatSoQeXKlRk0aBAPHjzA0NDwqzEMDAwoXry4ZBVhhQsX5tKlS9SqVYvRo0fLprYy6UpwcDADBgzg1q1bXL58We07B7B7924GDhzI0KFDWbhwIRYWFl+IklmzitUMXl7w+DF8o+P6m2Q1yEqOLDkI/BCIe4g7pazTtoiwtxfvpe/fQ1gYZMuWtnzSCz09KFZMrER5+DDtm1/aWtrkN8/Pk6AnPA9+jp2pXZriWFqKmzhRUeDr+8kj5XdGrkSRkZGYokWL8urVK4YPH87s2bOpWLEi0dHR7Ny5M9mpPIaGhhw9ehQLCwuqVq3K1q1bf2i+t27domzZshgZGf3Q8/5oOnXqRKVKlVi/fj0Ax48fz+CMfixS+aGo+pA1EVESEsRFFGReEeXz1icNvHMluV7wSXRKje7n7u5OjRo18PHxYevWrRgYGGiUg4zMf1m4cCF16tShQ4cOvPqsztvIyIgFCxZw4MABKlSokKEtq1/D3Nycy5cv06NHD7JkyULHjh1p06YN9evXp3z58lSvXp369evTunVrGjZsSPHixXFyclILKCBWnWzevJlXr17Rpk0btb/Yj6JgwYKMHz+eQ4cOydUoMunG4cOHKVasGJcvX2bfvn1UrVpV/VxoaCijRo2iY8eOrFq1ilOnThEdHU2rVq2+iKO6f6k2BdJKoexiS49qUyct6OmJU2cg87aoSDXqWIrrpVB8mmqUGX1kMgJZRJGRSQeyZ8/O/PnzuXPnDkqlEnd3d8aMGUPjxo3p2LGj2tFfhb29PdevX6dr16707t2bwYMH/7Bxw8HBweRU3Ul+YWxsbDh16hTaH8espKT//VdCCj+UiNgI/CL8ACiQPe2jej08IDpadMjXVNRJL6QQnZSCEo93orW+qgQ5LQQFQUCAuGv2jc3yJAQHB9OkSRMsLS25e/eubCgrky7o6OiwY8cOQkJCmDBhQpLnunXrxrFjx7CysqJLly6MGjXqh93XUoO+vj7nz58HRMNMExMTypcvT/78+cmePTvx8fG0b9+e06dPJ6kkVVGkSBGOHDnCo0ePKFSoELVr12bEiBEcOXJE3d6bnjg6OqKnp0e5cuUYPXo0z59rZrgpI6MiJCSEbt260bZtW6pUqcKTJ09o27ZtkmOmTZtGdHQ0y5YtQ6FQsH37dipUqEDBgl/e81QiytOn8J8J6alCdT/V1FxWdX/PrKKAaqqRj49mU41U18s9xF0jX5TMbMabEcgiioxMOlKmTBlu375N+/btWbZsGfXr16dYsWK0bt2aoKCgJMcaGhqyadMmNmzYwPr16/nzzz9/SI4RERGYmJj8kHNlNObm5owcORILCwvKly+f0en8MJTKT47qmogC7u/cAbA1sSWLXpY0x1HtqqgWCJkRKcZBe4d7E5MQg6GuYZpLaOHTrl3BgvCNboEkzJo1i5CQEE6dOoW5uXmazy0j8z38/ERh9b/tYgqFghYtWnDy5ElWr17NihUr2LFjR0ak+F1UXichISEcPnyYv//+m61bt7Jv3z5OnjzJpk2bvnmfbNKkCU+fPmXq1KlYWVlx+vRp2rRpg7W1NdevX0/X3LNmzcrNmzdp164de/bsoXTp0qxdu1ajL0syvzdKpZItW7ZQuHBhTp8+zY4dOzh8+DDW1tZJjvPx8WHt2rX89ddf2NraEhAQwKlTp3B0dEw2rp2d2NYTF/fJWD4tqMxlVZ5jaSWziwLGxuK4Y4DPhnymGgczB7Uvis/7tFfLyeayScmky1cZmV8HQ0ND9u3bh6OjI5MnT2bmzJn4+Phw9OjRZI/v378/q1atYunSpSxfvjzd83v//n2yu2uZEaVSibOzM3v37mXmzJm0b9+emjVr0q5dO/r06cOAAQMYNWoUTk5OJCQkJBtj3rx5vH37lhYtWvzg7DOOgACIjQV9ffjPGihVqNzwVQuYtCAIn0SBzNrKEx0NqoEXmogoqtLZAuYF0FKk/Xab2laegIAANmzYwOjRo8mj6XxmGZnvoGoF/VZL6NChQ2nTpg0zZszItFWAWhoqulmzZmXChAns378fd3d3Xrx4QZkyZWjfvj3+/v4SZZk8JUqUYOXKlbx69Yo+ffqor3dqxynLyLi4uFCzZk369OlDw4YNefLkCd27d0eRTF+rQqFAqVSqq0527dqFtrY2Xbp0STa2QiFNS4+pvik2JjaAZlN6VO0pr19nTnNZEH3QQDMRRVtLmwLmYvWwJi09qvWQvz/ExKQ9n18FWUSRkfkBaGlpMXv2bKKiomjSpAl58+aladOmXz1+6NChjB8/njFjxnDo0KF0ze3du3eYmZml6zk05cOHDyxatIgCBQpQvnx5unTpwl9//cWhQ4cIDg4mJCQENzc3Hj58yNGjR2ncuDH29vZMnDiR2NjYjE4/w1HtsuTKpVnlh2qxoklriq+v6Davqyu6z2dGVAuq7NnFlqO0IoXoFBUltj9BykWnixcvEhMTQ79+/dJ8XhmZlJIrVy7y5s1L586dOXPmzFePmzlzJl5eXmzZsuUHZpdxFChQgP3796OlpUW7du348OFDup/T0NCQNWvWcPjwYa5evUqpUqV4+fJlup83M/LkyRO6du2Ko6MjQ4cO5ezZsxmdUqYjISGBc+fOsXnzZmbPnk2PHj0oV64c796948KFC+zatQsbG5uvvt7W1pYsWbLw+PFjBEFgy5YttG7dmmzfcGn9XBTQRLiQwufD1lZci8TEiJtNmRHV9Xr+XNwMSyuqdZsmopOZmWjAKwjilJ7fHVlEkZH5Qdja2rJs2TL69+/PzZs3v+tDMnfuXNq3b0+/fv3U5dJS8+7dO3x9fTP16NOAgAAKFizI5MmTqV69Ot26dUvyvJubG6VLl+bmzZvcuXMHT09P7t69S8eOHVm2bBkNGzZk2LBhtGjRgiZNmmTakZvpiar0UpOihA9xH/B9L47HU+1opAXV7lORIqKxW2ZECv8YpaDEPURsf9Lken0+CtrCImWvCf7YPJ0Z/Sdkfj0MDQ25e/culSpVomnTpkyfPp3EZGZgFi9enE6dOrF48eIMyDJjsLa25n//+x/379/H0tKSc+fO/ZDztm7dGhcXFwwMDOjYseNv2drz8OFD9uzZw6NHj3BycqJVq1Y8Vjma/8Y4OTlRpkwZdu7cSc2aNWnYsCF9+/Zl1apVPH78mLlz5/Lw4cMk07a+hkKhoHnz5qxcuZIdO3bw5MkTBg0a9M3XFC78aXSvJktbKUQBLa2k1SiZEWtrcUMnIUEUUtKKajPHPcQdpZD2tUFm95H5kcgiylfYuXMnCoWCjRs3ZnQqMr8Qw4cPZ8OGDVhZWX33WC0tLf7++28MDAz466+/0iUfpVKJQqHItNUaHh4edOrUibCwMKpXr86TJ0/YtWsX/fr1482bN5T+aF1+8uRJunbtysSJE1m/fj02NjasWLGCM2fO4Ofnx+XLlxEEAV9fXypXrszcuXOTXeT/qkjh76ESBGxNbDHRT3t5hqokNTNPl5bSD8VAxwB7szTOJiT1o6CdnZ2ZNm0avXv3xs4u7T4sMjKpwdzcnBMnTjBz5kx1q2VyLZX58uXLtO086UWlSpU4f/48MTExeKjKyn4ADx8+JCAggLi4uK+2t/5KXLt2jdOnT+Pn54eTkxNv375FoVBw9OhRXF1dyZcvH926dfttxeWoqChWrVpFs2bN8Pb2pkePHvj5+XHp0iViY2MJDAzkwYMHjBs3Dr1U7HAsXryYqKgoHB0dqVOnznfFFz09UUgBzVp6VCKK73tfImIj0hwns/t8KBTStPQ4mDlgoGOgsS9KZveR+ZHIIspXcHJyAmDUqFHq33l5ecn9pTI/FHNzczp27MiZM2eISYcGRNVY5R07dmS6napnz55RoEABrly5QnR0NNevX6dw4cL873//Y+PGjdjb23P79m3WrFlDlSpV8PX1Ze/evQwfPpxixYoxbtw4BEHgyZMnuLi4cPToUZydnRk/fjxTpkyhYcOG6d6nnhmIjxed3UEafw9NWnkiIz8tVIoXT3su6Y0Uk3k+b31Kqx+KUilWokDKRKe7d+9SuXJl8ubN+1vt9stkDrS0tJgyZQpHjx7lyJEj7Nu374tjIiMjf8tR28uXL8fGxuaLSsr05MKFC0RGRjJy5Eh0dXV/2Hl/FOHh4dy4cYM9e/awd+9eGjduTNOmTcmZMyeNGzdm9OjRODo6Ym9vj6GhIevWrePRo0dcuHAho1PXiLdv37J//34ePHjw3c2gxMREzp07R69evciRIwcjRoxgwIABvHnzhi1btvDw4UNq1aqVKtHkv+TMmZN58+ahUCiYM2dOil6jup9pIgqY6Jtga2ILfDK9Tws/Q2WFFC1QWgot8puLLrWaVO/8DNfrR6GT0QlkVrZu3Urz5s3Jly8fAK9evSJv3rwArFixghEjRmRkejK/Ef3792fDhg388ccfrFmzRvL448ePp2XLluzbt4/OnTtLHh8gLCyMO3fucOvWLe7fv48gCBgZGaFUKvH09MTOzo7Nmzcn6aN1cHBg5MiRPH36lEKFCtGhQwdq1qyZJK6enh5DhgxhyJAh6t+FhoYyZcoUtm/fzqJFi9DT0yMhIQEHBweePXvGnDlzqFevHt27d6dkyZJs3bqVZs2apcv7zgx4e4tfxk1NxV7WtCKFv8fTp+ICwNZWs1zSk7Aw8Y9CAQ4OaY8jhX/My5eiJ4qxccpai27evIm2tjY3b97UaFEsI6MJLVq0oHLlyhw4cOAL0SBfvnx4eXmRkJCAjs7vsQQ9ceIEhw4dYvfu3T/UxH3hwoW8e/eOAQMGEB8fz+DBg5M9LiIiAnd3d8qWLfvDcksrSqWS7t27c/XqVXx8ku6mGxoacvnyZW7fvk2WLFl4+fIl48aNUz9fvXp18uTJw/Hjx6lfv/6PTl1j3r17x59//sm2bdvU4ompqSlVq1alTp06jBgxAm1tbdatW4erqyvu7u48efKE4OBgChYsyLhx4+jatav6e83XJuikhaFDh9K+fXty5MiRouNVooCnJ3z4AFnSOOyvkEUh/CL8eB78nLI2afv3qxIFfHzElpnM+LFUqJDYAhUaKvrKpbXItJBFIR4HPeZ58HPq503b/wO5conro5AQeP9eXFv+rsiVKF9BW1ubTp06qceg2traqlswJkyYgEKhQKFQcPnyZSIi0l5GJiPzPYoXL86oUaPYu3dvusRv0aIFjRs3ZtWqVZLGFQSBw4cP07RpU7Jnz06jRo1Yvnw5UVFRKJVKgoKCCA4OpmTJkjg5OX1xfiMjI5YvX87Zs2dZtWrVFwLK18iWLRtr1qzBz88PZ2dnFi1axIIFC/Dy8lKb9NatWxcXFxcqV65M8+bNsbe3p1GjRmzZsuWXK3v+vDUlGXP9FBEZFymJH4qqHT0zV6Go+qJtbcVpRmlBKSglEVFUVShFi6bMENjPzw8bGxtZQJHJcNq3b8+ZM2e+WB+VKFGCuLg4zp8/n0GZ/Vj+/vtvWrduzf/ZO+uwqNI2Dt9Dt2AgAiIhNordjY1id+caa3ev3d26dq0tBnaxdncgCogYSCod5/tjdkb9RGXOIAN47uvyWpZzznueeYE57/ze5/k9DRo0+GWbFN9DR0eH9evXM2jQIPr168f06dO/yji9d+8effv2xdramtKlS+OXCbaWExIS2LFjB6VKlWLr1q3cvn2biIgIIiIiCAkJoVq1aowYMYK+ffsyb968r0qnZTIZBQoUwMdHfNaCJhAEgV27dlG4cGH27t3LvHnzCAwMxNvbm1GjRvHy5UtGjRrFkydPlF3Zbt26Re7cuenbty/Xrl3jyZMnTJgwQSmg/ApSK6CAfBMlb175poo6NjVpYS6bM6d8oyIxUS5QZER0dT+XQKXFfPmEivdFMTD43OUxE7xl/FIyoN6WMdHX1+fJkydcv36d6OhomjVrBkCNGjUAWLNmDb169dJghBJZlcTERHbv3k1+RbP4X0CTJk0YOHAgnz59wkTslsD/sWLFCgYMGED58uVZvnw5tWrVwtnZ+Zs2edHR0ezbt0/t9pL/j5aWFqVKlVLurp06dYr+/fsTHByMo6MjFSpUwNPTky1btvDs2TP27dtH9+7d8fLyol27dtSpUyfN5kKTpIW/h0IQUMcPRRA+iwIZWURJi1KetPJDUXW+BEHg/fv3eHl50aBBA9H3lZBQl4iICOLi4vD19VV6VwFUrVqVmjVr0qtXL+7fv4+5ubnGYvzVvHz5koEDB9KjRw+WL1+eYovYX42WlhYLFiwgR44cylKrEiVK8PjxYy5evIiVlRV9+/Zl7ty5XL16FXt13vjSAX19fUxNTalevbqo0ih3d3cGDRrEgwcPKJaRH0T/8ebNG/r06cOhQ4do0aIFS5cuVXbLsbGxoUqVKly8eBETExNcXV0ZNGgQdevWxcvLS8OR/xwXF3mm7N27UKGCuDEK5CiATCbjzcc3RMZFYqavelqETCZ/3j98KH/+K4xmMxrFisnLee7fh/r1xY2RN1teDHQMiEmI4VXEK/KZi3ux9vbyNsd+fhnb3+5XI2WiqICFhQV169aladOmCILAkydPlMckA1qJX8XmzZvx9fWlXbt2v+webm5uJCYmsmTJkjQbc82aNbRt25YrV67wxx9/UKBAgW8WkYmJibRp04aEhASaNm2aZvdOiX/++Yfq1aszbNgwmjRpQoECBdizZw+dO3dm2rRpHD58GGNjY3bv3k3z5s1xcnJixYoVJCQk/NK4fjVp7e8hloAA+PhRnt3xCzfD1CYtOvMo6rOdcziL9kOJjPzcQrBIkdRdM27cOGrVqoW7u3umWERLZF1u3bpFrVq1vhJQQP6hfuPGjXz8+JF+/fplSYNvX19fevbsSZs2bciZMycLFizQaOmSTCZj/Pjx7Nq1i0KFCnHz5k0MDQ3ZvXs3AQEBzJkzh3z58nH9+nWNxZhaNmzYwMePH1Nlzp8SvXv3xsnJiU6dOmX4LPKQkBBq1qzJ9evX2bdvH3v27Emx3XCtWrV48OABR48e5cKFC7Rs2VID0aqOoqTn8WN5ybEYjPWMsTGVd7pMC5+PjNqhBz7Pl6+v3F9ODFoyrTTpaiT5osiRRBQ1KFiwIM+fP2fTpk28efMGFxcXtm/fniUXBRKaQ2HOV7t27V92D2dnZ8aPH8+4cePYunVrmowZGBhI8Z9I1NOmTePYsWPs3bv3l+8KZcuWjQMHDhAXF8fy5csJDw9n69atJCQkEB4ejoODA58+fSIhIYFHjx6RJ08e+vfvz19//fVL4/qVREfD+/fyrzUtoihSUAsXzpg1xyDPlkmLzJ2nH9Q34X30SP5fO7vU1xybmZlx4MABatasydChQ6VnkYTGyJ8/P0Hf6V9qZ2fHihUr2LFjB3nz5k3RgDazIggCTZs25fDhw3z69ImFCxdibGys6bAAaNWqFZs3b+bWrVucPHmSli1bKg1nCxYsyMuM2p4EuSHxggUL6NWrF7179xZt0Kunp8eePXvw9fWlbdu2GbZ8NyYmhiZNmhASEoK3t7cy+z0lmjdvTkJCAo0aNUJbW5vY2NgM1yggJeztwcgIYmLU64yjeM4qOgiKjQUybocekLc5traWr1MU6wMxKOZLnRKoLzv0ZIJftV+GJKKoiZOTEwUKFCAwMJAHDx7QoUMHWrZs+du2UJNIexQdoh6oUwiZCqZMmULXrl3p1q0bd+7cUWus6OhoQkNDU9w1UZCQkMCqVav4448/qFevnlr3U4XDhw8zYMAAAI4dO4aenh4WFhYYGRnh4OBAnjx5KFasGHf/6y1bt25d4uLicHNzI3v27Dg7O9OgQQMGDhxIrly5yJEjB7a2ttSuXZv9+/fj5+eXYRYwil0VS0t5za8YouKjlO3w0kJEycgZ1O/fyxd0urryxYoYkoVkZSaKJuZLW1ubzp078+TJEyIiIkTfX0JCHfLnz8+LFy++K+S1b9+eGzduULFiRdq3b59m4r2muXPnDg8ePGDz5s08evSINm3aaDqkVJHW5bRpRUhICFOmTCFfvnyMHDmSXr16sWLFCrVKo4oXL86ePXs4fvw4NWvWZPr06Xz48CENo1YPQRDo3Lkzt2/f5vDhw98t5b5z5w5ubm4ULlyY5ORkTE1NyZEjBwMGDGD79u3pHLXqaGnJN1VAPVHAOYfcp+15qPj24QoR5e1b+AWNMNOMtGh1rFiXPA99LtoXxcZGvhkWFQUZ6E8n3cmY75qZDEU75A8fPrBjxw4OHDjA33//reGoJLIK9evXp3379vTs2ZP76rxz/gSZTMaaNWuwsbFRu6xnz549gNwN/3vcvXuXd+/ekS1bNrXupSp2dnb079+f8ePHM3PmTDZs2MA///zDrFmzaNu2LYMHD2blypV4e3sTGRlJtWrVOHDgAKdPnyYsLAx/f390dHQ4cOAABQsWpH///vTo0YP4+HiaN2+Og4MDs2fPxtfXV+OZAIpdFXVqfBVZKHlM84j2Q8ksrY0VWSh2dqCtLW6MwMhAYhJiMNAxwC6buPY+ycmfF5VFi6p+vY+PD5aWlmTPnl3U/SUk1KVkyZLEx8dz7dq1755TunRpdu3aRZcuXejSpQsHDhxIvwB/EY8fPwZQNiXILAiCoBHPlu8hCAJ//fUXdnZ2zJo1i3bt2vH8+XNWrlyJttg35y+oW7cue/fuRVtbm/Hjx7Nv3740iDptuHnzJnv27OHvv/+mfPnyKZ7j7e1N9erVCQ4OZtasWdy9e5fw8HAuXbqEiYlJpvlbUjzfFP5fYlC07X398TXRCdGixlB0LxSEz2W0GRHF+knR6VAMebPlRV9Hn5iEGII+ppwt+DN0dOTGwPB7l/Rk0KTqzIWHhweTJ0+mT58+XLp0CSBd29hJZG1kMhlr167l0aNHVK5cmWHDhjF06FBMTcV9oP0Rurq69OnTh8mTJzNgwABRLQ+9vLwYM2YMderU+aEZbokSJQCITWfZv2TJkip3ImrRogU7d+5k7ty5xMbGcujQIeDrhedff/3FvXv3GDBgAGPGjGHMmDF4eHiwefNmjb0fpKW/h7qlKRm9tTGkrX9M/uz5Rfuh+PvLhSdDQ3B0VP16BwcHgoODCQ8Pz9LGnRIZlwoVKpArVy4OHjxIxYoVv3uetrY269at49WrV8yYMeOXe2P9SpKTk8n73yeLx48fU7lyZQ1HpBoZJYNSEARGjx7NnDlzGDVqFMOGDSNXrlxpfh8PDw+cnJxwcXHJUO229+/fT/bs2WnVqtV3zxk9ejQFChTgzJkzyrVgQkICdevWxdraOk397X4lCr8vPz/5M09MxqyZvhmWxpa8j3qPb6gvLrldRMXi4CBvIeznBwXEL3d+KY6Ocl+5jx/lLZnzivCt15Jp4WThxKPgR/iE+GBrJq5fsr29fM308iWULStqiEyPlImSBlhZWSGTydi7dy+1a9fG19c306RwSmQOjIyMOH36NL1792bmzJk4OjqyfPnyX7LoGTJkCC4uLnh4eDB37lyuX7/+w7rhpKQkbt26xbx586hduzYNGzakaNGiP83G+vfffwF+uFDQJMnJyTx79oyoqCh0dHRo06YNPXv25OHDh8yePRvgm5274sWLc+TIEY4dOwbAwYMHcXR05OjRo+kevyCkjSigSJHN6q2NIW1EJ8V8pZV/jJgs+zJlylCgQAEeqZMjLSGhBtra2ri7u3Pw4MGfnqulpUXPnj25fv06vr6+6RBd2nP8+HEKFy5MtWrVADSehagqDg4OyiwaTTN9+nTmzJnDokWLmDVr1i8RUBQUK1aM1q1bM2LECN68efPL7qMKQUFB6Onp/dD4VhAEXFxcvtpMO3ToEC9evOCff/75YSl1RsLC4rPPhzq/foqSHsWmjxgygy+Kjg4UlHcpzjAlUL9zJookoqQBVlZW+Pr6cvjwYbZs2YKjmK1DCYmfkD17dubNm4ePjw8eHh4MGDCAmTNnpvl9DAwM2L9/P8WKFWPy5MmUK1eOnDlzsmPHDgRB4MGDB8ydO5devXpRq1YtsmfPTunSpZk4cSK6urps3bqV48ePK3fk/p9Xr17h6upKrVq1sLW1pVy5cmn+Gr7HqlWraNy4MQ0aNGDAgAEsWLCA589Tfojs2rWLggULYmJiQt68ealZsyb//vsvOXLkYMyYMYSGhirP9ff3Z+3atcTExLB//34CAwOZNm0aY8eOJX/+/DRq1Ej5gdbLy4uaNWtSrVo1GjVqRNeuXdm0aVOaC2Lh4fIOL1pa8vIUMcQmxhIQIc9tVaTMqkpmaW2cmChvtwjiy58EQVAuSsTOF6g/X/b29jx9+hT/jNxqQCLL07RpU548ecL48eOJi4v74bmNGzfG1NSUBQsWpFN0aceSJUuoX78+efLkYevWrZw5c0YppmQWqlSpwuPHjzXuDbJw4UImTJjA1KlTGTRoULrcc/ny5ejq6tKrV68MkY3z119/ERcX98N4DA0NuXPnDjdv3iQ6Oprp06fTpUsXqlSp8k1HrPTg4cOHuLu7U79+ffr06cPDhw9ZtWoVp06d+um1imwUdUQBxfNWHXNZxXM/oz8203S+Qn1E/84rNpsCAiCTacZph5AKIiIiBECIiIhIzekSEhLpwF9//SUAgouLizBhwgTh+vXrQlRUVJreIy4uTrh48aLQpk0bQUtLS3BychIAwdjYWChdurTQsmVLYfr06cKFCxeEmJiYVI157tw5ARAAoUePHmka74948OCB8r4eHh5CsWLFBENDQ0Emkwnt27cX4uPjvzp/zJgxAiDkypVLed2X//r16yccPXpUuHr1qqCjo/PNuXp6esqva9WqJcTFxQmCIAilS5cWDA0NhapVqwpFixYVTExMBEDYvn17mr7eW7cEoXdvQZg6VfwYD98/FHp79hbGnBojeoyAAHkcf/4pCAkJ4mP51fj5yeMcPFgQkpPFjfH241uht2dvod/hfkJCkrgX++mTIPTpI48lNFRcHIIgCGZmZsLs2bPFDyAhoSZJSUnC5MmTBV1dXaFYsWLCzZs3f3j+woULBZlMJly6dCmdIkwbqlevLjRs2FBIFvvGkQF4+fKlAAgHDx7UyP2Tk5OVa5qRI0em+1x6enoKgLBz5850ve/32Lt3rwAIq1evTvH4pk2bBCsrK+UaQ1dXVxgyZIgQEhKSzpHK6dmzp5AjRw6hefPmgo2NjTKu6tWr//Tahw/lz7uRI8U/e4OjgoXenr2Fvof7CvGJ8T+/IAWioz8/eyMjxcWRHrx9K4+xXz9BiI0VN0Z8YrzQ93BfobdnbyE4KljUGMnJgjBokDyWgABxcWREVNE8pEwUCYlMyoQJEzhw4AAlSpRg2bJllC1bFmNjYwoUKICPj3g1/kv09PSoVKkS27ZtY9y4cdSqVYujR48SEhLCjRs32L17N2PHjqVq1aoYGBikasxKlSoBULFiRebPn58mcaYGOzs7GjRoAMjbJXbv3p0KFSogCALbt2//xs1+/PjxTJgwgcjISAoXLkyvXr1o2LAhTZs2pUuXLnh5edGwYUMaNWpEsWLFWL16Ne3bt+f48ePExcURGxvLjRs3mDx5Mvv370dPTw8Aa2trYmJi8Pb25uHDh3z69AlDQ8M03z3KKKU8ihTdAgUybmtj+LqUR6y/oiKV2MHCAR0tcS82rfxj9PX1f7r7LyHxK9HS0mLSpElcv34dbW1tpRHm9/jzzz8pU6YMPXr0IDAwMB0jVY34+HimTp1K0aJFKVy4MOfPn6dZs2YZyphVVfLly4eNjY2yzDY9iYmJoUOHDkyaNImpU6cya9asdJ/Lxo0bU7ZsWQ4fPpyu9/0ezZs3p0+fPgwePDjFMqvOnTvz6tUrjhw5wq5du3j06BELFizQiJl4bGwsu3fvpm/fvuzdu5cXL16wefNmACxS8RBzdpZ3xAsPB7EVVTkMc2BuYE5SchIvw8XV4xgaQu7c8q8zcomKpaW83XFiIohd6utq65Ivmzz1Rmz2jkyWOUqgfiUZeEkrISHxI2QyGR4eHnh4eJCQkMC1a9d48eIFM2bMoFy5ckyaNIl+/fopP7yrg7a2NlOmTEmDqOHevXsAjBgxIl0785iamioXHCtXrmTkyJEUK1aMP//8Ey0tLaW4o8DIyIgpU6YwYcIEdHR0vlnUBQcHY21tzYcPH9i/f3+KnYhKly5N6dKlv/re4sWL6dy5M9myZUNHR4fk5GSKFCmS5jXMaWIq+9/DVZ3SFMX6T9HKMKOimC91RKe0mC9Fiq46pU9RUVEEBwfjoM4PX0IijShRogSnT5/GwcGBefPmKT2l/h9tbW02bNhA3bp1cXFxYd++fdSsWTOdo/05U6ZMYfbs2XTq1Ils2bIxcuRIunbtqumw1EImk1GxYkWuXr2arve9fPky3bt3x9/fn127dmnUI61SpUoZRkQBWLBgARcuXKBdu3ZcvXoVfX39r47r6OjQsGFDDUX3mVOnThEREUGHDh0A+eZbp06dmDdvXqq8gXR15ZssDx/K/1lbqx6DTCYjf/b83Ai6gU+Ij2hPMnt7eZtjP7/P7YQzGjKZvKTH21u+XhC7VnDO4cyLsBf4hPpQMe/3zb9/hL29fI3n5weZrIIxTZAyUSQksgC6urpUrlyZTp064e3tTZs2bRg2bBguLi6sW7eOqKgoTYeoRCFGmJiYaOTebdq04dy5c3z69Ilbt26xZMkSFi1ahLNzytkWurq6Ke6K5cqVi1evXnHq1KkftnL+fxwcHGjZsiV16tShZs2a1K5dO80FFEH4XNcrVhRITE5U7uiIFQUSEj7vlGR0ESUjZO58aa5XqJAacfzn8yOJKBIZhRw5cjBw4ECWLVvG+/fvv3te0aJFefDgAfny5WPRokXpF+BPePr0Kd7e3jx58oQTJ05QtmxZ1q9fz8KFC+nWrVumzkJRUK5cOW7cuPFDI/m0IjY2lqFDh1K5cmXMzMy4fv26xk3mS5Uqha+vLxERERqNQ4GRkRHbt2/n8ePHjB07VtPhfJdXr16hra1NQYXj6X8MHTqUQ4cOcf/+/Z+OofD5UKfVcVqay2bkTBRIW18UyVxWPJKIIiGRxciZMyerVq3i9u3bFCxYkN69e2NjY8PAgQO5dOmSxgUVxQI6NWmevxJ9fX21F75WVlbUrl07jSJKO96+hdhYeSs8sfpMQEQACUkJGOsZY2ViJWqMFy/kQoqZmfg40oPYWPmcgXgRJTw2nA/RH5DJZDhldxI1xvv38haLOjrwg+7gP2Xx4sXkyJGD4sWLix9EQiKNGTp0KNra2j8t47SwsKBt27YcPnyYPXv2pFN03xIYGMipU6do3bo1hQoVolq1ahQuXBg/P78M/aFWLOXLlyc6OpqH6nySTSV///03S5YsYc6cOVy8eJGiRYv+8nv+jAcPHmBlZYWZmdk3x5KSkpg0aRIuLi5fmcr/alxdXZk1axYLFizg+PHj6XZfVQgLC8PCwuKb9VSdOnWAz9nHP0Lx4/fxgfh4cXEoRIEXYS9IFpJFjaHYd/Dzk29qZFQKFpRnpLx5I18ziCF/9vzIZDLefXpHZFykqDEU66WgIPgdq4clEUVCIotSvHhxPD098fX1pW/fvuzcuZPKlStjampKyZIl2bZtW7rsOP0/jx49QkdHhyIKKV0izVHsCtjZiWuRC3zVZUas2PRlKU9G3qgNCJAvmLJnlws+YlDMl62ZLQY6qfMH+n+ePJH/19FRLoCJIS4ujo0bNzJ8+PCv2l9KSGia7Nmz061bN7Zv3/7TjhAjRoygUaNGjB49Ol07piQlJbFq1SrKly9P3rx5qVOnDlevXmXNmjXcu3ePgwcP4uPjg7u7e7rFlF6ULl0abW1trl279kvvExgYyOHDh8mZMyfDhw9HJ4OYZR0/fpy6det+87x7/fo19erVY9q0afj4+DB37tx0jWvQoEHUr18fDw8PFixYkKHaZ/v5+REYGJjippiXlxdaWlpKMeVHWFnJPcDU8fmwMbXBSNeIuMQ4ZVdBVbG1BW1t+PQJQkLExZEeGBt/FjDEtoY20jXC2lReOyU2G8XcXP5PEOTrqN8NSUSRkMjiODg4MHPmTAIDA7l58ybr1q3D2tqajh07UqRIEZYuXcrjx49TXKjevHmTwYMH4+7uTsuWLdmyZQthYmVvYO7cuQwbNoz27dtjZGT0zfHk5GT8/PyIj48nOTmZd+/eib7X70xa+nukhalsRtfL0rKUR9P+MXp6emTPnl0jAqmExM9o0qQJgYGB3Llz54fnaWtr07NnT3x9fQlIx9X58uXL6devH5aWluzcuZMnT57g6+tLr169cHFxoUmTJunq5ZWeGBsbU6xYsV/ii5KcnMzx48dp0aIFDg4OXL16lenTp6f5fcTy5s0b7t27R7169ZTfS0pKYvny5RQuXJiHDx9y8uRJhg0bxuLFi3mrSF1MB7S0tNi3bx/9+/dn+PDh1KxZk1evXqXb/X9EsWLFWLly5Tciyrlz55g9ezaVK1fG0tLyp+PIZJ+fe0+fiotF4YsC4kUBHR25kAIZv0QlLUp6FOs7dUp6vsze+d2QRBQJid8EPT09SpUqRffu3Tly5Ag3btygaNGiDB06lCJFipA3b15GjBjBpUuX2LlzJ3Xr1qVMmTLs3bsXmUzG69ev6dy5M7lz52b06NFER0erdP+3b98yevRoQF5KU79+fcqUKUPbtm2ZNm0aU6ZMoVKlSjg4OGBubo6NjQ1WVlYULFiQQYMG/bCrg8TXqCsKCIKAb5gvIF4UiIr67Muijr9HepARTHiTkz8vHtWZr3fv3vHp06cURUoJCU1TtWpVzMzMUmU6qeg0EhQUlB6hAbBmzRratGnDoUOHaNOmDQULFswwmRLpQcWKFfHy8uLjx49pMl54eDiVKlXC0NCQ+vXr4+Pjw4IFC/D396dHjx5pco+0wO+/h8CIESMYPHgwq1atonLlygwYMID27dvz6NEjatWqxfDhw4mNjeXIkSPpGp+hoSHz58/n3Llz+Pn50bhxY2JiYtI1hpSIjY0FoNAXD63169dTs2ZNLCwsWL58earHUgyhyMgUg+L5K7bjDGQen48vRRSxyXqSL4p6SCKKhMRvSunSpdm/fz9hYWEcO3aMZs2asX79eipXrky7du348OEDO3fu5OXLlxw6dIjLly8TGBjI2LFjWbRoEWXLluX169epvl+2bNlo2rQpAGvXrsXPzw9zc3P8/f1ZuHAhK1euxMTEhGXLlvHXX3/RvXt31q5dS40aNdi8eTNFixblwIEDJCeLq3X9XUhMBEV3ULGiwJtPb4iKj0JPWw+7bHaixnj6VP5gz5NHnu6ZkVFXdIpJiOH1R/nfgtjMnVevIDoaDAzUy4iZPn06urq6dO/eXfwgEhK/CD09PZYsWcI///xDixYtiIz8fi3+rVu3ANLFL+Pt27dMmTKFp0+fUrGiuE4VWYERI0YQHh6u3PBQl61bt3L9+nVmz57NlStXuHv3Ln/++WeGKzWsWLEi169fp2nTphw6dIh+/frx6dMn/v33X1atWqXMtLCwsMDOzg4fsTUnalKtWjUOHz7M06dPGTRokEZi+JISJUrQp08f/v77b+X3Dh06RNWqVbl8+TIuKrS4UfjSBgTIn4Vi+NJcVmwZYGYRBRwc5OuFqCjxpTQKESUgIoDYxFhRY/zObY5/H3ldQkIiRUxMTKhXrx716tVj/vz53Lp1C0dHxxRTMG1sbJg8eTKtW7emfv36VKtWjdOnT2Ofik99hoaG7N27l5iYGARBQF9fH21t7Z9e17NnT6ZMmULnzp1p1qwZ5cuX5/jx41k2pVpdAgMhKQlMTOQeH2JQ7Eo4WjiirfXzn1FKZJbWxpGRcmM2mUzuISMG3zBfBEEgl3EushmI+71UzFfBguJ9bE6fPs2yZctYuHAh5hlduZL4benSpQu5cuWiTZs2lChRgk2bNlEthf6Yp06dAuDDhw8pmn2qS0hICMePH+fgwYPs378fXV1devbsmenbFauDo6Mjs2fP5s8//6Rly5Zqt5het24djRs3ZvDgwWkT4C+kTJkylClTBpB7S+np6aXoB+bs7KzsgKYJihcvzrJly+jZsyetW7fGzc1NY7Hkzp0bX1/fr7K1bt26RZs2bdBS8UFmbi73Rnn7Vr4JU7Kk6vHYZbNDV1uXqPgo3n56Sx5T1R3tFcvZgAB5hqjY5/GvRltb3hr63j35fOXLp/oYFoYW5DDKQUh0CC/CXlAkl+q11/nyyddPISHw8SNkMH30l5JBfzUkJCQ0gZ6eHhUqVPhpDWuRIkXw9vZGJpNRpUoVnqpQxGpoaIiRkVGqBBQFuXPn5tixY5w4cYKrV6+ycOHCVF/7u/FlVoVYM9eM4u+RHih2m/Lkke/qiEHT85WcnMz8+fNp164dtWrVYuDAgaLjkJBIDxo2bMjdu3extbWlRo0ajBw5krj/a+9QqlQpQC52pBW+vr7MmDFD6dXQoUMHfHx8mD17Nq9fv2blypW/RLDJTPTr149q1arRo0cPtbv5PX/+nAoVKqRRZOnHj7r35c+fX2OZKAq6d++OnZ0dR48e1WgcTZs25ezZsxw7dozjx48jCAKxsbGiS+DULenR0dLBwVyegiu21bGVldzYPS7uc9e+jIoie0esjwx8zp4VWwJlaCifM8j42TtpjSSiSEhIiCJfvnx4e3tjbm5OtWrVuHTp0i+9n0wmw/Y/xy/FbpHEt2QEf48PHyA4WL6DU6CA+DjSg7Q0lRVbypOQAIqNTTF+KI8fP2b48OGEh4ezePFilXcAJSQ0gaOjI+fOnWPWrFnKEtEXL14oj48dOxZ7e3s2bNiQJvfbtm0bLi4uzJw5EysrK9asWcPr16+5desWQ4YMkbK3/kNLS4u///6bt2/fqt2JpmDBgjx79iyNIssYuLq68vDhwx+Wov1qZDIZNWrU4Pz58xqLAeRZZRUrVqRBgwbUr1+f4cOH4+bmphRUEhIS+PDhQ6rHUzz/1BIFcqhnlqql9TmrI6OXqChEFB8feQayGCRfFPFIKy0JCQnR5MmTh3PnzuHs7Ez16tWZPn36L11Y5MiRAwB/hWOpxDeoKwqExoQSGhOKlkwLRwtHUWMosioUNbsZGXVFp8TkRF6GySddrOjk6yv3slGkM6tK0aJFOXToEGZmZmnmZSAhkR5oa2szcuRIbty4QUxMDLVq1VK+v+vp6dGgQQNlWY+qxMTEEBISQmhoKIMGDaJjx460bt2ad+/esXfvXnr06IG1tXVavpwsQ/78+WnRogUHDx5Ua5zChQvzWGwP1gxKnTp1SEpK4uzZsxqNo3r16ty+fZvw8HCNxaCvr8/+/fuV/29sbEzjxo25desWVlZWZM+eHUtLSzw8PDh//vxPfUoKFJBn0L55A2JflrqZFZB5RAFbW3m747i4z0b+qqIQnV6GvyQxWVxXv9/VF0USUSQkJNQiZ86cnD17lsGDBzN58mQsLS2xtramaNGijBw5Mk1rh2fPnk22bNnw8PBIszGzEtHRoOgKLVZEUexG5M2WF30dfVFjKFJxM3opjyCo3w7aP9yfxORETPVNsTT+eSvHlFB8xihUSHwJlru7OytWrODIkSN4e3uLG0RCQkMUL16cs2fPoqWlRa1atZQdeRo0aICPjw///vuvSuOdOHECR0dHcubMSY4cOVixYgXLly9nw4YNUueqVFKvXj3u3LmjUibB/6MQUcSafGZEHB0dcXJy4uTJkxqNo3r16giCoPLfRlqTM2dO+vXrR65cuWjVqhWOjo60bdsWY2NjRo8ezfLly/H19aVGjRqULl36h/NmbPzZm0xsNoqjhSNaMi3lhpAYMouIIpN9zkYRWwKV2zg3pvqmJCQlEBAhzqH2y/nKQn/qP0USUSQkJNRGV1eXuXPn4ufnx6xZs+jTpw+VKlViw4YNuLq60qVLF6ZMmfJVBom/v7/KAsvRo0dp06aNsqxH4msUDu05c8qNZcWg2L0RW5oiCJlHRAkOlgtPOjpgYyNuDEXddf7s+b9bQ/8z0mq+WrZsSYkSJZg9e7Z6A0lIaABbW1vOnDlDfHw8devWJSQkhEaNGmFlZfVd7wdBEPDz8+Py5ct4eXmxZMkS6tatS7169ShevDjbtm3jn3/+4cmTJ/Tr10/03+jviMLL5ObNm6LHsLe3JywsLEO0401L6tWrx969e7/x6wkJCWH79u1s2bKFrVu3Ehwc/MticHR0xNbWlnPnzv2ye6QGHx8fgoODiY6Opnjx4pQvX17Z2dHX15eIiAi6du3K8ePH+fDhw0897dT1RdHX0cfWTL5GfBH24idnp4xCFAgMlJfbZmTU9UWRyWRqt4a2tZWvo6Ki5AazvwuSiCIhIZFm2NjYMHjwYCZNmqRsY9yrVy98fHxYsGAB+fPnx83NjZ49e2Jvb4+zszOTJ09O9fh+fn7p0u4ys5KW/h5iS1PevIFPn0BXV7040gPFLpOdndzpXgzqzld09Oc0XDF+KF+ipaWFlpaW5O0gkWmxt7fn5MmTvH//noYNGxIdHY0gCOjp6X1zbkxMDE2aNMHBwYFKlSrRsGFDhg8fDsD69evx8vKiffv2tG7dGicnp/R+KZkeJycnsmXLpmw1LQZFa2BNlpz8CkaNGkVCQgIdOnT4Kstm8eLFdOjQgc6dO9OpUyfWr1//y2KQyWS4uLho3HPm4sWL7N69m8TERLS0tHB0dMTPz48tW7awefNmxowZw4gRI5DJZBgbG6OtrU3SDww8vsysEJvV4JRd/vfuG+or6vrs2eVdZpKT4dUrcTGkF4p1g6+veMFHXV8UHR25kAK/V0mPJKJISEj8MoyNjVm4cCGXLl3i9evXLFq0CENDQ+7du6c856+//kpVqq8gCGhraxMbK66X/e+Auv4eUfFRBH2Up9GLFQUU67n8+eUP1oyMuqU8giAoF2liM3eePZMvFHPnlnuiqEtISIjk8yCRqSlUqBBeXl48evSIcuXKER4ezpEjRxAEgaSkJP7991/279+PtbU1x44dY+PGjdy/f59Xr14RERHBiRMn6Natm2SwrCYymYySJUuqlYkSHx8PkOUyUezs7Jg+fTrHjx//ygfu3bt3lCxZEr//Hi52dnZ8/PiR5OTkXxJHZGQk2bNn/yVjp5aOHTtStmxZHBwc8Pb25sWLF5w/f56OHTvi6enJ2LFjqVOnDh4eHkRGRnL48GE2bdr03fHy55dvaoSGyrNFxeBk8Z+IEiZORJHJPpvLZnQLvty5wcxMLqCIFTC+FFHElt4p1p0ZvQQqLZGeMBISEumCsbEx/fv359ChQ1y7du2r0p4HDx789HqZTIaVlRWBgYG/MsxU8/btW7Zs2cLDhw81HYoSxcNL8fBXFUXqq6WxJab6pqLGUKSUZvSuPKB+5s6bT2+ITohGX0efvNnyihpDITopdt/UpUyZMly7di1tBpOQ0BClS5fm0qVLmJubExcXx40bNzAyMiJHjhxUrVqV5s2bkzt3bh49ekSXLl0oVqwYtra2GBoaajr0LEXlypU5efKk6DbTa9aswdXVFUdHcSblGRmZTIaWlhampp+flSEhIeTKlYtX/6UvtG/fHjMzMwoUKMCWLVt+mIEhhg8fPpAzZ840HVNVdHR02LhxI4GBgXTv3h2AihUrAvJW5tOnT2ffvn388ccfvP2vZ/CcOXOoWrUqtWvXZseOHV+Np68Pil8XdXxRAF5FvCI+KV7UGJlFFJDJ1C+BymuWF11tXaITonn7SVxf59/RXFYSUSQkJDSCnZ0dgYGBlChRgnLlyn3zIP1/7t69i6+vL7ly5UqnCL+Pv78/lSpVonPnzhQvXpxdu3YBEBcXx6xZszTSPSg8XP5PJvtszKYqil0bsVkogpD2osCvIinps4eM2MwdRRaKg7kDWjJxj1PFfKWV6FSxYkWuXLmiXMRLSGRWXFxc8Pb2plSpUujo6DB79myGDx/OxYsXefbsGbdu3cLZWVwGGMgzyZ48eYKPj0+WMj5NSwYNGoQgCEydOlXlax89eoSXlxdDhw7Nkl40ISEhWFhYfJXxFBgYSI4cOShbtizbt29n8+bNbNu2jWLFitG5c2eKFSvGE7GfdFPgw4cPyq6FmqRIkSKsXr2ap0+fUrhw4W/+Lk1MTFiwYAHXrl2jYcOGPH36lFevXhEfH0+3bt2+eV6pKwpkN8yOuYE5yUIy/uHi1mOZSRRQd760tbRxMJcvhMT6yCjWUQEB4tstZzYkEUVCQkJj2NjYcPnyZZo1a0a3bt24f//+d889e/Ysenp6jBo1Kh0j/BpBENi+fTuVKlUC4OHDh2TLlo0dO3aQnJyMu7s7Y8aMYfDgwekem2K3xMZGvpMjBoUooKgnVhWFH4qenvhsmPTi9Wt5W2EjIxCryynqh8W2go6OlhvXQdqJKG3atMHExITy5cuTmCiuXaGEREYgJiaGmTNn4ufnR5s2bRg4cCDjx4+nUqVKODs7q9Vl582bNzRt2pTChQtToEABtXw/sjK5cuVi7NixLF++HB8f1Uwn9+/fj5mZGW3atPlF0WmW+Ph4EhISlOU8/v7+XL16lbp166Kvr0+7du3o1KkT7du358CBA1y/fp3Y2Ng0a0OflJREWFiYxjNRFLRv354tW7Ywb948xo8fT58+fb7JYCpdujRHjhyhb9++BAUFMXPmTGQyGXPnzv3qPIUo8PSpOF8UmUymfC6LLelRrGHevYOMXo2m2LR6+VLe7lgMSh8ZkfNlaQmGhvKyov+aq2V5JBFFQkJCoxgaGrJu3ToKFChA9erVuXDhQornhYeHk5SUlK517oIgKHcoX758Sb169ejQoQPly5dnwoQJjBw5krCwMIYOHQrA9evXsbOz48CBA0yYMIEFCxbwWNG/9hejrr9HUnISfuHyQRT1xKqiSL11cso8fij58olvK6zYsRErOj1//tkPJVs2cTH8P3nz5mXPnj28efOG5s2bs3bt2jRPIZeQSA9OnTrFhAkTiI6OZuDAgaLGiIuLw9vbG09PTzZt2kSfPn3Ily8f1tbW/Pvvv0ybNg1AdLnK78CgQYOwtbWlS5cuJKjgXBkfH4+ZmVmKpsBZge7du5OQkMDMmTMB2Lp1K0ZGRrRo0SLF88uUKcOkSZM4ePAgd+/eVevegiCwYsUKkpOTNeaB9ebNm2+eLR07dqRhw4bs2rWLNWvWkC9fPpydnSlevLjSJ+bu3bsYGBigpaXFrl27aN++/Tcdhuzt5eb0Hz/CW3HVJWqby5qagiLJJ6P7ouTMKY81OVm+rhCDUnQSOV8yWeZpDZ1WSCKKhISExjEyMuLChQuULFmS6tWrc+DAgW/O2bZtGw0bNkQnHT6de3t7s3HjRuzs7NDX18fR0ZGiRYvy9OlTjh49yr59+xg9ejTHjh2jVq1aXL16lRo1ahAZGUnp0qVp2LAhK1euZNy4cZQtW5YjR4788pjV9fcIjAwkPikeI10jrEysRI2RWUp5QH0T3o9xH3kf9R4Qn4nyq/xjatSowZo1a3jz5g19+vTB3d1d+pAokelwd3dn06ZNGBsbU7t27VQL0kFBQSxbtoy+fftSoEABqlWrhoeHB127duXUqVM0b96cHTt28OTJE8qUKQOgVllQVsfQ0JAdO3Zw/fp1lixZoulwMgx58+alcuXKXLx4EUEQ2Lx5My1atPjKI+X/6dChAw4ODkyZMkX0fWNiYujatSsDBw5k0KBB1K9fX/RYYvHz88PBwYHNmzeneNzDwwNDQ0PGjRtH+fLluX//PoGBgTx+/Jj27duzcOFC4uLiWLp0Kd7e3ty/f58PHz4or9fR+eyLomIClJIvzWV/B7NUdVsdK9Yxbz+9JSo+StQYmakEKi2QRBQJCYkMgbm5OTt37gSgWbNm3xwvUqQIV65cISIi4pfFkJiYyPDhw6lWrRrdunUjKCiIVq1a0bp1a8aMGcPDhw9p0KABAAsWLCApKYkzZ84wduxYzMzMWL9+PRs2bODIkSN8+PCBDx8+4ObmRpMmTTh48OA39/tehkBSUhLh4eHKRcfNmze5evUqly5d4tChQ5w6dYo+ffpQp04dDh48iCCon4miSOF0tHAUVb/+pR/K72Aqq8hCsTa1xkhXXFmBYnH4K+arV69eXL9+HS8vL65du0bBggU5ffp02t9IQuIXIZPJ6Ny5Mz4+PpibmzNu3Lhvupz4+flx8uRJNmzYwNSpU3Fzc8PW1pZhw4Zx+fJlatWqxfXr13n79i2xsbH4+vqycOFC2rZtS65cuQj+r/1Hnjx5NPESMw0VKlSgTZs2rF69OtUfSAVByJJeKAqCgoI4e/Ysbdq04dq1azx79ozOnTv/8BpdXV2mTp3Kvn37ftihJiUEQWDPnj0ULVqU3bt3s3XrVhYtWoS2trY6L0MUkyZNIi4ujvPnz6d4PDk5GVtbW1q1asWZM2fQ0dHBw8ODIkWK8OjRo6/OVXRwev369VffVzwXxXZwzpstLzpaOkTFRyk3PFRFUdKTGUSUL0ugxGCiZ0Juk9wAvAwXp4IoRKeMnrmTVmTwhGsJCYnfiR/t4CxfvhxHR0dWr17NyJEjf8n9hw8fzrJly1i0aBH9+vVDR0fnu4vAL3d/Xrx4ga2t7TfnGBsbs3fvXkqWLEm/fv1YtGgRMpmMkJAQ3r59S3BwMLVr12bbtm1YWloC8gWFtbV1qjMHcufOTYUKHsTGytNfxWb2quuHEhSUefxQYmPl/i2gvugkdr5iYj4b2/5K0alevXo8ePCA9u3b07NnT168eJGlP9hIZD0sLCyYN28e7dq1o1WrVtSoUYNHjx5x4sQJXrz4bIJoaWmJi4sLa9eupUWLFpinomd4aGgogPQ3kQq6d+/Otm3buHTpEpUrV/7huYmJiURHR2fpeT106BCCINCxY0fGjBmDra0tNWvW/Ol17du358yZM/To0YMFCxbg4uJCu3btaNSo0XevuX79OkOGDOHixYs0atSIo0ePUkjxqTmdefjwIVu2bEFXV/e7neAEQSAgIIBChQqhq6uLvr6+8m9NS0uLLl26sGHDBgBGjRpFx44dv1n/KZ6LPj7yTRpVf5V0tHSwN7fneehzfMN8lQKBKihEgcyQWaGYr4AA+RrHwED1MZwsnHj36R2+ob4Usyym8vWK9dTr13JvFrH+fJkFKRNFQkIiw2BgYECVKlVo1aoVCQkJXLhwQbnzaGtrS48ePZgyZQqXLl36Jff39PSkf//+DBo0CF1d3R8uAL/cRVIYy6WEtrY2EydOpFatWuTJkwdLS0uqVKnCgAEDWLBgAffu3aNkyZIMGTKElStX4ubmRkhICIMHD8bLywtvb29l9x+Qp8kCjBgxAkdHR8zMzJQPeDs7ELsppRQFRPqhKHaL8ufP+H4oAQHyRZmFhXgvEoXoJLaUR+GHYmkJqfispxZ58uRh9OjR+Pn5fXfnUEIiI9OmTRt27tzJ+fPnGTFiBKdPn6ZBgwYcOHCAFy9eEBsby7t37zh16hQ9evRIlYCSlJTEnDlzaNGiBfpZfbWfBtSoUQN7e3s2btz4w/P8/f2xsbFh/vz5apn/ZnSyZctGcnIycXFx7Ny5k44dO6YqK0Qmk7FixQqWL19OhQoVePToEe7u7gwfPjxFz5k9e/ZQsWJFIiMjOXHiBIcPH9aYgBIVFUWXLl0QBIGEhAQaNmyY4nnlypUjX758TJ48GV1d3a8yyPLkyaP0IgI4ceJEihtoDg7ytUR4OPyXMKYyiuez2I4zdnZy8UbR/TAjY2Eh90ZJToYX4l6u2uay2bLJ1zOC8HmTKCuTwZe6EhISvxu2trYcOXKE+vXrc+bMGSpWrKgUTebPn8+jR4+oX78+np6e1KhRI83u+/79e16+fKnsvPMjHjx4wKhRo+jZsydeXl507dqVq1evfld0admyJS1btkzxWKtWrRgxYgRHjhxhyZIlFChQgEOHDuHu7v7VeX379mXt2rWcPHkSQOlmLzdsk58j1t8jLCaMsJgwtGRa2JvbixrjV/l7/ArULX1KTE5U24RXITqllxVD9erVqVChAm5ubgwaNIi5c+emq0mzhIS6tG7dmtatW6fZeLdv3+b169ca6aaWGdHS0qJt27asWbOGFStWoKurm+J5Q4cORUdHR5mpsW/fPpo3b57O0f567OzsANiwYQNhYWF07Ngx1dfq6+vTp08fQJ61sWjRIkaOHMnLly/Zu3ev8ryDBw/Srl07WrduzebNm9PFE+57JCUl0b59e27evAnI1yDDhg1L8dy2bdvSokULZaeiY8eO0b17d549e8bkyZPJlSsXNWrUoHjx4lSvXp24uLhvhExdXfkz+vlzeTbKf8m6KuGU3Ql8xZul6uvLOx4GBsqzUUqWFDVMuuHsDB8+yOerSBHVr1esZ16GvSRZSEZLpvoawcEBbt+Wr7OyutWUtIKSkJDIUCxatEiZ7gpw+fJlhg0bRmBgIEZGRhw5coTy5cvTtm3bHxq23r9/n5IlS2Jvb0/+/PnZvHnzd40JBUHgxIkTgFyU+BlhYWEkJibSvHlzunfvzuPHj7+p1U8tNjY2bN++nWfPnhETE6Pclfp/FixYwPz58+natSsVK1YE5Ls91atXV9vfQ7HrYGtmi76O6juyX/qh/A6msgERASQmJ2KiZ4KlsYiVHek/XwYGBpw7d45p06axcOFC+vfvL9psT0IiK3D69GmMjY0pV66cpkPJNLRq1YrQ0NBvuqkoOH/+PPv27WPOnDm4u7sza9YsWrRoQd++fZXeF1mFO3fuoKOjQ968eQF5ZooYZDIZgwcPxtnZ+auNmH/++YdWrVrRtGlTjQsoMTExtGvXDk9PTwAWL17M8OHDf5ite/78ec6dO8fw4cNxcHDA39+f8ePH07NnT3R1dTl79ix9+vShRYsWuLi4cPTo0W/GUHwIF+uLoshECfoYRHRCtKgxFOsEsdkd6YlivsSa8VqZWGGka0R8UjyBkYGixvidOvRIIoqEhESGInfu3KxatYrt27ezZcsWhg0bxsaNG3FycmLNmjWYmJhw+PBhmjRpgoeHBxcuXCAsLAyQiyGenp60bNmScuXKIQgCRkZG+Pr60qVLF4oUKUKdOnW+coGPjY2lWbNmdOrUCQsLi1S1C6xSpQply5Zl4sSJ7N69mwYNGqSJuZuent53FyUGBgYMHDiQ5cuXc+nSJby9vQkLC8PDowWB/z3rRIsoaeCHEhWVOfxQQP1MlC9bG4up+Y+NTR8/lP9HX1+f0aNHs27dOlatWsXff/+dfjeXkMhgnD59mqpVq2bZFry/gpIlS+Lo6Mju3bu/OZaUlKRs3evt7U14eDhXr17F3d2dv//+m8aNG4vebMiIeHp6Uq1aNQoXLgxA8+bN6dy5s3I9ogrXrl3j8ePH9OnTh9jYWPr370/btm1p2bIl27dv16iA8v79e2rWrKn8mbdu3Zo///zzp9fVrFmTFi1aMHnyZNq1a4e+vj5Dhw796hyD/4w7EhISaNSoEXPmzPnq+Je+KGIw0zcjl3EuQJ5dIYbM5IuiEFFevgQVupErkclkarc6/p069EgiioSERIakXbt2dOzYkXnz5uHn50fr1q3p06cPL1++RF9fn+XLlyMIAtWrVydv3ryMHDmS6tWr4+HhgZ+fH+PHj8fc3Jznz5+TL18+Nm7cyM6dO7l79y6VK1fm2rVrhIeH06BBA06cOMHOnTt58+ZNqnaTZDIZkyZN4saNGwQFBdG9e/d0mJGvqVKlClOmTMHHJ4pPn2IxNpbXw4ohrfxQnJzEe7KkF5GREBIir3MWK/goRSeR8/X8ubxuOWdOeR1zetO9e3d69erFwIEDefk7rHQkJP4Pf39/Tp8+rfSYkkgdMpmMli1bsm/fPmVnI5Bnftra2jJo0CCsrKyU3cCSkpJYtmwZhw8f5sSJE6xYsUKD0acd0dHRnDlzhiZNmlCsWDGGDRuGs7Mze/bsYenSpSqPZ2lpia6uLgcOHKBSpUr8/fffrFy5km3btn23bCo9SEpKonbt2ly9ehWAzp07s23btlRtHmhra7N161bKli3LlStXWL16tXJ9FRAQgJWVlbK1+KJFi2jSpMk32ShOTqClJX9mp9Jr/xsUz2mxvihfdpzJ6BpgrlxgZgaJieIzQdT1RcmXT76+CgmBjx/FxZBZkEQUCQmJDI+pqSlVqlQB5Is1kLcKvHTpEvPnzyd//vxs2bIFHR0djh49yunTp/Hx8eHixYvMnj0bV1dXunbtSkxMDBcvXsTAwIB+/fphYWHB7du3OXHiBG3atFHJXLBRo0ZEREQQHh7+Vaee9KRUqVKAA/v27ePgwcVcuXJZ5THiEuN4FfEKEJ+J8vy5/L+ZyQ/Fykqce70gCDwPlb9gsaayGaEV9Lx584iNjZWMZiV+S1asWIGpqSmdOnXSdCiZjr59+6Kjo0PNmjV59+4dAOPHj8fY2JjLly/z+vVrhgwZwrFjxyhUqBD58uWjbt269OvXj1GjRhGQBRwnHz58SEJCAs7Ozujq6jJv3jy2bdtG165dWb58ObGxsSqN5+DgwJ9//smKFSv49OkTV65c4Y8//tB4d6MmTZrw4MEDALZt28amTZtUyooxMDDg6NGjDBgwgI4dOzJhwgQCAwMZP348UVFRLF++nB07dlC3bl1Kly7N/fv3vyoz1deXm7uC+GwUdUWBPHnka4X4eHnWbUZGJlM/e0ddM15DQ/n6CrJ+SY8kokhISGQKPDw8KFSoEB4eHshkMmQyGd26dSM0NJSVK1fy5s0bzpw5Q1hYGDly5GD37t2sXLmSIUOGcODAAWrUqEG3bt24cOECV69eZfHixfz9999cv35dKdCoipmZmUYXOc7OzjRvPgxHRwdkMn8qVapEhw4d8Pf3T/UY/hH+JAvJmBuYY2GgelqEIHwWUfLnV/nydEcxNWJLeUJjQomMi1TLhFexuNGkiGJmZoa9vT0PHz7UXBASEhogOjqatWvX0rNnT4yNjTUdTqbD3t6ec+fOERoaSs2aNVm1ahWenp5MnDiRChUqKA2rT5w4Qb169ZTXzZo1C0NDQ+bPn6+p0NMMRWvtRo0asXbtWuX3Bw8ezPv3778yh00tkydPZtmyZdy8eRNXV9e0ClU0giAoM0NevnxJ+/btVbo+Li6OtWvXUrZsWRYuXEiNGjWYPn06dnZ27N69m4kTJ/LHH3/Qtm1bDA0NcXFxITQ0lDdv3nw1juI5qa4vyouwFyQLqqeSyGSf1wu/gy+Kg7kDMpmMkOgQwmPDRY3xu/iiSCKKhIREpsDKyop79+6xZ88eAIoWLUrx4sVZu3YtNWvW5PTp0xw/fpyDBw+SlJTE2bNn6dmzp/J6hRlrtWrVMDAwoHLlynTv3l2ZTpoZkclkuLg0pkKFiuzePZe1a9dy5swZihQpwoULF1I1xpd+KGIEoZAQees/bW3xRq3pSVqZ8Npls0NXW/U067i4zwsLTWfuVK5cmT179mQ5w0cJiR+xYcMGIiIi6N+/v6ZDybQUKlSIc+fOERERQd++fWnTps03H7JDQ0OxtbVV/r+pqSkDBgxg3bp1hIitzcggKNYTAL1792b16tUAFChQgGLFiuHt7a3ymKampvTv3z/Fdr+aQCaTERgYSEJCAvYiHpgDBw6kT58+FCpUiCtXrjBu3DhKlSrF33//zbt37xgxYsRX5xctWhSAJ0+efPV9dTMrrE2tMdAxIC4xjqCP4lJJMqMviq+vuPIjfR19bM3kf7dis1F+F18USUSRkJDINOjq6tKiRQtiYmK4f/8+O3fuxMfHB1NTU9zc3Khfvz5Tp04F5AubL9NCGzduDJCldt5jY+HtW/nXTk7a9OzZk2fPnlGhQgXc3d25fv36T8dQmqSK9PdQLGzy5ZO3JMzICIL6nXnUNeF98UK+sMmeHXLkEBdDWjFy5EiCgoJo3749iYmJmg1GQiIdiI+PZ86cObRr1w6HzKD6ZmAKFCjA5cuXOXz4MDt27PimzCNfvnzflO4MGDAAQRDYsmVLeoaa5tjZ2Sm7D/3555/07duX7du3A1C2bNlUPXszAzY2NqJMbQMDA9mwYQOzZs2iY8eO3Llzh8aNG3Pr1i1Onz6d4oaNg4MDWlpa+PyfWuLkJM8Gef8eIiJUfw1aMi0cLOR/62LNUjOTiGJtDUZG8g0bsZVzivVgWsxXVm4CKIkoEhISmQ4DAwPlQ9jMzIw7d+4wY8YMANzc3ADInz//VyJKhQoVcHNzo3v37ly6dCn9g/4F+PvLH1A5csjNxEC+m3Xw4EGKFClCmzZtfni9IAifTWXV9EPJDAk9Hz7Iuwjp6ICNjbgxFPOVP7u42qWMNF8uLi7s2bOHgwcP0rhx428WrxISWY2tW7cSEBDA2LFjNR1KlsDOzo5GjRql+KHY3t4ev//L58+ZMyfGxsYqlZxmVA4dOsSoUaNYtGgRXbp0oXPnzrx48YKaNWty69at37r72dKlS0lISODIkSO0bNmS3r174+TkxOrVq9m2bRuTJ09WnvvmzRuqVKnCiRMnsLKyIuj/jEeMjECR0CS2pEcpCoj0RVGIAm/fyjevMjIy2efSak35yNjYyDfVoqPl4ldWRRJRJCQkMj02NjaMHj2aESNGUL9+fXbt2sWePXuUtdkgT009dOgQDRo0oHHjxlnC3E6xPv3/LjMmJiZ06dIFf39/li1bRlxcXIrXv4t6R1R8FLrauuQ1yysqBsVDOjP4oSjmK29euZCiKrGJsQRGyvtJizWVVYgoTuI0qzSncePGeHp68ujRI4oUKULv3r25ffu2psOSkEhzEhMTmTlzJi1atKBIkSKaDifLky9fvm9EFAAtLS3Mzc3TPZ5fhZaWFsuXL8fAwICNGzfSsWNH+vbtS69evRgyZAh79uwhOjpa02GqxPnz5ylTpgwVK1bkxo0bKl+vWHM8ePCAI0eOEBUVxc2bN4mNjUVLS0tZ+hUREUG9evW4ePEikydPJiQkJMXfDXVLepSigMjMCjMz+WbVl9msGRl1fVEUolNARAAJSar3StbR+WwInBmyd8QiiSgSEhJZAplMxpw5c1izZg2tWrVK8RwDAwOWLl2KiYkJI0eOTOcI0x7FwymlrPSyZcvi5OTEkCFDaNiwIZGRkd+co1hQ2Jvbo62lem/ijx/hv+YMGUYU+BGKxY9YPxS/cD8EQSCHUQ7MDcxVvj45+fPPLCOJTg0aNODJkydMmTKFY8eOUalSJY4fP67psCQk0pQ1a9bg6+vLuHHjNB3Kb0HRokV58uTJVxluHz584P3795naiywljIyM6NOnD9OnT2fr1q0sW7aM4cOHs2vXLlq1aoWbm1uKz+CMyMePH+nUqROCIBAXF4ebmxvXrl1TaYxx48YxbNgw7ty5Q8OGDTEyMkJbW5vQ0FCMjY0pXLgwAFeuXOH+/fs0a9aMGzdukJCQQNu2bb8ZL63MUj9EfyAyTtzPQbHOygzmsl+KTmLKabIbZiebQTaSkpPwjxCXNeb43z5TZpgvsUgiioSExG9F9uzZadWqFVevXtV0KGohCJ8fTimJAmXKlOHZs2ecPn2amzdvUr169W9c733DfEkWksmlk+ur0qfUosiqsLaGzNDk4kfzlRoUopPYLJRXr+R1yoaG8jnLSBgaGjJmzBiePXuGm5sbTZo0YdeuXZoO6yvCwsLYv38/48aNo02bNpQrV46SJUtSsmRJXF1dKVasGKVLl061qbLE70NISAjjx4+ne/fulCxZUtPh/BZ069YNGxsbBg4cyL1791iwYAFly5bF2NiYSpUqaTq8NGfu3Ll07NiRPn368P79e+bMmcPr16+5fPkyjx49onbt2hl+3SEIAiNHjiQ0NJS9e/dy7tw5HB0dvzGB/Rm5cuVi3rx55M37dYZr586d+fjxIytXrkQQBGrVqoWNjQ3a2toYGBhQv3598uTJ8814ik2HoCB5iYiqGOoaksdEPu7v4IuSN6+8PXR0tLi2zDKZTLnOETtfkogiISEhkQUpUaIEfn5+hIeHazoU0YSFyU3WtLS+Lef5kmrVqnHhwgWCg4MpVKgQ1atXp1+/frRr146+Y/uybt06ujbpipWVFW3atGHlypW8TOUqITO1Nk5M/Gyy5ihOA/nsHyPShPfLUh4Ndsb+IQYGBuzbt48WLVrQpk0b2rVrx3sNFjWHhoayfPlyKlWqRM6cOWnevDkbN27k/fv3uLi4UKlSJSpVqkSVKlVwc3NDX1+fevXqceTIEY3FLJHxmDBhAklJSUrvLIlfj6GhIYsXL+bYsWOUKFGCcePGUbx4ce7duyeq20tGR0tLi0WLFpGUlMS2bduU369QoQKnT58mNjaWGjVqcPr0aQ1G+X2Sk5MZNmwYq1atYu7cudjb22NmZkbjxo25fv06kyZN+savRFUcHR3p1KkTw4cPp2zZsnh5eeHm5sbFixfZvn07c+fOTfE6U1OwtJR/LfZDuaKkR2zHGcW6ITOYpWprf45X3ZIesb4oivu/fi3fPMqKiKgKl5CQkMjcHD16FAsLC1Gu8xkFxULC1la+4/AjihcvztWrV1m/fj0PHjzA29ubJy+eYNnJkjJOZejZoSeP7z7m3LlzDBw4kMTERFxdXWnRogXt27fH8TuqQ0YySf0Zr17JhRQTE8iVS/XrBUH43MlIpAmv739rkYwuOunq6rJt2zYaNWrEoEGDKFy4MFu2bKFhw4bpcv/ExESOHTvGpk2b8PT0JCkpiYYNG7JmzRpq1679ww9gsbGxtGvXjqZNm3Lq1CmqV6+eLjFLZFzu3LnD6tWrmTdvHpaKT2IS6ULjxo3ZsWMHlpaWVKpUCQMDA02HlCr279/PmzdvsLCwwNbWFnt7e6ytrdHW/nHZq56eHvHx8eTMmfOr75cuXZrr16/TtGlTGjduzKlTpzJUNk5MTAw9e/Zkx44dLF26lL59+yqPDRo0iA8fPjB//nymTZuGm5sbHTt2pF27dqLWUJs2baJr165MmTIFDw8PQC5yNmvW7IfX5c8vNyl9/hyKFVP5tjhZOOHt7y1aFMibVy5OfPwIoaGa7673MwoUgMeP5SJKjRqqX/+l6CQIQorm0T/C3BwsLOQbfgEBmWOdqCqZ9xOEhISEhEjevHlDtWrVMDEx0XQoolGIKKnNqrCxsWHChAnK/7/z5g4rb6wkt0luOtXsBP818vn48SNeXl7s37+f2bNnM2PGDNavX/9NnfKX7fMyw8Pxy/kSkwXy5tMbYhJi0NfRx9bMVuXrBSFzZe7IZDI6dOhA3bp16dGjB40bN2bevHkMHjz4p4spQRB49+4dPj4+PHv2DD8/P2JjY9HV1aVatWpUr14dQ0PDFK89efIk/fv3x8fHh+LFizNr1izat29P7ty5UxW3gYEBu3fvpkKFCkydOlUSUX5z4uPj6dOnDwULFmTAgAGaDue3QyaTpehxkdHp0aMHYWFhX31PR0cHOzs7ypYty9q1azE1Nf3mOoVh/f+LKCB/b9q/fz+1a9emS5cu3L9/P0OISufPn6dXr14EBASwc+dOWrdu/dXx7Nmzs3z5cmbMmMGuXbvYuHEjnTt3Rl9f/5tzU4NMJqNWrVrUqlWL8+fPc/z4ccaMGfPT65yc4NKlz5sRqqIQBfzD/UlMTkRHS7WPwLq68k0rf3/5eiKjiygKnzqx82WXzQ4dLR0+xn0kODoYS2PVBWgHB7mI8uJF5lgnqopUziMhIfHbUa1aNf7991+Sk5M1HYpoFBU3YktT/CL8gG9LU0xNTWndujU7duzg7du3tGjRgnbt2jFixAgSExOV5714ITdKzZ5dvtuQ0VGIKCmZ8KYGRV2wg7kDWjLVH50hIfLyK21t8Z4smiBXrlwcOHCA4cOHM3ToUHr06ME7hZvw/xEcHMysWbNwdHQkT548VKtWjV69erFx40Y8PT3ZsGEDDRo0wNjYGG1tbQoXLszYsWM5ffo0M2bMoEyZMtStWxdra2tu3LjB3bt3GTJkSKoFFAU6OjqMHDmS06dPc+XKlR+e+/TpU3zFrjIlMjwjR47k9u3bbNiwAV1dXU2HI5FJcHZ2platWoSHh/Po0SOOHj3KkiVLaNGiBV5eXjRv3pz4+PhvrnNycqJo0aJMnDiRhIRvu5oYGhqyfv16/P39mTlzZnq8lO+SlJTE4MGDqVGjBpaWlty5c+eHokh0dDTTp09Xvqc6iH2YfkH16tWZMWPGd0X1L1GIAi9fyrNKVSWXUS5M9ExITE4kIEJcd8bM5Itiby8v9w4Lk/9TFR0tHfKZy2vF06IEKisiiSgSEhK/HeXLlyckJIQXmdTx6kt/D3VFgR+VphgbG7N582YWLVrEwoULady4sVJ4ykylPKC+6KRIAVa3tXG+fPIdrcyElpYWs2fPZsOGDezatYt8+fLxxx9/8ODBA96/f8/+/ftp1qwZNjY2TJ48mRo1arB3714ePHhAdHQ0r1694unTpwQFBfHw4UNWr17NsmXLqFixIqtXr8bNzY0ZM2bg6OjIvn37OHv2LKVLl1Yr5ubNm1OmTBlatmzJ69evAXmGzOnTp9m3bx9z5szB1dWVQoUKffV7LZF12LNnD4sXL2bevHmUL19e0+FIZCLGjx/P+fPnGTp0KAULFqRBgwb07duXOXPmcPDgQS5cuEDXrl2/ed/Q09Nj7dq13Lp1i1OnTqU4dqFChejQoQOenp7p8VJSJDk5mT59+rB06VIWL17MhQsXKFSo0A+vMTIyIigoiDp16nDkyBHKlCmTTtHKsbKSG9gnJMjLc1VFJpOlqS9KRkdfX16CBGpk71io1xpaMV++vhnfR0YMUjmPhITEb8eNGzcwMzP7xjk+sxAQoJ6/R1JyEn7hfsDPTVJlMhmDBg3C3t6epk2b8tdff/Hnn3/y/Lk8XTkzlKZERMgzQWQy9TvziPVDyUylPN+ja9eueHh4sHLlShYvXszq1auVx0qXLs38+fNp3749Ob6T5yyTyShSpAhFihQBoG/fviQmJvLgwQMKFiyYqt3I1KKjo8PBgwcpX7485cqVw9HRkU+fPnHnzh1AnlrfuHFjrK2t8fLyYuzYscyaNSvN7i+hWZ4+fUr37t1p1aoVf/75p6bDkchkNG7cmI0bN9KpUydMTU1ZuHChsoyxRo0abNu2jdatW2NmZsby5cu/8kqpUKECJiYmPHjwgAYNGqQ4vp2dHSdOnEiX15ISM2bM4O+//2br1q106NDhp+cfPHiQCRMmkJCQgKura7r5Y32JTCbPRrl3T/6hXMwGkpOFE3ff3sU31Bc3RzeVr1fcU7EGy+i2ek5O8vKj589BjOal7NAj0kfGzk6eDRMZKc+GyZ5d1DAZFikTRUJC4rfj/v37JCUlcezYMU2HIgp1/T0CIwOJT4rHSNcIKxOrVF3TpEkTmjRpwvTp02nVqq0yhswgCihitbEBMSXoH+M+8j5K3qFG3UyUzDBfP8LCwoKxY8fi5+fH0aNH2b17Nw8ePODGjRv8+eef3xVQvoeOjg6urq5pKqAosLa25sSJEzRp0gQHBweKFCmCp6cn7969Izg4mF27dnH06FFGjx7N8uXL2bBhA7GxsWkeh0T6EhwcTKNGjbCxsWHdunUqGyJKSAB07NiRFStWsHjxYkaPHk1SUpLyWMuWLfn7779Zt24dLVq0IPqLvrsKsfjff/9F+M72e1RUlMaM7b28vJg4cSKTJ09OlYBy69YtmjdvjqWlJWfPntVoGZLi+al4nqqK4vn9PPT5d382PyJXLnk2TGIiBAaKiyE9UZRAqdvRKOhjEDEJMSpfr6v7ORsmkyZ+/xBJRJGQkPjtGD16NFFRURm21eDPULc0RZHK6mjhmOoPGDKZjIMHD7J7927OnXtOYOB7jIwgTx5xMaQn6vqhKOYrj2kejHSNVL4+KgrevJF/LfZnltEwNDSkQYMGtGzZkqJFi2o6nO9SuHBhVq5cyebNm9m2bRuNGzfG0tLyK1Pp4cOHU6lSJXr06EH37t01GK2EusTGxtK0aVM+fvzI0aNHMTMz03RIEpmYvn37smDBAubOnUu9evV4+/at8li3bt3w9PTk1KlT1KhRQ2kqq7jO09OTRYsWpTjugwcPlBl56cm1a9do1aoV7u7uXxnNf4/ExER69+5NsWLF8PLyokaNGhoVJb80SxVTHmJvbo+WTIvIuEhCY0JVvv7LbNbMUNKjmK9Xr8S1GTbTNyOnUU4EQVBmL6uKYs0jiSgSEhISmZykpCT+/PNPHB0dmTZtmqbDEYWivlW0H0qY+NIUDw8PLCzK4Ovri5OTuEyY9EbVTkb/j3K+flL69N3r//t55c4NKTR0kNAwOXLk4Pjx46xfv54dO3Zw7tw5TYckIYLk5GS6du3KrVu38PT0TBPjSwmJIUOGcOrUKR4+fEjJkiW/MtZu2LAhFy5c4N27d5QsWZKTJ08C8tLHkSNHMmzYsBTfT0qVKsXt27fT6yUQHR3NuXPnaNSoEcWLF2fnzp1oaf38I+CaNWu4desWa9asyRDGzPnyyUtoIiPhwwfVr9fV1sUumx0gvkQlM5nLWljI/yUng5+fuDEU68TfYb5URRJRJCQkfivmzZvHtWvX2Lp1a6bcpQwPl9eWpom/hwhRQEtLi+LFm/Hy5UscHDK+U1hSkrwmGNTP3Pmd/VB+Bzp37kyRIkVYtWqVpkORUBFBEBg1ahS7du1i27ZtkpGsRJpSq1Ytbt26RUJCAiNGjPjqmEIQKVu2LB4eHly9ehWAmTNn4ujoyJ49e74Zr3Dhwrx7946oqKhfEm9ycjJHjhyhTZs2FCxYEBMTE2rWrEnu3Lk5fPgwRkapy6jU19dHEAT8FQ9RDaOrK/fZAPVbHatrlppZRAF1Wx2nlbmswkcmKyGJKBISEr8Fy5cvJ3v27IwePZphw4ZRsWJFTYckCnX9PcJiwgiNCUVLpoW9ub2oGPLkqcSnTx+Jj38s6vr0JDBQ7uZvZCTPBFGVxOTEVJvwfg/F4kUSUTI2WlpaREVFYadYpUtkCj59+kTr1q2ZN28eCxcupHnz5poOSSILkidPHubMmcOWLVs4c+bMV8eyZ8/O/v37KVmyJI0bN+b58+doaWlRr1491q1bx9y5c7/yVClZsiQymYxWrVoRE6O618TPmDNnDu7u7vj4+FC/fn3Wrl3L9evXuXnzJtlVcPfs3r077dq1o3v37jx+nDGe92nliyK2Q48is+L9e/j4UVwM6YlivtQVnV6EvSBZUL2LXc6c8iYIiYniuiplZCQRRUJCIsvj7+/PkCFDqF+/Pnv27GHGjBmaDkk0aeWHYmNmg76OvsrXh4eDiYkdenp6XL36j7gg0pEv/VDEmvAmJCVgrGeMpbGlytcnJHxOo5VElIxNWFgY/v7+lChRQtOhSKSSly9fUrlyZby8vNi3bx+DBg3SdEgSWZiuXbtSrVo13N3dWbFixVfmpIaGhnh6emJhYUGDBg04ceIEHh4eNGvWjFGjRlGlShWePn0KQLFixTh69CjHjx9nw4YNaR7noUOHaNasGTdv3mTx4sX06NGDMmXKoK+v2jNfJpOxZs0a7O3t6dq1a5rH+TM+pFCzk1aZFYGRgcQlqm4U8qUXXGbw+fjSk0SMj4y1qTX6OvrEJsby5uMbla+XybKuL4okokhISGR5nj17RkJCAmPHjqVFixYac8VPC9LMD0VkVsWLF6ClpU2RImZs376BXbt2ZeiOJmr7oXxR+iTGUE+RwmpqKq4dtUT6oWg5WrVqVQ1HIvEzBEFg06ZNlCpVik+fPnHlyhWaNWum6bAksjhaWlocPXqUrl270r9/fxo2bEhYWJjyeI4cOfDy8iIqKop69epRr149du7cibW1NUFBQbi6urJ27VoA6tevT4sWLVi4cCHJyarv8APEx8fTpEkTXFxc2LRpEx8+fODIkSNcv36dmjVrpokJrImJCfZia4fV4NatW+TKleub16AQUYKC4IumSKnGwtACC0MLkoVk0Wap6go56YmtLejpyefqjeoaCFoyLbVbHWdVXxRJRJGQkMjSPHv2jLp16wKIammXkUhMlH8oh88PcVVRigIi/T0Ui4a2bctiYWFBmzZtmDRpkrhg0oG0MpUV29pYMV+ZxYT3d8bT0xNXV1epnCeD8/r1a9zd3enatSuNGzfmxo0bFCtWTNNhSfwmGBsbs2LFCo4ePcqlS5eYMmXKV8cdHR15/vw5L1++xMfHhytXrmBhYUFISAjVq1end+/e9OzZk9jYWIYOHcrz58+VhrSqIAgCPXv25NixY+TJk4euXbuSK1cu3N3dsbW1xcPDI61eMsHBwfj6+qaZ6bYgCGzYsIGyZcvi4+OT4jmTJ09Wft2sWTN2794NyDckFKW5avt8iBQF1G0dnJ5oa38WMTTti5IZ5ksVJBFFQkIiyxIfH680devXrx8uLi4ajkg9vvT3sFS9soSEpAQCIuQqjDqZKAA1athx9+5dKlSoQHBwsKixfjUfP8od/GUyNTJ31BSd1BVxJNKHhIQEjhw5Qp06dTQdisR3UHzwKlq0KLdv3+bQoUNs3rwZCwsLTYcm8RvSoEEDBg0axJo1a74pOzEyMsLe3p78+fNTvnx5Ll++TN26dTlx4gSjRo1i27ZtlCpVijFjxgAQEhKi8v03btzIli1b2Lx5MydOnOD+/fts2bIFHx8ffH1901QM9vLywtXVlTp16rB69epvjr97944mTZrQtGlTDhw4QHx8/HfHioyMpGPHjnTv3p0bN26wbNmyb85JSkri/Pnz/PHHHwwcOJCnT58ycuRI5XG1S3rSyFzWzy9zmKWqO1/q+sjY28vXYSEh8s5KWYXMm9MuISEh8R0iIiJYtWoVa9aswc/Pj379+jF9+nRNh6U2X/qhiMlq8Av3I1lIJptBNrIbpt5cTkFCwudON05Ocg+JoKAgChUqpHow6YBCwLCyAkND1a8PiwkjPDZctAmvIEgiSmbh06dPREREcP36dU2HIpEC0dHR9OjRg507d9K1a1cWLFggiScSGmfgwIHMmzePNWvWMHbs2O+eZ2Jiwu7du6lVqxY7d+7kxIkTzJs3D0NDQ4YNG0a9evVUvvfNmzcpVqwYbdu2BeQ+K78qI+vx48d4eHhw584d/vjjD16/fq3MwHn69CkNGjQgJiYGGxsbmjVrhp6eHra2ttja2mJlZYWhoSGJiYnExMRw8+ZNZZtoS0tLhg8fnuL9IiMjadWqFbVq1WLDhg10796duLg49PX1yZ8fLl0Sby6r2ER6EfYCQRBULnvKnRuMjSEqSr65pYFqJ5VQV0RxsHBAJpPxPuo9H+M+YqpvqtL1BgZyH5mgIPk6NqvYjkkiioSERJZj9uzZzJ49m/bt27N//36KFy+u6ZDSBHX9UJStetXw90hKkqfTGhpGU69eY6Kiohg1apS4gH4xaVXKkzdbXvS09VS+PiwMIiJASwvy5RMXg0T6YGFhQf78+XGU1K4MR0BAAE2bNuXp06fs2rWLVq1aaTokCQkAcubMSdOmTdmxY8cPRRQAbW1tNm7cSPHixVm0aBFbtmzBzMxM9L39/PxwELsYUIEzZ85Qu3ZttLW1sbKyokyZMhj+tytx9+5datasSZ48eTh9+jQGBgZcu3aN48eP4+vry/Pnz7l37x42NjbkzJkTQ0NDypUrR3h4OOfOnWPv3r3kzZv3m3taW1sDEBgYiCAIREdHo6uri56e/DmsEAX8/ORrEm1t1V6TrZktutq6RCdE8/bTW/KY5lHpeoVZ6v378nVZRhdRFI81RUchU9U0EIx0jchjkoegj0G8CHtBCSvVVRBHR7mI8uKFJKJISEhIZFj09fXR09Nj8+bNaWKsllFQZKKI9kMJSxs/FCcn6Ny5E3fu3OHMmTMZPhNFXVNZsX4oivvnzSs3dpPIuAQFBfH8+XOmTZum6VAkvuDhw4fUqlULQ0NDLl68iKurq6ZDkpD4irZt27Jjxw7u3bv30w0bBwcH1q9fT9euXSlUqBALFixQZpKoytu3b9Pl72HKlCmUKlWKa9euof1/asWQIUMICwvDwsKCokWLfrddc2RkJIULFyZnzpycO3eO2NhYVq9eTZUqVVI8P3v27BQtWpRjx44xcuRIPn36RLZs2ZTrudy55WXN0dHw+jWoWrmkraWNg7kDz0Ke8SLshcoiCsjXQffvy5/ztWurfHm6YmQE1tbqiRhO2Z0I+hiEb5ivKBGlShUoWlT8+jUjIokoEhISWYrw8HCWL19OixYtspSAEhn52d9DzK6HIAhpJgo4OsproHV1dVm6dCm5c+fG0tKS3Llzkzt3bipUqIC5ubmoe6QVycmfWwurm4mirn+MlNyQ8dm/fz86OjqSJ0oGIiAggHr16mFlZcWpU6fIJbW3ksiA1KtXD3t7e5o2bcrp06d/mh3SqlUrypcvT7t27WjXrh1169Yle3bVy2vz5cuHn+Ih94t48+YN58+fZ8uWLd8IKI8ePeLs2bMAFC5cmAEDBuDk5ISxsTEGBgYYGBigr69PXFwcd+7c4caNGwQHBzNjxgzc3Nx+6lFXuXJl1qxZA0CfPn0oWLCg8pjC5+zhQ/lzVoz9i1N2J56FPMM3zJfKdpVVvz4TdegBebxBQfJ4xYgojhaOePt7i/aRcXAQn0WdUZFEFAkJiSzFkiVLiI6OZs6cOZoOJU1RZKHkySPO3yM4OphP8Z/Q0dLBLpvqKw5B+DoT5fDhw4wYMYInT55w9epV3r9/T0REBABdunRhw4YNBAUFYW1trREx6/VriI//XIurKnGJcbyKeAWobyqb1RYOWZFdu3bh5uYm6sOMRNoTGhpK/fr10dHRwcvLSxJQJDIs+vr6nD9/ntq1a1OlShVOnTpF4cKFf3iNra0tYWFhNGzYUPR7TuHChdmwYYMoT4/UoqMj/5hoYmLyzTFFtxyABQsWUKBAge+O4+rqSufOndHV1U31vatVq6YUUUaOHPlNqaVCRHn5EmrUkH9PEAR27drF8uXLKVKkCDVr1qRmzZpYpuDEr2zbK1IUyJdPXqobFib/l9EtmhwdwdtbvI9M/uz5sTa1Jm+2b8uvflek7jwSEhJZBkEQOHDgAB4eHsqa2qyCun4oioVCPvN86Giprp+HhsqzYRT+Hubm5qxduxZvb2+ePXtGeHg4MTEx1KtXj9evX9O6dWulsVzPnj3Zu3cvkeloy/7lfIlZX/pH+JMsJGNuYI6Fgeqro4QE9dtRS6QPBw8e5MKFC/To0UPToUggN5F1d3cnODiYEydOZLn3comsh52dHd7e3mTPnp2aNWsSFhb2w/OPHDnC48ePRZfygFxkCAoK4ujRo6LH+Bn6+vqA3Hj7/9m1a5dSnNi/f7/y+5GRkXh7e7Ns2TJ69epFgQIFMDY2pmzZsirdu2XLllhZWQHQqFEjBEH46rijIyQmJnDunD/Lli2jd+/elCpVirZt26Ktrc358+dp27YtuXPnxsXFhalTp341hkJEefvpLVHxUSrFBqCvD7a28q8zQzZK/vzy//r7i+soZGlsyaQak2hbTPzvbFZDElEkJCSyBLGxsVStWpXbt2/TokULTYeT5ih2DxQPQlVRtzRFsUiws4PvbSYZGBiQLVs2Tp06xZEjR1i8eDFt27bl0qVLtGzZEktLS9q0acORI0dISEgQFYeq8Yr2j/mitbG6Jrw5coiLQSJ92LdvH66urlnyfSMz8tdff3H37l2OHDnyw91tCYmMhJWVFSdOnODjx4/MmjXrh+cWLFiQwoUL061bN+rUqcPr169Vvl+dOnWoWbMmI0aMIPEX9Nl9/PgxNWrUQFdX96tSGpCX8jx69Ih169YxceJERo8ezaxZs9ixYwe5c+emWrVqDBs2jL///hsfHx/i4uIwMDBQ6f76+vrs2bMHAFNT02/WDPb2cObMWTZvPsbQoRO4fv06xcdIxNoAAQAASURBVIsXx9PTk7Nnz/L48WNev37Ntm3bKFGiBBMnTsTb21t5vYmeCblNcgPwMvyliBnKXCU9uXLJ1yOJifJMXQn1kUQUCQmJLEFycjKXLl1i5MiRNGvWTNPhpClfthYWLaKEqmcqqyhN+ZkoYWlpiaWlJefPn2fgwIHMnz+fR48e8fLlS6ZNm8ajR49wd3fH1taWIUOG8OTJE1Hx/Ax1RacvOxmJQd121BLph62tLT4+PgQFBWk6lN+esLAwVq9eTf/+/SlXrpymw5GQUIk8efIwbNgwFi9ezKtXr757XoECBbhz5w5z5szh1KlTlCxZ8ptMi58hk8mYP38+T548oXXr1rx8KU4ISImtW7dSunRpYmJiuHr16jdZJHv37sXMzIy6devy119/MWnSJMaMGUP79u1p2bIl9+7dw9fXF2dnZ4oXL87QoUNTbGX8MypXrkxwcDBXr15VduZRYGwMlSvnRyaTUalSB4YMGcKYMWNwd3dXnmNtbU379u3ZsmULtra2eHp6fjWG4vkutqRHsR5SrI8yMjIZ9O0Lc+ZI3QLTCklEkZCQyBIYGRlRoEABYmJispShLHxOvzQ1le8mqEpMQgxvPr0BxJvKKnZafmaSOm/ePHx8fL5ZdNnb2zN8+HDu3bvH7du36dChA9u3b6ds2bLcv39fVEzfIyxMXn6kMJ9TFUEQ0qyTkWQqm/EZOXIkxsbGjBw5UtOh/NZcvnyZmjVroq2tzcCBAzUdjoSEKEaMGIGZmRkTJ0784Xl6enoMHToUT09PgoOD8RWRzlCyZEm2b9/O1atXqVWrltiQv2HUqFHUrl2bmzdvUrJkyW+OX7t2jcqVKyvLfSZPnszSpUtZsmQJY8aMYeHChTg5OfH+/Xt2797N/PnzadmypahYcubM+d01nZubIzVq1MTHJ4kuXbpQuHBhBg0a9M15MpmMkiVL8uDBg6++r/RF+e95f+bMGerVq4erqyuurq5UrlyZpUuXEh4enuL9Fc/3gAC5B1tGx8kJsmXTdBRZB0lEkZCQyBIIgkDOnDnx8fFBEAQCFIYUWQDF2ip/fnFZDS/DXyIIArmMc2Gmb6by9XFxEBgo//pnmSj6+vqYmX3/HjKZDFdXVxYsWICvry/58+encePGP60hVwVFFkrevHJjWVV5H/WeqPgodLV1sTWzFRWD1Jkn85AtWzZmzpzJ9u3buXDhgqbD+e1ITk6mR48eVKpUCS0tLU6fPo2trbi/OwkJTWNqasrEiRPZtGkTd+7c+en51atXx8LCQnR79bZt2zJ37lz8/PxS9C4RQ3R0NFWrVsXIyCjF4ym1cx4wYAB//vknjRo1YufOnUydOpUXL1780pI8R0dwdnZmxIiVhIWFMW3aNJYuXcrq1as5fvw4x48f58SJE1y7do1ixYp9I6IoNkmuPL2CWx03ateuTVhYGFWrVqVq1apYWloydOhQrK2t+eOPP77J9smeHczN5d0AFdnCEr8PkogiISGRJfD39+fixYskJSUxcuRI8uXLx8WLFzUdVpqgth9KqHp+KP7+8kWChUXaOtCbmJgwf/58/P392bx5M9OmTaNRo0YMGTIELy8voqJUN3uDNPBD+W9XKl82cSa8YWEQHv7ZhFci49O1a1cqVapEx44def/+vabD+W149+4d06dPZ/369axYsYLr16/j6uqq6bAkJNSid+/eFClShB49evzU/8vMzIw5c+awadMmypQpQ8uWLbl06ZJK98ubV94x5UclRKoQFxenzDL5fzw9PQkICKBatWopHh85ciQxMTE4OTlh8Ytb1igyTV++hGzZzBkzZgx169bljz/+oH79+tSvX5969epRvnx5EhMTef369VcbNnlM8vD4wWN2791NQHgA+/bt4+rVqyxdupSlS5eyf/9+AgICGDNmDPv27cPZ2ZkWLVowa9Ysjhw5wrt3b5UbJenlixIVFcXu3buJjo5OnxtKfBepxbGEhESWwN7enlWrVjF48GBOnjwJwMqVK6lcubKGI1OP/28tLIaMXJpy69YtAAYPHoyZmRnly5dnz549LFq0CD09PSpXrkzdunWpXr06enp6xMfHExcXR1xcHIUKFSJfCipFmvmhqOkfY2Mjd/CXyPhoaWnxzz//ULp0aVq3bs3JkydVascpIY4aNWrw5MkTevXqRd++fTUdjoREmqCnp8fGjRupUKECM2fO/GlpT/fu3YmPj+fWrVtcunSJxo0bc/v2bezs7FJ1P4WI4u/v/9P2yj8jJCSEmJgYcqTgiB4dHU3//v1p0KABDRo0ACA+Pp6dO3eyYMECSpQowcaNGzl9+jQ9evSgdOnS2NvbqxXPiRMnePHiBTExMcTGxpI9e3aKFi1K+fLlsbHRRU8PYmPh7VswMIigaNGinDx58huPGUVGzKlTp2jVqhUAZ8+e5V/Pf3Gp6cKCRQtwc3L75v558uRhwoQJDBs2jLVr17J7925mzpxJZGQkOjo6FCkykJw5/+DJE3vq1/+1z4zk5GRKlSrFs2fPMDc3Z86cOfTo0QMtLSknQiMIqSAiIkIAhIiIiNScLiEhIaExHjx4IDRu3FgAhFWrVmk6HLUJChKE3r0FoX9/QUhIUP36pOQkYeDRgUJvz97Cq4hXomJYvlwew8mToi7/IY8ePRLmzJkjXLlyRUj47wUmJycLjx8/FhYvXiy4u7sLxsbGAvDNP11dXWHIkCFCaGiocryYGEHo00ceb1iYuJgmn50s9PbsLdx5c0fU9bt2ye+/fbu4+0tojgsXLgg6OjpCly5dhMTERE2Hk6UJDQ0VAGH9+vWaDkVC4pcwceJEQSaTCdu2bUv1NR8+fBDs7OyEqlWrpvqa+Ph4QU9PT9DW1hacnJyEsmXLCvb29kKjRo2E2NhYITk5Wbh//74wf/584dy5cz8ca+/evQIg+Pv7f3PM399fAIR169Ypvzdq1CgBEAwNDQU3NzdBEAQhLCxMsLe3F8qXLy/Ex8f/NP7w8HBhw4YNwqJFi4Rp06YJmzdvFgRBEB4/fiwAgpaWlmBsbCzkyJFD+fw3NjYWGjVqJIwa9V7o3VsQ/v1XEM6fPy/IZDIBEBYvXvzVe3h8fLxQsWJFARA6deokXLlyRciZM6fg2spV6HWwl7D25tpUzbUgyNcofn5+wrp164Ty5dsJsEowMFgmDBo0WHj48GGqx1GV+Ph4wd3d/at1UOXKlYUbN278snv+bqiieUiZKBISElkKLS0tLl++TJMmTejdu7emw1EbRVaFgwPoiHjHDvoYRGxiLAY6BlibWqt8vSB87jQjxqT1ZxQuXPibnTOZTEahQoUoVKgQAwcOJD4+XlnLrKenh76+Prq6umzbto1Zs2axceNGJk6cSL9+/Xj5Ug9BkLcVNjdXPZ7ohGiCPsq7tIg14ZX8UDIvVatWZdOmTXTq1Ink5GQ2bNiAtra2psPKkuzevRsg02cLSkh8j0mTJhEQEECXLl3Ili0bjRo1+uk1OXLkoH379mzcuDHV99HV1eXy5ctcu3YNX19fwsLCMDc3Z+nSpbi5ufH69WtevnyJjo4OiYmJtGrVimLFiuHg4EC7du3Q+WJxce7cORwdHVPMgrGzs6NevXrMnz+fpKQk2rdvT2JiIs7Oztja2pIzZ04AzM3NGTlyJP369ePp06cUK1bsh/EfOHCAbt26KT3VgoODgc+Zqs2bN0cQBF6/fk2xYsV4+/YtgYGBnDlzhnfv1lGq1BhevoSOHatx6dIlevbsybBhw3Bzc6NgwYI8evQIFxcXvL29+fvvvxk3bhxbtmzBzs6OFdNXsPHJRmUGamqQyWTky5ePHj160KVLD7p0CefBgyds2bKcxYsXUbx4cTw8PGjatCklS5ZMs2YHurq6HDp0CB8fH+bMmcO6deu4ePEiZcqUwdPTk8aNG6fJfSRSh5T/IyEhkWXYv38/5cqVw9LSknXr1mWJLj1fmsqKQbEwcLBwQEum+lt+aChERsr9PVKZWZzm6OnpUapUKUqVKkWxYsVwdnbG3t6ecePG4ePjQ8uWLRk2bBjFihXj1Ck/QPx8vQyTK0aWxpaY6puqfH1iotypH36N6CTx62nfvj3bt29n+/btdOrUicTERE2HlOXw9fVl0KBBdOvW7ZcaT0pIaBItLS3Wrl2Lu7s7LVu25OHDh6m67vbt25QpU0ale5UqVYo//viDuXPnsm7dOubNm8eKFSt4+/YtDRo0wMvLi8jISFavXs3Tp09ZuXIlnTt3ZsGCBcTFxfHPP/9Qp04dli5dSo0aNb57n3HjxhEUFESfPn3YuXMnOXLkIDQ0lLi4OB49eqT0lLp79y6GhobkSkVLwSZNmmBiYoKZmZnSQ+bx48dUqlQJd3d3goODiYiIoFChQlhZWZE7d24AYmJiuHHjH0JDQ5RrpQoVKnDy5EkSExN5+vQpEydOVIoagYGB9O7dGx8fH6ZNm8aRI0co6SAXOUKiQwiPDVdpzkG+uVWihDkVKlRgz5477Nmzh2LFirFkyRJKly5Nvnz5GDBgQJp69Dk7OytLixTmv02aNGHPnj1pdg+JVJDWqS0SEhISmmDlypUCILRs2VKIjIzUdDhpxrhx8tKQ+/fFXb/+1nqht2dvwfOJp6jrb9yQ33/aNHH3Ty/u378vuLq6Cvr6o4VGjQKF8+fFjXPwyUGht2dvYf0tcSUGvr7y+Ro6VBCSk8XFIJEx2LNnj6CjoyN069ZNSJZ+mGnKzJkzBSMjIyEqKkrToUhI/HKio6OFokWLCsWLFxdiYmJ+eG5ycrKQI0cOYfLkyb88rmHDhgn6+vpCzpw5BUCwt7cXAGHFihU/vTZ//vzCkCFDhFWrVglaWlrCpUuXhNy5cwt58+YVbt++LQQFBQm5c+cWatSooSzV/RF3794VxowZI7Ro0UJYuHChkJSU9MPzP3z4IEyYMEEwM8srVK36SOjTR17OKwiCkJCQINjZ2QkFCxYUdHV1hRYtWgjW1taCkZGRMGfOnG9KjKaenyr09uwt3Ay6+dM4U2LfPvlzf+PGz9+Lj48XTp06Jfz555+CnZ2dAAhDhgwR4uLiRN3j/wkJCRHWrVsnTJo0STk+IJw4cSJNxv9dUUXzkDJRJCQkMj0xMTFMmDCBLl26sGvXLkxNVc8gyIhERkJwsLytsdjSEIWprNjSlF9ZypOWFCtWjHPnLpA7dwW8vI5y585eUeMoOxmJNJVVzJejo7h21BIZhxYtWrB+/Xo2bNjAmjVrNB1OliEkJIStW7fi5ub23RaqEhJZCUNDQ7Zt28bTp0+pUKEC169f/+65r1+/JiQkhFKlSv3yuKZMmULdunXp3Lkzjx49wsfHh6VLl9KlS5efXlu4cGEeP35MtmzZSE5OxsXFhRs3bhAbG8u0adOwsrJi5MiRnDt3jrFjx/50vOLFizNjxgz27NnD4MGDf2qWmiNHDqZMmUJYmB+VKxdCEMDPT35MR0eHdevWYW5uzsCBA9m6dSuPHz+md+/ejB49mlKlSrFo0SJ2797NrVu3lOsjxfNfVZyd5f/18fn8PV1dXWrXrs2SJUvw8/Nj0aJFLFu2jKpVq/Lu3TtR9/mSnTt30rNnT2bMmEFgYKDy+4cOHVJ7bInUIYkoEhISmZ6dO3cSEhLC+PHjs0QJjwJFeqq1NYj5rBEZF0lwVDAymQwHC3EqSGYRUQDCw02pW9edQoXsGTSoJRMnTiQiIiLV1ycLybwMl79gse2gJT+UrEWnTp3o168fAwcO/OEHH4nUERsbS6VKlXj79i3jx4/XdDgSEulGiRIluHTpElpaWlSoUIEhQ4bw6dOnb85TtOC1tLT85TEZGRnh6enJ/PnzKVy4MDo6OgwYMCBV4mZiYiIJCQnKVshxcXHY2NgQFxfH27dvKVmyJMOGDQNg7ty5nDt37pe8Bi0tLRwd5eu+F1/YmtSpU4crV64wb948DAwMMDMzY+HChdy4cYMcOXIwduxYWrduTenSpZk8aDLPnj3jafBTUTEoNk2CgyGlJYdMJmPQoEFcunSJV69eUalSJZ4rDO9EoihpOnXqFMnJyWTPnh2Qd0uSSB8kEUVCQiLLEBcXp+kQ0hTFM1Zsa2OFH0oekzwY6aquwiQlgb+//Gs1uxSmC8+fg5aWNn36uDFlyhSmT5+OlZUV7dq1Y+LEicyZMwcvL6/vXv868jVxiXEY6BiQxzSPqBgUO2GZQXSSSB0LFizA1dWVli1bEh0drelwMjUHDx7k2bNnnDlzhrJly2o6HAmJdKVUqVJcu3aN2bNns3r1aooWLcq9e/e+OkfxIVhPT08TIaaKjx8/cubMGRo1aqQUUWJjY5HJZMyaNYtr164RFRUFwMqVK9HW1ubx48e/LB7FpoVi0+dHlCxZknPnzhEVFUVYWBjHjh3DzsSOc+fOMWP5DCb+NVHlTBEjI7CxkX/9I22kTJkyXL58GZlMxh9//JHq8T99+kS9evWYMWMGAOvWraNLly7Y2tri+99u26BBg+jTpw/z589XXvfy5Us6deqEn2JhIpGmSCKKhIREpqdDhw7Y2dkxZcoUTYeSpigexmJNUtUtTQkKgoQEMDQEKytxMaQniswdZ2cZEyZMICAggMmTJ+Pj48PGjRuZOXMmDRs2/O4OuLomvB8/wocP8h2pfPlEvwyJDIa+vj5btmwhICCAgwcPajqcTM3GjRupVKkSxYsX13QoEhIaQUdHh+HDh/PgwQNy5MhBrVq1uHPnjvK4YjNIIU5kRE6ePElcXBwVKlQgKSkJ+Bx33759iY6OpkiRIpiampIrVy6SkpLQ1dX9ZfEoNi1evJB3FPwehw4dUopWMpkMc3Nz6tWrx8mDJ+neoTsOTg7MXTMXOzs7RowYoVIMKZX0pES+fPn4888/+ffff/H5zskbNmxg/vz5eHl58ejRI5YsWcKJEyeYPXs2kyZNolevXri7u7NgwQIWLlxI5cqVmTBhAqtWrcLY2Fg5zsGDB9m6dSv16tUjJiZGpdcj8XMkEUVCQiLTo6enx+jRo9m1axcvU7MVkQmIj//c5UW0iPKfH4rY0hTFVNrbZ3x/D0H4NnPHxsaGUaNGcePGDQICAggNDWXixIlMnz6doKCgb8ZQd74Umz1WVnLhSSLrUKBAASpWrMi2bds0HUqmJSgoiBMnTqTKb0FCIqvj6OjI6dOnsbe3p3bt2uzdu5cTJ07g7e0NwKtXr3j16hXh4eEZrkOYs7MzVlZW1KhRgyZNmqCtrY2BgYHyuI6ODoMGDUIQBFq2bEmNGjVo2rTpL4vHzk7eJefTJ/lGRkrcu3ePJk2aUKJECUJDQ786JpPJKJu/LFUqV2HLkS2MGDGCefPmcezYsVTHoFinpaZKx8PDAxMTEwoUKEDlypVZs2YN4eHhAISHh9OzZ0+GDx9Ow4YNKVq0KOPGjQMgMjKSuXPn0r59e65du0br1q159eoVCxcuTLGUvVatWgA8e/aMNm3akJycnOrXI/FzJBFFQkIiS+Dl5UWOHDnIli2bpkNJE/z8IDkZzM3hv1JXlUhMTsQ/XF6Lo65JamYoTQkJkdcia2t/v/RIJpPRv39/AE6fPv3NcXUzdxQiSmYofZJQnU6dOuHl5YW/osZNQiW8vLxITk6mdevWmg5FQiJDYGFhwalTp3BycqJly5bUq1eP0aNHo6WlRf369bGzs8PCwgJdXV3q1q3LhQsXNB0yAC4uLjx48IApU6awY8cO/Pz8sLa2/uqcWrVqce3aNU6ePMmZM2fImTPnL4tHR0cupMDXvihfohAiAB48ePDN8fzZ5SrI+4T3TJ06lerVqzN06FBly+WfochECQyEnyV92Nvb8+rVK3bs2IGZmRl9+/bFysqKTp06ERMTQ9GiRQGws7OjS5cu3Lp1i8TERB49esSQIUOU7apPnz5NSEjId0sjXVxcsLW1xcDAgEOHDjF37txUvRaJ1CGJKBISEpmepKQkbt26RUxMDMuXL88SaYtflvKIyQIJiAggMTkREz0TchnlEhVDZhJRFPNlZwc/KiW3tLTE1dWVU6dOffX9yLhIPkR/kJvwmqtnwiuJKFmTfPnykZyczM2bNzUdSqZEkWae0XbVJSQ0ibm5OZcuXeL58+f4+/vz119/kZyczJo1azh27Bi7d+9mxYoVvH//nurVq1OyZEm2bt2a4of7kJAQ1qxZw71793551kGOHDkYNWoUbdu2xdbWNsVzChcujJubW7oY/ivWKd9LRj579iwFCxYESLGD4/936Fm0aBGPHz9m3759qbp/tmyQK5c8K9Y3FU1+DA0Nadu2LV5eXrx69YqpU6fyzz//sGPHDu7cucOePXtwcnJi8+bNVKhQARsbG0qUKMGSJUvo3Lkz169fp1atWj/sYiSTyZg7dy6xsbE4ODgwevRohgwZQnx8PMKP6p4kUoWOpgOQkJCQUBdtbW3u37/P9OnTmTp1Kp6enhw8ePCbnZHMxLNn8v+KLeVR+Hs4ZXcStYCJjYW3b+VfZyYRJTXz5ebmxvbt2xEEQTk3ioWTtak1hrqq1+IIQuYSnSRUp3Llyjg5OfHXX39Rr169r2rPJX5O6dKl0dfXx9XVlQULFkgZKRIS/6Gjo4OTkxN3795l+vTpeHh44O7uTp48nw3O//jjDw4fPsz69evp1KkTp0+fpkSJEpiZmWFqaoqpqSkbNmxg165dAOTKlYuaNWtSq1YtateujZOTuLVAZsHREU6f/n4mSnR0NE+fPqVDhw64urp+c9wumx06Wjp8iv9EcHQwrq6uFCpUiHPnztGmTZtUxZA/v7xDz/PnUKxY6uIODw9nyJAhPH36FEEQ2LRpE0OHDqVFixa0aNGC169fc+DAAcLDw7GwsKB9+/aYm5unbnCgbdu2HDx4kAMHDlCiRAkWLVqElpYWCxYsYNOmTXTq1ClL/178SqRMFAkJiSyBubk5c+fO5cqVK7x584Zy5cpx+/ZtTYcliqSkzwuBAgXEjaEsTVHD30MQIEcOSGHTJsOhEJ1SM1916tQhKCjoq24BStFJ5HwFB0N0tDytWOHSL5G1yJYtG/v37+f58+dMmzZN0+FkOpydnXn06BGurq60a9eOkJAQTYckIZGhOHToEPHx8cpNoC/LL2QyGY0bN2b//v10794dLy8vxo0bR48ePWjdujUNGjRg165dzJs3j9OnT9O7d29evXpF//79cXZ2ZujQoRp8Zb8exebFq1dyQ/z/p2fPngCsWrUqRdFAR0uHfOZyR/jnofJdmapVqyo9alJDas1lv+TTp0/s2rULMzMzpk6dysqVK786bmNjQ//+/Rk3bhz9+vVTSUBRsH79eho2bMjdu3fJmzcvLi4uAHTp0oXOnTtLXedEIokoEhISWQpFC8HcuXPTtGnTTJk67u8PcXFgbAxikmkEQVCKAooUVVXJTFkVERHw7p287Ck1mShVq1ZFX1//q5Iepamsmn4oCoM7iayJi4sLHTp0YM+ePVI6tAgcHR2pUqUKOjo6P0xDl5D4HRk7diwvXrzg6tWrtGvXjpkzZzJq1CgOHjzI+/fvlef9/fffvH37lqioKBISEggLCyMgIIBnz54xdOhQatWqxbRp07h06RKhoaFMmDCBJUuWcP/+fQ2+ul9L9uxgYiL3kgsM/Pb4mjVrEAQBExOT746h8EV5EfaCV69eERwczMOHD4mMjExVDIr1h59fykJOStja2lKuXDl0dHQYMmQIlSpVSt2FKmBoaMiuXbu4ceMGz549o2vXrkyfPh2ArVu3UrduXd69e0fZsmXp1q0bgSlNoMQ3SE8wCQmJLIe1tTVr164lICAAT09PTYejMopdDLF+KKExoYTHhqMl08Le3F5UDJlJRFHMl60tGBn9/PyEhAQSEhIw/K+FzpcmvOqKTpIfStbHw8OD58+f8+TJE02HkulITk5W1vRbWFhoOhwJiQyFlpYWDg4OlCtXjnnz5lG3bl22bdtG06ZNyZ07N87OznTs2JEqVarg5OREnTp1GDZsGLdu3SJPnjw4Ozt/k2VhZmbGhAkTcHJywtXVFTs7O6pWrUqnTp2YPHkyL75X/5LJkMk+P38VmxqqoshEvfT4Es7Ozpw9e5YxY8akunTT0lKeuZuYqGgOkMzFixcZOHAgjo6OuLm5sWbNGoKDg7+6bsyYMVy8eJGKFSvyTJFWm8Zoa2tTunRpZRelsWPHcvHiRUqXLk2TJk0IDg7mxo0bbNy4kbx58zJhwgQ+fvz4S2LJKkgiioSERJakVKlSVKlShUmTJqV6FyGjoEppSkooslDsstmhq62r8vWZzd9D1fm6dOkSycnJVKtWDUgbE16pM8/vQ+3atTE2NubAgQOaDiXTkZycTGhoKMVSaxggIfGbYm1tzc6dOwkMDCQgIICdO3fSsGFDnj9/Tq5cuWjevDnZsmXjwIED1K5dG2tra/r06cPOnTt5+vTpV8ayurq6nDlzhpUrV9KpUyfy5cuHn58fS5YsoUCBAnTp0uWHovCOHTu4dOnSd48nJyen+IE7LCyM1atXp1sGjLoiimIT5Yj3EWzsbXj16hUzZsxg9+7dLF26lEuXLhEVFfXd62WyzyU9u3bdonTp0lSpUoV9+/ZRv359APr27UuePHmoW7euUsBq2rQpV65cISoqilKlSnHy5ElxL0BFKlWqxI0bNxg5ciTFihXD29tbubk0bdo0ypQpk2InIwk5UtKxhIRElmXFihVUqVKFVq1acezYsUxhnpWc/NkkVbQfipqlKaGhEBkJWlqf2wZmZBQiimLx8jO8vb2xtLSkwH8T/GVrYzG/I4mJEBAg/zoziE4S6mFgYECDBg3Yv38/Y8aM0XQ4mQqZTEZycjI6Us2bhESqyZs3L23atEnR4FQQBG7evMnu3bvZt28fa9asAcDIyAgrKyuyZ89O9uzZAYiNjUVLSwt3d3fmzp1LtmzZWLt2LRMnTmTLli0MHDiQRYsWAXKvjo0bNxIQEKD0ZlF0tZkyZQqDBw/m1KlTrF69mjNnzhAREUH79u2pW7cuSUlJnDt3jp07dxIbG8u4ceOUPhz/H/vz58+5cOECvr6+fPjwgevXr3Pnzh3++usvJk6cqNI8qSuimOqbkhiZSIB/AM45nenTpw8REREcPXoUXV1dEhIS0NLSonfv3ixdujTF97H8+eHQodesWbOBypWNOX36NDVq1FCWL75//579+/czffp0evfuzcmTJ5HJZJQsWZKbN2/StGlTunfvzuPHj39YevQrqFKlCq9evWLIkCFs2bKFZ8+e4eLiwuvXr6lTpw7h4eFcvnwZu8ywMEwHpKeYhIRElsXFxYXt27fj7u7OsWPHaNCggaZD+imvXsk74xgaystTxJAWprIgv7+u6oks6crHj/Dmjfzr1IooFy5coFq1akrBRF1T2dev5UKKkZG8xaFE1sfBwYF9+/aRmJgoCQIqEBcXh0wm462i9ZeEhIRayGQyypQpQ5kyZZg9ezYfPnzgzp073Lt3j/fv3xMaGkpoaChaWlrkzp2byMhIxo0bx8iRI6lZsyavXr0iMjISc3NzzMzMlOOOGDGCtWvXYmFhQceOHSlSpAizZs3i06dPjB8/ni5dujBlyhS8vb2pWrUqzs7O/PPPP2zZsuWbGKtUqfLN9/z9/alTpw4+Pj5oa2tjZWXFhw8fiIuLA+Du3bsqz4VCRHn3DmJi5OsoVclrkpfcuXOjraPN27dv0dfXZ86cOQwaNIiHDx9y4sQJxo0bx7t379i+fbuyPEaBszPo6ekB+Zk/vzPly5f96rilpSV9+vTBzs6Ohg0bsmfPHlq1agWAiYkJ69ato0iRIkyePJl58+ap/gLUJEeOHGzevJkBAwbg7u5OcHAwkZGRPHr0CIAFCxYohbbfHenJLyEhkaVp2LAh5cuXZ+bMmZlCRPnSD0WM72JcYhyBkXJTsN/BVFYxX9bWclO5n/H+/XuuXbumXJwIgqB04k+L+coEyU4SavL06VMWLFjAsGHDJAFFRYyMjBg4cCALFiygb9++mboNvYRERiRnzpy4ubnh5ub23XPCw8PZvXs3u3fvplKlSixatIjatWv/9+Efnjx5wurVq8mTJw+5cuVi586dSpN+e3t7ypYti7a2Nk5OTnh7eyv/fUmePHkoWbIk5cqVo3bt2srvP3/+nDVr1rBhwwZ0dHTYvn07YWFh7Nixg9evX2NjY8OQIUMYPHiwyq/d1FTeUTAkRG7QX6iQykNQ27U2b7TeUChnIYZUHPLVsZIlS1KyZEmKFi1Kq1atqFevHi1atMDY2BgTExPKly9PzpyWhIS8Bgy4eDHgGxFFQYMGDWjSpAkDBw7E1dUV5/92gezt7ZkwYQITJkwgISEBfX19pk6dir6+vuovRg3KlSvH69evCQ4OxtramqZNm3LgwAEWL17MpEmTJE8rJBFFQkIiiyOTyRg7diweHh78+++/Ke6IZCTU9UPxC/cjWUjGwtACC0NxD7nMJKKoMl+JiYm0bdsWc3Nz5c5PaEwokXGRapnwSn4ovxcPHz4kKSmJHj16aDqUTMm4ceNYu3YtS5cuZebMmZoOR0Lit8Pc3JxevXrRq1evFI+bmprSvn17Pn36hKWlJX/88QclSpSgaNGiGBgYcPnyZVavXk10dDSTJ0+mRYsWhIWF8fbtW0xNTSlZsiS5c+f+Ztzp06czfvx4smfPTqNGjXj06BHdunUjLi6OGjVqsHv3bjw8PNBVIwU2Xz71RBRFGfTL8JckC8loyb7dzXJ3d+fEiRN07tyZUaNGERsbqzxmaGhITEx37O0bY2VV6of3Wr16NbVq1aJatWqcOnWKokWLAjBs2DAuX77Mnj17CAoKon379ri6uqr+YtSkQoUK+Pr6UqlSJTw8PJQ+YO3atePIkSNoa2une0wZCclYVkJCIsvj7u5O0aJFM/yCXRA+Z1ao7YcisjQlKUm++IDMIQoo5utnpTyCIDBkyBAuXLjAP//8g5WVFfB5vsSa8MJnESUziE4S6lO3bl1MTU1TTFuX+Dnm5uZ07dqVtWvXfvXhQ0JCImNgY2PD1q1bOXDgAGvWrOGPP/6gYsWKmJmZMWnSJGrUqMHIkSN5+vQp06ZNo2nTppiZmdGqVSvq16+fooDy77//MnHiREaMGMHz58/x8fEhICCA6dOnExAQwNmzZ2nZsqVaAgqo74uSxyQPhrqGX2X1pkTVqlV5+fIlMTExJCUlERISwu7duxk3bhybNo2jbt16hIb+uL7XysqKc+fOYWlpSeXKlTl27BggLwfy9PRk+/btgDwDRiaTpavJa1JSEnfv3iUiIgIvLy/++OMPunTpAsDx48d5o6ij/o2RRBQJCYksj5aWFmPGjOHo0aPcuXNH0+F8l9evIToa9PXFG7p+aZIqhqAgSEiQ1xL/pzNkWKKi5HMGPxadBEFg0KBBLFu2jBUrVlCjRg3lMXXnKyYGFPYOmUF0klAfExMTunTpwpo1ayQRQCT9+vUjJCSEtWvXajoUCQkJFRg2bBj9+/dHV1eXd+/e0a9fP5KTk6lQoQLh4eHfvW7AgAFUqFCB7t270717d+7evcuRI0cYNmwYefPmTbP41BVRZDKZsrRXsT74GVpaWmTPnp2WLVsybtw4atTIA8g3eb5okpQilpaWXLhwgSpVqtCoUSMmTpzIhQsXePv2LdWqVePx48fKc8eMGZNuQoq2tjYjRoz4KtskPj6eFStW4OLi8ttnoYAkokhISPwmtGnTBgcHhwydjaIoTXFyEueHIgiC2iapilIee/uM7+/x/Lk8eyd3bvjCD+8rkpOTGTBgAEuXLmX16tX07t37q+PqZu74+8tjyJFDXo8t8Xvw559/EhwczMaNGzUdSqakQIECdOrUiYEDB/I/9u47PKpqa+Dwb9IrJQ0CAUINoYVepRdBigpKUUC8gAgKoiKgwodXLOBFEAFBUFFABBSV3nvvnVBDIEAKCQnpdc73x3YSkJZMySSw3ufxyZjM7L0Z72VO1lll3Lhx1j6OECKXvLy8mDlzJufPn6d9+/bMnj2bK1eukJqaiqZpD3xNeno6J06cYO/evQQGBrJ27VqWLFlCgwYP7hdiinLl1LWLYcqgMQzXA4brg7zy81M3olJTcyb3PUrRokVZsWIFo0eP5osvvqBly5b4+vpStGhRevXqRZ06dQgMDOTgwYPUrFmTTz75xKhz5dWXX35JUlISp06dYvv27cycOZNhw4Zx6tQpvv32W27dupUv5yioJIgihHgq2NnZ8eGHH7Js2bICm41iailPRGIEyRnJ2Nva41fEuNE+ham/x+P6oej1eoYNG8bs2bP54Ycf7gugPG1NeIX5VKlShddee4333nuPU6dOWfs4hdIvv/zCu+++y/Tp00lOTrb2cYQQeVC+fHkWLFjA1atX+fPPPzlw4MBDm406ODgwd+5c3n//fVavXs2tW7fo1q2bRc7l5JSTRWtsNoohMzW3mSigbmJ99tlnfPXVV9jY5JQYG65THsfW1jY7aHH27Fn+/vtvxo8fT7NmzbC3t+fChQskJSUBqkF3fnF0dKRGjRq0bNkSDw8PXnnlFQAmTZqEj48PJ0+ezLezFDTSWFYI8dR4/fXXmTJlCh999BFr16619nHuYY5+KIYslPLFymNrY1yqZWEKojzu/XrnnXeYO3cuP/30EwMGDLjv51firqBpmklNeKUfytNr9uzZrFixghUrVlCzZk1rH6fQ0el0dO/enWnTpnH58mV5D4UohHx9fXnxxRcf+7yHNbE1J03TOHnyJJGRaaSm1uLqVSdq1cr7OuWLlUen03E75TaxKbG5uj6YOHEiEyZMwMbGhmeffZaAgCBOnoTz56FDh9zv7ejoSGBgIIGBgdnfy8zMZNasWaSmpuLv789LL72U9z+Umfz444+cOXMmewT1kiVLqGXMm/wEkCCKEOKpYWdnx+eff87LL7/Mjh07aNmypbWPlC0iAhISwN5epaMaI7s0xcj+HmlpqicKFPwgSkpKTprsg4Io+/btY+bMmcyYMeOBARTA5NInKFxBJ2Fezs7OlC5dmqioKGsfpdDKyMgA8vfOqhDiydSpUyc2bNgAtMLG5hVOnbKjfv2O+Pr65mkdRztH/Ir4EXYnjJDYEOo513vsaxYvXky/fv3YsWMH8+bNY8yYmUBOXxRjSrQN7OzseOedd4xfwIycnJw4cuQIiYmJZGVlPdWjjqWcRwjxVOnRowf169dnzJgxD63ftYa7+6HYGRneNgQFjC1NCQtTGTFFi0KxYsadIb9cvqzO6u19/1n1ej3vvvsuderUYdiwYQ9fw8SmsrGxEBenLo7M2BdPFCK3b9+mWEH/P0sBZo30dCHEk2nEiBH/PApF0+DChXTq1KnL77///siSwVu3bt3XJDwvfVFCQ0M5f/48HTt2pGbNmpw/f57SpTVcXNTNKcPEwyeFra0tRYsWxcPDA11Bb55nQRJEEUI8VXQ6HZMmTeLAgQPZM+8LgnPn1FdjS3mS0pMIT1Aj54wNohSmrIpHvV9Lly7lwIEDTJ06FZuH3P4xRxNew/tVqpSaqCSeLnfu3CE8PJzKj5uvLR7K7p+IcXp6ukX30TSNzz//nIMHD1p0HyFE/ouJiSE0NJROnTpx/fp1GjQoRalSJXjxxX5UqdKEnj174unpSdOmTfH39+e///0vW7dupVu3btSvXx9/f39atmxJQkJC9pp56YuyYMECnJ2d6datG61atWLz5s3MnDkjz31RROEiQRQhxFOnbdu2tG/fntGjR5OSkmLt46Bpqm4WoGpV49a4Eqc6nJZwK4Gbg5tRaxTGIMq/36+QkBBGjBjBiy++eM8o438zRxNeaSr7dBs1ahQuLi60aNHC2kcptCpU+GeU6GXjpmDk1jfffMO4cePo3LkzYWFhFt1LCJE/0tLSmDRpEv7+/pQvX55ixYrh5+fHoUN78fXNwsXFhalT/+T8+fN89tlnlCxZkjZt2jBp0iTatm3L5cuXqV69OrVq1eLw4cP06dMne23DzZVrd66RnvXwIG9aWhozZ85kwIABuLm5MWrUKBo2bMju3bsJCFDPMVzfiSeLBFGEEE+l6dOnc+3aNT799FNrH4Xr1yEpSWUzGBvAyC5NMaG/hyHl1NieLPklMVGVHsG9QZTY2Fg6d+5M8eLFmTdv3iPXMEcTXgmiPL1mzZrFDz/8wLfffku5gv5/mALM398fGxsbLl26ZNF9Jk2aRO/evbGzs2PQoEEFqpRTCJF3mqbRp08fxo8fz6BBg1ixYgVjxoxh+fLl3Lx5k5EjVbPbq1fVNLX333+fP//8k59++omQkBC2b9/OqVOn+OWXX9i7dy/16tUj/q6ZyB7OHhRzKoZe0xMaF/rQc6SmphIXF0fZsmWzv9erVy/++OMPoqP3AHDpEmRlWeZ9ENYjQRQhxFMpMDCQ8ePH87///Y9jx45Z9SzBweprlSpga9zv8yY3lU1OBkN/zIKeiWK4q1OqFBQpoh7//vvvtG3blqioKNasWYOnp+cj1zD1/dLrC0/QSZjXypUrGTFiBCNHjmTgwIHWPk6h5uDggLu7O3fu3LHYHpqmkZCQQNOmTfn555/ZuHEjK1eutNh+QgjLmz59On/99Rd//PEH06ZNo1u3bnz00Ud0794dX1/f7OsYw82Ou/n6+tKyZcvsct9Zs2Zx6NAhxo0bl/0cnU6XXRr9qJKea9euodfrSUxMzP7eyJEjadq0KTNnfoir65PZF0VIEEUI8RQbPXo01apVY9CgQWRmZlrtHA8rTcktvabnSqy6UjA2E8XwAe/lBa6uxp0jv/z7/UpNTWXIkCFcv36dlStX5qpHheGiyNj+MZGR6sLI0VEFc8TTISYmhgEDBtCtWze+/vprax/nieDo6GjRniizZ88mJSWFqlWr8uyzz1K/fn1++ukni+0nhLAsTdMYNWoUFSpU4Pnnn3/gcwwZoteuqZseD3Ls2DECAwMZPnw47777Lu3bt7/n55U8KgFw6fbDM+V27tyJTqdj/Pjx2d+zsbGhbdu2XLp0Mbtvm5T0PHkkiCKEeGo5ODgwceJEjh49yp49e6xyhsxMNQIPjA+iXI+/TnpWOi72LpR0K2nUGoW5H8rKlSuJjY1l165dNGvW7LGvT0pPIiIxAjA+iGK4u1W2rGmjC0XhMmXKFLKysvj+++8f2rRY5I2DgwNpaWlmX3f8+PG89NJLvPPOOwwfPjz7F6T+/fuzZs2ae5pICiEKhpiYGPbt24f+YZEPYNCgQWRlZVGnTp2HluaVLKlucqSlQUTEg9eJjIzk3LlzDB8+nK+//vq+STOGIMrl2MsP3ef06dNUrVoVx391l3d3dycpKSm7L4rhukU8OeQKQAjxVLt27RoAAYZPunx25Qqkp4O7O5Qubdwad2dVGDturrAEUW7fVmVHOl3OZJ6dO3dStWrVXP83NJTymNKE15C5U9DfL2E+WVlZLFy4kH79+uHj42Pt4zwxHBwcLJKJ8vPPP7N8+XLatGlzT9ZQgwYNyMrKIiQkxOx7CiHyTq/X8+OPP/LMM8/g4+ND06ZNeeaZZzh16tR9z928eTM//fQT3333HX/88cdDr3lsbNRNDsi5vvk3w98BQ4cOfeA6ZYqWwdHOkZSMFG4k3Hjo+R8UYHFyciI1NZXixSPJzMzgxIlEMjIeuoQohCSIIoR4qvXo0QMnJ6fHNiK1FMPdiYAAFRgwhiEoYGxWBRSeIIrh/SpfHpyd1WNHR8c8BY8uxqjUH8NdJmMYMlEK+vslzGfHjh3cuHGDvn37WvsoTxQ3Nzdu3bpl1jX1ej0lSpSgVatWbNiwAXt7++yfGSYCSRBFCOtbs2YNtra2DBo0iIiICL7//ntWrVpFXFwcderUYf78+dnPzczMZPjw4TRv3pw333zzsWsb+pU9KIhy/fp1Pv74Y/7zn/8QGBj4wNfb6Gyyr6seVtITFBREcHDwfdl0ffv2xdHRkQ8/fJ1ly+bx66/LWL/esg20Rf6SIIoQ4qlWqlQphgwZwtSpUzl9+nS+729qPxRN00wOCty5A3FxKohzV4P5AulB75ezszPJycm5XsNwMVTZ4/G9Ux4kM1NNVAIJojxNNm3aRKlSpWjUqJG1j/JEefbZZ1mxYoXZ+lKlp6fzzjvvcOTIET777LP7fu7t7Y2rq6sEUYSwIr1ez9ChQ+nZsycAAwcOZMeOHQwaNIguXbpw/Phx/vOf/zBo0CAWLlzI1atXCQ0N5fz58/Ts2TNXN04MfVEeFER5/fXXcXNz43//+98j1zBcVxmus/7t1q1buLm54eDgcM/3ixUrxptvvsn69esICNDj7u7GoEFTCTZMEnhK9enThy+++IKMJyAtR4IoQoin3scff0yZMmVo3Lgxf/zxR77tm5YGhut4Y4MoMSkxxKXGYWtjS/nixs3aNZSm+PqqGuKCStNyJhnd/X65uLjkOoiSnpWePa6wsqdxQZTr19W4Qjc3eMwQIPEEOXPmDAEBAUaXzIkHM+fFdGhoKM2bN+f7779nxowZD+yRpNPpqFevHkuXLn1k3wUhhOXMmzePOXPm8MEHHxAaGsoPP/xA6btqmh0cHJgzZw69e/emf//++Pv7U7lyZTRNY8WKFbnaw3CT4/p1dfPDQNM0Dh8+TKtWrShatOgj1zDcbLl0+9IDy3aqV69OfHw8Vx8wfuezzz7j5MmTzJr1Nh07dkLTqtKoUaMHPvdpsXz5cj7++GN69Ohh7aOYTIIoQoinnre3N/v27aNLly68/PLLDBkyhNu3b1t830uXVNd4T081FceoNf7JqihXtBwOtg6PefaDFZZSnogIiI8He3uocFflkouLCykpKbla40rsFfSanmJOxfB0Ni4Ccncpj/w+/XSIjo5m/fr1dOvWzdpHeaIkJSUxf/58Bg0ahJ2dnUlrnTp1igYNGhAVFcWePXt4++23H/i81atXM3DgQA4dOsTu3btN2lMIkXfz5s1j2LBhvPHGG3zyySeUM9Td/IuNjQ0LFixg165dbNy4kT/++IMvv/ySoUOH5mofT081bTArKyd7FFQg9eOPP+bXX3+lVatWXHnQHOR/lC9eHlsbW+JS44hJibnv54ZA7IOCwY6OjtSsWZPAQNVotkmTl0lI0AgPD8/V+Z9EDg4O+Pv7s379eos0FM9PEkQRQgjA1dWV3377jVmzZrFkyRICAgL4+eefH9qR3RzuLk0x9pdxQ4qpsVkVkBNEech1TIFheL8qVVKBFANDOU9u/ltdvJ1T+vSkN+EV5vPbb7+haRqvvvqqtY/yRJk2bRrJycm56m/wIJqmsXXrVn744QfatGlDmTJlOHz4MA0aNHjg8/fu3UvXrl157bXXAPAyNnothDDK9u3beeONNxg6dCjffffdY59va2vLM888Q/v27enRowdjx46le/fuudpLp8v5nP53Sc+oUaPYvn07169fJzAwkNdee40DBw7ct4aDrQPliqqLowf1RZk/fz6NGzemcuWHX4MVKaIGB6SlpQMBlCxp3BTFJ0GVKlUIDQ0lIyPDKiX05pSnIIq5G38JIURBotPpGDZsGOfOnaNDhw68/vrrtGjRwmJ/0T+oNCWv7g4KGEPTCk9Q4GHvV2RkJMWLF89VUCS7H4oZgk7ljaueEoXQqlWraN++Pd7e3tY+yhMjPDycyZMn8/bbb+Ofh7984uLiOHfuHN9++y1BQUG0bduWwYMHU6lSJTZv3oznI2rszpw5c8+/W2sqmxBPo82bN7NixQqKFi3KjBkzsLW1tfieDwuiALRo0YITJ07w6aefsnPnTho3bkyfPn2Ijo6+53kP64sSGxvL+vXrs4OyjxIYCCVK+ADVnuoMuNWrVzNq1ChcXV1Zs2aNtY9zD71e/8BA2sPkKYjyNNdwCSGeHr6+vvz6669s2bKFW7duUbt2bd59912ioqLMtkdSUk56qbFBlPi0eCITI9HpdEYHUWJi1FlsbcHPz7hz5Ae9Hi5cUI///X6dPHmSoKCgx6+h6QmJVU1ojH2/UlJUWREU/MwdYT7BwcHUqVPH2sd4YkRFRfHss8/i6urK+PHjc/2648eP4+npSWBgIKNGjaJChQps27aN9PR09u7di4eHxyNf36JFCwDatGnDwYMH8+WXOCGeZmFhYaxYsYJ169bRvn17vvnmGwIDA/Ott9SjgigARYoUYfTo0Vy6dIkFCxawYcMGgoKCOHjwYPZzDNcL/85E2b9/P3q9nnbt2j32HIGB4OTkjJdXC7Zu3WbMH+WJUKpUKTp27EhSUhITJkx4bGPf/BAcHMzkyZOpW7cuHTp0yPXr8hREqV27dl7PJYQQhVabNm04ceIEEydO5Mcff6R8+fKMHTv2vrsUxjh7VmWBlCqlUj2NYfhAL+1eGhd7F6PWMFxY+PmBiS0JLCo0VAUwXFzunyB08uRJatWq9dg1rt25RlpmGi72LpR2L/3Y5z+I4V6Cpye4uxu1hChkEhMTuX79OlVNSRkTgCq/2b17N61ateLWrVts3bqV4sWL5/r127Ztw8HBge3btxMeHs7ff/9Nq1atsLe3z9UvZRUrVsTOzo7nn3/+oSU/QgjziIuLo127drzwwgs899xzNGrUiEmTJvHhhx/m2xkMQZSICEhNffjzbG1t6devH6dPn6Zs2bK0aNGCb7/9lpMnT2YHUSISI0hIS8h+zaJFiyhfvjwVK1Z87DkqV1Y3q0qVqs7q1QcKfT8QU7Ru3ZpOnToBMGXKFKs2+O7fvz/VqlVj7NixnDhxIk+vzVMQxdSmX0IIUdg4Ojry4YcfcuXKFUaOHMnMmTMpX748H3/8sUnNZ8+eVV+rVzf+bKaONoacoEBBL+UxvF9Vq4LNXZ9cSUlJXLp0KVdBFEPQyRz9UKSU5+lh6LUjU3mMl5SUxPfff0/t2rVp3rw5mqaxY8cOqlWrlus1NE3jr7/+okGDBrRs2fKRZTsPM336dDIzM6lbt26eXyuEyL3MzEx69+7NrVu3sqfunDhxgi5duuRrg+4iRaB4cXXT6tq1xz+/VKlSbNu2jT59+vDOO+8QFBTEi11exDnLGci5joiIiGDp0qWMHDkyV58Njo5QsSJUrFiJmBgfWrRoYdGeewWZjY0NixcvZt68eZw4cQIbG+u1aA29K0WpaNGiDBo0KNevlcayQgiRC56ennz++eeEhoby1ltv8c033+Dv78+8efPyvJamgaE036Qgym3zNZUt6EEUw/tVo8a/v38GTdNyFUQxR9CpsDThFebj7u6Or68vFwz1ZCLXQkND+eCDD/Dz82PYsGGUL1+ejRs3cubMGapUqZKntRYuXMiuXbvyVP5zt9TUVEaPHs2QIUMeOPpYCGE+M2fOZPPmzfz++++MGzcOUBNsQh9WV2NBjyvp+TcnJyfmz59PVFQUS5cu5cyZM6z/dT23b9/m0u1LZGZmMmXKlOzsldwKDFTTIAcN+pqDBw/e16PpaVKsWDEGDRpklSa7q1evZtq0aYwdO5YKFSowYMAA/vrrL8LDw/n6669zvY6klgghRB54eXkxadIk3nvvPYYMGcJHH33E66+/nqdMvRs34M4dNWGmkpG/z6dmpnI9XjVVMTYooNcXjkyU5OScscL/vnF99p8UlcDAwEeuoWmaNJUVRitTpgw3b9609jEKDU3T+Pzzz5kwYQJFihRh8ODBDBs2LE8NZP9t9erVNG7cmPbt2xv1+piYGPR6PV27dpWsIiEs7Ny5c9SuXZu2bdvSokULbG1t6dChw0PHGVuSvz8cO5b7IIqBt7c3PXv2xN3dnd7v9+Z86nl2rd7Fxyc+5uLFi3z44Yd5KkcMDIQVK8DRsSZubkX4888/qfHvO0PCoqZPn87IkSOxs7MjMzMTGxsbXnvtNV544QXgwaOqH0YyUYQQwgg+Pj6MHj2amJgYateuzaZNm3L9WkNpSkDAvaN68+Ly7ctomoa3qzfFnIoZtUZkJKSlgYMDFOSJe8HBKnvH11el5Rpomsbff/9NhQoVcHF5dE+YiMQIEtMTsbe1p2zRso987sPExUFsrBqb+O++LOLJ5uXlJRMKc0nTNEaPHs348eP56KOPuH79Ol999ZVJARRQ2YCm9BEw/PczpgxICJE3cXFxFC1aFAB7e3sGDx5slQAK5D0T5d86derE+X3nebbjs7j7uVOrbi2OHTvGF198kad1ypUDZ2dIS7MjIKBD9k0gkX8WLlxIu3btiI+PJyYmhlq1apGQkPD4Fz6ABFGEEMJITZo04dChQxQvXpwOHTrw0ksvkZmZ+djXmbWUx8P0rIqyZe/tM1LQPOz9WrBgAStWrGDy5MmPXcPwfpUvVh47G+OSMA1ZO76+qr5ZPD3q1q3L+vXr2bt3r7WPUqDp9XqGDRvGlClTmD59OhMnTsTV1dUsa/v4+BAZGWn06zdt2oSTkxPVTfmLVwjxWMHBwezYscPkwKm5GG56xMSAkb8vU7JoSeoE1KFNmzZMnDHRqGErNjY50wUvXnSgcmXjr9+EcRo1asTmzZspW7YsJUuW5Pjx47z66qtGrVWAL5uFEKLgq1evHjt37mTGjBksX76c4ODgRz4/LQ0u/TMlzxxNZZ/0fiiP6h+zd+9eateuzUsvvfTYdaSUR5hi/PjxNGrUiBdffJGrhmiauMf58+fp0aMHc+fO5ccff2TEiBFmXb969ercvHnT6Pd/6dKldO7cGXcZqyWExezfv5+mTZvi5eXFJ598Yu3jAGqqX4kS6rEpf30/bNRxXhiqd7y9W7FmzZqntrmstUyZMoXVq1czbNgwpk2bxvHjx7NLefJKgihCCGEinU5Hz549Abh48eIjn3vhAmRmqhG5Pj7G7ZeRlUFoXChgniapBTmIEh6uymjs7dWIwLuFhITkarQg3BV0MiFzx9CXpSC/X8IyHBwcWL58OS4uLnTr1o2UlBRrH6lAWb9+PbVq1eLAgQMsW7aM//znP2bf49lnn8XOzo4VK1bk+bWXL1/myJEj9OrVy+znEkIomqbx9ttvU6lSJXbv3k2ZMmWsfaRsppb0QM5NGFOCKIabQYGBnTh27AJjx441adKjyBtnZ2c6d+7Mf//7X9566y2CgoKMXkuCKEIIYQbe3t4ULVr0sRM8DFkV1aqp3hrGCI0LJVOfSRHHIni7eBu1RmYmXFd9aQv0pBnD+1Wlyv39Y0JCQqhQocJj17idcpvbKbex0dlQofjjn/8gmlY4mvAKy/H29ubvv//m5MmT/Pnnn9Y+ToGxadMmXnjhBZ599llCQkLo0aOHRfYpWrQoL7zwQvaY4rxYunQpLi4uPPfccxY5mxBPO03T+N///seRI0f48ssvs/uhFBTmCKIYblqFxIaQpc8yao3ixaF0afD1Lc1rr33FjBkzKFeuHGPGjJG+W4WMBFGEEMIMdDodVapUyXUQxRz9UKp4VjF6ysSNGyqQ4uIC3sbFYfLFw96vW7ducfXqVcrnorbGkIVStmhZHO2Ma2Zy65aaEmRnpy6AxNMpKCiIpk2bsnjxYmsfxeoyMjIYP348Xbt2pW3btvz+++84OTlZdM+BAwcSEhLy2Iy/u2maxsKFC+nevbvZ+rMIIZTExERWrVpFz549GTNmDGPGjKFt27bWPtZ97g6iGFtB4+vmi6uDK+lZ6Vy9Y3xdUI0a6pqxRYthhIaG8vbbb/Pdd98RGBjI0qVLjV5X5C8JogghhJn4+/tz7dq1h/48Ohqiou5tLmYMQyqpKaU8hqyKcuWMz4ixtPR0MPyudPdo46ysLPr06YOnp2eualnN8X4ZSnnKlgVbW6OXEU+A1157jfXr13PF8D+Kp9Tvv//OZ599xnvvvcfy5ctxzIduy9HR0QB5KhM4duwY586dM7p5oBAix+HDh+natSsNGzakUaNGeHh40K1bN44ePcqiRYuYNGlSgRwhXqaMuvZKSABjq2d0Ol12SbDh5owxDH1RzpwBb28fvvzyS0JCQmjTpg29e/fmpZdeIiIiwuj1rSk4OJjff/+dkydPWvsoFidBFCGEMBN3d3cSExMf+nPDNLsKFdSYO2PoNb1Zm6QW5NIUQ/8YD497RzCPHz+ebdu2sWTJEnx9fR+7TvYkIxPeLynlEQZ9+/alaNGizJgxw9pHsapLly7h4+PDF198YfEMFFAZJT/99BNVq1bFzc0t16/79ddf8fHxoV27dhY8nRBPrvj4eL755ht69OhBu3btCAkJISgoiKpVqzJt2jQuXrzI5cuXC3Sg0t4+J4vUlOayVTyrAHA+5rzRa1SsCE5OkJiYcxZvb2+WLVvG0qVL2blzJ1WrVuWvv/4y/qBW8tZbb9GzZ0+CgoIYOHAgMTEx1j6SxUgQRQghzMTNzY2kpKSH/vzUKfXVlFKesDthpGWm4WzvTCn3UkavUxiCKHeX8hhubK1cuZIvv/ySL7/8ktatWz92jYS0BMITwgHzZKIU5PdL5A8XFxeGDBnCDz/8QHx8vLWPYzVxcXEA+dZk95dffmHbtm1Mnz4916/R6/UsWbKE3r17Y2dn3GhzIZ4mmqaxadMmBg8eTJs2bRg8eDDlypVj9OjRxMbGMmjQILZt28a8efP45ZdfeOutt6hUyfjP1vxkjr4oAV4BgMpwNbYviq0tBAaqx6dP3/uznj17cvbsWe7cucMXX3xh/EGtxNC8u0mTJvz555/Url2b/fv3W/lUliFBFCGEMBNXV9eHZqJkZIBh+nGtWsbvYciqqORRCRudcX+Fp6XBzZvqcUENCmgaGLJBa9ZUXxMTE3nttdd48cUX+eCDD3K1zoUY1aPGr4gfbg65v3t9t6wsCAtTjwvq+yXy11tvvUVKSgozZ8609lGsZsiQIcTFxfH555/ny36ff/45L7/8Mh06dMj1a/bt28fNmzezp6cJIR5u69atNGrUiA4dOrB7925cXFxYt24dr7/+OiEhIWzdupUpU6bgY+xoQSszRxCltHtpXOxdSMtM49qdh5dvP47husZwc+1uXl5edO/enePHj3PgwAGj97CGN954g0GDBnHgwAE+/fRTypQpQ6tWrfj111+tfTSzkyCKEEKYiaur60MzUc6fV4EUQ2d2Y52PVimkhpRSY4SFqSBF0aJQrJjxZ7GkiAjVQ8bOLqd/zOnTp4mLi2P8+PG5rrk2pNya8n7dvKn+27m4GD+WWjxZ/Pz8GD58OJ999tlT2xslICCAjz76iK+++oqQkBCL7RMTE0OnTp24dOkSjRo1ytNrly9fjq+vL02aNLHQ6YQo/DRNY86cObRv3x57e3s2bNjA2bNnWb16NdevX2fq1Kn4+flZ+5gmMwRRrl41vrmsTqfLvp4w3KQxhiEj+epV1afl3xYuXEjjxo157rnnsntBFQY6nY45c+bw0ksv8d5779GnTx969+5N3759GTlyJOnp6dY+otlIEEUIIcwkKyvrob/cnzihvtaqZXwjV72mz/7QDvAMMG4RCkcpjyELpWpVMPSrPHv2LDqdjqp56Mqb/X55Gf9+GX5HLshNeEX++/TTT/Hy8mLo0KHo9XprH8cqRo8ejaOjI7/99pvF9li8eDFbtmzhxx9/5K233sr16zRN448//qB79+7Y2MjlrhAGmqaxefNmEhMTmTNnDrVr12bo0KG8/fbb7Ny5kw4dOhTI5rCmKlVK9UZJTVU3aoxljr4oxYqBn58K5hj65d3NxcWF5cuXEx8fX+gm9tja2rJo0SLefPNNRowYgZOTE1988QXfffcdzZs35/r169Y+olnIp4oQQpjJ5cuXqVix4n3f17SclE1TSnnC7oSRmpmKi70LZYrmfjrFvxWmIIoh5fXGjRssXryY8uXL45zLrrzxafGEJ4Tf01HfGIXh/RL5z83Nje+//56NGzfy9ttvoxl7a7MQc3Z2plOnTowbN47k5GSL7LF9+3YaNWrEf/7znzw1sD106BBhYWH06NHDIucSorBasGAB7du3p2rVqrz11luUL1+eDRs2MH36dGyf4PFzNjZqwh6Y1lzWHH1RICcb5d99UQx8fHzo1KkTCxcu5MKFC48cXFDQ2NvbM2PGDObOncuCBQuYPXs2Y8eOJTw8nCZNmnD6YX/oQkSCKEIIYSaXLl16YIO1GzcgNlbdAQkwPiEi+65HZc/KRvdDgXvHGxdESUlw+bJ6XLOmxoQJE6hUqRLHjx/nyy+/zPU6d/dDcXVwNfo8hiBK+fJGLyGeUJ06dWLWrFnMnj2bI0eOWPs4VhH4T4fElStXWmT9a9euUaVK3svxli9fjpeXF82bN7fAqYQonBITE/nwww8BdXNi3bp1/P3333nqNVSYFcS+KGfOwMOSGfv27cuBAwcICAigdevW/P7774Vq4s3gwYM5c+YM1atXZ+LEidjY2HD9+vU8ZRUWVBJEEUIIM7l06dIDM1EMWRXVqqlAirEM/VBMKeVJToaoKPW4oGZWnD6tsnf8/ODiRdWc7K233uLy5ct5ahBpjv4xdzfhLahBJ2FdAwcOxMnJiZ07d1r7KFYxcuRIAIul/5ctW5YwQ2fnPFi1ahXdunWTqTxC3GXVqlWEh4fj5OREnz59nprgiYHhuseUVlbm6otSsaLqtXb3jaN/69q1K7169eLzzz/n+PHj9OzZk6+//troPa2hfPnyrF27lnXr1uHv70/r1q2ZNWuWtY9lMvlkEUIIM0hISCAqKuqBmSj/Lk0xRpY+K3syjylBAUMWipcXuBqfnGF2GRkZHD16lJ07d7J4sSvR0eXw8jrEwoWLKVeuHF999VWe+xoYMndMCTpdu6YCOsWKFdwmvMK6HBwcqFChglG/6D8JsrJUOrujoXmRmQUEBDB37lxSU1NzXc4TFhZGcHAwn376qUXOJERhVaaMKgWeP38+3bp1s/Jp8p8hiHL9OmRmqub1xqjiWYXjEcc5H3OeZys9a9QaNjbquvDAAdU3r/IDqo6dnZ1ZsmQJoAIqDRs25Ny5c8Yd2op0Oh0dO3akY8eO1j6K2UgmihBCmMHlf24j/DuIEh+fkzZqShDl6p2rpGWm4ergil8R47vkF6TSlKysLObNm0eHDh0oXrw4jRs3ZsKET4mOLom9vQMlS96iVq1aTJ06Nc8BlLjUOCITI1U/FE/T+6EUhPdLFFz29vZkZGRY+xhWcfGiCu5aauzp66+/zu3bt/M0InPjxo3Y2NjQtm1bi5xJiMLK9Z+7J6VKlcLFxcXKp8l/3t4q+yMzU5VaG8tcfVFq11ZfT5x4/MSgmjVr8sYbbxAcHGz0fsJ8JIgihBBmcOnSJeD+IIqhNKVcOdMyGe4uTTElbd6QwmrNUh5N0zh06BDPPPMMb7zxBra2tvzf//0f+/bt48CB2zz3XHe6d2/P2rWzsqdr5NXFGPWLXZkiZXCxN/5C0RBEkVIe8ShPcxBlzZo16HQ6ihcvbpH1K1euTJcuXfjuu+9y/ZoNGzbQsGFDi51JiMJq8eLFODs707BhQ2sfxSp0upzPc1Oay5qrL0q1aiobJioqdxOD6tWrx/nz5/P096GwDAmiCCGEGVy4cIHixYvj4eFxz/cNU3lMyUIBzDLaGHIuGvI7iJKWlsb8+fN59dVXKVWqFA0bNuTOnTvs2rWLdevWMXr0aBo3bsy5c6ppTM2apo0TNpTymFL6BJKJInLHwcHBYtNpCroePXqgaRpbt2612B4tW7bkwoXc9R5ITk5mw4YNT1TauBDmEBYWxpQpUxg7dmyeJl09aQyf5wWhL4qTU87AAUPp96O8+uqrvPPOO7z11lu8//772eWUIv9JEEUIIczg3LlzVK1a9Z4skcxM1XUdTBttnKnP5NJtleliSCE1Rlyc+kengzLGT0jOsyNHjlCvXj0GDhzIhQsXeO2119iwYQPHjx/nmWeeyX6epuVcRJjyfsFdTXhNeL8SEiA6Wj2WTBTxKNWrV+fEiRPWPka+i4+P5+OPP8be3p4XX3zRYvt4enqSmJhIenr6Y5+7fPly4uPj6du3r8XOI0RhZJggNnjwYCufxLrMMaEHcm7SGG7aGCsoSH3NzUeIra0t06ZN49tvv+Wbb77h+eefJz4+3qT9hXEkiCKEEGZw/vx5qlat+q/vqekuRYpA2bLGr3017irpWem4Objh6+Zr9DqGC4bSpcFCPSDvkZ6ezoQJE2jUqBEODg6cOHGCQ4cOMWnSJDp06ICDg8M9z4+MVCmtdnbwz9RUo8SlxhGVFKX6oXgY3w/FkLVTogQ4Oxt/HvHka9SoEadPnyYhIcHaR8kXwcHBjBgxgrJly7Jnzx7WrFlDqVKlLLZf6dKlATh27Nhjn/vDDz/Qpk2bB05KE+JpZugttmfPHiufxLoMN0XCw9U1mrHM1RfFcNMoJET10cuN4cOHs2bNGnbv3k2HDh2ems+egkSCKEIIYSJN0zh37hwBAfdmPRw/rr7Wrm2+0hRT+qHkZ3+PlJQU2rZtyxdffMG4ceM4cOAANR9T02T4/SggQKW4GsuQhVK2aFmc7Y2Pfkgpj8itxo0bZ/f6eVJpmsbmzZvp1KkT1apVY8mSJQwbNozTp0/Tvn17i+7dpk0bAgMDeffdd7P7T90tMzOTXbt2MXr0aHbu3MnAgQMteh4hCqOuXbvSsWNHJk+ebO2jWJVh2p6mqQl8xrq7L8rVO8Y3WCleXN1o07ScEvDc6NixI1u2bOHcuXN07tyZpKQko88g8k6CKEIIYaKIiAji4+PvyUTR63OCKHXrmra+OUpTIP+CAnq9ngEDBnDkyBG2b9/OJ598gr29/WNfZwii1Klj2v7m6h9TEJrwisIhMDCQIkWKcODAAWsfxSLWrFlDnTp1aN++PeHh4SxYsICwsDC++OKL7JGplmRra8vMmTO5dOkSVapUoXv37uzevZuUlBRmzZpFxYoVadGiBT///DNvvvkmPXr0sPiZhChsdDodw4YN4/Dhw/z111/WPo5VmaOkR6fTZV+XnYs2bexwXkp67lavXj3WrVvH0aNHeeWVV0w6g8gbCaIIIYSJzp//J8hxVyaKIS3TxQWqmNDbNFOfyeVYNT7ZlKCApuVcLFg6KPB///d//P777yxatIhmzZrl6jW3b6vyGZ0uZ+SfsQyZO6YEnTTNek14ReFjY2ND06ZN2bhxo7WPYnZff/01Xbp0wcvLi82bN3Ps2DH69euHY37UBN6lTZs2XL16le+//57g4GCaN2+Ol5cXI0aMoHnz5uzfv5+IiAhmz56d72cTojC4efMmixYtwtPTk7fffvup7qVhrr4ogV6q9jj4lmljhw1BlLNnIRetn+7RpEkTvvvuO1auXMnly5dNOofIPQmiCCGEiUJCQgCoUKFC9vcMWRW1aoGtrQlrx4aQkZVBEccilHQrafQ6UVGQkgL29mDB1gVs27aNzz//nMmTJ+dpNLHh/apUCdzdjd8/OjmaW0m3sNHZUMmj0uNf8BC3b6vGsra24Odn/HnE0+Oll15i586dRORmTmUhoWkan376Kb169WLTpk20bdvWpJJCUzk7OzN48GDOnDnD2rVree+99zh//jyLFi2iUaNG2T0fhBD3i46OZtmyZcTExHDz5k1+++03ax/JaswWRPFWQZSQ2BDSMo1vsOLnB56ekJGRM5AgL3r06IGrqytLliwx+gwib+TTRgghTBQREYGXl1d2o1RNM19piiFF1Fz9UMqUMS2o8zhbtmyhZMmSjBo1Kk+vM9f7ZbgbVL54eZzsjG+sYijl8fNTgSchHufFF19Ep9OxatUqax/FbHQ6HbVq1WLp0qXs3LnT2sfJZmNjQ6dOnZg4cSKVKhkfLBXiaTJnzpx7/v3cOdNKUAozQ2+46GhITDR+HW8XbzycPe6ZomgMnS6n9PufIUp54urqSvv27dm2bZvRZxB5I0EUIYQwUUREBCVKlMj+92vXICYGHBygWjXT1jYEBap5m7ZQfvVDOXr0KHXr1s1TwCc+Hgy9Ik3tH2MIOpn6fkkpj8grDw8PgoKCnrjJF19//TWANC0UopBr3Lhx9uN3332XV1991YqnsS4XF/DxUY+vGt8TFp1Ol52NYmpfFMP1z8mTKiMlrzw9PWVKTz6SIIoQQpgoMjKSkiVzSm0MWRU1aqhAirGSM5K5EqdSIgwf0sbKr8k8rq6uxMTE5Ok1J06o7B1/f9Wl3liaphEcrYJOhjplY0lTWWGMpk2bsnfvXmsfw6wMNfa1DHM4hRCFUp8+fbJ7t33yySfUr1/fyieyLsNNJcPnvbGy+6JEm9YXpXx5dQ2UlgbBRiyVmpqanREtLE+CKEIIYaKIiIgHBlFMLU05H30eTdMo4VYCD2cPo9fJysoZ42fpTJT27dtz8OBBEvOQH2uu9+vanWskpSfhZOeEfzF/o9fR63PeLwmiiLxo2bIlFy9e5OjRo9Y+itksXbqURo0a4SfNgYQo1Ozt7Vm9ejVubm6MHDnS2sexOsNNJVMyUSCniX3YnTAS0ozPBDG1pOfGjRv3XIsKy5IgihBCmCg8PDz7gys8HCIiVN+RmjVNW9dcWRU3bkBmpkpf9fY27UyPExsbi6urKy4uLrl6fnJyzh0Xc/WPCfAKwNbG+MYvERHqTpCjI8j1iMiLF154gYCAAD766CNrH8Us0tPTWbduHS+//LK1jyKEMINKlSoxbtw4Fi1aRIYxNSNPEMNNpdBQlQ1rrCKORfArooLMhumAxjIEUU6cUNdteXttXTZs2EBUVJRJZxC5I0EUIYQwwbFjx7h48WJ2WqwhqyIwEJydTVvb3P1QypVTdzos6cSJE9SqVSvXUzJOnVKZH6VKwV1tZYxy9tZZwHylPOXKgQz7EHlhZ2fH559/zoYNG+5r4lgYhYaGkp6eTh1TI5xCiAKjQYMGZGRkZE8WfFqVKaM+4+PjITbWtLWqelUFTO+LUrEiFCmipinmte/vxx9/jJ2dHRMmTDDpDCJ35PJQCCFM8OWXX1KhQgVeeuklAA4fVt83tUFqTHIMUUlR2OhsqOJZxaS1DEEUS5em6PV6Dhw4QO3atXP9GsP7ZervaBlZGdmd8c3VP0ZKeYQxunfvzogRIxg6dCg//vijtY9jkgsXLgBQuXJlK59ECGEuNWrUwNbWlokTJz7V2Sj29lC6tHpsrlHHhptfxrq7pCevVaEeHh689957zJs3j8y8prGIPJMgihBCGOncuXP88ccfjBkzBjs7O27eVKUztraQhzjCAxmyKsoXL4+zvWkpLfk1mefPP/8kJCSEPn365Or5yclw5ox6bGp/u0u3L5Gpz6SYUzFKuJqW0pJf75d4Mul0Or755huGDh3K4MGDWbFihbWPZBRN0/j222+pVKkSpQ2/aQghCj0fHx8WLVrEsmXLGD9+vLWPY1WGmyWmBlEqe1TGRmdDdHI00cnRJq1lCKIcP6562uVF0aJFsbW1xdbW+JJmkTsSRBFCCCN99913lCxZktdeew3IyaqoXh1cXU1b29APxdRSnrQ0uHlTPbbUZB5N05g9ezavvPIKnTt35plnnsnV644dUxcIpUurch5TGIJO1byr5Wm88r9lZMD16+qxpScZiSeXTqdj5syZdOrUiZEjR5KWlmbtI+VJbGwsPXr0YNOmTUybNi3X5XlCiMKhd+/edOvWjfXr16PX6619HKsxVxDF0c6Rih4VAdOzUSpXBnd3SEqCf5IBcy02NpbixYubdB0kckc+FYUQwkgZGRmUKFECR0dHNA0OHVLfb9DAtHX1mj67rtbU/h7XrqmGacWKqX8s4eOPP2bYsGEMHTqUv/76K9evM9f7BXc14TWxlCcsTPVocXcHD+MHIgmBjY0NX3/9NWFhYcycOdPax8m1gwcPUqdOHbZt28Zff/1Fly5drH0kIYQFvPPOO5w4cYKffvrJ2kexGkMQ5epV05rLQk5fFFNHHdvY5GQzG66Tcmv//v1SfplPJIgihBBG8vX1JTw8HFC/fEdFqRrboCDT1g27E5Y9qrd8cdNqSizd3+PgwYNMmjSJzz77jOnTp2Nvb5+r18XH5zRNMzWIkpCWQNidMCDnIsZYd5fyyI0cYaqqVasyZMgQPvvsM27fvm3t4zzWmTNnaNeuHSVLluT48eO88MIL1j6SEMJCmjdvTu/evZk8ebK1j2I1pUqp67bUVIiMNG0tw02vc9Hn0GumZfc0bKi+HjuW+yk9t27dYsOGDfTt29ekvUXuSBBFCCGM5OvrS1RUFJmZmdl3C2rVUqNxTWEoTQnwCsBGZ9pf05YMomRkZPDGG29Qu3ZtxowZk6fXHjmi7vr4+4OXl2nnMIwU9CviRxHHIiatdfckIyHMYcKECWRlZfHpp59a+yiPlJSURNeuXfH392fTpk2Uk/8TCPHE8/X1xc7OztrHsBobGyhbVj02taTH0MMuKT2Jq3FXTVqrUiWVPXx377jHWbNmDZqmSfA7n0gQRQghjKTT6dA0jaSkZIuUppjaDwUsG0SZNm0ap06dYt68eXm+CDO8X4a7LaYwBJ1MzUIBaSorzM/Hx4ePP/6YmTNncvr0aWsf56GmTp3KjRs3+Ouvv3B3d7f2cYQQ+cDW1pbExEQ0U2tZCjHD572pQRQbnU12NsqZW7mMfDxsLZuc68mDB3P3mlWrVtGoUSNKlDCtub7IHQmiCCGEkX7//XeaN29OdHQRYmPByQlq1DBtzfSsdC7fvgyY3g8lMRGi/2kSb+6byleuXOGTTz7hnXfeoV69enl67e3bcPmyKpfJ40vvo2kaZ6LUxYqpQafk5Jx0XhlvLMxp5MiRVKxYkREjRhTIX1ZOnDjBl19+yfDhw6lYsaK1jyOEyCdt27bl+vXrBTrAa2nmai4LUMNHXQSejjL9/TQEUU6cUOVGj3P69GmaNGli8r4idySIIoQQRoiKimLz5s3069cvO6uidm1VW2uKCzEXyNRn4uHsgY+rj0lrGS4ISpQAFxfTznW3zMxMhgwZgre3t1ElCoYpRpUrm97s9kbCDeJS47C3taeKZxWT1rr6T/atl5fp05WEuJujoyPffvst27Zt44cffrD2ce5x+/ZtXnzxRQICAgp8yZEQwrxatWpFqVKl+Oqrr6x9FKsx3GQKC8t9/5GHqe5THYDQuFCS0pNMWqtsWXX9lpGhxh0/joODAxkZGSbtKXJPgihCCGGElJQU9Ho9pUr5ZQcFzFHKcyryFKDuZpg6os4SpTzJycm88MILbNu2jblz5+Lm5pbnNcxZ+mTIQqnqVRV7W9MiWFLKIyzp2WefZdCgQbz77rtcunTJ2scBVAClS5cu3Llzhz///BMXc0ZbhRAFnpOTE+PGjePXX38ttNkomqaZNKbZ21vdaMrMhBs3TDtLMadilC5SGk3TskuNjaXT5ZQ8P25KT1paGiEhIZQpU8akPUXuSRBFCCGMUKZMGZydndm58xYJCSpzIdC06hs0TeNUlAqi1CxR0+QzmjsoEBMTQ9u2bdm+fTurV6/m2WefzfMakZFq7LKNDdSta/qZDO+XIYXWFFeuqK9SyiMsZdq0aZQsWZK+ffuadNFvDjdu3KBFixZcuHCBdevWUV6ih0I8lQYOHIi/vz8TJkyw9lEe6ubNm/z888+8+uqrNGvWjJo1a+Lv74+HhwcODg54eHjwySefEBcXl+e1dbp7Rx2byhIlPWfPQkLCw5+3e/dukpOT6dChg8l7itx5etsxCyGECWxsbKhSpQr79+uoWlV90NnamrZmZFIkMckx2NnYEeAZYNJammbeSTNbtmzh9ddfJzU1lW3bttHAyDSSffvU1+rVwYgklnukZKRk948xRxDFcPEkQRRhKW5ubkyePJmXXnqJsLAwq03AOX/+PB06dEDTNHbv3k3VqqY3ZRZCFE4ODg4MHTo0e5KYrakXM2aQkZHB3r17WbNmDevWreP06dPodDrq1atH9erVKVKkCEWKFMHd3R13d3cuXLjA5MmTmT59Oq+++iqenp6UKlWKV155JVeNsv39VaAiNBRatDDt7NW9q7Ph0gbO3DqDpmkmZRWXKKGu4a5eVVMNW7V68PO+//57KlSoQK1atYzeS+SNBFGEEMJIFSvWYP9+N6pWBXP08jLctajiWQVHO9PmJN++re5a2NiAqdmdX3/9NaNGjaJ169bMnz/f6F/89PqcIErTpqadCdQUI72mp4RbCbxcTJuTHBen/jHH+yXEoxgmJ6SkpFhl/z179vD8889TokQJNmzYgJ+fn1XOIYQoOOrWrUtKSgqXLl0iIMC0mzh5kZmZybJly1ixYgWXL1/OzizZvXs3d+7coUSJEnTs2JGPP/6Ydu3a4eX18M/6MWPGMGnSJNavX09SUhKRkZGMHTuWt99+mxEjRuDt7f3Q1xpunhgyUk1R0aMijnaOJKQlEBYfRtmiZU1ar1EjFUTZt+/BQZTg4GD++OMPvv/+e2xspMgkv8g7LYQQRtK0uiQlpePra55sj7v7oZjKkFXh52das9tbt24xfvx43nrrLTZv3mzSnfPz51WgwsUFzHGzxBB0quljeumT4cKpVClwNC1+JcRDpaSk8H//93/odDqr9B9ZvHgxbdq0oXr16uzatUsCKEIIAOLj4wEoUqRIvuwXExPDjz/+SGBgIK+++ionT56kXr16FCtWDL1ez7vvvsuhQ4eyy3h69+79yAAKgK+vL9OnT+f8+fNcv36dK1eu8PrrrzN16lR8fHwe2TzXEEQJD4e0NNP+bHY2dtnTFc1R0tOwobrBExqqzne3yMhIhg0bRunSpenfv7/Je4nckyCKEEIYae9ejRIlStCkiaqpNUVqZioXb18EzNMPxVz9Pb755htsbGz473//a/IdDkMWSoMGYGdiHqSmadkXJ1LKIwqLzMxMDh48SN++fSlb1rS7k3lx48YNevXqxauvvkqfPn3YtGkTHh4e+ba/EKJgO336NJ6enpQsWdKi+yxcuJD69evj7e3NoEGDqFWrFocPHyY4OJjvv/+eZcuWsXbtWiZMmED9+vVNuu7w8/Nj6tSpXPnngmjMmDFkZWU98LlFi0Lx4pCZmUX//uNZvXq10ftCzpQeQ/N7U7i7Q81/Lgv37s35/h9//EH16tU5c+YMP/30E45yByhfSRBFCCGMcPz4DSIj3ShbtgyNGpm+3rnoc2Tps/Bx9TF5tDGYZzLPsWPHmDlzJm+++Saenp4mnSc1FY4eVY/NUfp0Pf46d1Lv4GDrQGXPyiavJ01lRX5wd3dn2LBh/P3339y5c8eie2maxrFjxxg5ciQBAQHs2LGDBQsWMH/+fBwcHCy6txCicElLS8PBwcHkqYCPkpCQwJtvvknRokX56aefCAsLY/ny5dSrV89iewL4+PjwySefAGpKWmpq6gOfV7ZsFlu3bmHZsoOsWLHCpD2re6sgSkhsCMkZySatBTkl0Pv3q9LokJAQevfuTYsWLThz5gzt27c3eQ+RNxJEEUIII/zww2lAR5s2vhQrZvp65syq0OtzMiuMHbixZs0amjdvTpUqVfjwww9NPtORI5CRoZqkmSNQYXi/qnpVxc7GtLSWu5vwShBFWNrLL79MQkICly9fNnqN+Ph4NE2753uGses//PADb7/9NrVq1aJu3bosWbKE4cOHc+7cOfr162fRX5KEEIXLuXPn6Ny5M19//bXJwQxN0+77e+luU6ZMISUlhfnz5zNgwIB8LSecMGECW7ZsYc+ePQwYMOC+6WhZWVn8+efXhIaG4uFRn+vXr5u0n6eLJ77uvug1PcG3gk1aC1Qmirs7xMerBrhTpkzBw8ODRYsWPbLXi7AcaSwrhBB5pGmwaVMCJUqUoG1b0/saaJpm1n4okZEQG5vM0aN7ycgIAPLWKfXgwYM8//zzdOnShV9//RVXV1eTz2Qo5TFH6RPAmVsqRdYc71dUlMqUsbdXPVGEsCRDEGPXrl3UzcWc73PnzjF//nxWrVpFkSJFuHHjBtevX8fd3Z2aNWtSvXp1Dh8+zLFjx/D39yc0NJTq1atTs2ZNJk+eTIcOHbAztX5OCPFE+vvvv9myZQv//e9/GTJkSK5fp2kaP//8MwcOHCA2NpbQ0FAuXLiApmnUq1ePevXqkZycTEhICImJiaSkpHD48GE+/fTTfC1lvFubNm349ddfeemll6hRowbjxo0DYMOGDXzwwQecPp1G3bqLOXUqhdKlTQ/w1PCpQXhCOKeiTlGvlGkBKltb1Rtlyxb4668ofvrpJ8aPH2+V3lpCkU9VIYTIo927I7l4MZbmzetTu7bp691IuEFcahz2tvZU8axi8npXrsD169c5e3Y9zzzzOsuXL8fDwwNnZ2dKly79yNcmJibSv39/6tSpw++//469KV1p/xEdDRcvquBJ48YmL0dyRrJZRxsbSnnKljV9TLUQj1OtWjUARo4cSenSpenUqdM9gcqwsDB2797N8ePH2blzJ/v378fDw4Pu3buTnp5Oy5YtqVGjBjdv3uTkyZMcOHCA8uXLM3jwYI4fP46bmxtff/21tf54QohCJDU1FZ1Oh06ne2i/kLtpmkZKSgoffPAB3333HUFBQXh6ehIYGMgLL7yAXq/n8OHDLF26FHd3dypWrIi/vz+Ojo4MGDCAYcOG5cOf6uG6d+9O9+7dWb9+PePGjWPbtm107NiR5s2bs2vX1/TseQNn55IMH/4i4eHh+Pr6Gr1XrRK12HR5E6ciT6HX9NjoTCsAadoUNm/WmD17D76+lXjnnXdMWq+wS05OxtnZ2WrZlRJEEUKIPJo8eQ+2tra8+mpVzNFawFCaEugViL2t6UGLq1dVA0sI5fr16zT6p2mLTqfj+eefZ8yYMdSvX59Lly5RpkwZXF1dSUxMZPbs2UyZMoXExEQOHz5slgAKwJ496mvVqqpxm6nORJ1Br+nxdffF08W0Xi0gpTwif7m4uHD27FneeOMNXn75ZVxcXPj5559p164dU6dO5auvviI9PZ2yZctSr149li5dyvPPPy9NA4UQZvfKK69w9uxZJkyYwOTJk/nyyy8ZOHAgtg+4o7B7927effddDh8+jI2NDXPnzmXw4MFWOLVpdDodFy9eZNmyZcyZM4c6deqwY8cOEhMTiYhYScOGL9G16wi8vcM4cuSI0ftU8qiEi70LiemJXIm9QkWPiiadW1U/hREeHsWkST/i5uZm0nqF2YABA/jll1945plnWLt2Le7u7vl+BgmiCCFEHsTEpLJlSxwBAQF06OBsljXNWcoDcPkyVKlSBT+/xixZshyAH374Ab1ez9dff02TJk1wcHAgPT0dBwcHGjduzNmzZ7lz5w4DBgzgww8/pLyxzVT+JSsLdu9Wj5s3N8uSnIg8Aai7POZgCKKY6Y8sxGMFBgaybds2du/ezffff0/Pnj0BcHBwYMyYMbzzzjsmN3MWQojHqVKlCsuWLSMqKooxY8YwZMgQfvjhBwYPHoytrS0ODg4UKVKEtWvX8v3331O/fn2+++47ateuTRNzdIm3gokTJ/Lee+/Rq1cvAJYvX46maQwfPhy9Pp1r18K4edOOsLCjXL58mYoVjQt+2OhsqFmiJgeuH+BE5AmTgygA0dErcXEpRlpaAzTNPOXRhZHhpsLu3bvp3Lkzs2fPpnr16vl6BgmiCCFEHkyatJ3U1Azatw+gXDnT10tIS+ByrCpNMcdo47Q0uHED7Ozs+O67Ubz5ZgNef/11RowYwU8//cTZs2dZtWpVdt+E4OBgtmzZQu/evfnggw/MXqt88qRqhObuDkFBpq+Xqc/MztypXbK26etlQliYemyO/55C5JadnR2tWrWiZcuWvPLKKyQnJ9OgQQMqVKhg7aMJIZ4yPj4+zJ8/n0GDBjF8+HDeeOONe37u6urKrFmzePPNN00aO1wQVK1albVr17Jr1y52797NCy+8wPDhw/nll1+ARty8eYO2bQexZctydu7caXQQBdTNngPXD3Ai4gTdA7ubdO6YmBh27ZpCpUqLuHHDhqtXn94M2s8++4xly5bh6enJmTNnqFGjBtWqVWP69Om0a9cuX84gQRQhhMglTYNFi65SpkxZXnzRyyx3AE5GnkTTNMoWLYuHs4fJ6127pqbzFCumSmdatmzJyZMnCQoKYsWKFfTq1Yvnn38++/nt2rVj+PDhJu/7MLt2qa9Nm4I5eltejLlISkYK7o7ulC9meurIjRsqkOLiAtLgXliDTqeja9eu1j6GEELQrFkzjhw5kj1lJy0tjYSEBJydna1SMmFJzZs3p/k/KbIBAQHUr1+fXr3e4sCB5zh58ihgw9WrV9m4cSOtW7c2qsS5und1bHQ2RCRGEJUUhY+rj1Fn1ev19OvXD01LpF+/aly8CDt3Pr1BFG9vb2bMmEG/fv0YP348DRs25P/+7/8YN25cvgVRCncoUQgh8tHKlWeJiIBatarSsKF51jSUpgSVNEOaBhASor7efTPb2dmZyMhIatY0PdMlL6Kj1Sg+sEwpjzmaid1dyvO0psUKIYQQBjqdDhsbG2xsbHB2dsbHx+eJC6D824gRIzh06BDvv98PPz9PnJzc8PNrwmeffcazzz5Lu3btuHXrVp7XdbZ3JsArAFA3zYy1a9cu1q1bx/z583nxRXXD7eBBSE42eslCr2/fvnz66adMnDiR6Oho3nvvPQ4cOMCNGzfyZX8JogghRC7NmHEcZ2cXevQoi5OT6eulZaZx9paKMpijNAUeHETJysrC29ubyZMns3jxYrPskxu7d6vsncBA82R5aJrG8YjjgPneL0MQRUp5hBBCiKebTqduqjRu3ISFC3eTmprK1q1bOXfuHO3atUOv1+d5zaAS6ibZiYgTRp9r2bJllC1bli5dulChApQqBRkZcOCA0Us+EcaNG8cbb7zBoEGDiIyMxM7Ojvnz5+fL3hJEEUKIXLh9O43du1OoXLkyrVubZw5ucHQwGVkZeLp4Utr90aOHc0PTHhxEcXBw4OjRo7Rr145XX32VMEMTEAvKysqZytOihXnWvB5/ndiUWBxsHQj0CjTLmtJUVgghhBAGhuuBK1dU76rWrVvz119/cfLkSVatWpXn9QxN8C/dvkRSepJRZ1q5ciXdu3f/Zxw1tGypvr9zp7r2e1rpdDpmzZrF4MGDGTVqFN7e3kycOJE333yTvn37cvXqVYvtLUEUIYTIhW++2U9aWiatWlUwW9bC3VkV5ihNuX1bNXG1tYV/94ctXrx49gQQc40ufhRDQ9kiRczTUBZySnmqeVczyyjo1FQID1ePn9a6YiGEEELkMNyEMtyUAmjatCn16tVjyZIleV7P08WT0kVKo9f02Y3x8yIqKorr16/TtGnT7O81agQODnDzpprI+DRTgxS+o0yZMgQEBFCpUiW+//57fv31V+rUqUNCQoJF9pUgihBCPEadOnWZOHE7Pj4l6NHDxyy9M/SaPrs+1tylPGXKwL/jJHFxcYwdO5aGDRtSokQJs+z3KDt3qq9Nm6qgjjkYgk7m6h9z7Zq6g1O8uAr2CCGEEOLpZripEhUFSXcljrRt25adO3dmN93NC0M2iuFmUF6cP38egMDAnAxcZ2do0EA9NlxvPc10Oh2TJ09m+/bt9O3bN/v7sbGxHDt2zCJ7ShBFCCEeIyTEkQoVmvLcc23M1lDWkNbp6uBKJY9KZlnzQaU8oHqJDBo0iNu3b7NkyRKzZL08SkSEaiir05mvoeztlNuE3QlDp9NR08c8DXKllEcIIYQQd3N1BcO9pitXcr7frl07bt68yZQpU/K8Zp2SdQA4HXWajKyMRz5X0zTS0tK4c+cOV65cYc6cOQAkJd1bCmQo6TlyBBIT83ykJ07v3r1p1KgRu3fv5o8//mDbtm04OTkxY8YMLl26lP28jIwM/ve///HWW2+xbNkyo/rcgARRhBDisRwcOuLm5k6nTkXM0lAWchqM1fSpiY3OPH8VPyyIMmvWLJYvX85PP/1E+XyIGGzbpr7WqgVeXuZZ0/B+VSxeEXdH80wJMFwcSSmPEEIIIQzu7oti0K5dOz7++GNGjx7NRx99RGxsbK7WunPnDht/38jeLXuJS4jjzK0zD3ze8ePHee2113BycsLJyYlixYpRoUIF1q1bx5w5c2j4r7t45cqpfzIzYdcuo/6YTxSdTkfNmjWJioqiR48etGrVii+//JItW7ZQuXJlmjRpQv/+/WnYsCEffvghq1evplevXly8eNGo/ezMfH4hhHiiREWBTleL9PRUWrUyz5qWmDKTkaHKU0AFUTRN48iRIyxcuJA5c+YwYsQIunfvbpa9HiU5GfbtU4/btDHfukfCjwBQx7eO2dY09BuTIIoQQgghDCpUgP377w2i6HQ6PvvsM9zc3Pjoo4/46quvaNasGR06dKBixYoEBQVRtWrVe7J9jxw5wvPPP6/G7laDwLqBHA0/es+1X0REBAMGDGDDhg2ULVuWCRMmULZs2exgSpMmTfD09HzgOdu0gfnzYft26NDBfOXThZVOpyMjIyfTZ+TIkQwZMoTff/+d9evXExISQtGiRTlw4AArV65kxowZVKpkXDa4BFGEEOIRtm+HIkWKkJR0EB+fVmZZ83r8daKTo7G3taeadzWzrHnlShYJCanodPHMnv0TixYt5Pz585QsWZKRI0fy6aefmmWfx9m7F9LS1Pi9gADzrBmfFs+l2yoVs65vXfOsGQ8xMarkSMYbCyGEEMLg7kwUTeOeXnhjx46lX79+rF27llWrVjFlyhTi4uIAKFOmDF26dOGFF14gOjqaQYMGUbNmTbp168bsJbPZtm0bETci6BnQEzcXN44cOUL37t3JyMhgyZIl9OjRAzu73P96Xr8+LF8OcXFw9GhOn5Sn1eHDh6lb997rRGdnZ/r370///v3v+f6wYcNo164dtkZGniSIIoQQD5Gaqsb0li1blm3bhhMe3g9fX1+T1zVkVdTwqYGjnWOuXqNpGg0aNCAhIYGSJUtSokQJMjIyuHHjBjdv3iQ8vAZ6/YvAcVxcFtC9e3e+/fZb2rRpk6cPZFPo9TmlPG3aYJYGvABHw4+iaRrli5fHw9nDLGsa+qGULInZSrSEEEIIUfiVLq0a9Ccnq4zkf/fjL126NIMHD2bw4MGAat6/f/9+1q1bx8qVK5k9ezYAr776KvPmzUPTNJo0acLnBz9n977dVPqtEj2a92Du3LkEBQXx999/4+fnl+dz2tmp3iirVsGWLU9vECUiIoKpU6dy4sQJhg4d+tjn79mzh4MHD/LBBx8YvacEUYQQ4iH27VOBlHr1SrNt2znWrVvHf/7zH5PW1DSNIzdVEKWeb708vfbOnTukpaVRpkwZIiMjsbOzo1atWnTs2JHLl9sRE1OOLl3a8PrrU3B1dTXpnMY4dQqio8HFRY3fMxdj369HMfQY+3f/GCGEEEI83WxtVZbqpUtqhPDjhhoWK1aMjh070rFjR7755htOnjzJzZs36dixY3Z5T79+/bCvY8/fx//mys4rzJ07l1GjRvHf//4XBwcHo8/asiWsW6eyZkJCnr7rmrCwMKpVq4ZOp2PMmDG89tprD3ze0aNHeeGFF4iLiyMjI4OgoCCTytwliCKEEA+g18PWrepxsWLHAI2iRYuavO71+OtEJUVhb2ufPfIuN3Q6HV27dmXp0qUsWrTovp+PGQNubqom1grxE0DdBQE1kceE64F7xKfFc/G2avplrlIeyGnCa2QprBBCCCGeYBUqqCBKSAg0bZr71+l0OoKCgggKCrrvZ3V967Ltyjaadm/Kntl7sLM1/Vdxd3do2FCVU2/d+vQFUc6ePUtiYiJDhw5l4MCBDw1IDRw4EA8PD9555x3S09Pp2bMnNjbGD3aQ6TxCCPEAx4+rFE47u1RmzHiFzp07m6UxqzGlPAZnz56lRo0a930/NlbVw9rYWK+/x9WrcP68OoO5GvACHAs/hqZp+Bfzx9PlwY3V8iozM6ecp2JFsywphBBCiCeI4SbLXdNxTV/ToxLuju4kZyRz4fYFs63btq36euSIuiZ8mjRq1IhBgwaxaNEiKlWqRIsWLbhyd0fgf2RlZVGlShXef/99PvzwQyqaeAEoQRQhhPgXTYMNG9RjN7fDREZeY9asWfd0XDduXeNLebKystixYwdtHjDyxpBVUbo0OOYtLmM2Gzeqrw0bgod52pYAOUGneqXMV8pz7ZqaZuTmBj4+ZltWCCGEEE8IQ0ZHeDgkJZlnTRudDXVKqimDR8OPmmdRwM9PNfPX62HzZrMtWygUK1aMefPmERERwaJFi7hy5QpDhw5F07Ts5+zcuZOzZ89Sp475JjxKEEUIIf7l4kWVqWBvD3r9Vnx9fSlnhhQPY0t5AGxsbChbtixnz56972eGIIq1sipu3VJ3P0CVE5lLQloCF2LUnRpLlPJUrGi+5rdCCCGEeHK4u+f0QjFcNxjr4sWLnDp1iqSkpOzrmeMRx9FrehNPmePZZ9XXXbvMF/QpiNLS0hg3bhytW7cmJSUl+/suLi68+uqr/Pe//2XDhg0cPHgQUP0E+/XrR9OmTRk9erTZziFBFCGE+BdDFkrTpnDu3KEH1rUa41GlPBkZGUyYMIFy5coxaNAg9uzZg6ZpJCYmcurUKSZPnsyNGze4cOH+9E/Dh7thJF9+27RJZe/UqKGyYczlWIQq5SlXrBxeLl5mW9eQmiulPEIIIYR4GMN1wuXLpq3TqFEjatWqhZubG4NeHMSl4EtE3Yli+fblTJkyhS5duhAYGEjFihXp2rUrqamped6jWjUoUwbS0mD7dtPOW1BduHCBunXr8tVXX7Fr1y6+++474uPjmTRpEidOnCAjI4M5c+ZQuXJlatSogaZpDBkyhLi4OBYsWGD0OOMHkcayQghxlxs34PRplaHQrh2MHXuCV155xeR1H1fKs2zZMj799FP69evH5s2b+fHHH3F3dychIQEAW1tbhg8fzoQJE+55XUaGKk8B6zQTS0hQzcwg5y6IuVhiKo+m5VwMSRBFCCGEEA9TqZK6xjGlL0pWVhaxsbEMHTqUunXr8ueff7J+8Xq0MhoLwxbifMGZZs2a0bZtW+Lj41m4cCGhoaFUrVo1T/vodNCxI8ybpxr9t2tnvRJvS/niiy+Ij4/nyJEjzJw5k4kTJ/LVV18RFRXFvHnz6NOnD4cOHWLLli04Ozszbdo0li5dypIlS/D39zfrWSSIIoQQdzH09qhbF+zsbhMWFmaWTJSrd65ml/LULFHzvp87OTkBMHXqVDw8PNi2bRv79++nbNmyVKxYkYCAADw972+sevWqapRapAh4e5t8zDzbulUFcvz9oXJl8617J/UO52POA+bthxITA/HxOeMLhRBCCCEexHCzJTRUXWvZGfGbs62tLc899xwrVqzgiy++YNCgQey/sJ+PVn+EVzEv5veZj6uzGqt48uRJFi5cyJ07d4w6b9266lrw1i0V/Gnd2qhlCqTTp0+zdu1a+vXrR82aNfnkk09Yu3YtrVu3ZsCAAbRt25ajR1WfmTfeeANnZ2dOnz7NiBEj6NWrl9nPI+U8Qgjxj+ho+KeEkg4d4MSJEwBmCaIcvKEWrl2yNk52Tvf9vNI/beAvXbqEjY0NLVq0oG/fvtl1nA8KoKjnG16f//09UlNzUkY7djTv/oduHkLTNCoUr2CRUp5y5VTPGyGEEEKIBylRAlxd1c2isDDj15kzZw6JiYm89957ADSq3IhGtRpR3Ls45+POZz+vWLFiAEYHUWxscnrTbdwIWVnGn7kgCQ4OpkGDBnh7e/PWW28B4OvrS1hYGAsWLMDLS10nDhgwgOPHjxMVFUWJEiXYu3cv06dPt8iZJIgihBD/WLtWdTavXl1lVhw4cAB3d3euXLmCt7c3b775JidPnszzunpNnx1EaVS60QOfU7FiRVxdXenTpw///e9/CQoKomLFio/d7+4gSn7buhWSk6FkSTBT25hsB64fAKCR34PfL2NJKY8QQgghckOnM09flDJlyjBp0iTmz5/P1atX0el0NCjdAMi5yQawe/dugHsmy+RVkyYqO/n27Zwbg4WZpmkMHz4cPz8/Dh8+TIV/1a7HxMTQo0cPatasSefOnQkKCiI6OprNmzfTpEkTi51LgihCCIEq89i3Tz3u0kV93b9/Pw0bNuTvv/9Gp9OxYsUKmjRpkucPt+BbwSSkJeDm4EY172oPfI6bmxt79uyhWbNmfPbZZ6SkpODg4PDITuJ39/fI7yBKaqpqKAvq/bIx46dJeEI41+5cw0ZnQ/1S9c23MBJEEUIIIUTumau5bPfu3QGyp8Y0LN0QgFORp0jOSOb27dsMGDCAV155hXbt2hm9j7296ocCOTcHC7OZM2eyZcsWvv32W5ydne/5WUpKCt26dSMuLo6///4bV1dVFuXg4GDxc0kQRQghgHXr1AdNYKBq0KppGvv376dx48Zs376dXr160a5dO6pWrYouj3UrB26orIoGpRtga/PwzuBBQUG8++67BAUFERoaiqZpj2wsdvOmygRxdFQd2fPTtm05WSj1zNeyBMi5K1PDpwZuDm5mWzclRb1nIEEUIYQQQjye4Xrh0iV188pYJUqUoFKlSsybNw+9Xk9p99KUci9Fpj6TFQdWMGrUKDIyMvjggw9MniLTqpUa0RwVBfv3m7SU1WRlZTF27FhGjBjBO++8Q6dOne75eXp6On379uXYsWOsXr36vgwVS5MgihDiqRcTA3v2qMeGLJSrV68SGRnJhQsXuHTpEi1btmTbtm20zmOXrrTMNI6FHwNy7jo8zA8//ECzZs3QNI3FixcTFRXFN99889DnG0p5ypc3bybI49ydhdK5s3n31jQtO+hk7lKekBB1AeTlpVJdhRBCCCEexd9fNaOPj1fXi6aYNWsWmzZt4ptvvkGn09GwdENux95m8H8HM3/+fADKly9v8pkdHXN6o6xZU/h6oxw5coQmTZrw1Vdf8fXXXzNt2rR7fh4eHk6bNm1YtWoVS5cupVEj814v5oZM5xFCPPXWr1dZKFWr5pTFFC1alGeffZY1a9bg5OSEn58fN27cyHMQ5XjEcdKz0vF29aZ8sYd/ME6ZMoUPPviAIUOGMH36dBxzMZfOWv1Qtm2DpCTVcK2+eattuBx7mZjkGJzsnAgqYd5GK9YqfRJCCCFE4WRvr5rRh4So6y4vE3rdd+jQgffff5+xY8dy8OBBNGeNFfErcC/lzuxls7l24RpFixY1y7lbtVI3vKKjVTZKs2ZmWdaiIiIiGD9+PD/++CM1a9Zk9+7dNG3a9L7nTZ48mT179rBmzRqee+45K5xUMlGEEE+527fvz0IBKF68OOvXr+fOnTvcuHGDU6dOYWNjQ/PmzfO0fnZWRelGjywDWr16NS+88AJz5szJVQAFrBNEsWQWCuQ0lK3rWxd7W/OOz5F+KEIIIYTIK3P1RQH4/PPPGTRoEFFRUZw5dIYyrmXo0qUL3nW8+fjjj03f4B8ODvDss+rxmjVqRHNBpNfrOXjwIKNHj6ZixYosX76cb775hiNHjtwTQNE0jb1799KvXz82btwIwPLly611bAmiCCGebqtWqTTHgACoXDnn+4cPH6ZIkSJ06dKFP/74g1WrVlGvXj2K5KEOJD4tnuBbwcDjS1MuXLhAzZo1c7327dvqHxsb1cMlv2zenJOF0qCBedfO1Gdy+OZhwPylPFlZcOWKeixBFCGEEELk1t19UUzl6OjId999x9atWzl9+jQLP1+Ik5MTe67tMWkqz4O0bKnKl+8enlCQHD58mMqVK9OoUSPmzZvHiBEjuHz5MiNGjMDOLqdgJjg4mMaNG9OsWTMOHDhAvXr1GDBgAG3btrXa2aWcRwjx1Lp5M+dD5cUX7/3Z5s2bycrKIi0tjaFDh6LX6x85KedB9oXtQ6/pqVC8Aj6uPg99XlxcHOHh4VS+O4rzGIa7IWXKqNrX/JCQAP8E/+nWzfxZKMcjjpOckUxx5+JU8axi1rWvXoW0NHB1hVKlzLq0EEIIIZ5ghiBKeLhqqu/iYr616/nWY8npJUQlRXE59jKVPMyXXmxvD506wdKlKhulcWP1vYLgxx9/5K233iIoKIj58+fTtGnTewInd/voo4+IjIxk9erVdOrUCZv8bAT4ENY/gRBCWMlff6lGo3Xrquasdzt06BANGzZk27ZtREZGsnTpUkaNGpXrtTVNY0+YqhN6puwz9/08Pj6ew4cPc+jQIaZMmYKdnR1t2rTJ9frWKOVZs0YFIsqVM/9EHoDd13YD0LRMU2x05v14unhRfa1UCfI4XEkIIYQQT7EiRVQGrqaZJxvlbo52jtTzVRdVe8P2mndxoHlz8PCA2FjYutXsy+dZWloab7zxBoMGDWLAgAHs3LmTFi1aPDSAEhYWxqpVqxg9ejSdO3cuEAEUkCCKEOIpdekSnDypsileeOH+nx8+fJgG/9SreHl50bNnT7y9vXO//u1LRCZG4mjnSP1S93Zf/eOPP6hcuTINGjSgYcOGfP755/Tp04fSpUvn6fyQf0GUW7dgxw71uHt38wciopOjCb4VjE6no1kZ83c/u3BBfa1i3gQXIYQQQjwFDNcPhusJc2pWVl33HL55mLTMNLOubW8Pzz+vHq9bp0qyrSUrK4uuXbuyYMECfvrpp1z1Afzkk08oVqwYffv2zadT5o4EUYQQTx1Ngz//VI+feUbdXbhbVFQU165do74Jo2cMWRX1S9XH0c7xn301Xn31VV5++WWaNWvGwYMHOX78OCdOnGDu3Lm5Xjs5GW7cUI/zK4iyYoWaYFS9uppiZG6Guy9Vvari6eJp1rX1+pygkwRRhBBCCJFXhoprSwRRKhaviI+rD2mZaRwJP2L29Rs1UuXfKSkqq9havvrqKzZv3szq1at5/fXXH/v848ePM3/+fD755JM89STMDxJEEUI8dU6eVD1F7O3VhJl/mzNnDgANGzY0av2UjJTsD8G7S3l2797N4sWLmTt3LsuXL6dBgwYEBQVRq1YtnJyccr3+5csqEOTjo1JMLe3qVTh0SGWfdO9u/vX1mj47iPKg0idThYWpqULOzuDnZ/blhRBCCPGEM9yEuXZNXVOYk06no2kZNYlmz7U95l0cdf3Wo4d6vH27yi7ObxcuXGD8+PF8+OGHtGvX7rHPv337NsOHD6dKlSoMGTIkH06YNxJEEUI8VbKyVC8UgHbtoFixnJ9pmsZHH33EhAkTGDduHP7+/kbtcejmITKyMvB196V8sZxmKz/99BMVKlRg4MCBjxx3/Djnz6uv+ZFVcXfWTsOGlglCnL11ltiUWFwdXKldsrbZ17+7H0oBKaUVQgghRCFSvDh4eVmmLwpAkzJN0Ol02eXg5hYYqLKJs7Lg77/NvvxjZWVlkZWVxdmzZxk9ejRffPEFq1atQq/X3/O8jIwMZsyYQaVKlTh+/Djfffcd9gWlG+5dZDqPEOKpsmOH6q7u5gbPPpvzfU3TGDZsGHPmzGHSpEmMGTPG6D0MpTzPlH3mnmBJaGgo0dHR/P3333Q3IaUjP/t7nDwJ586BnV1OTa25Gd6vxn6NsbMx/8eS9EMRQgghhKmqVIHoaHVdUaOGedcu5lSM6t7VOR11mj1he+geaP7U3+7d4exZOHwY2rcHI+8VGiUwMJBPPvmENWvWcPr0aWJjY4mJiSEoKIj+/fvj4uJCVlYWM2fO5Pz58wwcOJCJEydSsmTJ/DtkHsg9OSHEUyMhAVatUo9feEGVd+T8LIHFixcDMGHCBOrXr88bb7zBtm3b8rTH9fjrXI27iq2NLY39Gt/zs7/++ov27dvTo0cPhg8fTmxsbJ7/DMnJKpUUICAgzy/Pk8xM+P139bhdO/A0b6sSAOLT4jkRcQKwTCmPpuVkouRhgrQQQgghxD0MN2MM1xXm1rxcc0CV9GRkZZh9fT8/aNJEPV66VF0j5acJEyZw8OBBLl68SHR0NDt37sTT05OPP/6Yt99+m7fffpuSJUty9OhR5s2bV2ADKCBBFCHEU2TlShWEKFMGmv1rAEyRIkW4fv06O3fuZNKkSYSEhDBv3jx+/fXXPO2x6+ouAIJKBOHm4HbPz4oVK8bvv//OrFmzmDt3Lh4eHlStWpUBAwYQGZm71M1Ll3L6odxdimQJmzerutmiRaFTJ8vssS9sH3pNT/ni5SnlXsrs69+4of6bOzpC2bJmX14IIYQQTwlDECU0FNLMO0QHgFolalHcuTiJ6YkcDT9q/g1QWcWOjhASAgcOWGSLXGvevDlbtmwhJSWFzMxMsrKy2LZtG7Vr17buwXJBgihCiKfC9euwS8U36NXrwb0x3N3dqVixIitXriQuLo5x48ZlN5nNjZSMFPZd3wdAK/9WD3yOTqdj2LBhXLx4kQULFlC5cmV++eUXLuWywNbQD8XSWShxcbB2rXrcvTvkoe9truk1PTuuqrnJzcs2N/8G5NwtqlgRbG0tsoUQQgghngKenuDhoab+hYSYf30bnQ0tyrUAYHvodvNvgLoBZxiqsHy5mthTUNgUosZ1heekQghhJE2DJUvU1/r1H17WoWkanTp14ty5c2zZsoWJEydiZ5f7Hh37ru8jLTMNX3dfqng+ugFH2bJl6devHz4+Pvj7+9PEkF/5GPnV3+Ovv9RdlgoV1Gg8SzgVeYqY5BhcHVxpWNq4SUiPI/1QhBBCCGEuhusJS4w6BlXabKOzISQ2hLA7YRbZo21bKFEC4uNh9WqLbPHEkyCKEOKJt2+fykiwt3/0iN5NmzZx8uRJfvvtN1q3bp2nPTRNy75r0Nq/9WOn76SkpPDdd9+xZMkSXn/99VxF35OT1bhesGxQ4MIF2L9fjcTr1Ut9tYRtoarfzDNln8He1vyd1+/uhyJBFCGEEEKYytJBlCKORajrWxcgO1vX3OzsoHdv9XjrVrh50yLbPNEkiCKEeKIlJsIff6jHXbs+ujnqtGnTqFOnDi1atMjzPsHRwUQmRuJk53RfQ9l7z5PIV199Rfny5Rk+fDjPP/88I0aMyNUehn4oJUpYrh9KZiYsWqQet2hhuc7t4QnhBN8KRqfT0bJcS4vsERGhmgnb20O5chbZQgghCqSrV6+SmZlp7WMI8cQxZDOHhkKG+Xu/Ajkl4QeuHyAlwzL1NtWqQe3aqjRp8eL8bzJb2EkQRQjxRFu+HJKSoHRpNWHmYZKTk1m/fj2DBw9+bBbJg2y7orIqmpZpiqOd40Of16tXL8aNG0e3bt04f/48ixcvplguIyKGfiiWzKpYvx4iI6FIETXByFIMWTu1StTC08UCY3/Ieb8qVlR3XYQQ4mnw2Wef4e/vT9WqVZk6dSrr16/nwoULElQRwgy8vdWNrMxMuHzZMntU8qhEKfdSpGelszdsr2U2AXr2VE1mL16E3bstts0TSYIoQogn1sWLsPefz55XX310Y1EnJydsbGyMamoVnRzNqahTwMMbygJs3LiRtWvXsmTJEubOnUulSpXytI+lm8pGRsK6depxr17g4mKZfVIzU7Mb8LYp38YymwDnzqmvVatabAshhChQ9Ho9c+fOpWHDhtSqVYuxY8fSqVMnAgICePnll619PCEKPZ0OAgPV4+BgS+2hy74+2nJlC3pNb5F9PD3VtB5QNx3v3LHINk8kCaIIIZ5IGRlgmE7cvLnKRngUGxsbPDw8iImJyfNeW69sRdM0qnlXo4RbiQc+Jysriw8++IBnnnmGF198Mc97JCerCUNgmUwUTVPvV2YmVK8O9eqZfw+DvWF7SctMo6RbSQI8LRMR0utzgiiGix0hhHjSxcfHExYWxrvvvsvvv/9OVFQU+/apoHVycrKVTyfEk8HSQRSAxn6NcXNwIyY5hmPhxyy2T+vWquQ5JQWWLrXYNk8cCaIIIZ5Iq1dDeLgqS3lUM9m7eXp65jmIkpyRzO5rKgeyXYUH1wvFxcXx0UcfcfLkSaZMmWJUudCFCzn9UIoWzfPLH2vXLpXpYm8Pr7xiuWayek3P5pDNALSt0Nao9yI3rl1TFwTOzlC2rEW2EEKIAsfV1RWdTkffvn2xs7OjePHiNGnSBFtbWyZPnmzt4wnxRDBkBF+7pkrGLcHe1j47u3lTyCY0CzUtsbGB/v3V1yNH4ORJi2zzxJEqcSHEEyc0FDZsUI/79s19WYqnpyfR0dF52mtH6A7SMtPwK+JHNe9q9/wsNjaWcePG8csvv5Cens5HH31EIyPnBRvudlgiqyImJqf57osvgpeX+fcwOHLzCDHJMbg7utPEL3djnY1heL8CAtSFgRBCPA3s7e1ZunQpERERuLi44OrqiqurK5UrV6aq1DYKYRbFioGvr7pZd+EC1KljmX1a+rdk/aX1XIm9QkhsCBU9HpNWbSQ/P2jfXl07//orVKpkuZLuJ4UEUYQQT5SMDPj5Z5W10agRBAXl/rW+vr4cPnyYtLQ0HB0f3hw2e6+sDLZe2QpA+4rt78mqSE1NpWvXrpw5c4b333+fN998E19f37z+cbKdPau+Vqv26OfllabBggWQlqY6zrexXIsSNE1jw2UV3Wrt39oiY40NpJRHCPG0kt4nQlheYKAKogQHWy6IUsSxCI38GrHn2h42hWyyWBAF1ATL48dVf7zffoOBAy221RNB7s8JIZ4oq1bllPH06pW313744YdcunSJUaNG5er5B24cID4tnuLOxWlQqsE9P5s1axb79+9n3bp1/Pe//zUpgBITA1FRKqPC3P1QduxQAQd7e5XOaakyHoBz0ecIuxOGg63DIxvwmio9XY2DBgmiCCGEEML8DIldluyLAjml4scjjnMr6ZbF9rG3h//8R10HHjwIR49abKsnggRRhBBPjJAQ2LhRPe7bF1xd8/b6evXq8X//93/MnDmTGzduPPK5mqax8bLarG35ttja3Dv6p3Tp0mRlZVGqVKm8HeIBDFko5curHh//Fh8fz7x589i0aRNpaWmEhYXRvXt32rVrx/79+x+67q1bqhs7QI8e4ONj8lEfyZCF8kzZZ3B1yON/nDy4fFk1yC1e3PJ/JiGEEEI8fapUUTe3oqLg9m3L7VPKvRTVfarfc91pKf7+0KmTerxoEcTHW3S7Qk2CKEKIJ0JKCvzwg3FlPHc7fPgwVapUoWTJko983snIk0QmRuJs70zzcs3v+3mnTp2wt7dnxYoVxh3kLg8r5YmPj+ezzz7D39+fN954gw4dOuDl5UW1atU4ePAg0dHRNGnShP79+5OZmXnPa7Oy1PuVnq4uBFq1MvmYjxR2J4zgW8HY6Gwe2oDXXO7uH2PJzBohhBBCPJ2cnVXQAXJKiC2lY6WOgJpuGJcaZ9G9OneGMmVUw9yFC9V1tbifBFGEEIWeYTxvTIxqivrKK8avtWvXLtq1a4etre1Dn6NpGmsvrgWgRbkWONk53fecokWL0rp1a+bOnWvU2GSDu0f13h1EiYqKomjRokycOJGXXnqJDz74gBdffJFRo0YxfPhwtm7dyv/93/9RqlQpNmzYcF8QZeVK1YDXxQVef93ywYb1l9YDUK9UPTxdPC26lyGIIj0UhRBCCGEp+VXSU9mjMpU8KpGpz7R4NoqdnboutLNTk3p27rTodoWWBFGEEIXe/v1w6JBKqxw4EJzuj2nk2n/+8x8WLFjAyUfMeDtz6wyhcaHY29rTvkL7+35+7do1li5dSp06dTh9+jReXl6cNaST5NG1a5CcfO8dD4DIyEgAatWqxfr165k6dSqrVq1i2bJlLFmyhICAAHr06IG9vT2rVq3C6a435dy5nOlF/fqBh4dRR8u1mwk3ORJ+BMi5m2IpSUkQFqYeSz8UIYQQQliK4TojONiyGRs6nY7OVToDsPPqTuLTLFtnU7q0mtYIsGwZXL9u0e0KJQmiCCEKtago1UUcVGfxChVMW2/UqFF069aNOnXq0K9fv/uCKZqmser8KkBNmHF3dM/+2alTpxgyZAgVKlSgd+/eTJ48OftnY8aMMeo8htjLv0f11qxZkwULFnDq1CmaNGnC2bNn2blzJxUrVuT5559n6dKlXLt2jdDQUBo2bJj9usRE+Okn9WHfvDnUrWvUsfJkzYU1aJpGXd+6+BXxs+heZ8+qP1vp0qq5sBBCCCGEJVSoAI6OkJCgbnpZUqBXIOWLlycjK4NNlzdZdjOgbVuoVUv1mJs7V01xFDkkiCKEKLQyMmDePPUXe5Uq0NEMSQ4+Pj58//33dO3alb/++ougoCA6depE8D+5mndnoXSo2AGAPXv20KRJE2rVqsWPP/5IVlYWFStWpESJEgB07dqVn376yajzPGq0cb9+/UhISGDp0qVUqVKFJk2asHLlSqZNm0bPnj0pU6bMPc/XNPjlF7hzB0qWhPyYgnl3ForhLoolnTqlvtaoYfGthBBCCPEUs7PLKek5c8aye+l0OjpXVtdRO67uIDE90cL7wWuvQbFiauzx4sUW3a7QkSCKEKLQWrJERf5dXdVYNhsz/Y3m5ubGihUrSEpKAmDz5s3UqFGD90e9z/LTapzN3Vko77//PrduqbFz7dq1Y8eOHVy8eJGIiAgWL17MqlWrWGzEp09ampo4BA8vTbG3t8/1euvWqfpWOzsYPFjdPbG0VedX5VsWiqblXMTUrGnRrYQQQgghsm/anD6dD3v51KBs0bKkZaaxJWSLxfdzc4NBg1RAZf9+2LfP4lsWGhJEEUIUSrt3q390OhUQKF7cvOvHxsbStm1bADIzM9E0jakLp/LFd19w4vgJ/PX+aJqGXq/nzJkzFC1aFD8/P1auXEmLFi3Q/dOptU+fPrzzzjuMHTuWCxcu5OkM586pKTpeXuDtbdqf58wZ1UxWnQn8LBvPAOBG/A2Ohh8FoGtAV4vvd/WqKldycjK9rEsIIYQQ4nEMQZSQENWXzZJ0Oh3PVX4OgC1XtpCQlmDZDYHKlaFbN/X4119z+s497SSIIoQodK5ezemD8vzzlmkgWqxYMTZs2MAHH3wAQOMmjanarSrp6ekc+O0A9WvWx8vLi3bt2pGYmMjRo0cZO3YsDg4O9631xRdf4OfnxyuvvMLpPNyqMJSm1Kxp2vSc6Gj48cecPijPPGP8Wnmx+sJqQE3kKeVeyuL7Gd6vatXgEcOVhBBCCCHMwsMDfH3VNZalp/QA1C5ZOzsbxTD50NI6dlTBoowMmD1b3bB62kkQRQhRqCQmwpw5qtFVUJB5+qA8jK2tLV999RWLFi3iyI0jhN4JpW6tunzY60Pq1atHfHw827ZtA2DcuHEMGzbsgeu4uLjw66+/EhkZSc2aNencuTM7duxAe0Qrd027N4hirIwM9X4lJanpPr17G79WXlyNu8rR8KPodDq6VOmSL3sa4lNSyiOEEEKI/GLIRrF0XxRQ2SgvBqrROdtDt3M75bbF9zRMv/TxgZgY1WhWr7f4tgWaBFGEEIVGZqZqJHv7tvqL/PXXTcvQyK3efXrz5jdvUrZsWY4tP8avP/3K66+/TmRkJFu2bGHHjh1MnDgxu4TnQRo2bEhISAgLFizg2rVrtGrViho1ajBgwACmTp3Kpk2biI6Ozn7+9esQFwcODqpprjE0DRYtUqmXbm7w5puqH4qlaZrG8mDVO6Zh6Yb5koUSHw+hoepx9eoW304IIYQQAri3L4olRx0bBHoFEuAVQKY+Mzvr19JcXGDoUNVP7/x5+OOPfNm2wJIgihCiUNA01Rn83Dn1F/ibb4Kzc/7svSdsD6m2qXTt0JVjfxyjSZMmjBgxgkqVKrFx40Yq5LIBh729PX379mX06NHMnDkzezTxuHHj6NChA+XLlyc1NRXIyUIJDIQ89I69x7p1qhGYjY1l+sY8zJlbZzgffR47GzueD3g+X/Y0TDEqWxaKFs2XLYUQQgghqFRJXZvGx6ubYJam0+l4sarKRtkbtpfwhHDLbwqUKqVuYAJs2aKuMZ9WEkQRQhQKGzfCnj0q8+SNN6B06fzZNzUzlZXnVUfWzpU7E1Q9iCVLlnD58mVef/11Zs+eTZkyZfDz86NVq1YMHjyYNWvWkJWVdd9aer2eL7/8kv79+zN27Fh8fX3p3Lkzr732GgCvvfYaTk5OgJqiA8aXphw6BCtWqMd9+uSM4LM0vaZn+VmVhdKmfBs8XTzzZV8ZbSyEEEIIa7h71LHh+s3SyhcvTx3fOmiaxp/Bf+bPpkCdOtBZTVpmwQKVlfI0yofEbiGEMM3Ro/DnP58PvXrl7y/Kmy5vIiEtAW9Xb5qXa579fX9/f77++msmTJjAihUrOH/+PJcvX2bv3r388MMPlC9fng4dOlChQgW8vb25cOECv/76K2FhYbz33nvEx8czY8YMXF1dKVKkCG+99RbTp08HICEhpzTFmCDK5cvw88/qcfv20KKFae9BXuy/vp+bCTdxsXehU+VO+bKnXp+TiSJBFCGEEELkt6AgOHFC/WMIMljaC1Vf4ETECU5GniT4VjCB3haYtPAAXbtCRAQcOaIazY4erbJUniYSRBFCFGihofDTT+px69bqn/wSmxLLxssbAfVBZWdz/1+ZRYoUoV+/ftn/rmkaBw8eZO7cuRw4cIAlS5Zw584dihcvTs+ePenXrx9NmzZFp9Mxb968B+575owqXypTBooVy9uZb92C775T/WNq14bu3fP2elOkZaax4pxKf+lcpTMu9i75su/ly5CcDK6uUL58vmwphBBCCJHNMEnx6lWIjc2fEuqSbiVpXb41W0K2sOzMMsa3HI+NzvKFJjqdKuuJi1PXYN9+C2PH5v2atTCTch4hRIEVGQkzZ6oJMzVrQs+e+bv/H2f/ID0rnUoelajnWy9Xr9HpdDRq1Igff/yRY8eOERcXR0ZGBlFRUcyZM4dmzZo9sgEtGF/Kk5AAM2aoCUblysF//qP6oeSXNRfXEJcah5eLFy3Ltcy3fY8fV19r1szfP68QQgghBECRImBokXfiRP7t27lyZ1wdXLmZcJOdV3fm27729vDWW1CihAoazZwJ/7T1eyrI5aYQokC6fRumTVOBgbJlYdCg/P0F+Xz0eQ7fPIxOp6N3jd6PDXw8ip2dHXa5HIuTkZEzqjcoKPd7JCfD9Okq8OThoT7YHB2NOKyRIhMj2RyyGYBeNXphb2tkN9w80jQ4dkw9rl07X7YUQgghhLiP4TrEcHMnP7g6uNItoBsAK8+vJDkjOf/2doURI8DdXU2C/P57lQn9NJAgihCiwElIgG++UZHtkiXVX9D/9FvNF3pNz5LTSwBoWa4lZYqWybe9g4MhLU2lgZYrl7vXpKWpOwBhYepOyLvv5u+EGk3TWHJ6CVn6LGqWqEmtErXybe/r1yEmRt0RkdHGQgghhLAWQxDl/Hl1cyu/tCjXglLupUhKT8oehpBfvLzg7bfBwUH1p/vhB3jAbIUnjgRRhBAFyr8zKkaOVBHu/LQ9dDs3E27eE93PL0ePqq916qia08fJzFRNvS5fBhcXeOcd8PGx7Bn/7UTkCc7eOoudjR09q+dvzZUhC6VGDfUBLoQQQghhDT4+4OurGt6fOZN/+9robOhVoxegrmFD40Lzb3PA3x+GDVNTio4dg/nz1XvwJJMgihCiwEhLg1mzVEaFu7vKqMiPxlx3i0uNy26O+kLVF3B1cM23vbOycupo69R5/PP1ehXxDw5WpTvDh4Ofn2XP+G9pmWksO7MMgPYV2+Pjmr8RHCnlEUIIIURBYSjFzs+SHoCqXlVp5NcITdNYdHIRei1/oxiBgTBkiCq9P3QIFi5UJddPKgmiCCEKBENJyqVL4OysMlDyO6NC0zQWn1pMamYq5YuX55myz+Tr/hcuqEwcd3eoVOnRz9Xr1dSiY8dU5H/o0JyGZvlpxfkVxCTH4OHsQadK+TPS2CAqCm7eVB/YtfKvgkgIIYQQ4oEMN3VOn87//iAvV3sZF3sXwu6EsfXK1vzdHHUtNniwyqTeuxd+++3JDaRIEEUIYXWpqWqqzIULqvfJiBH5n1EBcCziGCciTmCjs6F/UP98GRN3N0MpT+3aj26im5UF8+apSL+NDbzxhroDkN9CYkOyP6T71uqLo10+drIl5y5PQIAqZRJCCCGEsCZ/f9WXLjVVZQrnJ3dHd3pU6wGoJrO3U27n7wGAunXV+GOdDnbsgKVLn8xAigRRhBBWlZqq5stfvJiTgWKNjIrkjGR+O/UbAJ0qd6KUe6l83V+vzwkKPKqUJzNTBVCOHgVbW3jzzbxN8TGXTH0mC08sRNM0Gvs1prpP/nd1NZTy5Kb0SQghhBDC0nQ6FUgAOHw4//dvVqYZlTwqkZaZxuJTi9GsEMFo1Aj69VOPt22DRYuevB4pEkQRQlhNQgJMnZrTFPXdd6F8eeuc5Y+zfxCfFk9Jt5I8V/m5fN//8mWIj1eBpICABz8nPR3mzMkp4Rk2zDoBFID1l9ZzM+Em7o7u+d5MFtTkppAQdbFirfdACCGEEOLfGjRQX48fh4yM/N1bp9PRt1Zf7GzsOBV5in3X9+XvAf7RrBkMGKCu03bvfvKazUoQRQhhFbdvw//+B1evgpubCqDkdqSvuZ2JOsOea3sA6B/UHzsbu3w/g6GUJyhIBUj+LTlZjX0+dUqN8x02TE2ksYbr8ddZe3EtAL1r9M7X5rsGhw6pr5UqQbFi+b69EEIIIcQDVaigBiOkpubvlB4DX3ff7OmSS08vJSY5Jv8PATRpAoMGqdLzgwfVjcD8DipZigRRhBD5LiICvvpKjTEuXhxGj4ayZa1zloS0BH4+/jMAbcq3oaJHxXw/g16fk/JZr979P4+LUwGnuzN2qud/9QwAGVkZ/Hj0R7L0WQSVDKKe7wMOnA8OHlRfGza0yvZCCCGEEA+k0+Vcz1mjpAfUxMSKHhVJzUzllxO/WKWsB6B+fTX8wM5OTaCcNg2SkqxyFLOSIIoQIl9dvKgCKLGxULIkjBkDJUpY5yyaprHw5ELi0+Ip5V6K7oHdrXKO8+dVKY+rK1Srdu/PwsPV+3XzpmpUNmoUVMz/OE+2P4P/zC7j6VerHzqdLt/PEBmpxmDb2OTUHQshhBBCFBSGkp6TJ1U5dn6z0dkwoPYAHGwdOB99nu2h2/P/EP+oVQveeUeVrF++rG4M3s7/nrdmJUEUIUS+OXhQlaQkJanu5R98oDJRrGX3td2ciDiBnY0dA+sOxN7W3irnOHBAfa1X795SnnPnYPJkiIlR455Hj4bSpa1yRECVPRmm8QyoPQB3R3ernMOQhVKtmioFE0IIIYQoSMqVA09PSEtT446twcfVJ3taz/Lg5YQnhFvnIECVKuo6tnhxdYNw8mR1Q6ywkiCKEMLiNA3WroUff1TTZerUgffft+4vwFFJUSw7swyA56s+j18RK8xURtWGGqbM3F2asns3TJ8OKSkq82TMGPDyssoRgXvLnlqXb00NH+s0ZNG0nH4oUsojhBBCiIJIp1OlLAD791vvHC3LtaSadzUysjKYe2QuaZlpVjtLqVLqerZUKVWq/tVXOdfAhY0EUYQQFpWerjpyr1ih/r1DBxgyBBwcrHemjKwMfjj6A+lZ6QR4BdC+QnurneXECdV4zMNDNUnV62H5cli4UD1u2FD1QLFmwEnTNBacWJBd9tQjsIfVznLtmirnsbeXqTxCCCGEKLgaN1ZfT51SEymtQafT8Xqd1yniWISbCTdZcnqJdQ7yj+LFVSZ6tWo5UyfXrlU3yQoTCaIIISwmJkZFmQ8cUP0rXn0VevRQ0XlrWnJ6CVfjruLq4MrrtV+3Sl8Pg7sbpCYlwbffwsaN6ntdusB//qMCBta07tI6TkaetHrZE+SUPtWqBU5OVjuGEEIIIcQjlSqlynr0+pwsWmso4liEQXUHodPp2Bu2l31h1hl7bODiAsOHQ5s26t9XrFDZ6mnWS5LJMwmiCCEsIjgYPv9c1Tu6u6tsihYtrH0q2HNtD7uv7Uan0zG47mCKO1uvKUtSUk6drJ8ffPGFet8cHGDwYOja1foBpzNRZ1h5fiUAr9R8xWplT6BKwQwpsU2bWu0YQgghhBC50qSJ+rp3r3XPEeAVQNcqXQH49dSv3Ey4adXz2NhAr17Qt696fOgQTJqkso0LAwmiCCHMStNg3TrVzyMpSUXgP/5YNZSytqtxV1l8ajEAzwc8T6B3oFXPs3+/CgxoGvzyi8rc8faGDz/MqaO1ppjkGH489iOaptG8XHOalW1m1fOcPKn+N1Ws2P1TjIQQQgghCpqGDcHWVt1UvHHDumfpVLkTgd6B2f1RUjNTrXsgoHlzeO89KFJETaL84gs4etTap3o8CaIIIcwmPl4FT/7+WwUGmja1/gQeg6T0JL4/8j2Z+kyCSgbRsVJHq55H02DbNjXeODxcNZitWRM++kilf1pbRlYGsw/PJik9Cf9i/vSu0dvaR2LPHvW1SRN110IIIYQQoiBzdVUlyAD7rFtFg43OhoF1BlLMqRjhCeH8dOwntALQjKRyZRg3Tn1NTYXvv4fff1c3GgsquQwVQphFcDBMnJhTjvLaa9C/v/X7eQBk6bOYd3QeMckx+Lj6MKD2AKv2QQE1fWftWoiOhpIl4fnn4a23VJ2otWmaxq+nfiXsThhuDm68Wf9N7GzsHv9CC4qNhTNn1GMp5RFCCCFEYWEo6TlwALKyrHsWd0f37Ou6ExEnsku2ra1oUZWR0qGD+vfNm1V5T0SEdc/1MBJEEUKYJCNDTZOZPl1lopQqpbIpmja1fj8PUAGB307/RvCtYBztHBlSfwgu9taLVOj1sGkTfPKJGl/s7w9jx8JzzxWM9wtg/aX17Avbp/rG1LNu3xiDfftU9k7lyuDjY+3TCCGEEELkTo0aqj9gfLwqTba28sXL0y+oHwBrL67l0A0rdr29i42NGkAxbJjK4AkLg88+g507C970HgmiCCGMdu2aql3cuFH95da8uQqg+Ppa+2Q5NoVsYtfVXeh0OgbVHWTVxqi3bsHXX8PSpapxlpeXirJXrGiZ/TIyMrhw4QJnDCkcuXD45mH+Pvc3AL1r9KaqV1XLHC4PNC2nlOeZZ6x7FiGEEEKIvLC1zcmi3bnTumcxaOzXmA4VVdrHz8d/5mLMRSufKEdQEPzf/0FgoLpZ++uvMHu29cZEP4gEUYQQeZaVBatXw5dfqiZQ7u4qaty3b8Eo3zE4Fn6MP4P/BODlai9Tq0Qtq5xD02D7dvj0U7h0CeLioEIFaN1a3Z0wt71799KyZUtcXFwICAigRo0aNG7cmL2PaQ1/+fZl5h+bD0C7Cu1o5d/K/IczwrlzquzJyQnq1LH2aYQQQggh8qZFC5VxfPYsREVZ+zTKi4EvElQyiEx9Jt8d+o7whHBrHylbsWLwzjvw8stgZwcnTsCECXDwYMHISpEgihAiT65dU9kTq1ap0pS6ddVfakFB1j7Zvc5Hn+eHoz+gaRot/VvSpnwbq5wjOhq++QZ++w3S01U5StWqKluneXPzlPBkZWVx5coV5syZQ8uWLWnWrBkJCQlMnz6dBQsW0KFDBw4cOMBff/310DVuJtxk5sGZ2Y13e1TrYfrBzGTbNvW1SRNwdLTuWYQQQggh8srLC6pXV4937bLuWQxsdDYMqjuICsUrkJyRzIyDM7iTesfax8qm00G7dmpqZZkyakLjjz/Cd9+pG5LWZN1OgUKIQiMtDVauhC1bVATYxQX69IEGDQpOLw+Dq3FXmXVoFpn6TOr41qF3jd753kg2M1P1PlmzRqUi2ttD9+5Qtiz8738qqt64sbFrZ7J+/XrWr1/PihUruH79evbPSpYsyYwZM4iOjub777/n5MmT2NjYMGTIEL744osHrhedHM03+78hOSOZCsUrMLDOQGx0BSPGHhOTUz/cqpVVjyKEEEIIYbQWLeD0aVWi3K1bwcjedrB14K2GbzF592SikqL49sC3vNfkPVwdXK19tGx+fiqQsmGDuq4+eRIuXlT9U555xjq/h+i0XMw1io+Pp2jRoty5c4ciRYrkx7mEEAXIiRMqkyI2Vv17gwbQs6ea6V7QRCZG8r+9/yMhLYEArwCGNxyOvW3+fkpdvKjqN8P/yYqsWhVefVU1RJ03Dw4fhmbN1PSi3Lh16xYRERHExcURHBzMuHHjuHXr1iNf4+zszEsvvUTnzp1p3749Hh4eD3xefFo8X+35iltJtyjlXopRTUcVqA/OP/9UH5qBgTBypLVPI4QQQghhHL1e9Q6MjVVTLAvStMHo5Ggm755MfFo8/sX8ebfJuzjZOVn7WPe5eRN++QVCQ9W/ly8Pr7yiblKaKi8xD8lEEUI8VFSUmtNuyATw8lJ/URnSEQuaqKQopu6bSkJaAmWLlmVYg2H5GkCJj4e//gJD6xF3d1XL2bChipLHxsLRo+pnbR5TXaTX61m9ejWzZs1i48aND3xO8+bN6d27N02bNqVs2bI4ODhw7NgxLl68SOfOnSlRosQj90hIS2DavmncSrqFl4sX7zR+p0AFUDIy1ChoePz7JYQQQghRkNnYqH54f/6pRvg2aVJwsrm9XLx4t8m7TNk7hdC4UGYenMmIRiNwsHWw9tHuUaoUjBkDW7eq1gJXrqghFy1awPPPq6k++UEyUYQQ90lJUelyW7eqJrI2NtC+PXTpAg4F6+/SbFFJUXy992viUuPwdffl/Sbv4+7oni97Z2SoD8N161TZE6h+Jy++eO9f5oasioAAeO+9h6+3a9cu3n77bU6ePEmjRo144403OH78ODNmzMDd3Z3x48fTu3dvypQpY/SZE9ISmLpvKjcTblLUqSgfNP0Ab1dvo9ezhF27YNEi8PRUI+5sCkaFkRBCCCEKqbS0NByt2GAtORnGjlXXiyNHqkzbguRq3FWm7ptKamYqgd6BDGswrMAFUgzi4mD5ctVsFsDNDV54QWV7G3PNKJkoQgij6PWqTnPFipwxYtWrq2yKgjS2+N+sFUDRNDhyRAVHYmLU9/z9oVcvNX3nbmlpOVkVbds+fM19+/bRqVMnatasyc6dO2nevDkAgYGBPPfcc/zxxx84OzubdO74tHim7ptKeEI4xZyK8V6T9wpcAEWvV6OzQWWhSABFCCFEYZacnMzOnTupUqUK5cuXz/debQJu376Nn58fQUFBjBo1ih498r+JvouLKuPZtk31zitoQZRyxcoxotEIph+YTvCtYGYcmMFbDd8qkKU9xYrBwIHqxuXixaqMftEidRO4e3c1AdNS/zeTIIoQAk2D48dV49ibN9X3SpZUwRNLjOA1p5sJN5m+f3p2AOW9Ju/lSwDl4kVVunP5svr3YsXUX9iG0p1/271bdRX39oaaNe/9WVJSEosXL2bBggXs3r2bJk2asHnzZlxcXADQNI1r167Rv39/kwMocalxfLP/m+wAyvtN38fH1cekNS3h+HFVTubioj4chRAiv2iaRnh4OOfOnePq1atERUURFRWFra0txYsXx8PDA19fX0qXLo2/vz+enp7WPrIowDRN4++//+bdd9/l6tWrAJQoUYKXX36Zfv360aBBg3wJqCQkJLBt2zacnZ1p2rQprvlV91CAnD17lpSUFJKSknjppZfYunUrrVu3zvdztGsH27fDmTPqurtUqXw/wiNV9KjIO43e4dsD33Ih5gLT909neKPhuNi7WPtoD1SlCowfr97TNWvUezpzpvr+Sy9BuXLm31PKeYR4imkaBAerzBNDgyYXF1W206oV2Npa83SPFxIbwowDM0jOSM4OoBRxtOzfUVeuqPcrOFj9u4MDPPssdOjw8FKnzEz4+GOVdti3b05QIC4ujmnTpjFz5kzi4uJo3749/fv3p3v37jg53Rvxf+GFF1i7di3Tp09n6NChRp09MjGS6QemE5McU6ADKJoGX34JV69C586qg70QQlhKeno6O3bsYMeOHezatYtjx46RYEjHBIoXL463tzdZWVnExsYSFxeHXq8HQKfT0aJFC3r16sXAgQNxKKg1r0+gLVu2UKdOnYc2Ti8Izp8/z4gRI9i4cSOdOnVi4sSJREZGsmXLFn777TfCw8N55pln+PLLL3nmmWfMsmd6ejq///47GzZsICkpiZSUFOLi4jh8+DAZGRkA2NnZ0apVK6ZMmUJQUJBZ9i2I0tPTCQ8PJyIigqioKKZOncq1a9cIDg4mKCiIcuXKsXbtWmyskO46Zw4cO6ayUl57Ld+3z5XQuFCm759OckYyZYuW5Z3G7+Dm4GbtYz1ScjKsX6+miWZmqu81aKB+tylZ8tGvzUvMQ4IoQjylLl+Gv/+GCxfUvzs6qjKT9u1VIKWgOxN1hjmH55CelU6F4hV4u+HbFm2Kev26Cp4Ymuza2KhgyHPPqSyURzH09ihWDD7/HCCTH374gfHjx5OcnMzgwYMZOXIk/v7+2a8JCQlh/vz5hIeHc+vWLY4dO0ZYWBgtW7Zk+/bteT7/1birfHvgWxLTE/Fx9WFk45F4uhTMu6fnzsG0aWr035dfqga9QghhbqdOneJ///sfK1eu5M6dO3h7e9O8eXMaNmxIYGAggYGBlCtX7r7ASFZWFlFRUdy8eZMTJ06wbNkyNm3axMSJE/noo4+s9Kd5uixevJhXX30VPz8/li9fTsOGDa19pGyaprFu3Tpmz57N2rVrKVeuHNOnT6dLly73ZJxkZWWxbt06xo8fz/Hjx2nfvj0fffQRLVu2zHNmiqZpHDx4kN9//51FixYRGRlJgwYN8PT0xNnZGRcXFxo3bkynTp1IS0tj27ZtzJo1iwsXLtC/f3/effddav6TJpuZmYlOp8PWhDtp165dY/v27dlZXEWKFCEgIICAgABKly6Nh4cHOp2O9PR0Lly4wMWLF8n85zdeBwcHSpcuTZkyZfD29s4OcGiaxo0bNzhx4kT2ay5fvsydO3dITk4mJSUlO7gJkJiYSFRU1D3ncnR0ZPny5XTu3JnVq1fTtWtXPvjgAyZNmpTvgZTQUHWNY2MDEyeq4Q0F0fX460zbNy37+nFEoxEFrgT8QWJiVIb9gQPq5pxOB/Xrq5tzD2tRIEEUIcQDGTJP/r+98w5vq7r//0uyJVmW5L23Yyd2lrM3IQkQIAkjrLICBfqlUDpYbaFQSn9taaGs0tJC2btQoOwESALZe9pxYsd2vLctW5Yta9/fHwfJduwkTuLEdjiv5/k8596rK+neI+nqnvf5jBUrusSTwECYNw8WLRo+g9WtVVt5fe/reLwexsaM5bYpt6ELPDVJwsrKhKK9e7dYV6lENvUlS/r3h+f1ChfDpiZRFtrhWM4999xDYWEhP/zhD/nzn/9MQjc/zvb2dp588kkeffRRgoODycjIICYmhoyMDK644grOOuus4/6jP9B4gOd2PIfD7SA1LJWfT//5aUu6eyI8/bQQUhYsgGuuGeyjkUgkZyLFxcVccMEFeL1ebrzxRq644grGjx9/wmEVl1xyCdu2beNnP/sZN954IykDUW9T0gtFUdi4cSMXXnghF154IdXV1ezfv5/ly5czZ86cwT48KioquOOOO/jiiy+YPHkyP/7xj48Ziuv1evnwww955JFH2Lt3L7NmzeKXv/wlaWlpaDQaNBqN/3tps9morq6murqayspKSktLKSsro6ioiMbGRmJiYvjBD37AHXfcwehjJNtwOp08++yzPPXUU1RXV2Mymejs7MTtdmMymfjBD37Addddx4wZM/od+rN3716eeuop3nnnHdxuNyEhIURHR9PS0oLZbPbvp9FoiIqKorGx0S+e9IVGoyEhIYHY2FhKS0tpbGwEQK/XM3LkSDIzMwkPDyc4OBi9Xt9D+AkKCiIpKYnExETi4+OJiYkhKiqKwMCubBZ/+9vfuPvuuzn33HNZsmQJ06ZNIzg4GKvVitVqxWaz4Xa78Xg8uN1uv1dPa2srTqfT/zqKouDxeHA6nbhcLjQaDUFBQeh0OvR6PWFhYURERBAREcHEiRP914e//12E9MyZAzfe2K8uHhTq2uv4+9a/02xrxqQz8bPpPyMtLG2wD6tfVFbC55+LMHE4upgiRRSJRNIDr1dcPL78UoRIgFC+Z88W7m3h4YN6eP1GURQ+KfyEFUUrAJiWOI2bJt5EoHpg0zspihjEf/mlaH1MnSpCS45RObgHW7fCK6+IjOEJCc/yy1/+nHPPPZe//vWvTJ48udt7Krzyyis8+OCDtLS0cPfdd/PQQw+ddMzy2rK1vLvvXbyKl+yobH4y7SdDMjmYj4MH4cknRSjZH/8oKvNIJBLJiVJRUcHzzz/P9u3b/QPS/fv3U1xcjMlkYvPmzYwdO/ak3+fQoUP84Q9/4P3336ezs5OLL76Yu+66i8mTJxMSEiKTiB5GY2MjW7duxWazER8fT3x8PF6vl6qqKqqqqigvL6e8vJzq6mo0Gg0hISEYjUY2b95Mbm4uEydOZMOGDXi9XhYvXsyGDRtITU1lzpw5ZGRkEB0dTUREBI2NjZSXl1NbW4vRaCQqKoqIiAj0ej0ajQaPx0NxcTE1NTWEhoYSERHB+PHjOf/88/2D/4MHD/YI72ptbaWwsJCioiICAwMZMWIE6enpbNy4kRdffJHIyEief/55LjnOWFSfB8sjjzzCpk2bjrpvQEAA8fHxpKWlkZ6eTnp6OvPnz+fss88+bg8Sl8vFRx99RGVlpd9r5dChQ7z55puUlZWhVqsZN24cM2bMYOTIkURFRfn7saOjg6amJmpra3n//ffZunUriYmJ3HvvvfzoRz/qMW5samqiqKiImpoaf3hNfHw8Y8aMISsryx/G3NnZ6ReJfIJRXV0dKSkpTJ48mYkTJ5KUlDRgniOfffYZf/nLX9i9ezd2u/2o+wYGBhIeHk5YWFivCj+BgYFoNBoCAwNxu93Y7XYcDodfePF9h9RqNZdffjm/+93vMBjG89hj4p78T38a2vc8FruFZ7c9S4WlAm2Allun3EpObM5gH1a/6UtMmTRJhOOnp4ttUkSRSCSAKL27bZsoq1tfL7ZpNKKW+sKFw0c8AXB6nLy6+1V21e4CYNHIRVyademA3ph6vcLj5MsvoaJCbFOrYcYMcZE93sRfHg/8/vciQWp2dgH33DOae+65hyeeeKLHcdfV1XHLLbewYsUKli1bxh//+MceoT0ndC6Kl/f2vceasjUAzEiawY0TbhxwwWkgURR4/HERajZ/Plx77WAfkUQiGQ54vV6KioowmUzExcXh9Xr58ssveemll/jss88wGo2c+11ZNKfTSXJyMosWLeKcc87BaBzY+H6r1cq7777L3/72N/bv3w+IWfP4+HjGjx/PrbfeyoUXXnjUga7L5eKdd97hrbfeIiMjgzlz5jBjxgzS0tKGdc6VAwcO8Morr/Dpp59y0OcOewSio6NJTU0lKSkJj8dDW1sbbW1tZGRkcNNNN3HBBRf4PQrsdjvLly9n48aNbNq0icrKShobG3E6nQQFBZGamkpCQoJ/wG82m7Hb7f78IBkZGSQmJmK1WmlqaqKsrAyVSkVERATNvtJ7hxEeHs6oUaPweDwcOnQIs9lMREQE9957Lz/72c9OarykKApFRUVYrVZcLpf/OEGEoyQmJhIbG9vDo+JU4PV6ycvLY9u2bX4rLy/HYrH02len0zF//nxuu+02LrroIjQazSk9tlOBy+Vi//79uFwuTCYTJpMJg8HgF0YCAwNPSrhxuVw0Nzfz0Ucfcdddd3HOOeewYsUK/vY34SU+d67ImzeUsbvtvLDzBfIb8lGpVFyWfRnnZ5w/rETiykqRfNbnYQ4wcqQYF6WltREWNuAiykU0NHxOdLQUUSSSoU5LC6xdC+vWiYowIPKczJ8vysUOl7AdHy2dLTy34znKW8sJUAdwQ84NzEqeNWCv39EhquesXdtVqlirFX9o550HJ5qzbt06ePtt0d8331zCuHGZfPDBB71K6i1atIhdu3bx6quvsnjx4pM8G7C5bLyw8wUONB5ApVKxNHspF2RcMOT/5Pbtg3/8Qwh9f/rTsXPNSCSS7y9NTU189dVXfPnll6xcuZL672YKtFotwcHBtLa2MmnSJG699VaWLVuG6TT/8Xm9XrZv305ZWRm1tbXU1tayevVqdu7cSVJSEldeeSVXXHEFI0eOJDQ0FLVazc6dO/n222954YUXKC8vZ8GCBdTX1/vFGJVKRVxcHKmpqX4PhKSkJKKjo4mKisJkMvmv8yNGjCB8CMyUeDwe8vPzeeONN3jmmWeIiIjgkksu4bzzzmPGjBmEh4f7+0elUpGcnExCQsJJV6JTFAWbzUZwcPBR//sURen1eG1tLV9++SVVVVWMHDmSrKysHn1pMpl6VWSyWCzodLpeSeHPRHxigNlsxmAwEBkZicFgGPL3GEOFpqYmYmJiSE9P54EHHiArazFvvhk/5HOj+PB4Pfxn339YX74egKkJU7lxwo2nLKz+VFFdLUpMb9smJj0BwsIc/PWvQQMtovyH22+/iblzdcybB4mJA3L8EolkgFAUKC4WtdH37BFeFSAEgAULhPfJcPxvz2/I5+XdL9Ph7MCoNfKTaT8hMyJzQF67ogK+/Ra2bxdeOwAGg+ivBQtECM6J4nDAb38LbW0ir8eCBTBr1iyCgoL49ttv/ft5PB50Oh233347zz777EmeEVRYKvj3jn/TZGtCF6jjlkm3MDFu4km/7qlGUUTS3cpK4fVzmM4kkUi+51itVnbv3s2qVav46quv2L59O4qiMHHiRC644ALOOeccnE4nZWVlNDc3c/HFF/cImRwqbN++nTfeeIMPPviAuro6/3aVSoWiKBgMBi655BLuv/9+cnKEq3xLSwu7du3yh7iUlZX52+rq6j5zSsTGxrJjxw6SkpJO27mBEI/27t3LN998wzfffMOGDRtoa2tDr9fz4IMP8stf/rJXGIRE8n1jw4YNPPbYY3z++ecAhIb+joiIOUydCnffbWLy5MlD+neiKArrK9bzn7z/4FW8JIUk8ZNpPyEqeIgrQH3Q2irGTuvWgcXi5LXXdAMtojzDTTfd53cjzMgQySgnTxazhhKJZHCw2YSKun69qCDjY9Qo4XUyYYIISRlueBUvnx/8nOVFy1EUheTQZG6fevtJX6CdTuHCt2YNHDrUtT0lRQgd06YNzDVtxQpR/SgqCv7f/xMJfG+66SY2bdrUy435t7/9LY888ggPPvggDzzwAMEnUB5JURTWla/jv/n/xe11ExkcyU+m/oTk0OSTP5nTwM6d8MILQuh75JGTE7AkEsmpwWKx8NZbbxEWFsaoUaPIysoa8DDvhoYG9uzZQ3FxMcXFxRw4cID8/HwqKysBiIiIYOHChVxwwQVceOGFxB+pzMIQx+PxsHPnTurq6rBYLHR2djJp0iQmTZp0XGEaiqJgsVhobGykvb0dAIfDwQ9+8AMSEhJYu3btaRmMKYrC+++/z4MPPkhxcTFBQUGcddZZzJs3j7lz5/oTdkokki7q6urYsmULX399gI8/HkNDQxMez5/Q6WoZP348GRkZZGRk+PPupKSkkJSUdEyPJ5fLxZYtW8jJySE0NPSUHX9RcxH/3vlvrA4rBq2BH074IRPihmfJbLsdvv66g0svNQ58TpTt263s3GnsMcttMIiMwrNmHX++AIlEcmL4Ep9u3CgEAd8klEYDM2cKMWA4e4tZHVZe2vUSBU0iq+vZqWfzg7E/QBNwYuqGokBpKWzaJLxOfHnDAgJEstj580VSqRP1RPV4PJSUlFBUVMSMGTPQ66N44AHxPrfcInKqvP/++1xzzTX85S9/4de//nWP53u9Xv7whz/wl7/8hZCQEBYvXszixYtZsmRJv+L17W47b+59kx01OwCYEDeBmybeRLBmeNywut3w8MOigtFFF8HFFw/2EUkkksN57733+MUvfkFzczMen+8znHR5UEVRKCkp4fPPP+d///sfGzZsQFEUNBoN6enpjBo1irFjxzJ27FjGjx/P+PHjT6r06veF7du3M3fuXG688UZeeOGFU/peLpeLiy++mK+++orFixfzy1/+ktmzZw/pmXSJZKjx+uuwYYMHvb6WESM+JC8vl5KSEg4dOkRVVRXdh+yxsbGkp6f7y0YnJSX5c7c0NjbyxBNPcOjQITQaDeeccw5XXnkl11xzzYDngAIRcv/8jucpay0DYEH6Aq4YfcUJ37MPJqc8sazFIvIHrF8vci/4SE4WA7jp00Hmn5VIBp6mJti8WYgB3SrFkZQkKu3MnCmEzeHM3rq9vJn7JlaHFW2AlmU5y5iRNOOEXqu1FbZsEf3lS6wLwjtk9myR8+RkrlXt7e3cdtttfPjhhzgcDgBiYmK4+eavaGmZSFISPPigwrPP/oN77rmHa665htdff/2IA4CSkhJeeOEFVqxYQV5eHiEhIdxwww3cfffdZGRk9P0ccwmv7XmNho4G1Co1V4y5gnPTzx1WsclffQX/+5/IgfKHP4C875ZIhhbPP/88P/nJT7jqqqt46qmnCAkJoaioiOXLl/Pwww8zduxYFi1axNy5c3E6nTQ3N2O1Wlm6dOkRr13Lly/niSeeYNeuXVgsFrRaLeeffz6XX3458+bNIyUl5ZQnzjzTeeGFF7jtttvYtm0b06ZNOyXv4XQ6ue2223jrrbf45JNPBiSvl0TyfaS1VYSBu1xw220i2sOH3W6nsrKSyspKKioqKC8v59ChQxQWFlJQUNAr2e9ll13GnXfeSV5eHh999BFr1qzBaDSybNkyLr74YubOnXvS1R+74/a6+bjgY1aWrAQgKSSJ/5v8f8Sbhpen4GmrzuP1ikSAGzZAXl6Xd4pKBWPGiAHdhAnyhlgiORlaW0Wow44dPcNPgoOFYDlnjhAwh9GYuU/sbjvv7XuPTZWirF+CKYEfT/nxcV+AbTbhnbNjh8h27rvCabXiD2nOHJGF+2T7q7GxkYULF1JSUsJDDz3ElClTiI+P56c//Qtr1pzF0qVL+ctfYlm79t/cfvvt3HPPPTz22GP9HhSUlZXx0ksv8eKLL+J0OlmxYgUzZ870P+72uvm08FO+LvkaRVEI14fz4yk/ZkT4iJM7sdNMW5u4aXA44Oabxf+GRCIZfDweD2vXruWNN97g9ddf58477+Tpp5/uJdCuXLmSt956i6+//tqf40OlUqHVanG73dxwww387Gc/Y/LkyahUKmw2G6tWreLqq69mypQpLF68mEmTJjFnzhxZAXKAWb16Needdx75+fmMGTNmQF7T6XRSUVFBYWEhhYWFvP/+++zcuZOXX36ZG264YUDeQyL5vvLpp6JyTHS0qO7Yn1tGRVFwOBy43W5cLhdqtbpXCE95eTkvvvgir7/+OlVVVWg0GsaOHUtMTIw/MXV8fDwJCQkkJCQwevRoEk4gxCS/IZ9X97yK1WFFE6DhyjFXMi913rCZ2BuUEsft7WLQsmWLcJv3odNBTo6owzxunBRUJJL+YLXCrl3iN1VU1CUEqFSQnS2EgIkTz5x8RAebD/LantdotjWjUqlYOGIhl2Zf2u9yvDYb7N3bJZx08zQnM1N4nUyZMrCJdX0zfHl5eYwbNw4Qn9Nf/+rhiSc+QaXayd69P+PWW2/F4XCwcuXKE3ofi8XCRRddRF5eHoWFhcTGxlJpqeSV3a9QY60BYGbSTK4ed/WwCd/pzquviv+NtDS4//7hLwZKhgeFhYUEBweTnHziOYN8N6xBQUFHvEH0er00NDRQVVVFW1sbnZ2d2O12nE6nv2SmTqcjNjaWxMREoqOjT3uoSktLC1u3bmXPnj3s3buX8vJyamtrqaurw263k5GRwR133MHdd999zConlZWVGAwGwsLCcDqd/Pvf/+axxx6jrq6OzMxMIiIi2LVrF263m9mzZ7Nq1aqTrsIi6YnL5WLNmjWsWrWKjz76CIvFQm1tbb/Draqrq/noo48oKCigoaGBzs5OOjs7sVqtVFZWUldX5w8rCA4OZty4cTz99NPMnj37VJ6WRPK9oHtRgksugSVLBvb1FUWhsLCQlStXkp+fT1NTE42NjTQ2NlJXV0fLdyEmOp2O5557jptvvvm436PN0cYru1/hQOMBAEZGjuTGCTcSY4gZ0HM5FQyKiNKd+nqR6HLLFhF+4EOjER4qkycLYUXml5JIumhthdxcIZ4UFnZ5doFI5Dx1qvjtnEllX20uGx8d+Ij1FetRFIWo4ChumngTIyNHHvO5HR3CA27nTti/vysvDIjwpilTRJ/FnKJr9ksvvcStt96Kx+Px35xu2SJEAbvdwsqVs4mMVJOSkoLL5eLrr78+4fdqbm5m5MiRLLxgIdc9fB1fFn+JV/Fi0plYlrNsWFTf6YuCAnj6aSGc3H+/EFIkklNJSUkJf/jDH3jjjTcAOOussxg7dixlZWWUlJRgNBp55plnOPvss/t8fmVlJR9//DGrVq3i22+/xWq1olarMRgMGAwGli1bxm9+8xtefPFFXn75ZUpLS/usnHIkAgMDiYiIICQkhJCQECZMmMDjjz/eq5zqiWKz2aiqqqKqqoq8vDw++eQT1q1bh8fjwWQyMWHCBDIzM4mPjycuLo7p06czY8aMk5pFdLvdfPPNN7z//vvY7XZmz57NnDlzGDt2rMxtMoDYbDZeeeUVHn/8cSoqKoiLi+O8887jtttu46yzzurXa+Tl5XH++edjNpsZOXKkv9SwXq/HaDSSlJRESkoKqampjBo1isTExBPOhSORSPpm+3Z46SXhhfLww6fuPrYvbDYbNTU1PPbYY7z00ktkZmYybdo0pk2bxjnnnMOECf1LGqsoCmvL1/K/A//D4XagCdBwadalnDviXNSqoXvNGHQRxYcvmePu3WJg2F1QUath9Ggxmz5+PAyBUvYSyWlFUUSJ3dxcYRUVPR9PTRUiwNSpokzxmYSiKGyr3sb7+9/H6rACcFbKWVw19iqCAvt2F1EUqKsTwklurijn3P3qlZAg+mrKFIiLO/Xn8Oqrr3LLLbfgcDjQarVYreLPrqMDli6FtLQDzJw5k4yMDHbv3s3y5ctZtGjRCb/fX1/7K/e9eR+Tz5rMlClTmJwwmevHX49JZxq4kzqNuFwi/0lDg0iEfM01g31EkjMJu93OwYMH/RVe8vPzWbt2LeXl5URFRfGnP/0Jg8HAu+++S1VVFSNGjGDEiBFs3ryZTZs2cfvtt/Poo4/2cIn++uuvufLKK/1CwMKFC0lNTaWjo4OOjg6qqqr429/+RkBAAGq1muuvv55p06aRlJREYmIi4eHhBAUFERQUhEajwePx4HK5sNvt1NXVUV1dTXV1NWazmba2NiwWCx988AFBQUE89NBD/PCHP8Tj8VBQUEBBQQFmsxm73Y7dbvfnZAJxffW9ttvtpqWlhZKSEkpKSmhoaPDv50s4uHTpUhYuXEh6erocEA9jLr74YlasWME111zDPffcw6RJk45L/Dp48CAzZswgLS2Nr776ipjTOXKTSCR+FAWeeUZ4Vo8eDXfeOTheup999hmrVq1i+/bt7N69G7vdzjnnnMPdd9/N9OnTiY6OPuY1ptnWzJu5b/q9UtLC0liWs2zIVo4cMiJKdxQFqquFmLJ7N9TU9Hw8IUGE+4wdK9zvZS4xyZmI0ym8THzCSWtr12MqlagQk5MjxIDo6EE7zFNKfXs9b+e9TWFTIQDxpniuG38doyJH9drX7RbhTL7+6i7EgrhuTJ4shJPTXR3sl7/8JW+99ZY/B8CLL4pwouRk+M1vROWf//3vf1xxxRVMmjSJsrIyduzYwYgRx5ezpKWzhf/m/5ddtbvYtXsXOzbsYFrwNNa9u+6YJe6GMh9/LMpAh4WJEtDD+FQkiJAQm81GTEwMmtMYZ+j1eqmrq6OsrIyysjJ2797Nxo0b2blzJ06nE4CQkBBGjRrFWWedxfz581mwYMER72W8Xi//+te/uP/++zGZTFx99dUcPHiQffv2UVlZyeLFi3nnnXeOWDLy448/Jjc3lx//+MfEDYCaW11dzd13382HH36ITqejs7PT/1hQUJDfS0Cr1fa4mQ0ICPBXajCZTGRkZJCZmUl6ejrJyckkJSX1q0ymZPhw9913869//YuoqChcLheBgYEsX76ciRMnHvV5iqKwfPlyfvnLX+L1etm2bdspLYkqkUiOTUODuDdyu+GHPxRh6YOJy+Xik08+4bHHHmPHDlEJ0vffYjAY/KK9b3tISAhGoxFFUXC6nDToGqgNryVQH0iQLohRQaM4N/FcstKzSE1NJTk5eUgkEh+SIsrh1NcLQSU3V3irdD8KnU7kfRg7VggrA+TFKpGcdrxeKC8XanJBAZSU9Aw70elEiFtOjvDIMg1Pp4J+YXPZWFG0gm9Kv8HtdaMJ0LBk5BIWZiz05z5RFCGwFhQIKywU8aE+AgMhK6urv07HtaGhoYHt27ezf/9+nE4ner0ejUbD/fffzx133MHjjz/Onj3w3HPCw+43v4GUlK7nX3bZZezatQutVotarWbjxo1ERUUd831dHhfflH7DF0Vf4HA7UKvUnJN+DiF1IVyy+BLuuOMOnn766VN34qeQ0lL461/F7+P220XOLMnQQ1EUysrK0Gg0GI1GjEZjnzc577zzDrfeeis2mw2AyMhIrrvuOp555pk+Z6ncbjfV1dXU1dX5rbOzE5PJhMlkIi4ujrlz5/qfqygKFRUV7Nu3z58byFedoLKy0i+WACQlJTFnzhzmzJnDlClTGDlyJFFRUccdjlJZWck999zDzp07GTt2LOPGjWPixIlcccUVg3KjV1JSwgcffEB8fDyjR48mOzsb05n8hyE5bmpqavyljD/88EP27dtHcXHxEasjAXz77bfcc8897Nmzh1mzZvHiiy8yduzY03XIEonkKHz5JXz0kZhkevjhoeGVrigKBw4coLCwkOLiYkpKSrDb7X7RXlEU2tvbaWtr84e7+h6zeW2U6ksx6804HA4cVgcUAuWgD9Izffp0Zs+ezcyZM5k0aRJJSUmnPSHtsBBRutPRIXIa5OcLa2vr+XhUFIwaJQZPo0YNjS+RRNIXiiIEQp9oUlgI3SYOARG6NmGCEAJGjTpzksMeCbfXzZqyNXxx8AtsLjHIGhczjmvHX0tUcBRNTV2iSUGBSKrbnZAQIZjk5Ai3xtORnLqlpYX333+ft99+m40bN+LxeDAajQQHB/sTQ2ZkZLBlyxZUqlD+8Adx3BdeCJdd1vO1vvjiCy666CJWrVrFddddR1ZWFqtWrUKr1fb53l7Fy5aqLXxa+CktnSLBV0ZEBteNv46kkCQA7r33Xj744APKy8tPaT+cChwO+NOfxCzLjBlwyy2DfUSSw7FarfzrX//itddeo6CgoMdjU6ZM4ZVXXiEnJwcQnheXXXYZ119/Pddeey319fXs27ePp59+mnPOOYfIyEi/+OLLO1JeXo6nW/ZntVrdy8vixz/+MZdddhmffvopn332GVVVVYDwKsnOziY1NdVvaWlp/mVZ3UXyfaazs5Mf//jHvPXWW/z0pz/l2WefPeK+v/3tb3nkkUeYOXMmjz32WA/hUiKRDD5eLzz+uKjMmZ0Nd911ZiTfL2ou4t1971LWUkZ7eztah5Y4cxwlW0rYtHET9fX1AERERDB9+nRuvvlmLrvsstPi5TrsRJTuKApUVYnSyfv2iS9O9wSbIGaffYLKqFHSU0UyeHi9IkytuFh4mRQV9QzRAZFAOStLXABHjxYJok7FRdDlcvH888+zevVq2traSExM9MfiR0ZGEhIS4nexi4yMJCEhoUdSP0VRsNlsA1Y3XlEUdtTs4OOCj2myiTiceGMC86N/gMaSTUmJisLC3iE6Wq0oQZydLex0l28+cOAAkydPxul0ct5553HVVVdx/vnnk5yc3OMGU1w6VfzjH0L8TUwUXiiHX+Mfe+wxHnroIaqqqigqKmLBggU88sgj/OpXv+qxn6Io5Dfm878D/6O6rRqAcH04l2ZdysykmT3e+7XXXuPmm2+mo6OD4GGWofs//4E1a0QYz8MPywTjQw2z2cwFF1zAvn37uPzyy/nBD36ATqfDarVisVh45plnyM/Px2AwoNfrcTgchIaGUl5e3uM7+uSTT7Jx40ba29uxWq04nU5SU1PJyMggIyOD9PR0f/LSyMhIAgIC8Hg8tLe388EHH/DjH/8Yr9dLWloal1xyCQsXLiQnJ6fX71AikQgsFguLFy9m9+7dvPjii1x//fV97udyuXj44Yf5y1/+wp///Gfuv/9++ZuSSIYo9fXwxz+KPHLXXCNyyA1X6urglVdE2o60dC+Nui2srv2ADmcHAKMiR3Fp1qVoO7Ts3buXPXv2sHLlStavX09ycjK7d+8esCTrR2JYiyiHY7eLAerBg8LKy3uLKhERonpJerqw5OQzf3ZfMjjY7SIUwSeaHDrUM9wERMhJZmaXaJKSIsI8TjUNDQ3ExsYCcPXVV/uTFFZXV/dwd+86zkBSUlKIi4ujqamJqqoqbDYb11xzDW+88cYJK76KopDXkMfnBz/nUGMV1oZIPM1ppHjno5hHYLP1vFlTq8XvdvRo0Wfp6YObE2nfvn2MHz+eO++8k4ceeojIyEja29spLy+noqKCiooKDh48yOrVq7nttvfZs2ckGg088IDIy+JyuaipqaGiooLi4mJ+9rOfcdNNN/HPf/4TgKVLl2I2m1m3bp3/PUvMJXxS+Ik/T0ywJphFIxexIG0BmoDen8OmTZuYM2cOq1at4txzzz09HTMA7N4Nzz8vlu+6S3zmkqGBx+Phgw8+4Le//S2tra2sXLmyz1wKDoeD9957j+bmZr9X1uTJk1m6dOmAHk9eXh4A48aNkwM8iaQfbNy4kbPOOovQ0FB+9KMfkZOTQ0xMDNHR0bhcLgoLCyksLOSrr74iNzeXP//5z/z6178e7MOWSCTH4Ntv4d13xb3xr38tCk8MRzZuhO8K4/kxhTqxGvZSr92IIbYOQ2Qr4+PGcmn2paSEpqAoCrfeeitvvvkmTU1NpzyM9YwSUQ7HbheDV5+oUlbWW1QJCBAlTn2iSnr6qZv9l5y5uN0iP0d5uaicU1oqvKQO/8UEBQkRr7udDhFPURRcLpc/LMRms3HLLbfw3nvvkZyczOTJk5k4cSI6nY7GxkZqa2upra31xyrW19fTdljsnEajweVycckll/DBBx8cl5Di8Sisysvjw83bOVTqpa02mk5zFEmmZBJNSVhaWwkLC0enU5OWJvpp5EhhpyNEp794PB5+9KMf8fbbb6NWqzGZTDQ3N/exZwppaf8iPj6FMWP20NGx3J+voXtJ0xkzZrB69WoMBgMVFRVMmzaNJUuW8PLLL1PQVMDyouUcbD4IQKA6kAXpC1iUuQiD9sgeQW63m7PPPpvKykoOHjyIXq8f6G4YcBobRRiP3Q7nnQdXXTXYRyRRFIX9+/fz6aef8uabb3LgwAEWLVrE008/TVZW1mAfnkQiOU4OHjzI888/z9tvv92jEpOPlJQUxowZw8MPP8zMmTMH4QglEsnxoigi797evSLFxYMPDk8v3rY2keagpERYZWXXmMrhdlBhqaDRUYUxtpGQ2CbGjQhhy/v/ZdNXn3H//ffzl7/85TQc4xksohyOwyG8AUpLu+zwnAogvmxpacJLJSlJWFzc6fEQkAx9XC4RllNRIay8XKx3C9v3ExkpPE18gklCwuB8j37zm9/w+OOPk5WVRXZ2NiEhIRgMBurr6/0eKA0NDXi9XgIDA9Hr9ZhMJn+CU6fT6S/Pq9frCQoKwu12U1dXR3t7O7m5uUdMSOd2Q22t6Kuyci+b9lWx/UAd1k47AAHqABKMCSSFJBIVoWHv3v/x9df/IjNTzdNP38uSJRcM+dnlhoYG/vOf/9De3u7Pu5CSkkJtbS0zZy4EHkCrjUOl2kNw8JuMHTuG8ePHM27cODIyMkhJSSE5OZn29na2bt3KypUreemllwgLD+P1Fa+zy7qLstYyQPTXrKRZLB65mMjg/rkq7ty5k6lTp/Ltt98yf/78U9YPA4HLBY8+KkTIjAy4914hdktOLy6Xi3379rF161a2bdvGunXrKCkpwWAwsHjxYu69915mzJgx2IcpkUgGAIfDQWNjIw0NDajVakaOHDlg4boSieT0YrOJiajmZpg4USTlH+K30cfE4RDjdp+ocugQmNs6qbCUU2uto6K8HKfLxdiRaSyZO56po2NITVWRkiIqmJ6K8/9eiSiHoyhgNvcUVSoqxE384QQGigGwT1TxCSzDUd0702lpaaGzs5OEk6xjqyjQ0iI8TGpqhBBQWSkEk8M9mkB8F1JTRUhOWhqMGCFyOQwF/vvf/3L11VezYMECAgMDaW9vp6Ojg46ODpxOJwaDAYPBgNFoxOl0Ulpa6i/HGxQUxIIFC1i8eDHLli0j7LCTUhQFlUqFoghR0tdX1dVQWuqluNhGq8VKjbWWels9itqLPliPITiQiVlRzJ8wgjGjgkhKcnDPPTfz3nvv8uCDD7JhwwbWrFnDqFGjGDNmDFlZWaSlpdHe3k5TUxNNTU0EBQXx05/+lNEnGOvR0tLC66+/zpw5c5g6deqAizUeDzz9NBQUeAgOtnLllUW0tdXT2Njo9/ipqqqiqqqKyspKqqtFfpP4xHgW37qYmFkxNDuEZ4smQMPclLmcn3E+4frw4zoOt9vNmDFjCAoKYsuWLUM2N4qiwOuvw+bNovrUb387dH5DZzput5sPPviAVatWsWfPHvbt24fD4SAgIICcnBxmzZrFRRddxIIFC2SpW4lEIpFIhjDl5aKyodsNl14KixcP9hENLIoixhq7d1v5yd2PUufUkjxiBlqtuL81ao0khyQRFRyNXq8iOVmMzxIShMXHw8k6Zn+vRZS+8HjEDGh5uWh9dnguCx/h4SJJZFwcxMaKNi5ODACGu+o33Dhw4ABjxozxr6empjJ37lzmzp3LOeecQ0ZGRp+D5JKSQ8yfvxSdLp24uEmEhY1Bp0vD641DpxO1y0F8t81mM01NzcyZM4GsrCBSUsSPMjVV5NsZqp+5x+Nh9OjRjB49mk8++aRfz+no6KCoqIjVq1ezfPly1q9fT0pKCs8++0+Cg+Po6AjBajVSW6uiqKiDsjIHZrMDq9VKW5sFi8VCW6cVxeCFUBsEV4C+AgIroL6CEboQEmPisVjEvmazGafTyVtvvcWVV16Joih88cUXfPXVV/747MrKSkJCQoiKiiIqKorKykpqa2tZunQpM2bMQKfTERQURFBQEFFRUcTHxxMfH09MTEyvUqO5ublce+217N+/H4CcnByWLVtGYGAgZrOZ5uZm2trayMzMZMaMGUybNq1f5YbLyspYu3Yta9asYf36JGprR2GztQB/Bur9+4WGhhIfH+9P6JuUlETGuAw8SR4KbAVYHcJNLigwiAXpCzg3/VxMuhOP71y+fDlLlixhx44dTJky5YRf51SyYgV8/LH4Hd15p8yDcrp4//33+fWvf01ZWRkTJkzwh/dNnjyZyZMnD1nRTSKRSCQSSd+sXw9vvSWWb70Vpk4d3OMZaKqqqli8eDHV1dWsWrWKuBFJfLB1E9/uLaG1LpT2xgg8lnjig5OJNcYSqO45DggLE2JKd2ElPr7/DhJSROkHiiKqgvgElcpK0faZ+uA79PrewkpcnHApGsxEmGcyu3btOsbg0AjEcNllt3HjjffS3BxAQwN8++1+Vq5cD0B4eAQul4v29nZAATyIgW8NUAtUA+Vs2/Y106b172rkcDhYuXIlH374IYqicO+99zJ+/PiTONMT45133uH666/n5Zdf5uabbz6m14XNJnJT+Cw/v4EnnniL+noV0PcVJiBATWiok/BUB7q0ZjRJtUQmdRAW7SE9Oo1FoxeRok5hx5YdbNq0iZaWFsLCwggNDSU0NJSFCxcyadKkIx6T1+tF3S0eyuFw8NZbb/HMM89QXV2Nw+Ggs7MT72GuQoGBgYwePZqcnBzGjx/Phg0b+Pzzz8nMzOTjjz+moqKCl156ic8++wydTkdERAQREREYjUYOHDjgz3OyePFifvvb35KdnU1zczPNzc00NTWRl5fH9u3b2bZtG1VVVahUKtLTbyMw8GqMRiMXX1zJrFnBxMXFER0dTVRUlD8/jaIoFDYXsqZsDXvq9uC7zIbrw5mXOo95afMI1pzcINbj8XD77bfz9ttv09raesSSyYPJ9u3w0kti+brrYN68wT2e7wtffPEFl1xyCUuWLOGPf/wjEyZMGOxDkkgkEolEMgC8/z6sWiXGnvfeK7zkhyMul4s33niD3bt3U1FRQXl5OcXFxURFRbF8+XLGjh3r37fd2c6asjWsKVuDxdZOZ2so9uYYYj1TiPCMw9ESicVy5DGQT1yJiREWHS3aqKieeSxPkYgyn9zctaSlmTAah+7s/Mlis4mQhbq6ntbc3DuhqA+VCkJDxQfhs8jIrjY8/MzNveL7+pyq/BYeDzQ2uti6tZjNm4vZs6eaqiondXVemptVQJcL+sUXX0J8fDwAHR3trF+/jqqqnShKDbGxHgwGC3b7IazWEtraWvzPGzlyJHfddRcdHR2UlpZSWlpKQ0MDGRkZjBs3jnHjxhEVFUVJSQlFRUUUFBT4ywhnZ2fT2dlJeXk5t956K88991yPssGnGkVRuOmmm3jjjTdYuHAhEydOQqeLISAgDpNpBBkZM2lqUvlFk46O3q/h9XqwWNrweFwYjZ0YjVYiI51kZ4eQNDKAZn0+2+s30WwTooNKpSInNodz0s8hKzLrtOU2cblcPRLklpeXk5eXR25uLnl5eaSkpHD//fdzzTXX9EiI6wtN6o6iKJSWlrJmzRqefPJJv+dKd0wmE1OnTmXatGnMmjULvX4B//tfKACXXw4XXND7GK0OK9trtrO2bC117XX+7dlR2cxPm8+EuAmoVSd/MTh48CC33XYb69at46mnnuLOO+886dccaIqLRdiT2y0TyZ5urrrqKj744AOMRiPTp0/nF7/4BZdeeulgH5ZEIpFIJJKTxOsViWZzc0WUxK9/LQSB4YDdbqewsJDc3Fwee+wxf8RBamoqKSkppKWlceONNxIXF9fn810eF5urNvNN6TfUWmv92xNMCUyPmU9KwHRaGvXU1nalbmhtPfLxqFRCYPGJK8HBHVxxhXGgRZT/cNNNN6PVatFoRJhDZKSwiAhhYWFCTAgNFV4bZ5LQ4nKJQWh3YaW+XrR2+9Gfq1aL/vGJKpGRoq98/RUWBgbD0O8vu91OXl4eu3btIi8vz28dHR1ERUURHR1NUlIS0dHRNDc3U1dXR319PXV1dQQHBzNixAi/mUwm3G4PNlsAVquGpiYP1dWd1Nc7aW724naHoNPFodFEo9MFERSkQ6vVodPp0Om0aLVavF4Fr9eDRtOORtNCeLgLk8lOaKiTsDAHoaEO3G47ubm5NDQ00NnZ6c8ZotFoSElJwWw2s23bNpxOJyaTifT0dNLT04mOjqa4uJi8vLwelVlSUlIYOXIkc+fO5aqrrmLMmDG4XC5efPFFfvGLX7Bo0SKefPJJMjMz2blzJytWrMBsNrNkyRLmzZt3Ut4CigLt7SLnT2uraFtahK1bl8eqVbtobw/E6XTjcDhRFC9paWnMnXt2j+otISFCgfWpsDExQp2NjRVqbKerk121u9hctZmi5iL/8wxaA2elnMW81Hn9Tn56uuhLKOkvXq+Xr7/+mvb2diIjI/0WHx/v95DJz4dnnxV/XOedB1de2fV7dXlc7K3fy5aqLeQ35ONVhMeMLlDHrKRZzE+bT7wp/oTPrbq6mgMHDlBTU0NNTQ0FBQW8/fbbJCYm8vrrrzNvCLp3lJcLAaWzUyRAu+22M1dIHorY7XY2b97MX//6V7788kvuuecennzyycE+LIlEIpFIJAOAwwGPPy4iKcLD4Ve/EuPLoYiiKDzxxBO89NJLFBcX+z3L58yZwz/+8Y+jeqsf7TUPtRxifcV6dtTswOURyU81ARqmxE9hTsocMiMyUavUdHaKXCt1dWIs39Ag2vr63mN4p9PJa6/pBlpEeYQ77/wDdrvuiB4Z3dFoegoFPrGg+3JIyPAXW3wD2+ZmER7kM9+62SxmYo9FYGDPPgoP71r39ZXRKMSWUz0YURSFuro69u3bR15eHvv27WPPnj3k5eXhdrsJCAhg1KhR/jCKkJAQmpubaWhooLKykoaGVsLCUggNTSY0NIng4DhaW71UVlqoqWmnsbEThyMYCEOl0qJSqdBoNP5EqAaDAZVKhcPhwOGw43DY8HgacblqcDiq6Ogow+WqAhoJCGglKCgA3Xc1ct1uNx6PB7fb7V/u3deB/hwbkydPZvHixSxevJjMzMw+PRYaGhpoampixIgRRy0l++mnn/LTn/6U2tpawsLCaG5uJiQkhNDQUCorKwkNDWXx4sXk5OQQExPjt8zMbCAEq1WU/zq8bW0VQonZrGC3u1GrVajVAUcUDVQqiIhQqK/fx3vvPYvbXcuyZRdw3323kJKi77OcsFfxcqDxAJurNrOnbo//YqRSqciOymZm0kwmx09GGzD0QkZONQcPwj/+AU4nTJ8Ot9wCoFBkLmJL1RZ21uzE7u66CqeFpTEreRYzk2YSFHjiyToVReGFF17gF7/4BU6nE4Dw8HASExO57rrruOuuu4ZkaePKSnjqKeHVN3Ik/PznQ6uE9ZmM1+vl22+/5Z133uHTTz+lqamJSZMmsX79elmVQyKRSCSSM4i2NnjiCSEGREUJIWWoJe5vamri3nvv5Y033uDmm29m1qxZjB07ltGjRxMefnwFFY6EzWVjW/U21pWvo7qt2r89NCiUqQlTmZowlfSw9D7GeMJDv6GhS1gpL+/k5z8PPjU5UYKDQ2hpESKB2dzVms1gsQiz2fp/4mq1EAaMxqObbx+DYXgJL4oi+qS7wNLSIgbGFoto+yrJfCRUKpEcp3vfBAd7cTiaaG+vIydnBPHxxh59pdeDorjJzc1ly5Yt7Ny5k46ODr/Y4PF4sFqtNDc3+5Nv2r+T5oKCwsjOnsKoURPJyppMZmYOiYkjcbt12Gzis/YN9n12pIS9Rzqf0NAub6bwcGHd1/tK6Ot0OgkICOhX6IzX68Xj8eDxeNBoNKcs3EZRoK3NzgsvvEVVlZkZMxYwatREnM5A8vJKWLt2O1u25FNf34nNpgZCABMQ/J3nQxyRkVF4vR5cLiECOZ1O2tuttLW1YbG04XI5gDagBbW6DY3GitHoJjZWQ0KCnpQUEyNGRJKRkUZ6ejohISFcccUVHDhwgA8//JDLL7+8q18UL8XmYnbV7mJnzU7aHG3+x+JN8cxKmsX0xOnHXTXmTOLAAfjnP4Un2pgxChddX8Hexp1sr96OudPs3y8yOJIZiTOYkTSDOGPfLojHw86dO7nvvvtYvXo1P/3pT7n77rtJSEgYkqJJd2pqxB96R4eI0b3zTpBFX04tra2tbN26lXXr1vH2229TXl5OZmYmV1xxBUuXLmX69Ok9cg5JJBKJRCI5M2htFR4pTU0iT+e994qJ98HGbDbz3HPP8de//hVFUfjnP//JDTfccErfU1EUylrL2FCxgV21u7C5ugSJyOBIv6CSHJJ8xInoQU8s63J1CQQ+scC37ltuaTl2GMzRCAoSptf3XPatH94GBYFWKywwULQaTVer0QyeMON2d3kc+PqopaVnH1qtPfNZKIrC5s2bqaiooL3d6neNCgoKYuLESQQEBGC1tmG1WrFarbS2tuJ2u1Gp1ERGRqDV6lCr1ahUKr8nSFCQzh86YzAYiYiIICTEhOoEcjhoNOJHbDKJtruZTEIpDQ8X7WlMIdILj0eIPk6naLvb4ducTvGddTpFmIJPROpufTi+9InX68Fut2OzddLU1EhdXQ319UVYLJWAFa3WTlCQi+BgN4mJRkaMCCcrK4aRI2NQqTw4nc7vPHUctLS0+EM9qqurqayspKWlpcf7PfTQQ/z+97/Hi5fCpkL21O1hd91uf7UYEOE60xOnMytpFimhKact18lQJS8PnntOwdzRhj6xhOizP8TiavI/rtfomRI/hZlJM8mM6O3F1F8UReHQoUP+6j9r166loqKC7OxsHn/8cS666KKBOqVTSnm58NixWkVlq7vvPvlSc5KeeDweDhw4wLZt29iyZQubN28mPz8fRVGIjIzksssu88/0fN9/vxKJRCKRfB9oboa7f1eN0hlGakIwd92loh+FJ08JbW1t3Hfffbz++ut4PB5uu+02HnroIaKjo0/rcbi9bvY37mdHzQ721O3B4e6a4Y8xxDA1YSoT4iaQGpra435p0EWU/uJ2i1CY7tbR0Xtb9+3H4+VwvAQGdgkq3UWWgABhKpVo1eouO3zdt02l6hl24yssoig97WiPud09zensEqH27NnDtm1bGTNmLOHh4YSEhKDX69m3L4+DBw+iVqsxGk2YTMLCwkKJiYklKiqqV1nYgUSnE+JIcHBXv3XvpyO1vr7q3i/d2762dX/M10ceT88+861333748kDj864KDu5tJlOXsNS99XlXORwOtFrtSQ+ALBaLP0muMcKIKcPE3rq95Dfm97iQBGuCmRg3kcnxkxkdPbpXqbDvI52uTj78ppRXXlbR1N5KaNohss/fgDrAiy5Qx7iYcUyJn0JObA6aAM2xX5CeIXL79u2juLjYn4m8oqICi8WCSqVi4sSJzJs3jwULFrB48eJT+lsdSPLz4d//FtfnlBQhoMgKuieHw+Hg4MGD7N69m927d7Nr1y52796N1WpFpVIxduxYZs+ezezZs5k1axYjR46UwolEIpFIJN8zrA4rP3v/D+R+cg50RpIYZeTOO1WcPX4EusDTF0/d1tbGhRdeSH5+Pvfeey+33XYbsbGxp+39j4TL4yKvIY/t1dvJa8jzpywACNGFMD52PDmxOYyOGo3D5jgFIsqEUAo3FjIyfnBv1Fwu4Q3Q2Sla37Jv/WityyXM6exqD6uaOmzIzd3Lli1bmDdvPllZWT0eczqdaLWB6PVqAgO7hAavV9jhy319A3xikq/Iia+/+pPfZTiiVgsByGdabe91nzeTTieWg4P7Fku02sENN/MqXspay8hvyCe/MZ+y1jK6/8xDg0LJic1hcvxksiKzCFAPoivQEEBRFKraqtjfuJ99Dfl887WWQ1tyAIjOLGfSot1MSBjH5PjJjI0ee0zhxGq1smHDBg4cONDDzGYR/qPX68nMzPRnIk9NTWXMmDGcddZZhA21YNZ+sHkzvPGGuJ6MHg233y5DePrC6XRis9n8XmS+dV/y7bq6OmpraykuLubAgQMcOnTIn9MpMzOTSZMmMXnyZGbMmMHUqVMxmUyDfEYSiUQikUgGm/r2et7Lf4/csgr2fjqX9uZwArUuci7awLScUMbHjGdczDhiDDGndAx/zTXXsGLFClatWsW0adNO2fucDHa3nb11e9lTt4f9jft75DQMVAeSakzlvvn3DbCIcn0oN918E9GmaLKjssmOymZ01Ohhny/B6+0prBy+7HIJ4cAnOng8Xcu+dUXpe7tPoPF5WahUPe1oj6lUwjPGZwEBCo2NtbS2NtHe3kp7eytPP/0EUVGhLF/+md+LJiCgK2TpVPxOjtRfvnWPp+vcj9T6lg/f7jve7u3RtvnW1WpfH3Xvr67W1y997eMTRXzeQ8MRRVGo76insKmQgqYCCpoKesQBAiSFJDEhbgITYifIUB2g2dZMYbPor/2N+7E6rHjdag5+O5OGg+kEa/ScPd/DbTdGMDIyo19CU0dHB//4xz94/PHHMZvNBAcHk52dTXZ2NmPGjPGXy05LSzutZbBPFYoCK1bAJ5+I9Rkz4MYbxW/r+4bL5aKyspLS0lLKysr84XXdQ+waGhqO+hohISHExsaSkZFBdnY2o0ePZvTo0eTk5BAaGnqazkQikUgkEslwxOF2sLeyiGeedbG/0IVTsZF59jbixpQAEBUcxbiYcWRHZTMqchQG7cAlnN+2bRszZszg7bff5rrrrhuw1z2VuL1uipqLyK3PJbc+lyZbE06Xk9eueG2ARZQLQrn1vltRBfQcfMUaY8mOyiYrMovMiExCg87Mmz232015eflpHQDZbDY2bNjAF198wRdffEFJSUmPxwMCArjyyit59913T8vxSIYGiqLQ0NFAkbmIwqZCCpsLsdgtPfYJ1gQzJnqM34a72HmymDvNHGw+SGFTIQebD9Jka2Ld+nVUVFQQFhqGYjfizP0RSusI1HYwBn2G17sGq9WKzWYjICAAjUaDVqv9rsy7BkVR/B4FTqeTzs5O1Go1t956K3fddRcZGRlnbEJPhwNeew127RLrF1wAl102fIXIE6GmpobnnnuO//znP5SVlfWoBBYTE0NCQoLfkpOTSUpKIiQkBK1Wi06nQ6vVotfriY2NJTY2lmAZ/ySRSCQSieQkcbngpZcUNm3vpKXTTFjWPoyTvkBRO/37qFQqEk2JZEVl+cfwJyOqPP300zz44INYLBY0mv6Fug8lFEWhrr2OzaWbuWLCFQOfE6XJ3ESjp9E/2314mAAIlSszItNvcca4M2LW+4UXXuC2227DYDBw4YUXcu2117J48WIURcFisdDa2upvGxoaaGhooL6+noaGBmJiYrjnnnuIj48/4ut3dnZSWFhIbm4uW7duZcuWLezduxePx0NycjJLlizhwgsvJD09nfDwcMLDw/2lgCVnNm6vmwpLBcXmYorNxZSYS2h3tvfYJ1AdSEZEht9LLC0sDfUJJAQ+E/AqXiotlZS0lFBiLqGkpYSWzp6JdtUqNZ++8Sk1eTVQlwmt/4fBkEhIiIbp03eTlmbHaDRiMpkIDg7G6/XidDpxuVx+0UStVvsHw1qtlqCgIBYtWkRaWtrgnPhpoqYGXngBamuFB9e118LcuYN9VKceRVEoKChg3bp1rFq1io8//pigoCCuv/56Jk2aRHp6Ounp6aSkpPhLrkskEolEIpGcbnzewp9+KpYTk93Mu7yAGk8ehc2F1Fprez0n3hRPRngGGREZZEZkEh0c3e9x5p/+9CeefPJJDh06NGCliweD05ZY1uayUdRcxIGmAxSbi6lqq+olqug1etLC0kgLSyM9LJ308HRCdEOg9tJxsn79es4++2yWLVvG/v372eWbgj0CISEhxMTEEBMTw/79+3E4HNxxxx0kJSX1ElwKCgooLS31911WVhYzZ85k5syZnHXWWYwdO1aKJd8TFEWh0dZIaUsppa2llLWWUWmpxO3tmYxGE6AhLSyNUZGjyI7KJj0svd9JTs8kFEXB3GmmrLWshzk9zh77qVVqUsNSGRU5iqzILDIiMmgzt7Nw4ZMUFIzC6XQCdcC/CApqY+bMmcybN4/58+dz9tlnn7EeJceDosCGDfDee2KWIzRU5D8ZMWKwj+zU4PF4yM3NZd26dX5ramoiICCAyZMnc+2113LLLbfIUBuJRCKRSCRDkv374aWXRIEWgwFuvhnGj4c2R5vfQ7uwuZD69vpezzXpTKSHpZMalkp6WDppYWlH9FbZtWsX5557LgaDgXfffZezzjrrVJ/aKWHQqvN0ujo51HLIP2Ne2lraIwOujwh9BCmhKaSEppAcmkxKaAqhutAhLRS4XC4iIyO57777ePDBByksLGTdunUEBwcTGhrqt7CwMGJiYgjqllmxtbWVJ554gr///e94vV7/fmFhYURERJCVlcWYMWP8MfDDMbmk5PjxheVUWCqobKukwlJBeWt5r3wmAEat0a8MZ0ZkkhKa8r2rpKMoCs2dzVRaKqlqq6KstYxyS3mPMs0+gjXBjAgf4e+z1NDUHhnKGxrg1Vfh0CGxPnGindmzy6irKyc/P98/aG5paWHSpEk8/fTTzJs373Sd6pDDYoG33oLcXLE+dqz4I+5PbtOOjg6Ki4spLi5Gr9czcuRI0tLShoy7p9lspqCgwH+MxcXFlJSUcODAAaxWKzqdjhkzZjB37lzmzZvHrFmzMBqNg33YEolEIpFIvkNRvl8hxcdDc7OooFheLtbnzoWrrhI5IX1YHVb/GL6kpYTy1vJeE7gA0YZo0sLSSA4R4/ekkCRMOnEzWFVVxdVXX015eTkHDhwYlgnwh0yJY4/XQ421xj+jXtpSSm17bS9vFRBqV0poCommRBJDEkk0JRJnjBvw2XWz2YzZbCY6OpqQkJDjEm6WLl3K/v37efHFFzn77LOPW/RRFGVIC0WSU4fNZaPWWku1tZrqtmoq24QQ0L3csI9AdSApoSmkh6f7PbiigqO+V98dh9tBbXstNdYaKi2V/v7qdHX22letUpMcmkxqaKror/B04o3xffaX1wvffgsffwxWq4P29ibS0jYTE3OIkJAQQkND/W1tbS2PPPIIe/fuRaVSUVVVRUJCwmk4+6GDosC2bfDuu2CziaSxl14KCxf2fbPS1NTE66+/zsqVK+ns7KS4uJiamppe+wUEBJCWlsaYMWNYunQpl19++WkRj71eL5999hkrV65k//797N+/n/r6rtmXhIQEMjMzycjIYNSoUcyZM4dp06b1EMUlEolEIpEMHUpKhJfs9ddDaupgH83QxO2Gjz6C1avFvV1UlOivMWOOsP93qQS6e3n35a0CEBYURnJoMskhyShWhesvvp7UqFQe/fOjxMfHExkZSWRk5HGPuweDISOi9IXdbRcz7xYx815hqaCuvQ6v0rvWsEqlIsYQ4xdW4oxxxBnjiDXEHre44na7+fvf/87DDz9Me7vIJ6HVaomOjiYmJob4+HjOPfdcli5dyogj+Kfv2LGDm266ifz8fCZPnsxFF13E2WefzcyZMzEYBi7DsWT4YnPZqGuvo669zi+a1FhreuXk8KEJ0JAUkuRXdFNCU0gMSfzeeJk43A4aOhqosdZQba2m1iqEkyZbU5/7B6gDSDAl+PsrLSyNpJCkfl0PysvhjTe8vPHGt9TW1tLRsRN4Ha22A4PBgMViwXtYzfPs7GwuvPBCLr74Ys4555yBOOVhQ309vPMOFBSI9ZQU4X3Sl47k9Xp56623uPfee2lqauKCCy4gIiKCESNGMHLkSEaOHElmZiZ2u52ioiKKi4spKipix44drFu3Do1Gw+LFi/nFL37BggULTsn5eDwe5s6dy+bNm8nOzmb8+PGMGTOGMWPGkJ2dTUZGhryOSyQSiUQyzHjiCSgqEpM78+eLyR69frCPamhy8KAoDNDcLNanTxdeKf0Z3ttcNspbyylrLaOqrYoKSwUNHb0rD7a0trB65WrMFWaw4rcAewCxxlie++dzXHLJJQN5WgPGkBZR+sLlcVFtrabCUkF1W7V/QNXh7Oj7oFUqIvQRflElzhhHjCGG6OBowvXhfSbUbGpqIjo6GoC33noLjUZDQ0MDjY2NNDQ0UFpaypo1a3A4HEyYMIE77riDG2+8sdcMpKIofP3117zwwgusWbMGs9lMYGAgs2bN4ve///33bqD1fcTtddNka6Kxo5H6jnq/aFLXXtdnaImPcH04iaZEEkwJJIUkkRKaQqwx9oxPAOtVvJg7zdS3i76q76j3L7faW4/4PJPO5BdMkkOTSQpJIs4Yd9wCU1ubSKy1YQO0tlp4771XWLSok2XL0pkwIYdRo0b5q+10dHTQ1taGxWLBaDSSnJx8kmc//LDb4csvYeVKMXOh0cDixaICT1+Fyfbs2cNPfvITtmzZwjXXXMPf/vY3YmNj+/1+1dXV/Pe//+X111+noKCA7du3M378+AE8I0FBQQGjR4/mzTffZNmyZQP++hKJRCKRSE4/bW3w/vvCcxZEzralS2HWLBni0xd2u7gv/uYb4ZUSFARLlsA55wiP4+N6Lbfd72FfYamgxlpDjbUGu8uO1WqlubmZlpYSqfZgAAAjB0lEQVQWWlpbaG1ppcXcgsqu4pe3/5IpWVOEc4QxlhhDzJBI7THsRJS+UBSFNkebfya/uq2a+o56aq21feaM8BGoDiQyOJLo4GiiDdF+cUWPnj8+8Ec+ev8jtFotTz75JDfccEOPhJHt7e18+eWXvPPOO3z88cfExMTw6quvsmjRoj7fy+v1cuDAAdauXcubb77Jli1bOO+880hPT8dkMvWw0NBQoqKi/C5NUVFR6KVMOiRRFIUOVwfNtmYhltgaaexopKGjgUZbI6321j5D0nyEBYURZ4wj3hTvF00STAnoNWfu521322nsaOzRX77lZltzn55mPoxaI/GmeH8/+cyoPbm8E06n+INYsUL8YQAYjft56qmZ7N+/ldGjR5/U659peL1CaPr0U7B+pwWOHQvXXSfcPvvivffe4+abbyYjI4N//OMfzJ8//4Tf3263M23aNFQqFTt37hzwnCnvvvsu1157LY2NjUQd6YSOgqIoeDweXC4XLpcLo9EoEw5LJBKJRDJEOHBAeNA2fOcckZwsvCyysgb3uIYq5eUi311FhViPiYHLLoNJk44uPhUVFbFp0yZ/1UqfORwOqqqqKCou4mDlQapaq1CMCpgQZgS9UY8+WM/cs+b2mnDTBGiICo7yj+F9bVRwFJH6yNNSQOOMEFGOhKIotDvb/TPaPg+Aho4Gmm3NfSbB6fF8l8KWb7aQtzWPKEMU08dPZ960eSycu5C0uDRUThWtLa1s2bKF++67D4fDQWFh4TErMCiKwn/+8x9effVVWltbsVqtfmtvb+9z0K3X69Hr9QQFBaHT6Xq06enpTJkyhSlTpjB58uRB7/czCbfXjcVuodXeSnNnM822ZsydZpo7v2ttzb2quxyOLlBHdHA0scZYf4iZT00NCjyz8id4FS9tjjZ/P/VlRxM2QYibMYaYHv0Va4wl1hB7UnXp+8LthvXrYflyMTsBkJYGP/gBlJWt5rzzziMoKIh58+axaNEibrjhBiIiIgb0GIYTXq+Yvfnii64bj9hYuOIKyMnp+4+0ra2Nu+66i1dffZXrr7+eF198cUBE4c2bNzN79my++eabAQ/rWbt2LfPnz+fWW28lPT29x2OKomCz2WhqaqK5ublH29bW5r9R6M4Pf/hDXnvttQE9RolEIpFIJCeO2y1y333xBXR+l0YvOxsuuQQyMgb32IYiXi9s3ixyBfrumVNSREjU2LE97wE9Hg9PPvkkDz300HdVLSEwMBCNRoNGo0Gr1ZKQkOAP4c7MzCQ9PZ34+HhiYmIIDw/H6rKKMXx7fQ/P9ObO5qNOUIPwUI/URxKhj/BbZHAkkfpIwoLCMGqNJ+3JckaLKEfDq3hptbcKj4GORv+MeKOtEXOnuUd4UF1dHSWHSqiuqqa1tRVUoEKF4lXAAdiFqRwq/vbo35iRM4PQoFBCdCGE6EIwaAz9/qC8Xq/fpclnvpv0zs5OHA4HDocDu92Ow+HAZrNx8OBBdu/eTed3V4BRo0Yxffp0ZsyYwfTp05k4cSJarXbgO3EY4/F6sDqttDnaaHO0YbFbaLG30Gpv7WFHC7npToguRCii3dRQX2vSmgbd5exk8SpeOpwdtDnaaLW3YnFYevVVq72VNkfbMS9sIC5uUcFRPVRk33JYUNgp7y+HAzZuhK+/hpbvUtBERoo/zhkzuv4ICgoKWL58OStWrGDdunXMnj2b1atXD0uvgs2bN3PnnXdiMpm49dZbueyyy9B1T7d+FDwe2L5diE2+3KpGI1x0EZx9dt+hO4WFhbz88su8/vrr2Gw2nnnmGW6++eYB+2y9Xi+RkZH86le/4oEHHhiQ1+zOww8/zL/+9a8+H9Pr9URFRfk9Bn1taGgoWq22x03Cc889R319PZs3bz4hrxaJRCKRSCSnDqsVPv9cTKp5PGLb2LGwaBFkZsown8Ox2+Grr0TiWcd3NS9GjIALLxQTau3tVi688EI2b97Mvffey8MPP4zB0P+x8LHweD00dzb70yV092xvtDX2WYjjcALVgYQGhRIWFNanhepCMelM6AP1RzzuUyOiZISStzuPuIg4DBoDQYFBw24QaXfb/Z4G3T0QDtUdIq8ojzZnG1qdVniD6ILQBYm2L7dytUrtF1S6m0lnwqg19jJdgO64+8vtdlNQUMDOnTvZsWMH27ZtY8+ePTidTkaOHMnGjRv9eV7ORBRFweay0e5s72U+oaS7tTvb+/3agepAwoLCCNeHE6mP9CuZPlUzPCj8tLiNDSSKotDp7qTD2UG7s50OVwdWhxCVuotL3bf1RxwB8X0P14f3UH8j9BH+PgvXhw+aB47VCmvWiJmHju900rAwEd85e/bR4zu//PJLFi1aRHR0NIsWLWLJkiWce+65REREnJbrm8vlwm63+5X8gICAfr1vQ0MDv//97/n3v//NlClTCAoKYv369URGRvLcc89x1VVXHfG5nZ3ipmL1amhtFdsMBpHzZP58aG9vZvfu3ZSWllJaWkpZWZl/ub6+noiICJYtW8bdd99NWlragPRDQ0OD/zr3+OOP86Mf/Yinn356QF77VLBt2zaWLFlCcHAw/+///T+WLVtG4PEGEkskEolEIjmlNDeLsO6NG4XXBQjv5AsugIkTYRjOn51SrFYhpqxZAz4H3Ph46Oj4iKeeuoa1a1dz1llnndZj8o0Hfd7v3SMHfOv9nSAHMQY06Uxi3K41+cfvIboQAtwBnJN1zgCLKNeHctPNN6HVCO8HtUqNXqPHoDFg0BowaAwEa4J7LQdrgnvtE6DuY4pzCOALW2i1t9LS2duDoc3RhsVhOWLC26MRqA70Cyq+fvH1jW/Zv63b40GBQT0SaTocDl577TVuv/12lixZwueffz6QXTDgKIqC2+v2D+5tLlsP63D13tZdLOnvIN+HSqXCpDX5vYbCgsIIDwr3CyY+NfJ4PIlONy6Py98Xne7OHn3T6ers0U8drg5/X3U4O46ae+RIGLSGXkptuD6cUF2XmmvSmYZUAlxFgdJSWLsWduwQ7psA0dFw/vkimVh/U2ps27aNjz76iOXLl5ObmwuIyl2+/EXdLS0tjaysLLKyssjMzDzp0re//e1veeSRR3psCwgI8Hs9GAwGjEajvzUajej1elavXk1AQAC/+93v+PnPf05gYCAfffQRl19+OU8//TR33XVXr/eqqYF164Tbpi9HTEiISCS2YIFILNbZ2UlmZiY1NTWo1WqSkpJIS0sjPT2d9PR0xo8fz+LFi0/ovBVFobm5mYKCAg4cOEBBQQEFBQXk5eVRWVkJQHh4OFOnTuXBBx9k3rx5x/0epwNf6eYVK1bwwAMP4PF4yM7OZseOHbK6j0QikUgkQ5CmJpE0f/PmrnvGqCjheTt7NphMg3t8Q422NjHZtmYNlJfX89VXX5KYGMITT1zG2WfDUIuC756qweKw+Mfx3ZfbHG3Y3fajvo7T5eS1K14bYBHlklDu/NWduFVuXB7XsZ5yVLQBWoICg/plukAdugAd2gBtD9MF9tx2OkvC+sJGLHaLv+3uDeEzq9NKu7P9pPvL6XDS0tBCfXU9VWVVVJVVYQoyccniS1i0cBF6jV70SYDO3y++Puvef937LEDVe8bbJ3g4PU4cHgcOtwOnx+lfd3qc/m2+9U5XJ3a33W+d7sPWXZ0nNLDvTlBgUC/PHp9iGKoL7eEJZNAaTttg//D+8vdVt37zWfc+6W4Oj8Pfh77lY+X1ORbaAK1frDNqjb29pbqpriataciKmn1hswnRZN06+G7cDUBqqphVmDTp5GYVKisr2bhxoz/c7vAQvEOHDtHyXayQSqUiLS2NsWPHMnPmTGbOnMm0adOOK+Txv//9L1dffbV/PSYmhnnz5jF69GhsNhstLS00NzdjNpv95na7Ofvss3n00UdJT09HrVbj9Xo599xzqaysJD8/3x/S43LBrl1CbCop6Xrf+HhYuFCEOXV3oPjggw+46qqrmDZtGv/3f//H+eef329vk46ODurr66mrq6O2tpby8nLKysp6mPW7jLVqtZr09HSys7MZM2YMU6dOZerUqaSnp582cVNRFFpaWmhsbBSZ41taaG1t9S+bzWYaGxtpamqiqanJv9ze3uXxFhcXx5gxY5g2bRp/+tOfpDeKRCKRSCRDmLY2IQysWdPlvRwQAJMnC0Fl5EgZ6uPD6/Xy1FP/4oEHviQm5lrOPfdygoL0qFQixGfOHBg3ru/w76GKy+Pq4aF/uMd+g6WBB8958NTlRHF5XH4PAp93QYero9fy4fscK/nkyaBWqdEEaNCoNWgCNASqA3stB6oD/euB6kACVAGiVQcQoAo4aqtWqVGhEq1KhQoVK1eu5Nl/PEtOTg7Zo7IJ1geLmHmNFq1Wi8fjoa2tjZa2FpqtzTS3N2PptNDW2UaAPoDk9GTikuMIjw3HpXLh8X63/3c38S0tLTQ2NNL2XaafYEMwcbFxpKenk5aeNqwGv32hCdBg0Bj8Hk0+7xvf4N4nBHQXyBRFQUHBq3h7LXsVb691j+LB4/X0avt6zO114/a6cXldovW4jrju8rhweV3H7SnTX1QqFfpAfQ8PJb2m57pBY+ghlhi1Rgwaw7ALQzoWHg/k54vZg9zcrhmEwECYNk2EoKSmnp4/PUVRaGpqorCwkIKCAgoLC9m7dy/btm3DYrGgUqkYO3YsOTk5jBs3zm+pqalHzLnS2dnJO++8w8qVK1m9ejVNTU39Ph6VSkVoaChGo5GqqipWrVrFggXnUlgoksXu2tXldaJWw4QJMHcujBnTd381NDTw2GOP8e2337Jnzx4URSEiIgK9Xo9WK0Idu7eKotDQ0EBdXV0PcQEgODhYXKvS0npYdnb2gHjxHIu2tjaqqqr8VllZSWVlJRUVFf7WZuv9nxQYGEh4eDjh4eFER0cTHR1NVFSUv42KiiIjI4PRo0d/rxMSSyQSiUQyXHE6xaTc2rVQVta1PSJCTDDNmCEmnL7PPProo/zmN78hKCiIP//5UdLSLqW0NJXCwq4bSKMRpk+HmTNFQtrhLkAN2cSyXsVLp6uTTndnr9n3Iy13n80/3BvC6XGetJfDyfDpZ59SV1t31H0CAgLQBenQaXU9WofdQV19HQ67A1RgMprosHXg9Yjz0eq04iY+KprYuFhiY2MxGk6u5Kvk1BGoDjyqp1QvD6sAHXqN3r/c/TGD1nBCOXTOJNxuKCyE3buFdR+fJyQI18vZs0Uuj6GA1+ulsLCQzZs3s23bNvbt28e+ffuwWCwAGAwGUlJSCA8PJywsrIf5BuyJiYkkJib6vSN0Op3fugsXdru9l+eE2dxKdPR0UlKWsn07fPe2gEiue9ZZor/Cwvp/TmazmXXr1rF//36cTqffHA6Hf9nr9RITE0N8fDxxcXF+i42NHdC8MjU1NWzdutWfF6qzsxOv19undXR0UF1d7fd68REbG0tycjIpKSkkJyf7LTY21v8ZhIeHD2iiNIlEIpFIJEObigrh4bx9e9fEE4gSydOmidwph1Xj/V5w6NAhXnzxRdasWcP27dvxeDxMnjyZ55//mLKyZLZt66roA6KPJk8Wlpw8PAWVISuiDDSKouBRPH5hpbuXwNE8CHzLPi8Er+Lt01uhe+tVvH16PNgddqqrq6msqqSqqoriQ8VYrVbSR6QzZvQYEhMTiYmJ6bP8p29Wu6Kigob6BiIjIomNjSU+Np6QkBDUKnUPD5judri3zNE8anweOoHqwGMODhRFQa1S41W8/v7yKMJLw9cX3Ze7e3B076e++qqvx3q8N0f/KvqOzecJpFKp+vQQ6r7cHy8jX+vzUOrutXS4B1P39e4iyVDKFzJcsdvhwAEhmuTmdpWmA5G7w6d0JyUNjwuzoihUV1ezb98+8vLyqK4WlcD6Mkt31QMwmUz+QX5SUhKjRo3ye7UkJyejUqlwuUR/7dkj+qu7ZhAcDFOnipmUjIyB7y+Hw0FxcbHfI6e0tNQvqvRlGo2GkJAQQkNDCQkJ8VtoaChhYWH+8+x+nVQUhVdffZXf//73/pwp8fHxTJ06ldDQUNRqdZ8WFBREUlISiYmJJCUlkZSUREJCgqxmJpFIJBKJ5Ii4XOJ+autWyMvrSkQLwitl4kRhp8v7eShhtVpZu3Ytd955JxaLhd/97nfceONNVFWFsHmzuBd1d8tGEBUlQuwnTBD3ocMlge/3RkQZijidTt59912eeeYZ9uzZg/e7X2BcXBxjx47l0UcfZerUqYN8lBLJ4KMoUFUlQnXy80XODl8ZOhDCycSJQtHOyho+F+ATweVyUVtb6w856R5+UllZSWFh4XeeFXHo9VOJjZ2PwTCRsLBYIiIiiYiIIDxcx/jxMGWKKON3Muk5PB5Pj7wm3duSkhJKS0v917awsDAyMzPR6/VHFDacTidtbW1YLBZ/29ldJfuO6OhoUlJSSElJwWw2s3btWq677jquvPJKpk+fTmJi4omflEQikUgkEkk/aG8XIdF79kBBQe/70zFjhI0eLda/L5jNZn7xi1/w7rvvEhwczPXXX8/ixYuZNWsBhw4Z2b1bCFCubulA9XrRT2PHCgsPH7zjPxZSRBki2O12ioqKyM/PZ//+/bz33nuEhoaydetW6S4u+d6hKNDQAEVFcPCg8KLo7gYIorrOhAlCOElPP7OFk/7Q0iL6a/9+hS1b2igvb8VsbvEnmW1tLcXr3QnsISnJzqRJOdx0000sXbr0iDlYDsdsNpObm9vD9u3b10PkiIyMJDU11V+pJysri+zsbLKysoiOjj6h65nL5aKtrQ2z2UxVVRUVFRU98pVYrVYeeOABlixZctyvLZFIJBKJRDIQ2Gywb5/wlM7PB4ej5+NJSUJQycqCESOEN/CZTlVVFc899xzvvPMOZWVlaDQaZs+ezYIFC5g2bQ4m00yKiozs29eVwNdHQoLoq5EjhQ0laUGKKEMQi8XCeeedx6FDh6irq0PT3/qrEskwxesVniZFRVBcLNrD0lSg04kL6dix4g8oJmZwjnUo4PWKMsTFxcJKSsBs7rlPYKD4w/HNfsTGujh4sJDc3Fzy8vJYt24dmzZtYsyYMTzwwANce+21fjFFURQKCgrYtWuXXyzxhRmBKOvsS4qbk5NDVlYWaWlppKamYjTKfEwSiUQikUi+37jd4v5s/35hFRU9H1epIDERMjO7bCh7XpwsiqJQXFzM119/zddff82GDRswm82oVCrGjRvHzJmzGTFiPgbDdNrbUykvD+Bw5SE2tktQycwUufwGy9dAiihDDLvdzgUXXEBubi6rV69m8uTJg31IEsmAoihQVwfl5V1WUdHTnQ+ECDBihLhIZmeLOMnvY1VYRYGmJtFHvr4qLe2Z0AyEJ05yMowaJYSTkSPhWPrrpk2beOSRR1i+fDmLFy/m//7v//jqq69Yvny5P7dISkoKOTk5jB8/nvHjxzNhwgRGjRolS/RKJBKJRCKR9BOrVYT77N8vJsAaGnrvEx4OaWmiek1qqmhNptN+qKcFRVE4ePAgmzZtYtOmTWzdupX8/Hy8Xi96vZ6cnFnExMxFr5+AomTi8cRiMoWi0+n8r2E0in5KTRX9lpp6fIURTgYpogwxfvWrX/HPf/6TVatWMXv27ME+HInkpHA4oLZWeE1UV3cJAYe7NwIEBQnBxKcwp6Z+/0QTt1v8qXbvq4qKnolzfeh0XSJTZqYIaer2v3JcrFixghtuuIHm5mYyMzNZsmQJixYtYsaMGYSdrn8jiUQikUgkku8JbW3CU8XnhV1Z2TNBrY/w8C5BJTlZhLgMpgfGqaSjo4Ndu3axfft2duzYQVFRESUlJbS0tAB6IBODYRKRkTOZMeMqwsOjer1GWJjor6Qk0VeJicJ7PSBgYI/1jBBRnE4nFosFlUpFVFTvzhwueDweYmJiMJlMXHLJJURHRxMVFUV0dLR/OTY2dlifo+TMxOWC+nohlvgEk5oa4UHRF1qt+CPwqcZpaeICdyb+IfSFr798AlNtrbCGhr7/QAMDxZ+Ab2bC9+cwkHlgzGYzLS0tZGRkDNyLSiQSiUQikUiOicPR20u7vr7vfbVaUQUoPl4IBb72TBVXWlpaKCkp8dt///tfysqqeOSR19FoMrFaI2huDqG5WQv07oCAAIiL6xJVEhNFn0VGnvi99CkVUQoKCmhvb2f8+PFER0f32re8vJwvv/wSl8vF3LlzycnJ6ZV00Gw289lnn7F582bMZjMWi8Vf5tO3bO/m1z5y5EjmzZvHvHnzWLBgwbCq0KAoCj/96U85cOAAjY2NNDU10dTUhKd7mmdgzpw53HfffSxZsqTfCSElkpPF4YDGRmENDT2XW1roFbfoIySk6wKfkiIEk7i4Mz8RrMslRCRfPzU2ivX6erF8pP4KChL9lZLSZQkJA6+gSyQSiUQikUiGLna7EFN8VlUl7iO7lwjujkYj8oZER/e2iIgz597bYrFw0UUXsWHDhh7bAwMNhIWNx2AYQ1DQCAIDU4iOnkBaWhZabW93bbVaITjYhlZrITCwiZgYNTk5cYweHUlUlOqo/XXKRJTrr7+et99+2789NjaWcePGMX78eIKCgli+fDm5ubkEBgb6y1omJCSwaNEiFi1ahNls5oMPPuCbb77B4/Ewbtw4YmNjCQ0NJSwsjNDQUL/51u12O+vXr2ft2rXk5+cDkJqaysyZM5k1axazZs0iJyeHoKCgY53GkMHr9WKxWPyiSllZGf/617/YuHEj8fHxJCQkEBERQWRkpL89fDk4OJiAgAACAgJQq9VHbQMDAwkNDR3s05YMAna7SE7a0tLVtrR0CSUWy9GfHxwsBvs+ldcnnJypsZwul+if1taufvKJJk1NYvvRCA7uOYPgs7CwM3MWQSKRSCQSiURycni94l7T58nsa+vqjiyugBBQoqK6RJWoKCGshIcLCw0dXiKL1+ulsrKS5uZmmpubaWpq8i/7rLq6mnXr1hMUlMD8+dfjckVTV6emuVmHxRJMZ6eTvuSNwEANISFGoqNVJCZqSE01MXJkBGPGxDJ6dCzR0QGoVG2Ehw+4iPJPtFo7V155PhMnpmM2l1JbW0BlZT6HDu2mvb2aCy6YzaWXLuGCCy5Ap9Oxfv16VqxYwfLlyykoKECtVjNv3jyuuuoqLrvsMuLi4o6rYxsbG1m7di1btmxh8+bN7Ny5E8d3iRhCQ0OJiYkhNja2l8XFxZGWlkZGRsaQrjKxYcMGVqxY0eOLYjab/cudfSVR6Ccvv/wyt9xyywAerWQwURRRMqytTVh3gaS7aHJ4otK+MBjEhTcmRphvOTpaJHc6Uwb/dntPgcTXdrfDy7D1RVBQ37MBCQlCXDpT+ksikUgkEolEMnj4xJXu3uLdPaGPJrCAuCcNDRWTeT5xJSysS2TxCS3DLV9hdXU1r776Kh9++CF6vd4/3o+NjcNkSkGnSyYwMB6vN4qaGjfFxW1UVtppaWmnra2NtrY22tutfrFFrVZjMpkwmQxUVV0y0CLKf7jqqh8Qfow6TQaD+DBCQ4XLv2/ZZqsjOlpLWloEoaGg15/8YMPpdLJnzx4KCgqor6/v0xobG/F2S0gQGxtLZmYmGRkZZGZmkp6eTkREBGFhYX7vl7CwMIKDg3uFIR2OoihYLBZqa2upq6vzm1qtxmg0YjAYMBqNvcy3/XjLHHd2dvpFlc7OTjweD16vF4/Hg9vtpr6+nurqaqqqqvxWWlpKY2Mj27ZtY9q0aSfUz5LTg9crsnxbrV3iSFtb3+tWa995NvoiOLjrQum7gHYXSoZrPXu3G9rbu/rjWNZX4tu+0Gi6+isqqqfC7+svKZRIJBKJRCKRSAYLRRETgocLK76JwdZWOCx7xBHR68VEoMkkxu++5cPXQ0KG732wr798glR9vZviYjPFxS1UVLRTV2enra2dsrILB1pEmcj69bl4vUYsFvzW1tbV9veDAuFaZDCID8Jg6L3cff3wfY7HLcnj8dDU1ERpaSnFxcWUlJT0aBsbG/t8XkBAQC9hJTQ0FEVRqKur8wsnjsNGZsHfjUhtNtsxj02r1WI0GjGZTCQnJ5Oens6IESNIT0/3W2JiIh6Ph5qaGqqqqqisrPQLJL7lmpoa6urqcB8mR0ZFRREfH8/ixYt59NFH+99pkpPC5RIeDTbb8bfH/jX2JDhYXNC6CyTd3fgiIk68usvpQFFEf9ls/bOOji5RpB8/sV7o9V1941PiD1fkB0LglUgkEolEIpFIBgtFEffLh3tdd7fW1mN7sxyOWi081X2Cim983t182/T6no8P5VyAXi9UVraRlnaaq/MoihjUHC6udF/3bTuRwU93goLEB6LXi+W+TKc78mO+x7VasNk6aG1t9Se27d72tawoCvHx8cTHxxMXF0dcXJx/OT4+3h8u5PF4sNlsdHR00N7e3sMO32axWKioqKC0tJTS0lJqa2v956rRaHC73T1iu3yiS1JSEklJSSQmJvqPqfuxabXak+vo7xFerwj3cDh6tt3taNu6D/KP92LUHZWq68LkU377Wg4JEfsNlvtd9/7qbodv66uPultn58n1l+9Cfrhi7tvm6zdfnw6j1EkSiUQikUgkEskpQ1HEvbjP671729182052DK/T9RZcuo/ndbquMXxfrW9Zqz01E56nKLFsInV11UREhBAQcHJJag6fqe9uh8/Od99+EilB+kSl6i2saDTig9FqxbJv/Xi3d38sMPD4PujOzk7Kysr8oopOpyMpKYnk5GSSk5NPW5npoYDHI74vTmfPtj/b3O4j73O4GOJyDexxq9W91dgjeV5132Y0nvhvS1HEOfvO80TN6Ty2OHIq+6u7cq3Xd/WPb9uZ4FIokUgkEolEIpEMJ7qH0re1dY3XOzt7juH7mjQdaI4kuPjsaGPzIz1mt58ST5T/cNNNN/u9G1QqIQ4EBAgLDOxaH+jtvlal6jnAczq71rsvH+mxk5nxPll8H9TxnG9fbffnqtV9m0rVNbA82QGm7/mKIrwPDm+7m8fTZW53z+XD1w9fPnybT/Tob96PU4FG0/UjPLzty7r/iAMDe/ZJ9/M7Xjv8uUcTSk43avXR1eLuF7i+lGefOKLTSTFEIpFIJBKJRCI50/B6u4SWvqwvD/YjbTve1AfHg9Pp5LXXdP0SUU44GMCXy2AwBm7DEdlXw4/h/JmpVF3C3YlYf0QRnW74ZfOWSCQSiUQikUgkpw9fLlSD4eRex6c/HEto8XnN+xwpDl8+0mPHk9/1uHKiNDdbMBhCengPHMmr4EgeBgO9/UgeEv1pT6WSJRle+Lx3fNbdo8e3fHjrM59n0LGsuxfR8Vr35/qEjsDALvezw5d9nlsSiUQikUgkEolEIjk6x5MT5bjmkQMDu2aizwR8Ikp3UaW/Akxf9HfQ2td+xzPgPTx0p3vrs+N9zf5wpFCe7utH6pujCVbdH+vvfn09drzix+HrEolEIpFIJBKJRCKRHI3vtTO+b+A8lMstDSV8XhcSiUQikUgkEolEIpF8HzmJGjsSiUQikUgkEolEIpFIJN8fpIgikUgkEolEIpFIJBKJRNIPpIgikUgkEolEIpFIJBKJRNIPpIgikUgkEolEIpFIJBKJRNIPpIgikUgkEolEIpFIJBKJRNIPpIgikUgkEolEIpFIJBKJRNIPjqvEcVtb26k6DolEIpFIJBKJRCKRSCSS087xaB39ElG0Wi1xcXEkJyef8EFJJBKJRCKRSCQSiUQikQxF4uLi0Gq1x9xPpSiK0p8XtNvtOJ3Okz4wiUQikUgkEolEIpFIJJKhhFarJSgo6Jj79VtEkUgkEolEIpFIJBKJRCL5PiMTy0okEolEIpFIJBKJRCKR9AMpokgkEolEIpFIJBKJRCKR9AMpokgkEolEIpFIJBKJRCKR9AMpokgkEolEIpFIJBKJRCKR9AMpokgkEolEIpFIJBKJRCKR9AMpokgkEolEIpFIJBKJRCKR9AMpokgkEolEIpFIJBKJRCKR9IP/D+OQzSNSoXHBAAAAAElFTkSuQmCC",
-      "text/plain": [
-       "<Figure size 1400x1400 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/opt/conda/lib/python3.12/site-packages/cartopy/io/__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/110m_physical/ne_110m_coastline.zip\n",
+      "  warnings.warn(f'Downloading: {url}', DownloadWarning)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Error in callback <function _draw_all_if_interactive at 0x7a721a87db20> (for post_execute), with arguments args (),kwargs {}:\n"
+     ]
+    },
+    {
+     "ename": "URLError",
+     "evalue": "<urlopen error [Errno -3] Temporary failure in name resolution>",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mgaierror\u001b[0m                                  Traceback (most recent call last)",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/urllib/request.py:1344\u001b[0m, in \u001b[0;36mAbstractHTTPHandler.do_open\u001b[0;34m(self, http_class, req, **http_conn_args)\u001b[0m\n\u001b[1;32m   1343\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 1344\u001b[0m     \u001b[43mh\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[43mreq\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_method\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mreq\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mselector\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mreq\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1345\u001b[0m \u001b[43m              \u001b[49m\u001b[43mencode_chunked\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreq\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhas_header\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mTransfer-encoding\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1346\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mOSError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m err: \u001b[38;5;66;03m# timeout error\u001b[39;00m\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/http/client.py:1331\u001b[0m, in \u001b[0;36mHTTPConnection.request\u001b[0;34m(self, method, url, body, headers, encode_chunked)\u001b[0m\n\u001b[1;32m   1330\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Send a complete request to the server.\"\"\"\u001b[39;00m\n\u001b[0;32m-> 1331\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_send_request\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbody\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mencode_chunked\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/http/client.py:1377\u001b[0m, in \u001b[0;36mHTTPConnection._send_request\u001b[0;34m(self, method, url, body, headers, encode_chunked)\u001b[0m\n\u001b[1;32m   1376\u001b[0m     body \u001b[38;5;241m=\u001b[39m _encode(body, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mbody\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m-> 1377\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mendheaders\u001b[49m\u001b[43m(\u001b[49m\u001b[43mbody\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mencode_chunked\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mencode_chunked\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/http/client.py:1326\u001b[0m, in \u001b[0;36mHTTPConnection.endheaders\u001b[0;34m(self, message_body, encode_chunked)\u001b[0m\n\u001b[1;32m   1325\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m CannotSendHeader()\n\u001b[0;32m-> 1326\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_send_output\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmessage_body\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mencode_chunked\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mencode_chunked\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/http/client.py:1085\u001b[0m, in \u001b[0;36mHTTPConnection._send_output\u001b[0;34m(self, message_body, encode_chunked)\u001b[0m\n\u001b[1;32m   1084\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_buffer[:]\n\u001b[0;32m-> 1085\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmsg\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1087\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m message_body \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m   1088\u001b[0m \n\u001b[1;32m   1089\u001b[0m     \u001b[38;5;66;03m# create a consistent interface to message_body\u001b[39;00m\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/http/client.py:1029\u001b[0m, in \u001b[0;36mHTTPConnection.send\u001b[0;34m(self, data)\u001b[0m\n\u001b[1;32m   1028\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mauto_open:\n\u001b[0;32m-> 1029\u001b[0m     \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconnect\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1030\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/http/client.py:1465\u001b[0m, in \u001b[0;36mHTTPSConnection.connect\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m   1463\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mConnect to a host on a given (SSL) port.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m-> 1465\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconnect\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1467\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_tunnel_host:\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/http/client.py:995\u001b[0m, in \u001b[0;36mHTTPConnection.connect\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    994\u001b[0m sys\u001b[38;5;241m.\u001b[39maudit(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhttp.client.connect\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28mself\u001b[39m, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhost, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mport)\n\u001b[0;32m--> 995\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msock \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_create_connection\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    996\u001b[0m \u001b[43m    \u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhost\u001b[49m\u001b[43m,\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mport\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtimeout\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msource_address\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    997\u001b[0m \u001b[38;5;66;03m# Might fail in OSs that don't implement TCP_NODELAY\u001b[39;00m\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/socket.py:828\u001b[0m, in \u001b[0;36mcreate_connection\u001b[0;34m(address, timeout, source_address, all_errors)\u001b[0m\n\u001b[1;32m    827\u001b[0m exceptions \u001b[38;5;241m=\u001b[39m []\n\u001b[0;32m--> 828\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m res \u001b[38;5;129;01min\u001b[39;00m \u001b[43mgetaddrinfo\u001b[49m\u001b[43m(\u001b[49m\u001b[43mhost\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mport\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mSOCK_STREAM\u001b[49m\u001b[43m)\u001b[49m:\n\u001b[1;32m    829\u001b[0m     af, socktype, proto, canonname, sa \u001b[38;5;241m=\u001b[39m res\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/socket.py:963\u001b[0m, in \u001b[0;36mgetaddrinfo\u001b[0;34m(host, port, family, type, proto, flags)\u001b[0m\n\u001b[1;32m    962\u001b[0m addrlist \u001b[38;5;241m=\u001b[39m []\n\u001b[0;32m--> 963\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m res \u001b[38;5;129;01min\u001b[39;00m \u001b[43m_socket\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgetaddrinfo\u001b[49m\u001b[43m(\u001b[49m\u001b[43mhost\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mport\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfamily\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mtype\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mproto\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mflags\u001b[49m\u001b[43m)\u001b[49m:\n\u001b[1;32m    964\u001b[0m     af, socktype, proto, canonname, sa \u001b[38;5;241m=\u001b[39m res\n",
+      "\u001b[0;31mgaierror\u001b[0m: [Errno -3] Temporary failure in name resolution",
+      "\nDuring handling of the above exception, another exception occurred:\n",
+      "\u001b[0;31mURLError\u001b[0m                                  Traceback (most recent call last)",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/matplotlib/pyplot.py:197\u001b[0m, in \u001b[0;36m_draw_all_if_interactive\u001b[0;34m()\u001b[0m\n\u001b[1;32m    195\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_draw_all_if_interactive\u001b[39m() \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m    196\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m matplotlib\u001b[38;5;241m.\u001b[39mis_interactive():\n\u001b[0;32m--> 197\u001b[0m         \u001b[43mdraw_all\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/matplotlib/_pylab_helpers.py:132\u001b[0m, in \u001b[0;36mGcf.draw_all\u001b[0;34m(cls, force)\u001b[0m\n\u001b[1;32m    130\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m manager \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mget_all_fig_managers():\n\u001b[1;32m    131\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m force \u001b[38;5;129;01mor\u001b[39;00m manager\u001b[38;5;241m.\u001b[39mcanvas\u001b[38;5;241m.\u001b[39mfigure\u001b[38;5;241m.\u001b[39mstale:\n\u001b[0;32m--> 132\u001b[0m         \u001b[43mmanager\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcanvas\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdraw_idle\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/matplotlib/backend_bases.py:1893\u001b[0m, in \u001b[0;36mFigureCanvasBase.draw_idle\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1891\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_is_idle_drawing:\n\u001b[1;32m   1892\u001b[0m     \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_idle_draw_cntx():\n\u001b[0;32m-> 1893\u001b[0m         \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdraw\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/matplotlib/backends/backend_agg.py:388\u001b[0m, in \u001b[0;36mFigureCanvasAgg.draw\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    385\u001b[0m \u001b[38;5;66;03m# Acquire a lock on the shared font cache.\u001b[39;00m\n\u001b[1;32m    386\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtoolbar\u001b[38;5;241m.\u001b[39m_wait_cursor_for_draw_cm() \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtoolbar\n\u001b[1;32m    387\u001b[0m       \u001b[38;5;28;01melse\u001b[39;00m nullcontext()):\n\u001b[0;32m--> 388\u001b[0m     \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfigure\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdraw\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrenderer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    389\u001b[0m     \u001b[38;5;66;03m# A GUI class may be need to update a window using this draw, so\u001b[39;00m\n\u001b[1;32m    390\u001b[0m     \u001b[38;5;66;03m# don't forget to call the superclass.\u001b[39;00m\n\u001b[1;32m    391\u001b[0m     \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39mdraw()\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/matplotlib/artist.py:95\u001b[0m, in \u001b[0;36m_finalize_rasterization.<locals>.draw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m     93\u001b[0m \u001b[38;5;129m@wraps\u001b[39m(draw)\n\u001b[1;32m     94\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdraw_wrapper\u001b[39m(artist, renderer, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m---> 95\u001b[0m     result \u001b[38;5;241m=\u001b[39m \u001b[43mdraw\u001b[49m\u001b[43m(\u001b[49m\u001b[43martist\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrenderer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     96\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m renderer\u001b[38;5;241m.\u001b[39m_rasterizing:\n\u001b[1;32m     97\u001b[0m         renderer\u001b[38;5;241m.\u001b[39mstop_rasterizing()\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/matplotlib/artist.py:72\u001b[0m, in \u001b[0;36mallow_rasterization.<locals>.draw_wrapper\u001b[0;34m(artist, renderer)\u001b[0m\n\u001b[1;32m     69\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m artist\u001b[38;5;241m.\u001b[39mget_agg_filter() \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m     70\u001b[0m         renderer\u001b[38;5;241m.\u001b[39mstart_filter()\n\u001b[0;32m---> 72\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mdraw\u001b[49m\u001b[43m(\u001b[49m\u001b[43martist\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrenderer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     73\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m     74\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m artist\u001b[38;5;241m.\u001b[39mget_agg_filter() \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/matplotlib/figure.py:3154\u001b[0m, in \u001b[0;36mFigure.draw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m   3151\u001b[0m         \u001b[38;5;66;03m# ValueError can occur when resizing a window.\u001b[39;00m\n\u001b[1;32m   3153\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpatch\u001b[38;5;241m.\u001b[39mdraw(renderer)\n\u001b[0;32m-> 3154\u001b[0m \u001b[43mmimage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_draw_list_compositing_images\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   3155\u001b[0m \u001b[43m    \u001b[49m\u001b[43mrenderer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43martists\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msuppressComposite\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   3157\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m sfig \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msubfigs:\n\u001b[1;32m   3158\u001b[0m     sfig\u001b[38;5;241m.\u001b[39mdraw(renderer)\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/matplotlib/image.py:132\u001b[0m, in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, artists, suppress_composite)\u001b[0m\n\u001b[1;32m    130\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m not_composite \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m has_images:\n\u001b[1;32m    131\u001b[0m     \u001b[38;5;28;01mfor\u001b[39;00m a \u001b[38;5;129;01min\u001b[39;00m artists:\n\u001b[0;32m--> 132\u001b[0m         \u001b[43ma\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdraw\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrenderer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    133\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    134\u001b[0m     \u001b[38;5;66;03m# Composite any adjacent images together\u001b[39;00m\n\u001b[1;32m    135\u001b[0m     image_group \u001b[38;5;241m=\u001b[39m []\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/matplotlib/artist.py:72\u001b[0m, in \u001b[0;36mallow_rasterization.<locals>.draw_wrapper\u001b[0;34m(artist, renderer)\u001b[0m\n\u001b[1;32m     69\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m artist\u001b[38;5;241m.\u001b[39mget_agg_filter() \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m     70\u001b[0m         renderer\u001b[38;5;241m.\u001b[39mstart_filter()\n\u001b[0;32m---> 72\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mdraw\u001b[49m\u001b[43m(\u001b[49m\u001b[43martist\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrenderer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     73\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m     74\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m artist\u001b[38;5;241m.\u001b[39mget_agg_filter() \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/cartopy/mpl/geoaxes.py:535\u001b[0m, in \u001b[0;36mGeoAxes.draw\u001b[0;34m(self, renderer, **kwargs)\u001b[0m\n\u001b[1;32m    530\u001b[0m         \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mimshow(img, extent\u001b[38;5;241m=\u001b[39mextent, origin\u001b[38;5;241m=\u001b[39morigin,\n\u001b[1;32m    531\u001b[0m                     transform\u001b[38;5;241m=\u001b[39mfactory\u001b[38;5;241m.\u001b[39mcrs, \u001b[38;5;241m*\u001b[39mfactory_args[\u001b[38;5;241m1\u001b[39m:],\n\u001b[1;32m    532\u001b[0m                     \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mfactory_kwargs)\n\u001b[1;32m    533\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_done_img_factory \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[0;32m--> 535\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdraw\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrenderer\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrenderer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/matplotlib/artist.py:72\u001b[0m, in \u001b[0;36mallow_rasterization.<locals>.draw_wrapper\u001b[0;34m(artist, renderer)\u001b[0m\n\u001b[1;32m     69\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m artist\u001b[38;5;241m.\u001b[39mget_agg_filter() \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m     70\u001b[0m         renderer\u001b[38;5;241m.\u001b[39mstart_filter()\n\u001b[0;32m---> 72\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mdraw\u001b[49m\u001b[43m(\u001b[49m\u001b[43martist\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrenderer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     73\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m     74\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m artist\u001b[38;5;241m.\u001b[39mget_agg_filter() \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/matplotlib/axes/_base.py:3070\u001b[0m, in \u001b[0;36m_AxesBase.draw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m   3067\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m artists_rasterized:\n\u001b[1;32m   3068\u001b[0m     _draw_rasterized(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfigure, artists_rasterized, renderer)\n\u001b[0;32m-> 3070\u001b[0m \u001b[43mmimage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_draw_list_compositing_images\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   3071\u001b[0m \u001b[43m    \u001b[49m\u001b[43mrenderer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43martists\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfigure\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msuppressComposite\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   3073\u001b[0m renderer\u001b[38;5;241m.\u001b[39mclose_group(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124maxes\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m   3074\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstale \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/matplotlib/image.py:132\u001b[0m, in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, artists, suppress_composite)\u001b[0m\n\u001b[1;32m    130\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m not_composite \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m has_images:\n\u001b[1;32m    131\u001b[0m     \u001b[38;5;28;01mfor\u001b[39;00m a \u001b[38;5;129;01min\u001b[39;00m artists:\n\u001b[0;32m--> 132\u001b[0m         \u001b[43ma\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdraw\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrenderer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    133\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    134\u001b[0m     \u001b[38;5;66;03m# Composite any adjacent images together\u001b[39;00m\n\u001b[1;32m    135\u001b[0m     image_group \u001b[38;5;241m=\u001b[39m []\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/matplotlib/artist.py:72\u001b[0m, in \u001b[0;36mallow_rasterization.<locals>.draw_wrapper\u001b[0;34m(artist, renderer)\u001b[0m\n\u001b[1;32m     69\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m artist\u001b[38;5;241m.\u001b[39mget_agg_filter() \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m     70\u001b[0m         renderer\u001b[38;5;241m.\u001b[39mstart_filter()\n\u001b[0;32m---> 72\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mdraw\u001b[49m\u001b[43m(\u001b[49m\u001b[43martist\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrenderer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     73\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m     74\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m artist\u001b[38;5;241m.\u001b[39mget_agg_filter() \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/cartopy/mpl/feature_artist.py:152\u001b[0m, in \u001b[0;36mFeatureArtist.draw\u001b[0;34m(self, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m    150\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m:\n\u001b[1;32m    151\u001b[0m     warnings\u001b[38;5;241m.\u001b[39mwarn(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mUnable to determine extent. Defaulting to global.\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m--> 152\u001b[0m geoms \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_feature\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mintersecting_geometries\u001b[49m\u001b[43m(\u001b[49m\u001b[43mextent\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    154\u001b[0m \u001b[38;5;66;03m# Combine all the keyword args in priority order.\u001b[39;00m\n\u001b[1;32m    155\u001b[0m prepared_kwargs \u001b[38;5;241m=\u001b[39m style_merge(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_feature\u001b[38;5;241m.\u001b[39mkwargs,\n\u001b[1;32m    156\u001b[0m                               \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_kwargs,\n\u001b[1;32m    157\u001b[0m                               kwargs)\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/cartopy/feature/__init__.py:305\u001b[0m, in \u001b[0;36mNaturalEarthFeature.intersecting_geometries\u001b[0;34m(self, extent)\u001b[0m\n\u001b[1;32m    298\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m    299\u001b[0m \u001b[38;5;124;03mReturns an iterator of shapely geometries that intersect with\u001b[39;00m\n\u001b[1;32m    300\u001b[0m \u001b[38;5;124;03mthe given extent.\u001b[39;00m\n\u001b[1;32m    301\u001b[0m \u001b[38;5;124;03mThe extent is assumed to be in the CRS of the feature.\u001b[39;00m\n\u001b[1;32m    302\u001b[0m \u001b[38;5;124;03mIf extent is None, the method returns all geometries for this dataset.\u001b[39;00m\n\u001b[1;32m    303\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m    304\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mscaler\u001b[38;5;241m.\u001b[39mscale_from_extent(extent)\n\u001b[0;32m--> 305\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mintersecting_geometries\u001b[49m\u001b[43m(\u001b[49m\u001b[43mextent\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/cartopy/feature/__init__.py:108\u001b[0m, in \u001b[0;36mFeature.intersecting_geometries\u001b[0;34m(self, extent)\u001b[0m\n\u001b[1;32m    105\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m extent \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m np\u001b[38;5;241m.\u001b[39misnan(extent[\u001b[38;5;241m0\u001b[39m]):\n\u001b[1;32m    106\u001b[0m     extent_geom \u001b[38;5;241m=\u001b[39m sgeom\u001b[38;5;241m.\u001b[39mbox(extent[\u001b[38;5;241m0\u001b[39m], extent[\u001b[38;5;241m2\u001b[39m],\n\u001b[1;32m    107\u001b[0m                             extent[\u001b[38;5;241m1\u001b[39m], extent[\u001b[38;5;241m3\u001b[39m])\n\u001b[0;32m--> 108\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m (geom \u001b[38;5;28;01mfor\u001b[39;00m geom \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgeometries\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mif\u001b[39;00m\n\u001b[1;32m    109\u001b[0m             geom \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m extent_geom\u001b[38;5;241m.\u001b[39mintersects(geom))\n\u001b[1;32m    110\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    111\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgeometries()\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/cartopy/feature/__init__.py:287\u001b[0m, in \u001b[0;36mNaturalEarthFeature.geometries\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    285\u001b[0m key \u001b[38;5;241m=\u001b[39m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mname, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcategory, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mscale)\n\u001b[1;32m    286\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m key \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m _NATURAL_EARTH_GEOM_CACHE:\n\u001b[0;32m--> 287\u001b[0m     path \u001b[38;5;241m=\u001b[39m \u001b[43mshapereader\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnatural_earth\u001b[49m\u001b[43m(\u001b[49m\u001b[43mresolution\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mscale\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    288\u001b[0m \u001b[43m                                     \u001b[49m\u001b[43mcategory\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcategory\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    289\u001b[0m \u001b[43m                                     \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    290\u001b[0m     geometries \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mtuple\u001b[39m(shapereader\u001b[38;5;241m.\u001b[39mReader(path)\u001b[38;5;241m.\u001b[39mgeometries())\n\u001b[1;32m    291\u001b[0m     _NATURAL_EARTH_GEOM_CACHE[key] \u001b[38;5;241m=\u001b[39m geometries\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/cartopy/io/shapereader.py:290\u001b[0m, in \u001b[0;36mnatural_earth\u001b[0;34m(resolution, category, name)\u001b[0m\n\u001b[1;32m    286\u001b[0m ne_downloader \u001b[38;5;241m=\u001b[39m Downloader\u001b[38;5;241m.\u001b[39mfrom_config((\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mshapefiles\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnatural_earth\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m    287\u001b[0m                                         resolution, category, name))\n\u001b[1;32m    288\u001b[0m format_dict \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mconfig\u001b[39m\u001b[38;5;124m'\u001b[39m: config, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcategory\u001b[39m\u001b[38;5;124m'\u001b[39m: category,\n\u001b[1;32m    289\u001b[0m                \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mname\u001b[39m\u001b[38;5;124m'\u001b[39m: name, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mresolution\u001b[39m\u001b[38;5;124m'\u001b[39m: resolution}\n\u001b[0;32m--> 290\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mne_downloader\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[43m(\u001b[49m\u001b[43mformat_dict\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/cartopy/io/__init__.py:203\u001b[0m, in \u001b[0;36mDownloader.path\u001b[0;34m(self, format_dict)\u001b[0m\n\u001b[1;32m    200\u001b[0m     result_path \u001b[38;5;241m=\u001b[39m target_path\n\u001b[1;32m    201\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    202\u001b[0m     \u001b[38;5;66;03m# we need to download the file\u001b[39;00m\n\u001b[0;32m--> 203\u001b[0m     result_path \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43macquire_resource\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtarget_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mformat_dict\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    205\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result_path\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/cartopy/io/shapereader.py:343\u001b[0m, in \u001b[0;36mNEShpDownloader.acquire_resource\u001b[0;34m(self, target_path, format_dict)\u001b[0m\n\u001b[1;32m    339\u001b[0m target_dir\u001b[38;5;241m.\u001b[39mmkdir(parents\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, exist_ok\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[1;32m    341\u001b[0m url \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39murl(format_dict)\n\u001b[0;32m--> 343\u001b[0m shapefile_online \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_urlopen\u001b[49m\u001b[43m(\u001b[49m\u001b[43murl\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    345\u001b[0m zfh \u001b[38;5;241m=\u001b[39m ZipFile(io\u001b[38;5;241m.\u001b[39mBytesIO(shapefile_online\u001b[38;5;241m.\u001b[39mread()), \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mr\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m    347\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m member_path \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mzip_file_contents(format_dict):\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/cartopy/io/__init__.py:242\u001b[0m, in \u001b[0;36mDownloader._urlopen\u001b[0;34m(self, url)\u001b[0m\n\u001b[1;32m    235\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m    236\u001b[0m \u001b[38;5;124;03mReturns a file handle to the given HTTP resource URL.\u001b[39;00m\n\u001b[1;32m    237\u001b[0m \n\u001b[1;32m    238\u001b[0m \u001b[38;5;124;03mCaller should close the file handle when finished with it.\u001b[39;00m\n\u001b[1;32m    239\u001b[0m \n\u001b[1;32m    240\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m    241\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mDownloading: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00murl\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m, DownloadWarning)\n\u001b[0;32m--> 242\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43murlopen\u001b[49m\u001b[43m(\u001b[49m\u001b[43murl\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/urllib/request.py:215\u001b[0m, in \u001b[0;36murlopen\u001b[0;34m(url, data, timeout, cafile, capath, cadefault, context)\u001b[0m\n\u001b[1;32m    213\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    214\u001b[0m     opener \u001b[38;5;241m=\u001b[39m _opener\n\u001b[0;32m--> 215\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mopener\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mopen\u001b[49m\u001b[43m(\u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/urllib/request.py:515\u001b[0m, in \u001b[0;36mOpenerDirector.open\u001b[0;34m(self, fullurl, data, timeout)\u001b[0m\n\u001b[1;32m    512\u001b[0m     req \u001b[38;5;241m=\u001b[39m meth(req)\n\u001b[1;32m    514\u001b[0m sys\u001b[38;5;241m.\u001b[39maudit(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124murllib.Request\u001b[39m\u001b[38;5;124m'\u001b[39m, req\u001b[38;5;241m.\u001b[39mfull_url, req\u001b[38;5;241m.\u001b[39mdata, req\u001b[38;5;241m.\u001b[39mheaders, req\u001b[38;5;241m.\u001b[39mget_method())\n\u001b[0;32m--> 515\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_open\u001b[49m\u001b[43m(\u001b[49m\u001b[43mreq\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    517\u001b[0m \u001b[38;5;66;03m# post-process response\u001b[39;00m\n\u001b[1;32m    518\u001b[0m meth_name \u001b[38;5;241m=\u001b[39m protocol\u001b[38;5;241m+\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m_response\u001b[39m\u001b[38;5;124m\"\u001b[39m\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/urllib/request.py:532\u001b[0m, in \u001b[0;36mOpenerDirector._open\u001b[0;34m(self, req, data)\u001b[0m\n\u001b[1;32m    529\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m result\n\u001b[1;32m    531\u001b[0m protocol \u001b[38;5;241m=\u001b[39m req\u001b[38;5;241m.\u001b[39mtype\n\u001b[0;32m--> 532\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_chain\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhandle_open\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprotocol\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprotocol\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\n\u001b[1;32m    533\u001b[0m \u001b[43m                          \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m_open\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mreq\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    534\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m result:\n\u001b[1;32m    535\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m result\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/urllib/request.py:492\u001b[0m, in \u001b[0;36mOpenerDirector._call_chain\u001b[0;34m(self, chain, kind, meth_name, *args)\u001b[0m\n\u001b[1;32m    490\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m handler \u001b[38;5;129;01min\u001b[39;00m handlers:\n\u001b[1;32m    491\u001b[0m     func \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(handler, meth_name)\n\u001b[0;32m--> 492\u001b[0m     result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    493\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m result \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m    494\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m result\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/urllib/request.py:1392\u001b[0m, in \u001b[0;36mHTTPSHandler.https_open\u001b[0;34m(self, req)\u001b[0m\n\u001b[1;32m   1391\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mhttps_open\u001b[39m(\u001b[38;5;28mself\u001b[39m, req):\n\u001b[0;32m-> 1392\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdo_open\u001b[49m\u001b[43m(\u001b[49m\u001b[43mhttp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mclient\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mHTTPSConnection\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mreq\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1393\u001b[0m \u001b[43m                        \u001b[49m\u001b[43mcontext\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_context\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m/opt/conda/lib/python3.12/urllib/request.py:1347\u001b[0m, in \u001b[0;36mAbstractHTTPHandler.do_open\u001b[0;34m(self, http_class, req, **http_conn_args)\u001b[0m\n\u001b[1;32m   1344\u001b[0m         h\u001b[38;5;241m.\u001b[39mrequest(req\u001b[38;5;241m.\u001b[39mget_method(), req\u001b[38;5;241m.\u001b[39mselector, req\u001b[38;5;241m.\u001b[39mdata, headers,\n\u001b[1;32m   1345\u001b[0m                   encode_chunked\u001b[38;5;241m=\u001b[39mreq\u001b[38;5;241m.\u001b[39mhas_header(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mTransfer-encoding\u001b[39m\u001b[38;5;124m'\u001b[39m))\n\u001b[1;32m   1346\u001b[0m     \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mOSError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m err: \u001b[38;5;66;03m# timeout error\u001b[39;00m\n\u001b[0;32m-> 1347\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m URLError(err)\n\u001b[1;32m   1348\u001b[0m     r \u001b[38;5;241m=\u001b[39m h\u001b[38;5;241m.\u001b[39mgetresponse()\n\u001b[1;32m   1349\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m:\n",
+      "\u001b[0;31mURLError\u001b[0m: <urlopen error [Errno -3] Temporary failure in name resolution>"
+     ]
     }
    ],
    "source": [
@@ -428,25 +484,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 30,
+   "execution_count": null,
    "metadata": {
     "collapsed": false,
     "jupyter": {
      "outputs_hidden": false
     }
    },
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAABEkAAARKCAYAAACzcS7jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeViU97n/8fcM+76vsgrIIogoCCoq7klOWzVJk7bZGk2zLz2xTZvfaY0xadM06ZImNdvRRpO0aZvN9iQmccUFkM0VVFBQQVll3xnm+f0xnYlGVJTlmYH7dV1ezwSHmZs4zMzzmft7fzWKoigIIYQQQgghhBBCjHFatQsQQgghhBBCCCGEMAcSkgghhBBCCCGEEEIgIYkQQgghhBBCCCEEICGJEEIIIYQQQgghBCAhiRBCCCGEEEIIIQQgIYkQQgghhBBCCCEEICGJEEIIIYQQQgghBCAhiRBCCCGEEEIIIQQA1moXIIQQQojRq6+vj7a2NlpaWmhtbTUdL7xsPAK4uLjg6up60fGbX3N2dsbKykrln0wIIYQQo5FGURRF7SKEEEIIYT50Ot0lQUZ/ocZAvtbR0WG6XWdn50sCkAuDEOCyt9vS0kJbW5vpthwdHa8apgzkay4uLlhby2dGQgghhDCQkEQIIYQYBXp7e4ck1GhtbaWzsxMAjUbTb7DRX/Bwtb9zcnJCq738Kt+enh5yc3OZNm0atra2/V5Hr9fT3t7eb4BypXClv79ra2vD+BbIwcHhmn+my33NxsZm6P9xhRBCCDFi5KMTIYQQwgwpikJlZSVHjx7l2LFjlJSUcP78+cue+Hd1dQGGYONqQYaXlxdhYWFXDQauFmwMJZ1Ox/nz59HpdJcNSbRa7UVdJ4NhDFwGGrLU1dVdMYAxBi729vaXDVO8vLyYMGECMTExxMbGEhQUhEajGfTPIoQQQoihI50kQgghhIp6eno4ceIEx44dMwUixmNnZyfh4eHExsYSHR2Nj4/PVbsZnJycLPLEu6Ojgy1btrBw4UIcHR3VLueaKIpySeDSX/BSV1fH8ePHOXr0KOXl5Tg4OJgCkwuPkZGRlw2KhBBCCDG8pJNECCGEGAHNzc2mE+QLw5CTJ09ia2tLdHS06ST5O9/5DjExMURFRWFvb6926eIqjMuSnJ2dCQgIGND3dHV1UVpaanocHDlyhA8//JDjx4/T09NDREQEsbGxlwQorq6uw/zTCCGEEGObdJIIIYQQQ0RRFM6dO9dvV8i5c+fw9va+5KQ3NjaWkJCQEVvWYq4suZNkKOn1es6cOXPJ4+fo0aPU19cTGBh4yeMnNjaWgIAAi+wgEkIIIcyNhCRCCCHENert7aWsrOySE9ljx47R2tpKWFjYJWFITEwM3t7eapdutiQkubr6+vp+A7hTp07h4uJiepxd+NgbP368DJMVQgghroGEJEIIIcRltLW1mcKPC5fJnDhxAq1WS3R09CUnpVFRUXKSfx0kJLl+HR0dlJaWXhKeHD9+HL1eT2RkZL+hnbOzs9qlCyGEEGZHQhIhhBBjmqIo1NTU9Lu8obKyEg8PD9OShgtPNENDQ7GyslK7/FFDQpKh19fXx+nTpy+Zg3P06FEaGxsJCgq6ZNlOTEwMfn5+snRHCCHEmCUhiRBCiDFBp9NRXl7e73KFpqYmQkND+91pxMfHR04YR4CEJCNHURTq6ur6/V04ffo07u7u/f4uhIeHY20tM/+FEEKMbhKSCCGEGFXa29s5fvz4JSeApaWlAERFRV3SFTJhwgScnJxUrnxsk5DEPAz09+fC7hP5/RFCCDGaSEgihBDCYimKQmlpKVu3bmXr1q0UFhZy+vRp3Nzc+t0+VT4JN18Skpi3b3ZiXRigNDc3ExoaypQpU1iwYAELFiwgKipKOrCEEEJYJAlJhBBCWJS6ujq2bdvGli1b2Lp1K9XV1aSnp7NgwQLS0tKIjY2VmQoWSEISy3ThTJ+cnBy2bt3Knj178Pf3Z+HChSxYsID58+fj4+OjdqlCCCHEgEhIIoQQwqx1dnaye/dutm7dypYtWzh06BCTJk1iwYIFLFy4kPT0dDmpHgUkJBk9Ojo62LNnD1u2bGHLli0cPnyYxMTEi35nHRwc1C5TCCGE6JeEJEIIIcyKXq9n//79pk6RPXv24Ovre9Gn0r6+vmqXKYaYhCSjV21tLdu2bTMFnbW1tabur4ULF5KUlIRWq1W7TCGEEAKQkEQIIYQZKC8vN51Abdu2DZ1Ox9y5c1m4cCELFy6U+QZjgIQkY4OiKJSUlJh+33fs2IGNjQ3z5s0z/b6HhYWpXaYQQogxTEISIYQQI66xsZHt27ebukVOnz7N9OnTTd0iKSkpMmB1jJGQZGzS6XTk5eWZnguys7MJDQ1lwYKFLFy4gHnz5uHh4aF2mUIIIcYQCUmEEEIMu+7ubrKyskyfHhcUFBAbG2tqt589ezYuLi5qlylUJCGJAGhtbWXXrl2sXVtLQUEdtbW7mDQJbropkUWLFjJ9+nTs7OzULlMIIcQoJiGJEEKIIacoCocPHzZ9Orxr1y7c3NxM24MuWLCAwMBAtcsUZkRCEnEhvR727IG//rWN48fPUV1dRm3tn+ns3MGcObNMAWtCQoIsxRNCCDGkJCQRQggxJCorK02hyNatW2lvbycjI8N0MhMXFycnM+KyJCQR/enogH/+E7KyDOGro2MNfn6fsGfP/5GZmYmTk5PpOWbBggUEBQWpXbIQQggLJyGJEEKI69LS0sLOnTtNwUhpaSkpKSmmk5W0tDRsbW3VLlNYCAlJxJUcPgzr1xtCE1dXeOwx8PfvIScnx7SMLy8vj6ioKNNzUEZGBq6urmqXLoQQwsJISCKEEGJAent72bdvn+mEZN++fURERJg+xc3IyMDd3V3tMoWFkpBEXE1dHaxdC+fOgb09PP44RER8/fdNTU0XBbcnT54kNTXVtGvOtGnTsLGxUe8HEEIIYREkJBFCCNEvRVE4duwYW7ZsYcuWLezcuRN7e/uLWttDQkLULlOMEhKSiIHo6oLXXoPSUrC1hR//+OKg5EKnT582Lf/bunUr3d3dFy0BjImJkSWAQgghLiEhiRBCCJPq6uqLTirOnz/P7NmzTScVkyZNQqvVql2mGIUkJBED1dMDr78OxcXg6AhPPQUBAVf+Hr1ez6FDh0yh7+7du/Hy8jI9t82fPx9/f/+R+QGEEEKYNQlJhBBiDGtvb2fXrl2m9vSioiKSkpJMnSIzZ87E3t5e7TLFGCAhibgWPT3whz9AWRl4eMD/+3+GWSUD1dXVxd69e03LB/fv38/EiRMv2pbcyclp+H4AIYQQZktCEiGEGEMURSEvL8/0aWpWVhZBQUGmUGTevHl4eXmpXaYYgyQkEdeqrQ1++1uoqYEJE+C//xuut9Gtvr6eHTt2mJ4bz549y4wZM0zzTFJSUmRpjhBCjBESkgghxBhw9uxZNm7cyPr166mrq7torkjE5Rb0CzGCJCQR16O6Gn79a+juhhtugGXLhuZ2T548aeoy2bp1Kz4+Pixfvpx77rmHwMDAobkTIYQQZklCEiGEGKV6enr4v//7P9avX89XX33FvHnzWL58Od/5zndkCY0wOxKSiOuVnw9vv224/JOfQFTU0N5+V1cX//rXv1i3bh07duxg0aJFLF++nG9961uyzbkQQoxCMn1PCCFGmaKiIlauXElQUBA/+clPSE1N5cSJE3zxxRfcdtttEpAIIUaV5GSYNctw+Z13DF0lQ8ne3p7bbruNL7/8khMnTpCammp6jl25ciVFRUVDe4dCCCFUJSGJEEKMAs3Nzbz55pukpqaSnJxMTU0Nf//73zlx4gS//OUvZateIcSoduut4OkJ9fWwadPw3U9ISAi//OUvOXnyJB988AE1NTUkJyeTmprKW2+9RXNz8/DduRBCiBEhIYkQQlgovV7Pzp07ufvuuwkICGDdunXce++9VFVV8d577zF37lzZrlcIMSbY28Nddxku79gB584N7/1ptVrmzZvHe++9R1VVFffeey9vv/02AQEB3H333ezcuRNZ0S6EEJZJ3j0LIYSFqays5Fe/+hVRUVHceuuteHl5sW/fPnJzc3nwwQdxd3dXu0QhromiKPT19ZkuC3E94uIgKQn0evj732GkHkru7u48+OCD5OXlkZOTg5eXF0seXULo1FCef/55KisrR6YQIYQQQ0IGtwohhAXo7u7mX//6F+vXr2fbtm0sWLCAFStW8O1vf1sGB4ohodfr6evro6+vz3R5pI7ffCui0WiwsrJCq9WO6NF4WViu+np45hnQ6eCRR2DSJHXqyDuTx3P/eo6iw0Wc3nOaeWHzuP/e+/n2t7+NnZ2dOkUJIYQYEAlJhBDCjB06dIj169fz3nvv4e7uzvLly7n77rsJCgpSuzRhIXp7e+nu7qarq+uKx+5vTLsciTDiwq93d3eTmZnJrFmzsLOzM4UoIxHeXMjOzg47Ozvs7e2veLSxsRnJf0ZxDT7+GL78EoKD4X/+BzQadepo72nn70V/Z/vx7ZSUllCxrYKeoh7uuuMuli9fziS1EhwhhBBXZK12AUIIIS7W1NTE3/72N9atW0dxcTHf/e53+eijj5g9ezYatd7tC7OiKMqAgo+uri76+vrQarWXnOg7OTnh6elp+m97e3usra2xsrJCo9GM+GPN+JmNvb39iG4BrCiKabmPTqejq6vrkv+Pra2tF/23Xq/HysrqqkGK8Si/tyNr0SLYuRMqKuDAAcMSHDU42Tpx7+R7ifKM4gOXD5g8eTKaJg112+pIS0tj4sSJLF++nO9///uyTFIIIcyIdJIIIYQZ0Ov17Nixg/Xr1/Pxxx+TmJjIihUruP3223F1dVW7PDFCjCfpAwlAAGxsbC46If/mybnxso2NjdmfqHd0dLBlyxYWLlw4oiHJtVIUhd7e3os6cC78t7nwcm9vL8CAghRjSCWGxqZN8Pnn6neTGJU1lvHqvlfp6O0g0CWQFRNX8Pknn7N+/XoOHjzIzTffzIoVK8jIyJAlX0IIoTIJSYQQQkVnzpzhnXfe4S9/+Qvt7e3cfffd3HvvvUycOFHt0sQwURSFjo4O2traaG1tpbW11XS5t7fX1PVxueDjwgDEyspK7R9nyFhKSHIt+vr6+g1S+gtUFEXBxsYGFxcXnJ2dcXFxMV12dHQ0+5DL3LS3w89/Dj098OSTEB2tdkVwrvUcr+S8QlNXEyFuIaycsRJ7a3uKior4y1/+wsaNG3FycuLee+/lhz/8oWzdLoQQKpGQRAghRlhXVxebNm1i3bp17Ny5k8WLF7N8+XL+67/+S4awjiJ9fX20t7dfEoa0tbWh1+txcnK66ETYxcUFR0dHi+j6GA6jMSQZKGN3SkdHxyXBWXt7O1qtFmdn50vCE2dnZ+k6uIK//c2w7GbSJMMQV3NQ01bDS1kv0drdygSvCTyR9gTWWkMHUU9PD5999hnr16/nyy+/ZO7cuSxfvpwlS5Zgb2+vcuVCCDF2SEgihBAjZP/+/axfv573338fHx8fli9fzl133UVgYKDapYlB6O3t7bcrpKOjw3Ry+80wxMnJSU5uv2EshyRXotfraW9vv+ixZbys1+txdHS85PHl7Owsg2WBmhrDTjeKAs89B76+aldkcKb5DL/L+h1dui4ywjL4fsL3L7nOuXPn2LhxI+vXr6e+vp4777yT5cuXM3ny5JEvWAghxhgJSYQQYhg1NDTw17/+lfXr11NSUsJtt93G8uXLmTlz5pjsFrBUxkGp/YUhXV1d2Nra9rtMwsHBQf6dB0hCkmujKAqdnZ39PiZ7enqwt7fv9zE51gbJvvoqHDkCixfDzTerXc3XDtcc5s95f0ZRFO5OvJuZITP7vZ6iKOzdu5d169bxj3/8g+joaJYvX84PfvADPD09R7hqIYQYGyQkEUKIIabX69m2bRvr1q3j008/ZerUqSxfvpzbbrsNFxcXtcsTV3C1eSEODg6XPfEUgyMhydC5XKDX2dk55uae7N8Pb7wBrq7w4otgTg1cn5V8xr+O/wsbKxt+MfsX+Dv7X/H6ra2t/OMf/2D9+vUUFBSwbNkyli9fzvz586UzTQghhpCEJEIIMUTKy8t55513eOedd+ju7uaee+7h3nvvJSYmRu3SxGV0dXXR0NBAQ0MDjY2NNDc3XzQv5JsnkrL7yPCRkGT46XS6fsMT49wTNzc3PDw88PT0xNPTc1TMwejrg5/9DFpb4eGHITFR7Yq+pigKf9r3J4rriglzD+OpmU9hpR3YMOajR4+ahr3a2dmZhr2GhYUNb9FCCDEGSEgihBCD0NnZySeffML69evZtWsXN910E8uXL+fGG2+UmQBmRq/X09LSYgpEGhoa6OjowNXVFU9PTzw8PHB3d5dhmCqRkEQ9er2etrY2mpqaTL8bLS0tODo6mgITDw8PXF1dLfJ346OP4KuvYMoUeOABtau5WGNnI2sy19DR28GSmCXcFHXTNX1/b28vmzdvZt26dWzevJnZs2ezfPlyli1bhoODwzBVLYQQo5uEJEIIcY0URaGwsJB169bx17/+lYCAANMQVn//K7dLi5HT09NjOuEzBiMajeaiT8o9PDwkzDITEpKYl97e3kt+fxRFueT3xxJ25DpzBn71K7Cxgd/9Dsxtddy+yn2s378eGysbVmesxtvR+7pup7q6mnfffZd169ZRU1PDD37wA5YvX86UKVNG5VIqIYQYLhKSCCHEANXX1/P++++zfv16ysrK+N73vsfy5ctJS0uTN6AqUxSFtrY20wldQ0MDbW1tODk5mU7oPD09cXFxkX8rMyUhiXlTFIXW1taLfsfa29txdna+6HfM2dnZ7H7HFAVWrYLaWrjvPkhJUbuiiymKwh9z/six+mMk+ifycMrDg7697Oxs1q9fz9///nfGjx/PihUruOOOO/Dy8hqiqoUQYvSSkEQIIa6gr6+PLVu2sH79ejZt2kRqairLly/n1ltvxdnZWe3yxiydTmf6lNt47OvrM33KbTzKQFXLISGJ5enu7r6o06SxsRErK6uLfgc9PDzMYpbPpk3w+ecweTI89JDa1VyqqrWKNZlr0Ct6fpz2Y2J9Yofkdtva2vjwww9Zt24dubm5LFmyhOXLl7Nw4UKsrAY2/0QIIcYaCUmEEKIfvb29vPvuuzz//PN0dXWZhrBOmDBB7dLGHOOOMxe2/jc3N+Pg4HBR67+bm5tFzksQBhKSWD69Xk9zc/NF3SZdXV24ubld1G2ixtbYFRXw/PNgawu//71h6Y25+UfRP9hWto1Q91CeTn96yP8flZSU8Je//IUNGzZgb2/PL37xC+6++26zCLGEEMKcSEgihBAX6Ovr469//SvPPvssWq2WVatW8b3vfU/eRI6gvr6+S060enp6+j3REqOHhCSjU2dn50W/y83Nzdja2l70u+zm5jbsXQ2KAj//OTQ1weOPw8SJw3p316W1u5X/2f4/dOu6eTD5QZICkoblfnQ6HR988AHPPvssAKtWreIHP/iBdJYIIcR/SEgihBAYPgH9xz/+werVq+np6WHVqlXceeedEo6MAOOsg+rqampra2lsbMTa2vqSkyj5txjdJCQZG3Q63UW76DQ0NKDT6fDw8MDX1xd/f/9hmx303nuwezfMnQvf+96Q3/yQ2HRsE5+Xfs4413H8cvYvh7XjRqfT8e6777JmzRrs7e155plnuO2226QjTwgx5klIIoQY0/R6PZ988gnPPPMMLS0t/PKXv+SHP/yh7HgyzHQ6HfX19dTU1FBTU0NPTw8+Pj74+fnh7e2Nk5OT2Q1/FMNLQpKxSVEU2tvbTc8HdXV12Nra4ufnZ3o+GKqA9OBBWLsWvL0Nu92Yo47eDn6+9ed067p5PPVxJvoOf8tLT08PGzZs4LnnnsPJKYDnn3+KZcuWSVgihBizJCQRQoxJiqLw73//m1WrVlFXV8f//M//sGLFChn0OYw6OjpMoUhdXR329vYXnQhJq/fYJiGJAMNyuwsD1K6uLlOA6ufnN6jHRlcX/Pd/g14Pv/41mOtGL/8s+idby7YS7R3Nk9OfHLH77ezs5rvfPciePZ8ybtx+XnjhIb797W9LYC2EGHOkd1kIMaYoisIXX3zBqlWrqKio4Omnn+aBBx7A3t5e7dJGHb1eT2NjI9XV1dTU1NDW1oanpyf+/v5MnDjRLLcKFUKoy8rKyhSIGJfi1dTUcPbsWQ4fPoyzszN+fn74+/vj4eFxTd0O9vYQFgZlZXD8OMyYMXw/x2DMHz+f7eXbOV5/nIrmCoLdgkfkfh0c7Pjoo2m8++5k1q8/zp13vktExJ/49a9XcsMNN8jztRBizJBOEiHEmKAoClu3bmXVqlWcOHGCn/3sZzz88MPyifUQ6+7upra2lpqaGmpra9FoNKYTHl9fX1nGJC5LOknE1fT29pqeX2pqalAUBV9fX9Pzy0A6AT/9FDZvhrQ0uPfe4a/5ev1v4f+SdzaPWaGzuHPSnSN+/7t3w8aNvRw+XExx8W+ZOPEUzz33LPPnz5ewRAgx6kkniRBi1Nu5cyerVq3iyJEj/PSnP+Wxxx7D2dlZ7bJGBUVRaGlpoaamhurqapqamnB1dcXPz4+0tDQ8PDzkDbUQYkjY2Ngwbtw4xo0bh6IoNDY2UlNTw8mTJ9m/fz8eHh6mUNbV1bXf557oaENIcvy4Cj/ANZgdOpu8s3nkns3l1rhbsbce2W7HWbPA39+G115LJC7uL5w7t5fvfvd7TJoUw5o1a5gzZ86I1iOEECNJQhIhxKi1d+9eVq1aRUFBAStXruT//u//cHV1Vbssi6fT6airqzN9mtvb24uPjw+hoaGkpKTI1rxCiGGn0WhMu1/FxsbS2dlJbW0t1dXVlJSUYGNjg7+//yXDX8ePB40GGhuhuRnc3FT+QS4jyjMKP2c/atpqTB0lI15DFDz5JPzxj7bY2MwlPf0Uvb0vs2TJEqZOncpzzz3HDHNdsySEEIMgY6uFEKNObm4uN9xwAzfeeCMzZ86kvLycX/7ylxKQDEJ7eztlZWVkZ2ezefNmioqKsLKyIikpiRtvvJHU1FRCQ0MlIBFCqMLBwYHQ0FBSU1O58cYbSUpKQqvVcuTIETZv3kx2djZlZWXodO0EBBi+59QpVUu+Io1GQ3pIOgDZldmq1REaaghK7O2hosKB4OBfUlZWzowZM1i8eDE33HADubm5qtUnhBDDQUISIcSoUVhYyLe//W3mzZtHUlIS5eXlrFmzBg8PD7VLszh6vZ76+nqKiorYtm0b27Zto6qqCh8fHzIyMpg/fz4JCQn4+vrKrjRCCLNiZWWFr68vCQkJzJ8/n4yMDHx8fKiqqmLbtm10dhbT2NjAoUMt6PV6tcu9rGnjpqHRaDjZcJLzHedVqyM4GB58ELRayMuDffs8eO655ygvL2fy5MnMmzePb3/72+zfv1+1GoUQYihJSCKEsHiHDh1i2bJlpKenEx0dTVlZGS+88AJe5rq/o5lSFIXa2loKCgrYvHkz+fn59PT0EBsba+rKiYyMxMXFReaMCCEsgkajwcXFhcjISGbOnMmNN97ItGm+9PX1sWfPWTZv3kxBQQG1tbWY214G7vbuRHlGAZB/Ll/VWmJj4Y47DJc3bYKSEvD29uY3v/kNZWVlTJgwgZkzZ3LzzTdz6NAhVWsVQojBkpBECGGxiouLue2220hNTSUkJISTJ0/y8ssv4+vrq3ZpFqW5uZkjR47w5ZdfUlhYiJ2dnamVOikpicDAQNmVRggxKtjY2JCc7I23tw8ODjFMnz4DOzs7CgsL+fLLLzly5AjNzc1ql2kybdw0AHLPqr+kZeZMmD4dFAXefhva2w1f9/X15Xe/+x0nT54kKCiI1NRUbr/9doqLi9UtWAghrpOEJEIIi1NSUsIdd9zB1KlT8fb2prS0lFdeeYUA40JzcVWdnZ2UlpayY8cOdu/eTXd3N1OmTGHx4sXEx8fLrjRCiFFr3DiwtobOTg29vR7Ex8ezePFipkyZQnd3N7t372bHjh2UlpbS2dmpaq1JAUloNBoqWypVXXIDhoG33/8+BARASwv8/e8X/31AQAB/+tOfKC0txcvLi6lTp3LnnXdSUlKiTsFCCHGdJCQRQliMsrIyfvjDHzJp0iQcHR05duwYa9euJSgoSO3SLIJOp6OiooKsrCy2bNlCXV0dkZGR3HDDDUydOhVfX18JRoQQo56VFRhfNs6eNRw1Gg2+vr5MnTqVG264gcjISOrq6tiyZQtZWVlUVFSg0+lGvFZnW2ciPSMBOFSj/jIWOzv44Q8Ngcm+fdDfypqgoCDWrl3L0aNHcXBwYNKkSdx7772UlZWNeL1CCHE9JCQRQpi906dP86Mf/Yi4uDgAioqKePvttwkNDVW5MvN34ZyRL774ghMnTuDj48PChQuZMWMGwcHBpq0xhRBirAgMNBzPnbv076ytrQkODmbGjBksXLgQHx8fSktL+eKLL1SZXzLJbxIAB2sOjth9XklYGCxcaLj8179CT8/lrhfG22+/TVFREYqiEBcXx/3338/p06dHrFYhhLgeEpIIIcxWZWUlDz/8MDExMXR0dHDo0CHeeecdIiIi1C7N7DU3N1NUVHTRnJFZs2Yxd+5coqKiZKteIcSYZlydWVV15es5ODgQFRXF3LlzmTVrlml+yVdffUVRUdGIzC9J9EsE4Hj9cbp0XcN+fwPxne+Apyc0NsJXX135uhEREbzzzjscPHiQ9vZ2YmJiePjhhzlrbOMRQggzIyGJEMLsVFVV8cQTTxAVFUV9fT0FBQW8//77TJgwQe3SzFpnZycnTpwwzRnp6upiypQpLFq0iPj4eNzc3NQuUQghzIKxk+RqIYmRRqPBzc2N+Ph4Fi1aRFJSEl1dXab5JSdOnBi2+SV+zn54OXqhV/ScaDgxLPdxrWxs4JZbDJe/+MIQllxNdHQ077//Pvn5+dTX1xMZGckTTzxBdXX18BYrhBDXSEISIYTZqK2tZeXKlURERHDmzBn27dvHP/7xD9MyG3Gpb84Zqa2tJSIigsWLF5vmjGi18lQvhBAX8vc3HGtqQK+/tu/VarWm+SWLFy8mIiKCmpqaYZ1fEusdC8DRuqNDeruDMXUqREVBby98/vnAv2/ixIn84x//ICcnhzNnzjB+/Hh+8pOfUFdXN3zFCiHENZB3zkII1Z0/f56nn36a8ePHU1JSwu7du/nkk0+YNGmS2qWZpW/OGSktLb1ozkhISIhs2SuEEFfg5WXohtDpYDDn5jY2NoSEhDBz5sxhnV8S62MISY7VHxv0bQ0VjQaWLDFc3rsXzl/j5juJiYl88skn7N69m2PHjhEeHs7TTz/N+Wu9ISGEGGISkgghVNPY2MiqVasIDw9n//79bNu2jX//+99MnTpV7dLMUktLC0VFRXz11VcyZ0QIIQZBoxn4XJKButr8kpaWluu+7WivaAAqWypp62kbmoKHQFQUxMRAXx9s3nx9tzF16lT+7//+j23btlFYWEh4eDirVq2iqalpSGsVQoiBkpBECDHiWlpaWLNmDeHh4ezdu5fPP/+cL774gtTUVLVLMztdXV2mOSO7du2iq6uLyZMnXzRnRLbtFUKIa+fnZzgO9SqPb84vmTx5Ml1dXezatcs0v6Sr69oGsLrYueDnbCi4vLF8aAsepG9/23DMzoZB5ECkpqby5Zdf8vnnn7N3717CwsJ47rnnBhUuCSHE9ZCQRAgxYtra2njhhRcIDw9ny5YtfPrpp2zbto309HS1SzMrxuU02dnZfPXVV9TU1Fw0Z8TPz0/mjAghxCB5ehqOw7m6Q6vV4ufnd8n8kq+++ors7OxrWo4z3mM8AGWNZcNX8HWIjITx4w1LlzIzB3976enpbNu2jU8//ZSvvvqK8PBwfvOb39DWZj4dNEKI0c1a7QKEEKNfR0cHa9eu5cUXXyQiIoIPPviABQsWSAfEN+h0OiorKzl58iS9vb2EhYUxefLka1pG09DQwPHjxzly5AgtLS08/vjjMp9ECCH64eVlODY0jMz9GeeXhISE0NnZyenTpyksLMTGxoaIiAiCgoKwtr78W/PxHuPJrsimvMm8OkkA5s+HsjJDSHLDDYZ5L4OVkZHBrl272Lp1K7/85S/53e9+x89+9jMefvhhHB0dB38HQghxGRKSCCGGTVdXF2+++SYvvPACwcHBbNy4kRtuuEHCkW/o7OykvLycU6dO4ejoSFRUFOPGjcPKyuqabufPf/4zTzzxBH19faav3XHHHfgbt3EQQghhYgxJ1JgT6uDgQExMDFFRUZw9e5aTJ09SXFxMWFgY4eHh/Ybjxk6S8sZy9IoercZ8OgqnTAEPD8NWwAUFkJY2NLer0WhYuHAhCxYsYPPmzaxatYqXX36Zp59+mgceeAB7e/uhuSMhhLiA+Ty7CiFGDZ1Ox+uvv05ERAR/+ctfeOutt8jNzeXGG2+UgOQCDQ0N5Ofns3XrVlpbW5k2bRpz5swhJCTkmgMSgOeff94UkPj6+rJnzx4JSIQQ4jJGYrnN1VhZWRESEkJGRgbTpk2jtbWVrVu3kp+fT8M3WlwCXQKxs7ajS9dFdVu1ShX3T6sF48rZrKyhv32NRsNNN91EXl4eb775JuvXryciIoLXX399yLdbFkII6SQRQgypQ4cOsWLFClpaWvjTn/7EsmXLZH7GBfR6PVVVVZw8eZLW1lZCQkKYN28eTk5OF11PURRycnL429/+hk6nIyEhgeXLl2NnZ3fZ296+fTubN28mKiqKRYsWXfG6Qggx1hk7STo7DX/U3CBMo9Hg7e2Nt7c37e3tlJWVkZWVhaurKxEREQQEBKDVagl1C6XkfAnljeUEugSqV3A/ZsyA//s/OH7cMAzXx2fo70Oj0bBkyRK+/e1v8/HHH/P//t//4y9/+Qvr1q0jISFh6O9QCDEmSUgihBgS3d3d/PrXv+all17ixz/+MatWrRozbbBlZWW899577NmzBzs7O/79739fcp2enh5Onz5NWVkZWq2W8ePHExIScsm8kPb2dn7+85/zz3/+k5qamov+btasWcTHx1+2jtjYWGJjY4fmhxJCiFHOzg6cnKC93dBNEhSkdkUGTk5OJCQkEBMTw5kzZyguLqaoqIjw8HCCnIMoOV9CRUuF2mVewtMT4uKgqMjQTbJkyfDdl1ar5dZbb+Vb3/oWa9asITU1lZ/+9Kf8v//3/+QDAiHEoElIIoQYtJycHFasWIGtrS179+4lKSlJ7ZJGTFFREXPnzqWnp4fm5mYA5s6dy3333ccdd9xBa2srZWVlVFRU4O7uzqRJk/D39zctO6qoqGDVqlVMnjyZJ554gpdeeonXXnvtovuYMGEC//u//3vFgEQIIcS18/Q0hCSNjeYTkhgZB7qOHz+e6upqTp48SUVlBee7z1PuYn7DWwGmTzeEJPn58J3vwHCvsLW3t+fXv/41t956KytWrOCjjz5i3bp1pKamDu8dCyFGNemBF0Jct/b2dp588knmz5/PnXfeSW5u7pgJSPR6Pa+++iopKSn4+/tz4sQJOjo6+OlPf8rOnTvZsmUL2dnZ7Ny5k+7ubgIDA/H19aWsrIzW1lY+/fRT7OzsCAkJ4Z133uGzzz4D4LHHHuOTTz7hb3/7G+vXr2fHjh0cOHCAWbNmqfwTCyHE6OPqaji2tqpbx5VoNBoCAgJIT09n0YxFKHqF3KO517yF8EiYNMmws01tLVRWjtz9TpkyhdzcXO644w7mzp3Lk08+SXt7+8gVIIQYVaSTRAhxXbZt28aPfvQjAgMDKSgoICYmRu2SRkxlZSX33HMP27dv57HHHuOFF17AyckJnU5HfX09r776KqGhobi6unLw4EHuu+8+amtrL3t7zzzzDD/72c8A8PLyYunSpSP0kwghxNjm4mI4mnNIcqGYcTH4+Pig0+mwdbaloKAAOzs7xo8ff9UthEeCnR0kJEBhoWGXm+DgkbtvGxsbnn76aZYtW8aKFStISEjg7bffZv78+SNXhBBiVJBOEiHENWlqauK+++5j6dKlrFy5kl27do2pgOTTTz8lMTGR48ePs3XrVv70pz9x/vx5/vnPf/Lxxx8zadIkPvnkE9zc3IiPj+ehhx66KCDx8vLitddeIyYmhuzsbPR6PatXr+53u0chhBDDy9JCElsrW3wcfbCyssIpwIlFixYRGRlJeXk5X331FcXFxXR2dqpa49SphmNBgTr3HxMTw+7du3nyySdZunQpP/rRj2hqalKnGCGERZKQRAgxYJs2bSIuLo7KykqOHDnCI488MqZ2rnnsscdYtmwZDQ0NrFixgq1bt/Lcc8+Rm5vL/v37+etf/8rZs2f5wx/+QFdXl+n70tLSeOGFFzh27Bj19fU88sgjHD16lLS0NNkSWQghVGRpIQlg2tXmXOu5K24h3NjYqEp98fFgZWVYcnOFJsphpdVqefTRRzly5AgVFRXExcWxadMmdYoRQlgcWW4jhLiqmpoaHn/8cbZs2cIf//hH7rrrrjF5cn/06FG0Wi3Tp0/HycmJiRMnUllZSU9PD0888QR+fn6m606aNIlDhw4RHR2Nra2tilULIYS4HEsNSQ5UH+Bc6znT1y7cQritrY3y8nL27t17yRbCI8HeHqKi4NgxOHwY1FztEhoayubNm9m4cSP33nsvixYt4k9/+hO+vr7qFSWEMHsSkgghLktRFN577z1+/OMfM2/ePI4ePXpREDCW9PT08Prrr1NeXo5GoyE8PJzQ0NBLtvC9UEJCwghWKIQQ4lpZYkji52x4Ha5rr+v3752dnS+7hXBoaOiIBPcJCeYRkoAhQLrnnntYvHgxjz32GLGxsbzyyivccccdY/IDHyHE1UlIIoTo15kzZ3jwwQfZv38/b7/9NjfffLPaJamiu7ubEydOUF5ejru7OwkJCRdt4SuEEMJyWWJI4uXgBUB9R/0Vr3fhFsJVVVWUlZVx/PhxwsPDiYyMxM7ObthqTEiAf/4TSkuht9ew443a/P39TfPDHn74Yf7617/yxhtvEBISonZpQggzM3aGCQghBkSv17N27Vri4+MJCAiguLh4TAYkvb29HD16lC1bttDS0sLMmTNJT08nICBAAhIhhBglnJ0NR0vaLdbHyQeAhs4G9Ir+qtfXaDQEBgaSnp7OzJkzaWlpYcuWLRw9epTe3t5hqdHXF9zcQKeD8vJhuYvrdvPNN3P06FH8/f2Jj4/n9ddfR6+/+v9HIcTYISGJEMLk+PHjZGRk8NJLL/Hxxx+zbt06PDw81C5rRPX29nL8+HG2bNlCQ0MDM2bMYPr06WPu/4MQQowFxmaKnh6wlPNkNzs3rLXW6BU9DZ0N1/S9Hh4eTJ8+nenTp9PQ0MCWLVsoKSlBp9MNaY0aDUyYYLhcUjKkNz0kPDw8WL9+PR999BG//e1vycjIoMQcCxVCqEJCEiEEOp2O3/zmN0yZMoUpU6Zw+PBhFixYoHZZI6qvr48TJ06wdetWampqSElJYebMmXh6eqpdmhBCiGFib//15e5u9eq4FhqNBi/HgS25uRwvLy9mzpxJSkoK1dXVbNmyhRMnTtDX1zdkdUZFGY6lpUN2k0Nu4cKFHD58mKSkJJKSknjxxReHPDASQlgemUkixBh34MABVqxYQWdnJ1u3bmX69OlqlzSi+vr6OH36NCUlJdjb2zNlyhR8fX1lSY0QQowB1tag1Rq6SLq6wMFB7YoGxtvRm5q2Gs53nB/U7fj4+ODt7U1tbS1Hjx7lxIkTREdHExISgpWV1aBu29hJcvKkYdmNtZmedTg7O/PKK69w++23s2LFCv7xj3+wfv16EhMT1S5NCKES6SQRYozq6urif/7nf5gxYwY33XQT+/fvH1MBiV6v5/Tp02zbto1Tp04xadIk5syZg5+fnwQkQggxRmg0XwcjXV3q1nItvB29gevvJLmQRqPBz8+POXPmMGnSJMrLy9m2bRunT58e1KwOf3/DzJfeXjh9etBlDrsZM2awf/9+brzxRqZPn84vfvELuizpQSGEGDJmmukKIYbT3r17ue+++3ByciI7O3tMfVqiKAqVlZUcP34cgLi4OMaNGyfBiBBCjFH29obBrZZ0PuzpYFgK2tjVOGS3aRzwGhAQwNmzZzl27BilpaXExMRc1+ukRmNYcrN/P5w4ARERQ1bqsLG3t+f555/n1ltvZcWKFXz00UesW7eOGTNmqF2aEGIESSeJEGNIW1sbjz/+OIsWLWL58uXk5OSMmYBEURTOnTvHjh07OHr0KFFRUcybN4+goCAJSIQQYgwzDm+1pJDE1c4VgJbuliG/bY1GQ1BQEPPmzSMqKori4mJ27NjBuXPnUBTlmm4rLMxwPHNmyMscVpMnT2bfvn3ce++9LFy4kMcff5y2tja1yxJCjBDpJBFijPjqq6+4//77CQ0NZf/+/UwwLhYe5RRFoaamhmPHjtHd3c2ECRMIDQ1Fq5WMWAghhGUutxnOkMRIq9USGhpKUFAQZ86c4dChQ5SUlBATEzPgpakhIYZjRcWwlTlsrK2teeqpp1i6dCn33Xcf8fHxvPXWWyxatEjt0oQQw0xCEiFGuYaGBlauXGna5u7+++8fEwGBoijU19dz9OhR2tvbmTBhAmFhYYMeRCeEEGJ0sbU1HC1ldxswbAMM0NzVPOz3ZWVlRXh4OCEhIZSXl7N//36cnJyIjY3Fx8fnit8bHGw41tQYQqgLdxOyFBMmTGDnzp28+eab3Hrrrdxyyy38/ve/x8PDQ+3ShBDDZPSfKQkxhn300UfExcVRU1NDUVERDz744JgISM6fP09WVhZ5eXn4+/uzcOFCIiIiJCARQghxCeOuK0O4++2wM3aStPa0oleuf7jqtbCysiIyMpKFCxfi7+9PXl4ee/fu5fz5y++w4+ICxizBErtJjLRaLQ899BBHjhyhpqaGuLg4Pv74Y7XLEkIME+kkEWIUqqqq4tFHHyUzM5NXXnmFH/zgB2Ni7kZjYyPHjh2joaGBiIgIpk2bho2NjdplCSGEMGPG/NySQhIXOxc0Gg2KotDe046LncuI3be1tTUTJkwgPDycEydOkJ2djZeXFzExMf12V4SEQGOjISSJihqxModFSEgIn332Ge+//z73338/f/3rX3nttdfw9/dXuzQhxBAa/R8pCzGGKIrCO++8Q1xcHLa2thQXF3PHHXeM+oCkpaWFffv2sXfvXlxdXVmwYAExMTESkAghhLgqS+wk0Wq0ONs6A9DcPfxLbvpjY2NDbGwsCxcuxNXVlb1797Jv3z5aWi6ek2KcS2Jpw1svR6PRcOedd1JcXIy1tTVxcXG888471zzUVghhvqSTRIhR4tSpU9x///0UFRWxYcMGvvOd76hd0rBrbW3l+PHjVFVVERYWxoIFC7C3xAXPQgghVGOJnSQALrYutHa3Duvw1oGws7Nj4sSJREREUFpaSmZmJgEBAURHR+Pi4kJQkOF6586pWuaQ8/X15YMPPmDTpk089NBD/O1vf+PNN98kzLiljxDCYkkniRAWrq+vj1dffZWEhATCwsIoKioa9QFJe3s7hYWF7Ny5E2traxYsWEBCQoIEJEIIIa6ZMSTR6dSt41oZO0k6ejtUrsTA3t6ehIQEFixYgLW1NTt37qSwsBAXF0N9NTUwGpstlixZQnFxMSEhISQkJPDqq6+i14/MnBghxPCQkEQIC3b06FFmz57NH//4RzZt2sRbb72Fu7u72mUNG51Ox9GjR9mxYweKojBv3jwmT56Mg3H/RiGEEOIaWWoniYON4bWvs7dT5Uou5uDgwOTJk5k3bx6KonDkyA6amhrp6NDT2qp2dcPD3d2dt99+m08//ZQ//OEPzJo1i6NHj6pdlhDiOklIIoQF6u3t5Ve/+hVTp04lLS2NQ4cOMW/ePLXLGjaKolBVVcX27dupq6sjPT2dqVOn4uTkpHZpQgghLJwlziQBcLD+T0iiM6+QxMjJyYmpU6cye/YMbG1bOHfuLIcO1Y7q2R3z58/n8OHDpKWlMXXqVH7961/T29urdllCiGskM0mEsDCFhYUsX74cnU7Hjh07SE1NVbukYdXW1sbhw4dpamoiLi6OkJCQUT+IVgghxMix1OU25tpJ8k0eHh6kpLiTk9NGdnYRVlYnSUhIwNnZWe3ShoWTkxO/+93vuO2221i+fDn//Oc/WbduHVOmTFG7NCHEAEkniRAWorOzk5///Oekp6ezdOlSCgsLR3VAotPpKC4uZufOnTg6OjJ//nxCQ0MlIBFCCCEw/06SC/n7a3BxcSEkZCqOjo7s3LmTo0ePorO0ZOoapKamUlhYyJIlS0hPT+fpp5+ms9P8/62EEBKSCGERdu3aRWJiItu3b2ffvn2sXr0aW1tbtcsaFoqicO7cObZv3059fT3p6ekkJiaO2p9XCCGEebC0DN5SOkkAfH0Nx/p6GxITE0lPT6euro7t27dz7ty5UbsEx87OjtWrV7Nv3z62bt3K5MmT2b17t9plCSGuQkISIcxYS0sLjzzyCDfeeCMPPPAA2dnZJCQkqF3WsGlrayM7O5uDBw8SHR3NrFmzRvUgWiGEEOoznp9bXEhiQZ0kX4ckhqO7uzuzZs0iOjqagwcPkpOTQ1tbm3oFDrOEhASys7O5//77ueGGG3jkkUdoHa1TbIUYBSQkEcJMZWZmEh8fT3FxMQcPHmTlypVYGRdOjzIXLq1xdnaWpTVCCCFGjKU2MVhSJ4mHh+HY2Pj11zQaDaGhocyfPx8nJyd27txJcXHxqF2CY21tzcqVKzl48CDFxcVMnDiRXbt2qV2WEKIfEpIIYWYUReHPf/4zN910Ez/72c/Yvn07kZGRapc1LC5cWnP+/HlmzZrFpEmTZGmNEEKIEWOpnSS2VobXyp6+HpUruTpjSNLZCV1dF/+dra0tkyZNIj09nfr6+lG/BCcyMpJt27bx1FNPceONN7J27dpR+7MKYalkdxshzEh3dzePPPII//73v/nyyy9JT09Xu6Rh09rayuHDh2lubmbixIkEBwdL54gQQogRZ6khiY3WBgCd3vw7L+ztwcHBEJI0NYG//6XXMS7Bqaio4ODBg5w6dYqEhARcXFxGvN7hptVqefTRR5k8eTK33HIL+/fv57XXXsPOzk7t0oQQSCeJEGajqqqKuXPncuDAAfLz80dtQKLT6SgqKiIzMxNnZ2cWLFgg2/oKIYRQnaW9DFlrDZ919up7Va5kYPpbcvNNGo2GkJAQFixYgLOzMzt37qSoqGjULsFJT08nPz+fwsJC5s6dS1VVldolCSGQkEQIs5Cbm0tycjIRERHs3r2b4OBgtUsacoqicPbsWbZt20ZDQ4NpaY2NjY3apQkhhBjD9HrD0dJCEhsry+kkgYGFJEY2NjZMmjSJ2bNn09DQwLZt2zh79uyoXJYSHBzMnj17GD9+PMnJyeTm5qpdkhBjnoQkQqhsw4YNzJ07l5UrV7Jx40YcHBzULmnItba2kpWVxeHDh4mLiyM9PR03Nze1yxJCCCEslqmTpM8yOkmMm9UNJCQxcnNzIz09ndjYWA4fPkx2dvao3BXGwcGBd999lyeffJK5c+eyceNGtUsSYkyTmSRCqESn0/HTn/6UDRs28Omnn7Jw4UK1Sxpyvb29lJSUUFZWRlhYGNOmTZPOESGEEGbFuJLD0l6ejCHJaOwkuZBxCU5AQADHjh0jMzOT8PBwoqOjsbYePacyGo2GlStXkpCQwPe+9z3279/PSy+9NKp+RiEshfzWCaGC8+fPc/vtt1NdXU1eXh4RERFqlzSkjLvWHDlyBEdHR2bPni2dI0IIIcxS738aMSztXNTSQhLj/NW2tuv7fhsbGxISEggJCeHQoUNs27aN+Ph4AgMDR9Vcs0WLFpGbm8uSJUs4fPgwf//73/Hy8lK7LCHGFFluI8QIO3z4MCkpKbi4uJCdnT3qApKWlhZZWiOEEMJiWGoniXF3G0sZ3OrsbDheb0hiZFyCExcXx+HDh8nKyhp1S3AiIyPJycnBxcWFlJQUDh8+rHZJQowpEpIIMYI++ugjZsyYwT333MNHH300qra16+3tNe1a4+bmxvz582VbXyGEEGbP0jtJFEVBr+hVrubqjCFJe/vgb0uj0RAcHMz8+fNxdXU17YLT22sZgdFAuLi48NFHH3H33XczY8YMPv74Y7VLEmLMsLCXAyEsk16v55lnnuGVV17h3XffZenSpWqXNKSqqqo4dOgQTk5OzJkzB1dXV7VLEkIIIQbEeF5taZ0klvYhhJOT4TjYTpILGZfghIaGcujQIbZv386kSZMICAgYujtRkVarZfXq1SQmJnLPPfdw4MABVq9ejVYrn3MLMZwkJBFimLW0tHDnnXdSXFxMdnY2EydOVLukIdPb28vhw4eprq4mISGBoKAgi3vTJoQQYmyz1JDE0ly43EZRhnbLZVdXV2bOnElFRQX79++nqqqKhISEUTMsftmyZURFRbFkyRIOHjzIu+++Kx9ICTGMJIYUYhiVlJSQlpZGd3c3ubm5oyogqaurY8eOHXR1dTF37lxZWiOEEMIiSUgyMowhiV4P3d1Df/vGXXDmzp1LV1cXO3bsoK6ubujvSCXx8fHk5eXR2dlJWloapaWlapckxKglIYkQw+SLL74gNTWV//qv/+Kzzz7D09NT7ZKGRF9fH4cPH2bfvn1ERUUxffp0HBwc1C5LCCGEuC6WOrjV0tjYgK2t4fJQLrn5JgcHB6ZPn05UVBT79u3jyJEj9PX1Dd8djiBPT08+//xzbrrpJqZNm8YXX3yhdklCjEoSkggxxBRF4be//S233norr7322qja476xsZGdO3fS2NhIRkYG4eHh0j0ihBDColnq4NYLKYqidgkDMhxzSfqj0WgIDw8nIyODhoYGdu7cSVNT0/De6Qixtrbm5Zdf5tVXX+WWW27hpZdesph/fyEshQW/HAhhfjo6OrjvvvvYvXs3mZmZTJ06Ve2ShoRer6ekpIQTJ04QFRVFVFSUDA0TQggxKvT0GI7GLgcxfOztDcfhWG7TH2dnZ9LT0yktLWXPnj2j6j3MnXfeSUxMDMuWLWP//v387//+L46OjmqXJcSoYPnPEEKYiTNnzpCens6ZM2fIz88fNQFJa2sru3fv5ty5c6SnpxMdHT0q3lwIIYQQAJ2dhqPxBF4MHzs7w3GkQhIw7BATHR1Neno6Z8+eZffu3bS2to5cAcMoOTmZvLy8i96DCiEGT850hBgCu3btIjk5mWnTprF9+3b8/PzULmnQFEXh5MmTZGZm4u3tzZw5c3B3d1e7LCGEEGLI9PV9vdxGxmsNP2O3jrF7ZyS5u7szZ84cvLy8yMzMpKysbFQsU/H392f79u2kpKSQnJzM7t271S5JCIsnIYkQg6AoCmvXruXGG29kzZo1vPHGG9iOgn7djo4OsrKyKCsrIy0tjYkTJ2JlZaV2WUIIIcSQ6ur6+rKxy8FSXHiCr2AZJ/tqdJJcyMrKivj4eNLS0jhx4gRZWVl0GluJLJitrS1vvvkma9as4YYbbuD1118fFQGQEGqRmSRCXKfu7m4effRR/vWvf/HFF18wa9YstUsaNEVRqKys5NChQwQGBjJt2jRsZNy/EEKIUcoYktjYWN7g1j7l6x1brDSW8UGG2iGJkbe3N3PnzuXIkSNs376dSZMmERQUZPHD6B988EHi4uK49dZb2b9/P6+99tqo+PBOiJFmYS8HQpiH6upqbrnlFrq6usjPzyc4OFjtkgatu7ubgwcP0tDQwNSpU/H391e7JCGEEGJYGUMSS5xH0qc3hCTWWmuLObk3nq+rHZIA2NjYkJSUhL+/PwcPHqSqqorExETsLK2l6Btmz55Nfn4+y5YtIyNjLh9//JG8pxPiGslyGyGuUV5eHsnJyYSHh7Nnz55REZBUV1ezY8cOAObOnSsvpkIIIcYEY0hiifNIdHodAFZay+giga87SdSYSXI5AQEBzJ07F4AdO3ZQXV2tckWDFxISwu7du7G1XUZi4g/Iz89XuyQhLIqEJEJcg40bN5KRkcGPf/xj3n33XRws8V3VBXp7e9m/fz8FBQVMnDiRlJQUi/8ERQghhBgoS97ZxhiSWGstpzHcXJbbfJOdnR0pKSnExcVRUFDAgQMH6DVO9LVQjo6O/OUvK4mI+B3p6WvYuPFdtUsSwmJYzrOqECrS6XQ89dRT/OUvf+Hjjz9m8eLFapc0aPX19ezfvx9HR0fmzp2Lo6Oj2iUJIUYBRVHQ6/Xo9Xr6+vpMxwsv93fs+s9H+hUVFdjb22NlZYVWq+33+M2vabVai1luIMyLJS+3scSQxDjmzBzzB41GQ0hICN7e3uzfv5+dO3eSlJSEt7e32qVdt/BwDb/4RRKvvfZnHnroOQ4cOMBvf/si1pY2gEeIESa/IUJcRUNDA7fffjvnzp0jLy+PyMhItUsalL6+Po4ePcqpU6eIjY1l/PjxcnIhhKCvr4/u7m66urro6uoyXe7u7kan05nCjMsFHRf+/Tf1F2x882jciaG+vh6NRnPFUKWvr++S+zCGJVe6L+Nla2tr7OzssLe3Nx2Nl2Unr7HF2EliiY2hxsGtlhSSaP/Tw27OG684OjoyY8YMysrKyMnJITw8nJiYGIt9bli8GHJzg3F1fYkPP3yKI0du4oMPPsDT01Pt0oQwW5bzrCqECo4cOcKSJUtISEggJycHFxcXtUsalKamJgoLC7GysmLOnDkW//MIIa5MURR6e3v7DT6+eTS2ln8zNLCzs8PJyWnAXR39BRMD0dHRwZYtW0hKShpQZ9uVApurda8Y/580Nzdf9P8GDMMcvxmg9Beo2NjYSMA8CnR0GI6WGJL09hl+Zy0pJDHmDP3knGZFo9EQERGBr68vhYWFZGZmMmXKFNzd3dUu7ZpZWcEdd8DLL7uxcOGrnDu3nJSUFDZt2kR8fLza5QlhliznWVWIEfbxxx/zwx/+kCeffJJVq1YN+I2+OdLr9ZSWllJaWkpUVBRRUVEW/fMIMdYpikJXVxednZ1XDD66urpQFAUrK6uLgg97e3tcXV0vCQDs7Ows5sTfGMAMVdu4oih0d3f3+/+xqanpoi6bvr4+NBrNFYMUOzs7HBwcsLe3t5j/p2NRW5vh6Oysbh3Xw9hJYinb/wIYfxX6aTgzSy4uLsyaNYuSkhL27NnDhAkTiIyMtLj3UFFRMHEiFBXZcvvtGykvf5YZM2awYcMGli1bpnZ5QpgdCUmE+Aa9Xs/q1av54x//OCpePNra2igsLKS3t5eZM2fi4eGhdklCiAHS6/V0dHTQ2tpq+tPW1kZrayt9fX39npi7urpe8nVZf351xtDD3t4eNze3K15Xp9P1G0h1dnbS2Nh40detra1xdnbGxcXFdHRxccHR0dHiTrRGo/Z2w9ESQxJLnEliKZ0kF9JqtcTExODn50dhYSHV1dVMmTIFZwt70HzrW1BUBPv2aXnxxWdJTEzknnvu4cCBAzzzzDPyfCTEBSznWVWIEdDS0sJdd93FkSNHyMrKsug2REVROHXqFEVFRYSGhhIXF2ex62mFGO10Oh1tbW2mAMR4bP/PGZyzs7PpBNvf39/03/I7rQ5j8HG1k6S+vr6L/l2bm5s5e/Ysbf9pX3BycrokPJF/15FlyZ0kPX2GfXRtrWxVrmTgjOfhltJJciEPDw8yMjIoLi5m586dTJw4kbCwMIvpFBs/3vCnrAyys+Hmm28mKiqKpUuXcvDgQd59911Zhi3Ef0hIIsR/lJaWsmTJEoKCgsjLy7PogVY6nY6DBw9SV1dHamoqPj4+apckhAB6enouCkGMlzs6OrC2tjadJLu7uxMcHIyzszNOTk4W8yZcXMzKygo3N7dLOlMURaG9vf2ix0FdXR2tra3odDocHR37DU9sbS3nZNhSWHJI0qUzbM1jZ22nciUDZ8z/LDEkAcPvdEJCAv7+/hQUFNDQ0EBiYqLFdOulpxtCkj17YNEiSEhIIC8vj9tvv520tDQ2bdpk8RsUCDEULOM3Wohh9uWXX/K9732P5cuX8+KLlr01Wnt7O7m5udjY2JCRkYG9Je5rKIQFM84L+ebymLa2Nrq7u7GzszOd+Pr5+REZGYmzs7PMrhhDNBqNqRPF39/f9HXjY+fC8KSyspLW1lbTY6e/pTvy2Ll+xpDEyUndOq5Ht84wbNje2nJe5y1tJsnl+Pj4kJGRQV5eHrt372batGk4WcCDKDkZ/vY3qK2Fs2chKAg8PT3ZvHkzTz31FCkpKXzwwQcsXrxY7VKFUJXlngkKMQQUReHll19m9erVvPHGG9x1111qlzQoNTU1FBQUEBwczMSJE2V9qRAjQKfT0djYSGNjIw0NDTQ0NNDb24uTk5PpRDY4ONh0QmtjY6N2ycJMaTQaHBwccHBwuKQDsLe396Lgra6ujvLyctrb27GxscHT09P0x93d3aLD/pE0KjpJrCyvk8SSZpJcjr29PTNnzqSoqIjMzEymTp2Kn5+f2mVdkZ0dxMXBwYNw6JAhJAHDEsLf//73TJ48mZtvvplnn32WlStXSvgqxix5BRVjVmdnJ/fddx+ZmZns3LmTlJQUtUu6boqicPz4cU6cOMHkyZMJMr7qCSGGlKIodHZ2msKQhoYGWlpasLOzw9PTEx8fH6Kjo3F1dZW5EmJIXRiEXKivr4+WlhbT47G8vJzu7m5cXV0vCk4cHBzkhOcb9PqvtwC2xJCku8/yOkkURe0KhpZWqyUhIQEPDw/y8vKIjIwkOjrarH/XEhO/Dkluuuniv7v77ruJjY1l2bJlHDhwgLfffhsHS9wfW4hBkpBEjElnzpxh2bJlODg4kJ+ff1G7s6Xp6emhsLCQtrY2Zs2addVdGYQQA9fX10dzc/NFoUhPTw9ubm54enoSFRVlOgEVQg1WVlZ4eHjg4eFBREQEwEVB3smTJyksLMTW1vai0MTNzW3MB3mdnV+ftFvASolLWOJMEuMym9HW6BoUFISLiwt5eXk0NTUxdepUs+0ajIkxHE+fht5e+GaZKSkp5Ofnc8sttzBr1iw++eQTgoODR75QIVQkIYkYc3bv3s2tt97K0qVLefXVVy16EF5zczN5eXk4OzszZ84cs31BFsJSdHV10dDQYFo609TUhLW1NZ6ennh4eDB+/HhZyiDMnoODA+PGjWPcuHGAYUlYU1MTDQ0NnD9/ntLSUnQ6He7u7qbHtqen55ibYWVcamNv//UyEEtiiTNJjKHUaAtJANzc3Jg9ezaFhYVkZmaSkpJilh9ceXqCmxs0N8OpUxAVdel1/P392b59O4899hjJycl89NFHpKenj3itQqhF3uWJMeWNN95g5cqV/O53v+PBBx9Uu5xBqays5MCBA0RFRTFhwgSzbu0Uwhzp9XpaW1sv6hLp6OjAxcUFT09PQkNDSUpKkt1lhMWztrbG29sbb29v4OvddYyP+2PHjtHa2oqjo+NF3SYuLi6jerZVa6vhaKm7nlriTJLR2kliZGtrS2pqKsePH2f37t1muQRaozFsBbx/P5SX9x+SANjZ2fHmm2+SlJTE4sWL+f3vf88DDzwwssUKoRIJScSYoCgKq1evZu3atWzevJnZs2erXdJ10+v1FBUVUVFRQUpKitkPCRPCXOh0Os6fP286MWxsbESj0Zg+RQ8ODsbDw0M6ssSod+HuOiEhIYBhMKyxg6qqqori4mIURTH9fnh6euLl5TWquqiamw1HM/ywf0CMM0lkuY150Wg0xMTE4OHhQUFBAY2NjWY3TD8oyBCSVFdf+XoajYaHHnqIiRMncsstt3Du3DlWr14tHxyIUW/0vNIJcRnGgOSNN94gMzOTuLg4tUu6bl1dXeTn59Pb28ucOXMsYrs5IdTU3t5OdXU1NTU1nD9/Hnt7e7y8vAgMDCQ+Ph5XV1d5sycEhsGwvr6++Pr6AobXTuNA2MbGRg4dOkRXVxdeXl74+fnh7+9v8a9BxpDE1VXdOq6XsZPEkpbbGEOSsfC06+fnx5w5c8jNzSUrK4vk5GSzWdJmHMV3tZDEaPbs2WRmZjJ37lwACUrEqCchiRjVLgxIduzYYdEBSUNDA7m5ufj4+JCWljaqPs0TYqjo9XrOnz9PTU0NNTU1tLe34+Xlhb+/P5MmTcLZErewEEIFGo0GNzc33NzcCA8PB6CtrY2amhqqq6spKirCyckJPz8//Pz88PLyMqtPygeipcVwtNROko5ew9Y8jjaOKlcycGOhk+RCTk5OzJo1i4MHD5rmlHxzhyo1GJuQa2sH/j1xcXHs2LFDghIxJshZlhi1RktAoigK5eXlFBcXExcXR3h4uLwoCXGB7u5uUyhSW1uLlZUVfn5+xMbG4uPjI8tnhBgixiU6ERER9Pb2UldXR01NDQUFBfT19eHr62sKTezszH8JiKUvt2nvaQfAycZyOnqMg1vH0tsYa2trpkyZQnl5OVlZWUycOJGwsDBV38u5uxuOra3Q1zfwwcUSlIixQkISMSqNloBEp9Nx8OBB6urqmD59Ol5eXmqXJITqFEWhubnZ9Il2c3Mzbm5u+Pn5ERkZibu7u7xpE2KY2djYEBgYSGBgIIqi0NTURE1NDeXl5Rw4cAA3Nzf8/f3x8/PDzc3NLH8nLTkkURTF1EniZGs5IclY6yQx0mg0jB8/Hjc3N/Ly8mhsbCQxMVG1bbidnQ3/Bnq9ISgxhiYDIUGJGAskJBGjzmgJSNrb28nNzcXa2pqMjAyzWccqhBou/NS6pqbG9Kl1eHg4vr6+8vshhIqMA5A9PDyIiYmhq6vL9Lt64sQJU3eXn5+fWXV3WXJI0tPXg06vAyyrk6Svz3AcqyuGvby8yMjIIC8vj927d5OSkqLKbB+NxhCUtLQY/lxLSAISlIjRb4w+RYnRarQEJMb25aCgIOLj4y1unbcQQ8E4/6Cmpob6+nrT/IOpU6da5PwDIcYKe3t7QkNDCQ0NvWhO0NGjRykoKDANf/Xz81N1TpAlhyTGLhIrrRW2VrYqVzNwPT2Go5nkZKqwt7dn5syZHDlyhMzMTJKTk00Dk0e2DkNA0t19fd8vQYkYzSQkEaPGaAhIFEWhpKSE0tJSEhMTCQ4OVrskIUbMhSdT1dXVdHZ2mk6mZOiqEJZJq9Xi4+ODj48P8fHxF4WfxcXFODg4mJbljGT4qddDW5vhsiWGJO29X88jsaQTU2NIYms5uc6w0Gq1TJo0CQ8PD3Jzc4mKimLChAkj+m9p/Dfo7b3+25CgRIxWEpKIUWE0BCS9vb0UFhbS0tLCrFmzcLPEd21CXCNFUairq6OiooLq6mqsrKzw9/dn4sSJ+Pj4yC5OQowyFw5/1el01NXVUV1dbRr+6u/vT3BwMD4+PsN6stXSYhgiqtUalh1YGtPQVguaRwJfn5CP9ZDEKDg4GFdXV3Jzc2lqamLKlCkjthzNeDeDCUlAghIxOsm7T2HxRkNA0tLSQm5uLk5OTsyZMwdbefcgRrnm5mYqKiqorKwEICgoiJkzZ5rtgEchxNCztrYmICCAgIAA00DmyspKCgsLAcPzQnBw8LB8aGBcauPqapk7rRg7SSxp+1/4+oR8LC+3+SY3NzfmzJlDQUEBmZmZTJs2DVdX12G/X2PTlnGY7mBIUCJGGwlJhEUbDQFJZWUlBw4cIDIykujoaHlREaNWZ2cnlZWVVFZW0t7eTkBAAFOmTBn2T4yFEOZPo9Hg7u6Ou7s7EydONHWY7d69GycnJ4KDgxk3bhwODg5Dcn8NDYajh8eQ3NyIs8Ttf0FmklyOra0taWlpHDt2jF27dpGUlMS4ceOG9T6NQ3SHaoMdCUrEaCIhibBYlh6Q6PV6iouLOX36NMnJyfj7+6tdkhBDTqfTUVVVRUVFBfX19Xh7exMZGUlAQIAspRFC9Euj0eDr64uvry86nY5z585RWVlJcXEx3t7eBAcHD/o5pLHRcPT0HKKiR5hxcKuldZLITJLL02g0xMbG4uHhQUFBAY2NjcTFxQ3bnJ6hDklAghIxesg7VGGRLD0g6enpITc3l56eHubMmSMDKcWocuGckaqqKpycnAgKCiIpKWnIPgUWQowN1tbWhISEEBISYupGKy0t5eDBgwQEBFz3/BJL7yRp6W4BwNVu+JdlDCWZSXJ1/v7+zJkzxzSnZNq0acOyDFtn2EF6SEMSkKBEjA4SkgiLY+kBSUdHB9nZ2bi4uJCWliafpotRwzhPoLKyEkVRCAoKkiHEQogh4+DgQFRUFJGRkbS0tFBRUUFhYSEajYagoCCCgoIG/HxjDEkstZOktacVABc7F5UruTay3GZgnJ2dmT17NoWFhezevZvp06fj6Di0XUOdnYbjEN8sIEGJsHxydiYsiqUHJM3NzWRnZxMYGEhCQoK8YAiL19nZydmzZ6moqDDNGUlKSsLb23vEtvIUQowtGo0GNzc33NzciIuLo76+/pL5JUFBQdjb21/2Nix9uU1zl2HyrKV1kshym4GztrYmJSWFw4cPs2vXLqZPnz6kHzq0G8baDEtIAhKUCMsmIYmwGJYekNTV1ZGbm0tUVBRRUVHyQiEsVn9zRiIiIggICBixrQuFEAJAq9Wa5pf09vaanpuuNr/E0jtJLHW5TVeX4XiF/EpcQKPRkJCQgL29PXv27GHatGn4+PgM+nZ1uq+XPg1XSAISlAjLJSGJsAiWHpAYd7CZNGkSISEhapcjxDX75pwRR0dHgoODZc6IEMJs2NjYDGh+SV+fxrQFsKWGJMblNpYWkhiXeMjLxsBpNBomTJiAvb09+/btY/LkyQQFBQ3qNlsMGRtWVsP/byFBibBEEpIIs2fpAcmJEyc4fvw4KSkp+Pn5qV2OENeku7ub06dPU15eftGcEVdXV3mTI4QwWxfOLzHOSzLOL3F3j0CnC8fOzgpLnJuuV/S09bQBlhWSKMrXnSQSkly7kJAQ7OzsyMvLo6uri8jIyOu+LeNyM3d3GImXcglKhKWRkESYNUsOSBRFoaioiIqKCmbMmIGHpY7QF2NSS0sLZWVlVFRU4OnpSWJiIr6+vjJnRAhhUQyhiDvu7u7ExcVRW1vLzp1nqaysJDjYjtZWR1xdLSdoAGjtbkVRFDQaDc62lpPydHcbghKQkOR6+fn5MXPmTHJycujq6mLixInXFTaoMZPnwqBEQeHZ1c9KUCLMloQkwmxZckDS19fH/v37aWpqYvbs2Tg5OaldkhBXpSgKtbW1nDx5kvPnzxMUFMScOXMs7gRCCCH6o9Vq8ff3Jzzcn4CAHlxda8nMzMTLy4uIiAh8fX0t4qTNOI/ExdYFrcZygmvjUhutVna3GQwPDw9mzZplCkqmTJlyzR9gGGfyuLsPfX1XEhcXx6dffsriJxajrFZYs3qNRfzOibFHQhJhliw5IOnt7SU3NxedTsesWbOws7NTuyQhrkin01FRUcHJkyfR6XSEh4czdepUeewKIUalhgawtbUlISGIRYt8OHXqFPv378fa2pqIiAiCg4MvGfRqTix1aOuF80jkvHhwnJ2dTUFJdnY206ZNu6bB6XV1hqO39zAVeAVpiWk8+OMH+eNrf0SzWiMdJcIsme8rgBizLDkg6erqIjs7G3t7e2bOnGnWb7KE6OjooLy8nNOnT+Po6Eh0dDTjxo2TJTVCiFHtwhNEOzs7oqOjiYqK4uzZs5w8eZKjR48SGhpKeHg4jsO59cd1MnWS2LmoXMm1kaGtQ8vOzo6ZM2eSl5fH3r17SUtLu+K21xeqrjYc/f2HscDL0Gg0PDbvMU63neYP7/wBViNBiTA7cgYnzIolByStra1kZ2fj7e3N5MmT5URTmCVFUWhsbOTkyZNUV1fj5+dHamoqnp6e8gZFCDEm1NcbjhfupKrVagkODiYoKIiGhgZOnjzJtm3b8Pf3JyIiAg8PD7N5jjSGJG52bipXcm0kJBl61tbWpKamcuDAAXbv3k1aWhouLlcPz2pqDEe19hMIdgvmhvgbUH6o8KdX/oQGjQxzFWZFQhJhNiw5IGloaGDfvn2EhoYSGxsrT/LC7Oj1es6dO8fJkydpa2sjNDSU+fPnm+WnpEIIMZyutNRAo9Hg5eWFl5cXHR0dlJWVkZ2djbOzMxEREQQGBqr+IUhjl2HqpoeDZQ2El5BkeGi1WpKSkjh69Ch79uwxffBxOV1dmLbAVnPTxcWRi8mpzGHxE4tZ+//WArLrjTAfEpIIs2DJAUlVVRUFBQXExcUxfvx4tcsR4iIXbuFrZWXF+PHjCQ4Ovqa1y0IIMVrodF/v7HFhJ0l/HB0diY+PJzo6moqKCo4dO0ZRURHh4eGEhYVha2s7/AX3o7HT8AO427urcv/XS0KS4aPRaIiLi8Pe3p6srCySk5Pxv8xamspKw9HdHdT8nCTQJZAEvwQOc5hfrPsFv77r14AEJcI8SEgiVGfJAcmpU6c4cuQIU6ZMITAwUO1yhDAxbuFbWVmJh4cHiYmJ+Pn5yRsPIcSY1tBg2IbW1hYGsCoBABsbG8aPH094eDg1NTWcPHmSkpISgoKCGD9+/IjvAGbqJLG3rE6StjbD0dlydi22OOPHj8fe3p78/HwSEhIIDQ295DoVFYZjSMgIF9ePmcEzOVxzmHOac2zbvo358+YDEpQI9UlIIlRlqQGJoigcP36csrIypk+fjpeXl9olCdHvFr6zZ8+WLXyFEOI/Llxqc63nYBqNBn9/f/z9/WlubqasrEyVLYSNnSSeDpdfUmGOJCQZGYGBgdja2pKbm0tnZyfR0dEXPS7PnDEcg4NVKvACCX4JONo40tTVhLWfNTt27GDu3LmABCVCXRKSCNVYakCi1+s5dOgQNTU1pKenywmoUF1fXx9nzpyhrKyM3t5e2cJXCCEuwxiSXG2pzdW4ubmRlJREXFycaQthY8dJSEgIVlZWgy+2Hzq9jtaeVsDylttISDJyvL29SU9PJzs7m66uLiZNmmSapWPsJDGHkMRaa81k/8lkVWRxpPYIt8bdKkGJMAsSkghVWGpAotPpKCgooL29ndmzZ+MgC2uFivR6PWfOnOH48ePY2toyYcIE2cJXCCGuoL+dbQbDuIVwZGQk586d48SJE5SWljJhwgRCQkKG/Pm4uasZRVGw1lrjbGtZaYMxJBnoMicxOK6ursyePZvs7Gzy8vKYOnUqOp21aSZJWJiq5ZlM9J1IVkUWRbVF3Bp3K3FxcRKUCNVJSCJGnKUGJN3d3ezbtw+tVsusWbNk8KVQjaIoVFRUcPz4cbRaLfHx8QQGBsqbCCGEuApjSNLfzjaDYWVlZdpC+Ny5cxw7dozS0lJiYmIICgoasufnC3e2sbTnfOkkGXkODg6kp6eTm5tLVlYWbm5pKIotXl7gYSYjbWK9DbtCnms9R0t3C652rhKUCNVJSCJGlKUGJB0dHWRnZ+Pi4sLUqVOHrY1WiCtRFMX05luv1xMdHU1QUJB0jgghxAAN1XKby9FoNIwbN46AgAAqKys5duwYJSUlxMTEDEmYbZxHYmlDWwFaDauEJCQZYba2tkyfPp2CggL+/e+j6HRxREaazwd9TrZOBDgHcK71HKeaTjHJbxKABCVCVRKSiBFjqQFJc3Mz2dnZBAYGkpCQIE/QYsQpikJ1dTXHjh2jp6eH6OjoYWnjFkKI0UxRLh7cOpy0Wi0hISEEBQVx5swZjhw5QklJCbGxsYPaaezCThJLI8tt1GNlZUVKSgr//GcVVVXV+Pt7AOaTVoW6h3Ku9Rynm06bQhKQoESoR0ISMSIsNSCpq6sjNzeXqKgooqKi5IlZjChFUairq+Po0aN0dnYSFRVFWFiYdDIJIcR1aGmB7m7DrjbDHZIYabVawsLCCA4O5tSpUxw4cAAHBwdiY2Px8fG55vcVxk4SSxva2tNj+APSSaIWvV5DZ2cArq7NnD+fQ11dIj7D1VJ1jULdQsmuyKaipeKSv5OgRKhBQhIx7Cw1IKmsrOTAgQNMmjSJEHPYTF6MKfX19Rw7doyWlhaioqIIDw/H2lqesoUQ4nrV1BiO3t4w0k+nVlZWREREEBoaSnl5Ofn5+bi6uhITE4P3NSQ2DZ0NgOVt/9vebjhaWYFsvKaOigro7dUQGOjO7NkT2LdvH5MnTyYoKEjt0vBz9gOgrr2u37+XoESMNHnHLYaVpQYkp0+f5vDhw6SkpODn56d2OWIMaWho4NixYzQ2NhIZGUlqaqoMCRZCiCFQXW04qvmybm1tbeoKPHnyJPv27cPDw4OYmBg8Pa8efNR3GCbPejuOUCvMEDHOI3FxMXTyiJF39KjhGBkJoaEh2NvbkZeXR19fH6GhoarW5uNo6Gip66hDUZR+AxAJSsRIkpBEDBtLDUjOnDnD4cOHSUtLu6ZPd4QYjObmZo4dO0ZdXR3jx48nOTkZW1tbtcsSQohRw9hJ4u+vbh0ANjY2xMTEMH78eE6cOEFWVhY+Pj7ExMTg5ubW7/coimIKSbwcvEay3EFraTEcZR6JeoqKDMeJEw1HPz8/0tLSyMnJQaPRqNo17engiUajobevl9aeVlztXPu9ngQlYqRISCKGhaUGJBUVFRw6dIjU1FQJSMSIaGlp4fjx49TU1BAWFsbkyZOxk15kIYQYcsaQxJwaRG1tbYmLi2P8+PGUlpaya9cu/P39iYmJweUbiUJHbwddui4AvBwtKyRpbjYcL5P/iGHW2QknTxouG0MSAG9vb1JTU9m3bx8ajYbg4GBV6rPSWuFo40h7TzttPW2XDUlAghIxMiQkEUPOUgOSyspKDh48yLRp08xmkJUYvdra2jh+/Djnzp0jJCSE+fPn4+DgoHZZQggxapljSGJkb29PQkICkZGRlJSUsHPnTgIDA4mJicHJyQn4eqmNq50rtlaW1WkoIYm6jh4Fvd7w2P/mZ4A+Pj5MmzaN3NxctFot48aNU6VGZ1tnU0hyNRKUiOEmIYkYUpYakJw9e5YDBw4wbdo0fH191S5HjGIdHR2UlJRQUVFBUFAQ8+bNM70BFkIIMTx0Oqg3ZAxmGZIYOTg4kJiYSGRkJMePH2f79u0EBwczYcIEzneeByxvHglAU5Ph6O6uZhVjl3GpTXx8/3/v6+tLSkoKeXl5aDQaAgMDR664/3CyMbwXau9pH9D1JSgRw0lCEjGkLDEgOXfuHPv37yclJUUCEjFsuru7OX78OKdPnyYgIICMjIxLWqmFEEIMj/p6wyfpdnaW0c3g5OTElClTiIqK4vjx42zbto2z9mfp0/dZ3FIbkE4SNSkKHDliuHzhUptv8vPzIzk5mfz8fIARD0qM3VE6vW7A3/PNoOTZZ58dltrE2CMhiRgyb7zxBmvXriUzM9NiApKqqioKCwtJTk6WXWzEsNDr9Zw6dYpjx47h5eXFnDlzcHW9/FpbIYQQQ+/CpTaW9GGzi4sLycnJtLS08Mq2VzhbdRadm+6yO4CYK+kkUc/Zs4b//zY2MGHCla/r7+/P1KlTKSgoQKPREBAQMCI1gmEuCUCf0ndN32cMSubMmUNgYCAPPPDAcJQnxhgJScSQ2L17NytXrmTz5s0WE5BUV1dTUFDAlClT8DeHUfdi1Dl//jyHDh2ir6+PqVOnShAnhBAqMYftfwfD1dUV90B3fHp96GroIjMzk0mTJg1o22BzIJ0k6tm/33CMjTUEJVcTEBDAlClTKCgoIDk5ecTeI1tp/hOS6K8tJAFDUPLhhx9y0003MXHiRNLT04e6PDHGSEgiBu3MmTPccsstvPzyy8yePVvtcgakpqaG/Px8pkyZosq6SzG6dXV1UVxczLlz54iKiiIyMhIrKyu1yxJCiDHLnLb/vV71HfU4ODiwcNpCrJusycrKIjAwkIkTJ5r1rmiKIiGJmgoLDcepUwf+PYGBgSiKQn5+vsXM65szZw4vvfQSt9xyC/n5+art1CNGB63aBQjL1tHRwbJly1i6dCkPPvig2uUMSG1tLXl5eSQlJUlAIoaUXq+nrKyMbdu2odPpmDdvHtHR0RKQCCGEyiy9k0RRFNPgVj8XP6Kjo5k3bx46nY6tW7dSVlaGXq9Xucr+tbUZ5sFoNCCrTUdWVRWcOwdWVjBp0rV977hx45g8eTK5ubnU1tYOT4EX6NX3AmBjNYB2l8t46KGH+M53vsPSpUvp7OwcqtLEGCQhibhuiqLwox/9CAcHB1577TWLWBtbV1dHbm4ukydPVm2LMzE6nT9/nszMTMrKykhJSWHatGk4OjqqXZYQQox5imI4UQSw1M9Gmrub6e3rRaPR4GHvAYCjoyPTpk0jJSWFsrIyMjMzOX/+vMqVXsrYReLsbDhZFyPnwqU21/OWJCgoiMTERHJzc6mrqxva4r6ht+8/IYn2+kMSjUbDa6+9hr29PT/60Y9QFGWoyhNjjIQk4rr97ne/IzMzkw8//BBbW1u1y7mq+vp69u3bx6RJkwgKClK7HDFKdHV1UVhYSHZ2NuPGjWPu3LkW0ZYqhBBjRXMzdHaCVmu5nSS17YZP8r0cvEwDLo18fX2ZO3cu48aNIzs7m8LCQrq6utQos1/Goa2y1GbkFRQYjtey1OabgoODmTRpEvv27aPeuI/2MOjp6wEG10kCYGdnx0cffcTOnTv5/e9/PxSliTFIZpKI6/Lll1/yzDPPkJmZaRFDT8+fP09OTg4JCQmEhISoXY4YBfR6PeXl5Rw7dgxfX1/mzZsnnSNCCGGGqqoMRx8fsLbQd77GkMTPuf+Ux8rKigkTJhAUFMSRI0fYtm0bMTExhIeHo9Wq+5loY6PhaCEzZkeN2lqorDSEg4mJg7utkJAQFEVh3759pKWl4eU19NtQt/e2A+Bk4zTo2/L39+eTTz4hIyOD+Ph4Fi9ePOjbFGOLhb5UCDWdOHGC733ve7zxxhskJyerXc5VNTQ0kJOTQ3x8PKGhoWqXI0aB+vp6Dh8+jF6vJyUlRTpHhBDCjFn6Uhv4OiTxdbry641xCU5tbS2HDh3izJkzTJo0aVhOageqocFwlJBkZBm7SGJiwGnwuQOhoaEoikJOTg7Tp08f8p2V2nraAHC2dR6S20tJSeH111/n+9//Prm5uURGRg7J7YqxQUIScU1aWlr4zne+w/Lly7nrrrvULueqGhoayM7OJi4ujrCwMLXLERauq6uLoqIiqqqqiI6OJiIiQvVP6IQQQlzZaAhJatoM2/P4OQ1svZBxCc7JkyfJzs4mICCAiRMnYm9vP5xl9ktCkpGnKJCTY7g8lJ9nhoWFoSgK2dnZQxqU9Pb10q3rBoYuJAG4++67OXDgAEuWLCEnJwcXF5chu20xusm7ezFger2eu+66i6CgIF588UW1y7mqxsZGsrOziY2NJTw8XO1yhAXT6/WcPHmSbdu2odfrmT9/PlFRURKQCCGEBRgNIclAO0kuZFyCM3/+fPR6Pdu2bePkyZMjvguOhCQj7/Rpw45ONjaDm0fSn/DwcGJjY8nJyaHRuJZqkFq6WwCw1lpjbz20Qd5vf/tbAgMDueuuu8x2ByhhfuQdvhiwZ599liNHjvDBBx9gbeaLepuamsjOziYmJobx48erXY6wYPX19ezcuZNTp06RkpJCSkoKDg4OapclhBBiAEbDzjaKolx1JsmVODg4mF6/Tp06xc6dO4d1AOc3GTfckZBk5GRnG45JSTAczUPjx48nOjqa7OxsmoyTeQfBuL21p4PnkO+WaW1tzQcffMChQ4dYs2bNkN62GL3M+0xXmI2PP/6YP/zhD2RlZQ35GsSh1tzcTFZWFhMmTCAiIkLtcoSF6uzspLi4WJbWCCGEBWtqgq4uw/BKSx0f1dDZgE6vw0prhafD9b8Hu3AJTk5OzogswdHrZXDrSNPpIC/PcHn69OG7n4iICPR6PVlZWcycORO3QWxf1NBpaDcazOP7Sry8vNi0aRMzZswgMTGRZcuWDcv9iNFD3vGLqzp8+DD33HMPGzZsID4+Xu1yrqilpYWsrCwiIyNlQJO4Lnq9nhMnTrB9+3YURZGlNUIIYcGMXSR+fpa/s42Pow9azeBei7RaLVFRUSO2BKelxRCUaLWyBfBIOXwY2tvB3d0wtHU4RUVFERkZSVZWFi0tLdd9O+c7DJ0kXo7DN2A4ISGBDRs2cM8993DkyJFhux8xOljoy4UYKQ0NDSxdupQnn3zS7FPXlpYW9u7dy/jx45kwYYLa5QgL1NzcTGFhIXq9nmnTpuHj46N2SUIIIQbBuP1vQIC6dQxGTbthaOu1zCO5GuMSnLq6OtMuOFOmTBlUN0B/jPNIPDwMQYkYfsalNqmpI/P/fMKECSiKwt69e5k5cyaurq7XfBvGINDb0Xuoy7vIzTffbBrkmpeXZ/bd8UI98nQlLkun03H77beTkJDAM888o3Y5V9Ta2kpWVhbh4eFER0erXY6wMHq9npKSEnbv3k1AQABz586VgEQIIUYBS59HAtc3tHWgfHx8mDt3Lv7+/uzevZuSkhIURRmy25ehrSOrtdXQSQKQljZy9xsdHU14eDhZWVm0trZe8/dXtRnSzADn4U8zV69eTXx8PN/73vfQ6XTDfn/CMklIIi7rZz/7GefOnePdd98166UGra2t7N27l9DQUAlIxDVra2tjz549nDlzhpkzZxITE2PWj3chhBADd/as4TgaQpLrGdo6EFqtltjYWGbMmMGZM2fYs2cPbW1tQ3LbMrR1ZGVnG5Y3hYaO/GM+OjqakJAQ9u7de02PH0VRqG6rBiDAZfhDEq1Wy7vvvktlZSU///nPh/3+hGWSMwHRr40bN7J+/Xo2bdpk1nuKt7W1kZWVRXBwMDExMUM+EVuMXoqiUF5ezs6dO/Hw8CAjIwMPDw+1yxJCCDFE9PqvQ5KgIHVrGQzjCaSf0/CEJEaenp5kZGTg5ubGzp07KS8vH3RXiXSSjBxFgV27DJfnzBn5+9doNMTGxhIcHHxNQUljVyPdum6stFb4OI5MF6+rqyvvv/8v3nijko0b3x2R+xSWRUIScYm8vDweeughPvjgA7MeftrV1UV2djbjxo0jLi5OAhIxYJ2dneTk5FBSUsK0adNISEgw+22thRBCXJvaWujtBVtbsNQVlL19vdR3GLbrHYlP2a2trZk0aRLTpk2jpKSEnJwcOjs7r/v2jDsNew3fPE7xH8eOQV0dODhAcrI6NWg0GuLi4hg3bhzZ2dl0d3df9XsqmisA8Hf2x0prNdwlmkyeHMnSpc/zwAP/ID8/f8TuV1gGCUnERaqrq1m2bBnPPvssixcvVrucy9LpdOzbtw8PDw8mTpwoAYkYsLNnz7Jjxw5sbW2ZN28evpa6J6QQQogrqqw0HMeNs9yhoTXtNSiKgqONIy62I9fZ6+vry7x587C1tWXHjh2cNbbkXKO6OsPRUkMqS5KZaTimpYGdnXp1aDQaJk6ciIeHB/v27bvq3I9TTacACHMPG/7iLqDRwKOPRpKY+Bzf+tZKqqurR/T+hXmz0JcMMRy6u7u55ZZbyMjIYOXKlWqXc1mKolBYWIhWqyUpKUkCEjEgPT095Ofnc+jQISZPnszUqVOxsbFRuywhhBDDxBiSWPJSm6rW/wy0dAkY8fc7NjY2TJ06lcmTJ3Po0CHy8/Pp6ekZ8Pfr9V/PJJGQZHg1NcHBg4bLs2erWgpgCEqM79ELCwuvuGyrvKkcGPmQBCAlBdLTE3F3/xk33/z9a3p8i9FNQhIBGIKHxx57jK6uLt5++22zDh6KiopoaWkhNTUVK6uRa8sTlqumpobt27ej0+mYO3cugZY8wU8IIcSAjIqQZAR3/bicwMBA5s6di06nY8eOHdTW1g7o+5qaQKcDKyvDFsBi+OzZYwiloqLMZ0ixlZUV06ZNo6WlhaKion6voygKp5tOAxDqFjqS5QGGx+aMGRpmzlzIuXMzeOyxx0a8BmGeZBG+AOCNN95g06ZN5OXl4eDgoHY5l1VWVkZFRQWzZs3C1tZW7XKEmdPpdBQVFVFZWUl8fDwhISFmHQAKIYQYOqMiJLmgk0RN9vb2pKamcubMGfLy8ggKCmLixIlXnOdlXGrj5TXyy530ej1FRUXU1NRQX19v+nP+/HnS0tK4/fbbR80sMr0edu82XDaHLpIL2dnZkZaWxu7du3F0dGT8+PEX/X1dRx0dvR1Ya60Z5zpOlRpnzoQvv7Rh1qyf8/HHsSQlvcGDDz6oSi3CfIyOZwcxKLt27eInP/kJX3zxBSEhIWqXc1nV1dUUFxczY8YMnJ2d1S5HmLmGhgYKCwuxt7cnIyMDJycntUsSQggxQtrbobHRcNmiQxIz6CQx0mg0hIaG4u3tzf79+9m5cydTpkzB8zJb16g5j2TDhg0sX77c9N+2trZ4e3vj4uLCa6+9xurVq3n66ae56667LH7p7cGDhq4dZ2eYMkXtai7l7OxMamoqWVlZODo64u/vb/o7YxdJsFsw1lp1Tkv9/AzdN+fOufCrX/2b//7vdOLi4phtbomTGFGy3GaMO3PmDLfeeiu/+93vmDVrltrlXFZTUxP5+flXfDEWAgyfHhUXF5OVlUVYWBgzZ86UgEQIIcYYYxeJtzfY26tby/Xq0/dR01YDqN9JciEnJydmzpxJWFgYWVlZFBcXo9frL7mecWcbNUKSr776iqSkJMrKymhpaaGrq4uzZ89y7NgxCgoKSEhIYMWKFURFRfHGG28MaBcWc7V1q+E4axaYa3OMp6cnSUlJ5Ofn09TUZPr6iYYTgDrzSC40aZLhaG2dxMsvv8ytt97KmTNnVK1JqEtCkjGso6ODpUuXcvPNN5t1W1lHRwc5OTlER0fLLAlxRS0tLWRmZlJbW8vs2bOJjIyU5TVCCDEGjYalNnUddegVPXbWdnjYm9dQD41GQ2RkJLNnz6a2tpZdu3bR0tJy0XXU6iRRFIXMzEwWLlxIeHg4Li4uF70XmDJlCh9//DGHDx9m+vTpPPzww4wfP55XXnmFjo6OkS12kE6dghMnDLM1MjLUrubKxo0bR3R0NDk5Oab/z8fPHwcg2itazdKYONFwLCmBBx98kGXLlrFs2TKLezyIoSMhyRilKAorVqzAycmJP/3pT2qXc1m9vb3k5OQQEBBAZGSk2uUIM6UoCqWlpezatQt/f39mz56Nq6ur2mUJIYRQyWgISYzzSPyd/c028Hd1dWX27Nn4+fmxa9cuTpw4YdrJZCRDEuPOh08//TSRkZFUVVWxePHiK35PfHw8f/vb3zh69CgLFixg5cqVhIeH89vf/pa2trbhL3oIGLtIUlLA3V3VUgYkMjKSgIAAcnJyqG+tp6q1Co1GwwSvCarWFRpq2BK4sRGamzW8+uqrODg4cN99911xZx4xeklIMka99NJL7Nmzhw8//NBsB6Dq9Xpyc3NxcHAgISHBbN8gCHW1t7ezd+9eTp8+zYwZM4iNjUU70hPihBBCmJWKCsPRokMSM5pHciVarZbY2FhmzJjBqVOn2Lt3L+3t7aaQxNt7+O67u7ubZ555hqioKKZOncpbb73FvHnz2LZtG/PmzRvQbURHR7NhwwZKSkpYsmQJv/jFL5gyZQqlpaXDV/gQaGyEggLD5QUL1K1loDQaDQkJCTg4OPDJnk9QUAh2DcbJVt1l0XZ2Xz9XlJUZZth8+OGH7Nq1i5dfflnV2oQ65ExiDPriiy9Ys2YNn3zyCX5+fmqX0y9FUTh48CC9vb0kJyfLSa+4hKIonD59mp07d+Li4kJGRobMqxFCCIFOB1WGfIHgYHVrGQxz2dlmoDw9PcnIyMDFxYUvvthFTU0riqIMa0jy5JNP8sILL5CRkcGXX35JdXU1b7/99oADkguNHz+et956i6KiIrRarWlXFnO1Y4dhZ5voaMt6nGu1WpKTkylrLuP8+fNEe6u71MbI+P/Q+Nzh7+/Pp59+yrPPPsuXX36pXmFCFXLmOcaUlJTw/e9/nzfffJPk5GS1y7mskpISamtrSU1Ntfip42Lo9fb2kp+fz7Fjx0hJSSExMXHUbOUnhBBicKqqDEGJo6Nh+1lLda71HGD+nSQXsra2JjExkdDQFJqamujsrMbKSjcs9/Xee++xdu1aXn31Vf73f/+XRYsWDcl7xqioKLKzs0lMTGTBggW89957Q1Dt0Oruhl27DJctpYvkQjY2Nug8dHR2dmLfZh6TlY2fG9fUfP215ORk3njjDb73ve+ZfWeRGFoSkowhLS0tLF26lBUrVnDHHXeoXc5lVVRUcOLECdLS0nBwcFC7HGFmWltb2bVrFz09PWRkZODr66t2SUIIIczIacOuooSEGOYMWKI+fZ9puU2Qq+WtGdLpvAkMDMTNrYtdu3bR2to6pLd/6NAh7r//fu6++27uv//+Ib1tAA8PD7744gvuuOMO7rrrLlavXm1WsymysqCzE3x9ISFB7WquXX1HPS09LQT4BaCr0VFhXB+nov5CEoA777yT5cuXs2TJkkuGE4vRS0KSMUKv13PnnXcSFBTEb37zG7XLuaz6+noOHjxISkoKbm5uapcjzExVVZVpOOv06dOxs7NTuyQhhBBmxrhzZ0iIunUMRk17DX36Puyt7fF0sLylpDU1YGVlRWpqqGmoa5VxHcMgNTc3c8sttxAVFcXrr78+bDPrbG1tWbduHb/+9a959tlnufPOO+nq6hqW+7oWev3XA1vnz7fMIPBQzSEA4vzjmJE6g4MHD1Jv3DNaJcYV2xfsUGzy4osvEhQUxF133dXvdtdi9JH+9DFi9erVFBcXk5uba7bLElpbW8nNzSU+Pl66A8RFFEXh6NGjlJeXk5SUJFtBCyGEuCxjJ0loqLp1DEZli2F7nnGu4yxycH11teEYEKBl4sSJeHh4UFhYSHh4OLGxsZf9mWpra3n33Xdpb2+/7J8zZ87Q0NBAfn4+jo6Ow/pzaDQa0445d999N6dPn+bTTz/FezgHrVxFXh7U14OLC8yYoVoZg3Kw+iAAif6J+Pr6Eh8fT25uLrNmzcLFxUWVmoybIra2gqJcHD5ZW1vzwQcfkJKSwrPPPsuzzz6rSo1i5Jjn2bIYUh999BF//OMfyc7ONtvBlt3d3eTk5BAWFkZYWJja5Qgz0tPTQ35+Pp2dncyePVu1F08hhBDmr6/v6+1/LbmT5GzLWQDGuYxTuZLrY1yy4O9vOAYGBuLi4kJubi5NTU0kJydfsrvirl27yMjIQFEU/P39cXJyuuTPuHHjmDBhAvfccw+RkZEj9vN897vfJTg4mCVLlpCWlsZnn31GdPTIDxxVFNi82XB5/nww0w0qr6ijt4OS8yUAJPolAhAWFkZHRwc5OTnMnj1blU5hZ2fDsa/PsJTpm/mbp6cnmzZtYsaMGSQmJnLzzTePeI1i5EhIMsodPnyYH/7wh7z77rtMnDhR7XL6pdPp2LdvHx4eHsTGxqpdjjAjTU1N5Obm4u7uzuzZs2WIrxBCiCsyDm21twcfH7WruX4XdpJYGkWB2lrD5Qs3UXRxcWH27Nns37+fzMxMUlJScHd3B+D48eMsXbqUuXPnsnnz5ksCFHOQlpZGTk4O3/rWt5g+fToff/wxGRkZI1rDwYOGx7i9PYzwXQ+Zotoi9IqeAJcAfJy+/iWNjY2lo6ODffv2MXPmTKysrEa0Lhsbw5/eXujouDQkAYiPj2fDhg3cfffdREVFkWCJA2HEgMhMklHs/PnzLFmyhJ/85CcsXbpU7XL6pSgKhYWFaDQakpKSLLKlVAyP06dPs2fPHsLDw0lJSZGARAghxFVdOI/Ekt9SnG01dJJY4tDWhgbDiaa19aW7C9nY2JCSkkJoaCh79uzhzJkz1NfX81//9V/4+fnx4YcfmmVAYhQeHs7evXuZOnUqixYt4o033qCjo2NE7vvCLpK5c8FS9zY4WPOfpTb/6SIxuvBcoKCgQJVBuca3mrorbMi0bNkyVq5cyZIlSzh//vzIFCZGnIQko5ROp+O2224jMTGRX/7yl2qXc1lFRUW0tLSQmpo64omxME99fX0cPHiQ4uJipk2bRlRUlIRnQgghBmQ0zCPp6O2gsbMRgEAXy5vBZZxH4uMD2n7ONDQaDRMmTGDatGkUFRWxdu1a2tvb+eyzz/Dw8BjZYq+Du7s7n3/+Offeey8PPfQQHh4ezJs3jxdeeIH8/Hz6+vqG5X6PHYNTpwwn8vPnD8tdDDudXseR2iOAYR7JN1lZWTFt2jRaWlooKioa6fIwjm3s7b3y9VatWkViYiK33347uislKsJiSUgySv30pz+lpqaGjRs3ou3vFcoMlJWVUVFRQVpamll/aiBGTmdnJ3v37qWxsZE5c+bIAF8hhBDXZDTsbGOcR+Lp4ImjzfAOJq2qqmL//v1DepvfnEdyOb6+vkRERODk5MTatWsJCAgY0jqGk42NDW+++SbFxcW89NJLODk58etf/5qUlBR8fX257bbbePvttzl16tSQ3aexi2TWLMPQVktUer6Uzt5OXOxcCHcP7/c6dnZ2pKWlUVFRQVlZ2YjWZwxJrpZzabVaNm7cSFVVFU899dTwFyZGnHmePYtB2bBhAxs2bGDTpk1mO+Syurqa4uJiUlNTcTZOShJjWn19PZmZmbi4uDBr1qxhn1gvhBBidNHroaLCcNmSO0mMS21GYh7JnXfeyZQpU5g7dy5fffXVkCxxMIYkF84juZycnByefvppAgICyMzMVH0b2GsVGxvL448/zr///W/Onz/Prl27eOSRR6ioqODBBx8kPDycyMhIHnroIT7++GOa+ttfdgDKyuD4cUNnzqJFQ/szjKTcs7kAJPlfeYm9s7MzqampFBcXU21sTRoBxnBkIM3tLi4ubNq0iXfeeYeNGzcOb2FixElIMsrk5uby8MMP8/e//52IiAi1y+lXU1MT+fn5JCUlme1uO2LkKIrCiRMnyMnJISYmhsmTJ8vSKyGEENesutrQJm9vD5bciGgc2jrc80iKi4vZvn07jz/+OO3t7SxevJiUlBQ++ugj9Hr9dd+u8Zx2ICFJZmYmMTExpKamEhMTQ05ODidPnhxUWFNZWcknn3xCaWnpiM61sLW1ZdasWaxZs4bs7GzOnz/Pxx9/zKJFi9i6dSu33HILgYGBHDhw4Jpv+7PPDMfp08ECViT1S6fXsb/a0LWUMi7lqtf39PQkKSmJ/Pz86w6XrtW1hCQAkZGRfPDBBzz00EPk5uYOX2FixElIMopUVVWxbNky1qxZw8KFC9Uup1/G7b2io6MZN87yJraLoaXT6SgoKODkyZPMmDGDsLAwmT8ihBDiuhjnkQQHW/jQ1hHa/ve1117D39+fl156iX379rFlyxbc3Ny49dZbiYuL45133qH3KsMZ+vr6OHHiBJs2beLQoUPAwJfbgCEkmTNnDhqNhrCwMGbMmMGJEycoKCgY8KwHRVE4dOgQzz33HMnJyQQHB3PzzTczYcIEfH19WbJkCS+++CJ79+6lp6dnQLc5FNzd3Vm2bBlr166ltLSU8vJyAgMDeeGFF67pdsrK4MgRQxfJDTcMU7Ej4EjtETp7O3G3dyfKM2pA3zNu3Diio6PJyckZkQG5xofctXxWt2jRIp599lluvvnmEe16EcNLQpJRoru7m1tuuYV58+bx5JNPql1Ov3p7e8nJySEgIGBE97YX5qmtrY1du3bR3d1NRkaGdBUJIYQYFOP4B0teaqMoyogst2lubmbjxo088MAD2NraotFoWLBgAdu2bTN1dt57771ERETw6quv0tHRQUVFBZs3b+bll1/mhz/8IcnJybi4uBAVFcXSpUtZsGABVVWNNBpmzl41JDl79iwnT55kzpw5pq95enoyZ84curu72bVrF21tbf1+r06nY8eOHfz4xz9m/PjxJCYm8tJLLxEREcH777/P6dOn2bx5Mw899BDt7e08//zzpKen4+HhwQ033MBvf/tb8vLyhm3Ian/CwsJ48skn+fDDD69p1sa//mU4Tp9u2R1SeWfzAEgOTL6mD8QiIyMJCAggJyfnqqHdYCgKdHcbLtvbX9v3rly5koyMDG655Ra6jTciLJqEJKOAoig88sgj9Pb28tZbb5nlJ/GKopCfn4+DgwMJCQlmWaMYOVVVVWRmZuLn58f06dOxs7NTuyQhhBAWrrzccAzvfx6kRahtr6Vb142NlQ3+zgNoxbhOGzZsoLu7m/vvv/+Sv0tNTeXTTz/l8OHDzJ49mx//+Me4uLgQEhLCTTfdxOrVqzl69CiJiYn86le/4quvvuLAgQN0dnby85//CQB3d7jaaLFdu3YBMGvWrIu+bm9vz/Tp0/H19SUzM/OST+e/+uor/Pz8mDdvHh9++CE33ngjX3zxBXV1dfz973/nBz/4ASEhIdxwww2sWbOGrVu30tjYSF5eHs888wwAzz77LNOmTcPLy4slS5bwyiuvcOjQoUEtMxqIH/7wh3h6evKHP/xhQNcvLYWjRw1dJDfdNKylDatuXbdp699p46Zd0/dqNBoSEhJwcHAgPz9/2JZQdXYaghK4+mP3mzQaDW+//Tbd3d08+uijqmxfLIaWtdoFiMFbu3Yt//73v00hhDkqKSmhvb2dOXPmmO1uO2L4KYrCsWPHKCsrY/LkybLkSgghxJDo7YVKwygPiw5JzjQbtucJcg1Cqxme90t6vZ4///nPphkZlxMfH897773HmjVr+OyzzwgPDyc+Pp6QkJB+38utXr2an/70U26++VFiY72uWodxHolfP8NLtFot8fHxeHh4kJ+fT0REBDExMXR3d/PAAw8QHx/Pyy+/zNSpUwf0vtLa2prk5GSSk5N56qmn6OnpIS8vj+3bt7N9+3bT17y9vZk7dy7z5s1j2bJl/dY2GI6Ojjz66KO8+OKLPPPMM3h7e1/x+v/+t+GYng5XuapZO1hzkN6+XnydfAlxu/atp7RaLcnJyWRmZlJSUkJ0dPSQ12hczWNjY/hzrRwcHPjkk09ITk4mKSmJhx9+eGgLFCNKzlYtXGZmJk899RQfffQRwcHBapfTr7q6OkpLS0lJScHmep51xKjQ09NDTk4OZ8+eZdasWRKQCCGEGDIVFYahiy4uYMmrN40hyfWcSA7U1q1bKSkpITAwkC+//JL9+/dz9uzZy87rGD9+PI899hjf+ta3CAsLu2wo8fjjjxMYmMLevXsICLj6J+nGeSRXMm7cOGbPns3Zs2fJycnhT3/6E5WVlbz11lukpKRc9wdvtra2zJw5k1/+8pfs2LGDpqYmtm3bxgMPPEBlZSWPPvooixcvvq7bvpr77ruPzs5O3nnnnSte7/hxwx9ra7jxxmEpZcQYd7WZNm7adXeT29jYkJKSQmlpKXV1dUNZHgDGlV1OTtd/G8HBwXz44Yf89Kc/JTMzc2gKE6qQkMSCtbS0cNddd/Hiiy+Snp6udjn96uzspKCggISEBNzc3NQuR6iktbWVzMxMtFotc+bMwdXVVe2ShBBCjCLGeSTh4ZY9tNUYkgS7Dt8HX+3t7Tg7O/OHP/yBG264gSlTphAUFERYWBjvvffedd+ujY0NS5Y8SHV1NUVFX13xurW1tRw7doy4uLir3q6rqytz5syht7cXDw8PfvrTnw55J4GDgwPz5s3j+eefJysri48//piDBw9SVFQ0pPejKAo/+9nPsLe3JyMjg76+vn5nWCjK17NI0tMtO/hr6mriSO0R4NqX2nyTm5sb8fHxFBQU0NXVNRTlmRhn6bi7D+52Zs2axYsvvshdd91Fa2vroOsS6pCQxII9/fTTREZG8sgjj6hdSr/0ej0FBQX4+voSEjJ8n4gI89bQ0MCePXsYN24c06ZNk24iIYQQQ844jyQsTNUyBkVRFCpaKoDh7SRZtmwZra2tdHR0cPr0afLy8vjss88ICgpi+fLl7Nu377pv29l5AuPHR/D666toaWm57PVsbW2JjY3lv//7v3nsscdoNJ6hXoaNjQ0bN24kLy+PmTNn0tDQcN01DsTixYtxc3PjH//4x5De7vPPP8/777/Phg0bSE5O5rbbbsPJyYm4uDhuv/12fvWrX/Gvf/2LPXvqOXFidHSRZFdkoygKkZ6R+DkPfvlSaGgoPj4+5OfnD+kMGeNDcCgCqYcffpiIiAiefvrpwd+YUIWEJBZq9+7dvPPOO2Y7qBXg6NGj9PT0MGnSJLOtUQyv6upqsrKyiI6OJi4uTh4HQgghhsWFnSSWqrGrkfaedrQa7bDubGPk4OBASEgIycnJ3HTTTezZs4epU6dy6623Xtdyho4OaGqCtLQ02ttLWb169WWv6+7uzs6dO3niiSd45513mDBhAm+//fZld5vZv38/69evJzExkdjYWLKysoZ1u1U7OzuWLl3K3//+96sO4dTpdJSXl7N161beeustXnnllX63q927dy+rVq3iySef5LbbbqO9vZ3PPvuM7373u8ybN4/q6mpefvlllixZwuLFa+np6WHOnMF3NqhJURSyKrIAmBkyc0huU6PRkJiYSE9PD8eOHRuS24SvQxIPj8Hfllar5e233+Yvf/kLu3fvHvwNihEng1stUGdnJytWrGDNmjVmu5VudXU15eXlzJkzB2treZiNRadPn+bw4cNMmTLlioPhhBBCiMFob4faWsNlS+4kMS61CXQJxFo78u+dbG1t+ec//8mUKVP4/ve/z5dffomVldWAv7+qynAMDnZm1aqn+MUvfsGKFSuYOHHiRdc7cOAAa9eu5f3336ejo4N77rmH3t5e7r//ft58801ee+01UlNTqaioIDs7m5ycHD799FNiY2N54IEHsLa2xt7envz8fBISEggdpj2fb7vtNjZs2MDhw4cJCQmhrKyMsrIyTp48abpcVlbG6dOnTeGOVqtFo9Fw8OBB1q9ff9HtjR8/ngkTJrBhwwZuueUWtFot3d3d3H333dz4n3YRRVH44IPj/OAHmVRXn+aGG6KG5WcbKaUNpdS212Jvbc/UgKlDdrvW1takpKSQmZmJp6cn/lfbb3oA6usNR6+rzxwekMjISJ599lnuu+8+Dh48iP217issVCWdJBbo2Wefxd3dnSeeeELtUvrV0dFBYWEhkydPxsXFRe1yxAgz7mBTVFREWlqaBCRCCCGuy/nz5/n888+vOnvA2EXi53ftW3eak4rm4V9qczVB/5+98w6L4urC+LssvVcpSpEiSpUOFhCssfeCwRKVxB5b7NhrjMYae+xRsYINlKICKggiSG/Si9I7C3u/P/bbjUQ6C7vo/J6HZ8adO/eecXdn5557znt69MCNGzfg5+eHAwcOtOrcrCzWVk0NWLFiBbS1tTnlUKurq3H16lX069cPZmZmePToEdatW4fDhw/j2rVrSE9Ph4eHB5hMJuzs7KCqqgpNTU1Mnz4d9+/fh52dHa5fv85ZeFNTU4OtrS2ioqIQFxfXISVXhwwZAjk5OVhZWUFOTg4WFhaYMmUKdu/ejZCQEMjIyGDSpEk4duwYvL29kZiYiKqqKpw7dw5///33V04SVVVVvHr1CgYGBnByckJycjJMTU2xfv16MBgMAAAhNMTE9IacnDyqqh6iq0u4BaYFAgCsultBRFCEq31LSUmhb9++CAsLazByp7WwA5O4WdDo119/hbS0NLZt28a9Tik6BWqJv4sRGhqKI0eOIDg4mC8jNOrq6hASEoLu3bujR48evDaHopNhMpmIiIhAbm4uBgwYQAm0UlBQUFC0GEIIoqOj4enpiQcPHuDVq1dgMpm4ffs2Jk6c2Oh534IeCdA5lW1agqOjI5YtW4YdO3bAxcWlxYsdXzpJREREcPToUYwYMQLTp0+Hn58fPn36hMGDB+POnTsYM2YM5znW0tISkyZNwqJFi3Dr1i1ERUUhKSkJNjY2sLGxabQMr6KiIgYMGIBXr16hsrISJiYmba520xDCwsL4+++/ER0dDW1tbc6fvLx8k+nDs2fPxsuXL7F48WJYWFjA1NSUc0xeXh5Pnz7FvHnzMHPmTCxZsgR//fUXfv/9d2zYsAGBgUBuLqCrq4r375cjLu6HDil32xlUMCoQmh0KAOivzp1Um//So0cP5OfnIyQkBAMHDmzz+89k/huNxoWgFA6CgoI4f/48bGxsMGXKFJibm3Ovc4oOhYok6UIwGAzMmzcPv/32G4yMjHhtToNERUWBEMK39lF0HLW1tQgJCUFBQQHs7e0pBwkFBQUFRbNUV1fDy8sLS5cuhba2NoyMjLBjxw4oKSnhzz//BIBGS9OyYTtJurIeCfBFZRuZjqts01K2bNkCcXFxrF27tsXnfOkkAVjip1OmTIGXlxecnZ0RExODZ8+eYcKECfUW+vr164e3b99CTU2Nk6a9a9cujB07tlEHCRtpaWnY29ujoKAAISEhqK2tbfW1NsW4ceOwfv16TJs2DVZWVlBQUGiRvtrRo0ehr6+PKVOmfCVgKyIigsuXL2Pz5s04duwYDA0NsW3bNkRExMLTk9Vm6VJtyMiIwMjICCtXrqwnbEsIQVFRETcvs0MIyQwBo44BNSk1aMlqddg4RkZGIITgw4cPbe6joACorWUJ5XK7kpCxsTHWrFmDefPmcSKGKPgfyknShfj9999RW1vLt0rJmZmZyMjIgJWVVatyWCm6PtXV1QgKCgKDwcCAAQMgJibGa5MoKCgoKPiUyspKnD9/HhMnToSCggJGjBgBDw8PjBo1Co8fP0Z+fj7u3r2L2bNnA0CTk1JCvg0nSWl1KYqqikCj0dBDmveRuLKysti9ezeuXLmCoKCgFp3zXycJAFy7dg15eXn4888/0bt370bP7d69O54/f46ZM2di9uzZWLFiRYtTaMTExDBgwAAwGAwEBQU161TrDMTExHDr1i3k5uZi3rx5X10LjUbD9u3b8ffffyMqKgqCgoKYOvUU8vKqoaAAzJihhpiYGGzbtg2nT5+Gnp4eJk+eDDMzM0hLS0NOTg7//PMPj66ueQgheJH6AgBLsLUjhfvpdDqsrKyQnp6OzMzMNvXBPk1ZGeBiMBKHDRs2oKamptUpbBS8g3KSdBFiYmKwc+dOnDt3DiIi3M3p4walpaUIDw+HmZkZJCQkeG0ORSdSUVGBgIAAiIqKws7ODsLCwrw2iYKCgoKCTyGEwMXFBQsWLEBeXh42bdqEyMhIfPz4EceOHcOIESO+EjhsaoL1+TNLuFVQEOjKWb7sKJJuEt0gKsgfAo9z586FhYUFli1b1mjVGTalpUBJCUCjAaqq/74uKCjY4ucCUVFRnD17FhMmTMDx48dRXFzcYluFhYVhZ2cHUVFRvHz5kisaFe1FV1cXf//9N27duoWjR4822GbOnDnw9vYGIIG4OC1cvHgBV65MxqxZzrh8+TLWr1+PhIQETJw4EQUFBbC2tsaWLVswaNAgbN68meuRM9wisSARGSUZEKILwa6HXYePJyEhAXNzc4SHh6OsrKzV56exvn7oIA1giIiI4Ny5c9ixYwdXK/JQdByUk6QLUFdXh3nz5mHhwoWwsbHhtTlfwU6z0NLSguqXv4wU3zzFxcV48eIFlJSUqAgiCgoKCopmuXbtGm7fvo3r168jICAA69atg5GRUYOOEPbqe1NOkqQk1lZDg+Uo6aqkFqcCADRlOmiW1gbodDoOHTqE0NBQ+Pn5Ndk2I4O1VVIC2rOWl5SUhEePHmH16tWQbWXtW3ZEgaKiIl68eNEqJ0tHMXHiRKxYsQKrVq3CzZs3G2zj5OSEnTtDIS6uABGRz+jXTwgfP36Eq6srTpw4AVVVVZw+fRq+vr44deoUVq9ejYMHDyIpKQmXL1/u5CtqGf4f/QEANt1tICHcOYunbLHftqRdscWfNTpQDsjW1ha//PIL5s2bByaT2XEDUXAFyknSBThx4gRyc3Oxfft2XpvSIJGRkRASEkKfPn14bQpFJ/Lp0ycEBARAW1sbxsbGHRpKSUFBQUHR9cnIyMCSJUswY8YMTJkypdn27IlES5wkOjpcMZFnfCz6CAAdqt3QFvr37w8pKSm8ffu2yXbprMI8nGie8PBwODs74/379y0eixCCJUuWQEVFBZs2bWqTvTQaDSYmJtDW1kZAQAA+ffrUpn64yb59+zB16lRMmzYNO3fu/Cr1Jj8fSExUx6RJE6GnFwlPTw+sX78eS5YswerVqxEVFfVVn2ZmZpg4cSK2b9/OdzoXRVVFCMsOAwA49nTs1LENDAwgKCiIyMjIFp9DSMdHkrDZsWMHsrOzceLEiY4diKLdUE4SPufjx4/YsGEDzpw5w5dpLKmpqcjJyYGlpSVXFcUp+JuMjAy8efMGxsbG6NWrF+UgoaCgoKBoEkII5s2bB3FxcRw7dqxF5yQmJgIANJpY3k1OZm27spOEEIKUQpawCr85SQQEBGBmZoZ379412Y4dSaKuDri7u6N///64c+cObGxscOLEiRbpi9y5cwdeXl44cuQIxNtRy5lGo6FXr14wNjbGmzdvkME2jkcICQnhypUr2LZtGzZv3ozZs2ejurqac/z+fZZoaN++4nj9+jyGDx+O8ePHg0ajQUtLC87OzvXas9m2bRtSU1Nx4cKFTrya5nmR+gJMwoSegl6n6+sICAjA0tISOTk5SGN7PpqhuPjfVLGOTtmTkJDAmTNnsH79eqSmpnbsYBTtgprV8jGEELi6umL69OlwcnLitTlfUVxcjMjISFhYWFBCnd8RiYmJeP/+PaysrJp8cKWgoKCg+PYhhODTp0/NToJPnjwJb29vnDt3DvItLB8RFhYGOp0OExOTBo9XVf0ruKit3Sqz+YqiqiKUVJdAgCbAF5Vt/ou5uTnCwsKabJORwfos3L9/HFOnTsXYsWORnZ2N+fPnY/HixZg8eXK9Ci3/pbS0FMuXL8eYMWMwduxYrtitoaEBKysrvH//HknskCMeQaPR4Obmhn/++Qc3b97EkCFD8PnzZ3z8CLx5w5qgT5oESEiIw93dHXv27MHZs2dRVFSE6OhoODo6ws3NDR4eHsjOzgYAFBQUQFRUFM+fP292/M+fP8PPzw9eXl4dmupRy6zlCLY6anVuFAkbMTExWFhYICIi4qvKQg3B9lWoqgKdIas3ePBgTJs2Da6uri0WJ6bofCgnCR9z8eJFREVF4ffff+e1KV/BYDAQEhICXV1ddOvWjdfmUHQC7PJqCQkJ6NevX7Nl+Sgovgeqq6tx48YNfP78mdemUFDwhN9//x3dunWDlJQUzMzMMG3aNGzevBmXL1/GmzdvUFhYiMTERKxevRo///wzRowY0eK+w8LCYGho+JWQK5uUFFaovIICICPDrSvqfNipNmpSahCm85/4ubm5ORITExvV+KitBdLSavD0qTdOn3bD7t27ce3aNcjJyeHYsWO4c+cO/Pz80Ldv33qVcsrLy/Ho0SMsX74cZmZmKCgowJEjR7hqu7KyMvr164f4+Hh8+PCB55PS6dOnw9/fH/Hx8bC2tsGxY7kAAFvbf1M96HQ6fvvtN3z48AEmJiaora1FSkoKTpw4gXHjxkFNTQ0SEhJwcHCAnZ1dvcissrIyvHnzBufOncOKFSswZMgQqKioQElJCU5OThgxYgT69u2L+/fvd8j/RWhWKEqrSyErKou+Kn253n9L6datG3R1dREcHNxsOhK7OpaWVsfbxebAgQOIjIzEpUuXOm9QilZBOUn4lJycHKxYsQJ//fVXq4WrOhpCCMLDwyEuLg59fX1em0PRCdTV1SE0NBQ5OTkYOHAg5OTkeG0SBQVPIYTg1q1bMDAwwPTp02FnZ0eFzlJ8dyQmJmLLli2YNWsWtm3bBmtra+Tl5eH8+fOYNWsWbG1tIS8vDwMDA6ioqLS6/GVYWBjMzc0bPf6t6JFwRFtl+Ue09UvMzMwAoFF9kdevU3Hnzn1kZibi/v0LWL9+fb003AkTJiA8PBzq6uqwt7fHL7/8gsGDB0NeXh6jRo3CvXv34OTkhKdPn0KrA2aqcnJyGDhwILKzsxEaGspz0UxbW1u8efMGNJoljh59hNzcdIwf/3U7bW1tPHnyBNeuXQOTyURNTQ127twJd3d3LF++HPfv38fjx49RUVGBiRMnQltbG1JSUrC1tcWCBQvw8OFDyMjI4Oeff4a7uztiYmIQEBAAJSUljB8/Hra2tnj69ClXnSV+H1kCvw5aDqAL8FbMX19fH+Li4ggPD2/yGuPiWFs9vU4yDKwS23/99RdWrFiBnJyczhuYouUQCr5k0qRJZNq0abw2o0GSkpLIkydPSFVVFa9NoegEampqSEBAAPH396fecwoKQsibN29I//79CQAycuRI8vPPPxMA5OzZs7w2rUtTXl5O7t27R8rLy3ltCkULYDKZxMnJifTs2ZOUlZV9dby0tJSEhYWR69evkz179pDY2NhW9V9TU0OEhYXJkSNHGm3z55+EuLoS4ufXWuv5i0OvDhFXD1fy/ONzXpvSIAwGg4iKipJDhw59dczHx4dISQ0j0tLXyJo12c32s2HDBtKtWzcyatQocuTIERIbG0uYTGYHWV6fyspK4ufnRwICAkhNTU2njNkYNTWErFxZRXr0eEgEBMaSkydPNtk+Pz+fzJ8/nwAgdnZ2JDIyknPs1atXBACZMmUKuXDhAgkNDSUVFRVN9ufj40NsbW0553GDxPxE4urhShY9WESKq4q50md7qaqqIk+ePCFJSUmNHCfkl19Y95HPnzvZOELI1KlTyeTJkzt/YIpmoSJJ+JDbt2/D39+f6yGH3KCwsBDR0dGwtLSESHtqvFF0CaqqqhAQEAABAQH079+fes8pvmtSU1Ph7OwMGxsblJaW4unTp1i4cCHOnTuHWbNmYe7cubw2kYKi07h06RJ8fX3x119/NSgsLykpyUm/WbduXasjT6Ojo1FTU9NoJAmT+e2ItqYWsSJJeCHaumXLlmbvXYKCgjA1Na2nS1JZWQk3NzcMGzYMWloDMGHCBFhYqDTbz65du5Cbm4sHDx5g6dKl0NfX7zTxd1FRUQwYMAACAgIIDAxEVVVVp4zbEM+eAWVlIpgxYwR+/rknfvnlF6xcuRJ1dXUNtpeXl8eZM2fw/PlzFBYWwszMDNevXwcAWFpaQlZWFgYGBpg9ezbMzc2b1Qp0cnJCUFAQDh48CHd3d66I23oleQEAbHvYQlpEut39cQMRERFYWloiOjq6QU2cpCTWvURBgfXX2Rw5cgS+vr64c+dO5w9O0SSUk4TPKCgowOLFi3H48GG+0/qoqalBSEgIevfuDQVe3EkoOpXS0lK8ePECMjIysLGxgaCgIK9NoqDgCcXFxZxJnp+fH86dO4ewsDAICgpi8uTJGD16NM6dO0dV+KL4bvj06RNWrlyJmTNnYvjw4R0yRlhYGGg0GkxNTRs8np3NEm4VEQG6d+8QEzqFTxWfUMGogKCAILpLde6FXL58Gdu3b8eVK1dQXl7eZNsvK9w8ePAAhoaG2LdvHzZs2IBZszZARES0wyuDcANBQUHY2NhAWloaL168QFlZWafbUFICPH7M2p80SQAnTvyJI0eO4PDhw5gwYUKTNtnb2yM8PBzTp0/HrFmz8PTpUwgKCmLo0KF48uRJq+yg0WhwcXEBAPj5+bX5egAgpywHEbkRAIChOkPb1Re3UVBQgL6+PkJCQlBTU1PvGDvVplcvHhgGlmbO4cOHsXjx4iaFjSk6H+qJjs9YtWoVLCws4OzszGtT6kEIQVhYGGRkZKDTlZdsKFpEWVkZAgMD0b17d5iZmVGTP4rvlqdPn0JPTw9HjhzB2rVrkZCQgJ9++glhYWEYM2YMBg4ciOvXr1NORIrvihUrVgAADh061GFjhIWFQV9fH5KSkg0eZ0eR9OwJdOWfKHbpXw0ZjU7VcAgNDYWrqysGDRqE2tpaBAcHN9ne3Nwc0dHRGDNmDMaMGQNdXV1ERkZi27btyMpi2d0VnCTAv2WNu3fvjoCAgE53lNy7B1RXs4RCra1Zry1duhSenp7w9/fHgAEDkJ6e3uj5IiIiOH/+PIYMGYKJEyfi7du3+OGHHxAcHNxqEXFFRUWYmprC19e37RcE4GkSS9vEVMUUKpJNRxTxAl1dXcjIyCAsLKyePkl8PGvLS4nFmTNnwszMDKtWreKdERRf0YV/Vr49vL29cfv2bZw8ebLTQg9bSkJCAkpLS2FmZsZ3tlFwF7aDRF1dHQYGBtT7TfHdEhQUhPHjx8Pc3BwJCQnYtm0bJCUl8eHDB4wYMQLGxsa4d+8elYZG8V3h5eWFq1ev4uDBg1BSUuqwcVoq2tqVS/8CvBFtzcvLw4QJE2BiYoJHjx5BVlYWL1++bPIcS0tLMJlMvHv3Du7u7vDy8kKvXr1QXAyUl7McVWpqnXQBXIBGo8HAwADq6uoIDAxsNpKGW6SnA+wCP1Onskr/shk5ciQCAwNRWFgIXV1dODo6YseOHQgKCvqqQouQkBDc3d1haGiIkSNHQkdHB4QQPH36tFX2ZGVloVu3bu1ykpRUl+B1xmsAwHCdjoksay80Gg1mZmYoLS1FYmIiAFYk2sePrOO8iiRh23by5EncunWr1e8fRcdBLX3xCWVlZXB1dcW+ffugrq7Oa3Pq8fnzZ8THx2PAgAEQ7owC4hQ8o7y8nBNBQjlIKL5nIiIiMGrUKFhaWuLu3buc/O7nz59j/Pjx0NTUxMOHDxvUYqCg6IowmUyUlJSgqKioyb/bt2/DyckJs2bN6jBb6urqEB4ejokTJzba5lupbMMu/9uZeiQnT55EYWEhgoKCICYmhv79+yMgIOCrdoQQxMfHcyIvvL29YWdnVy+6hx3woKICCAl11hVwB7ajhBCCwMBA9O/fv0Pv6YQAN26wtpaWDX92jY2NERoaiqtXr8LX1xcHDhyAm5sbJCQkYG9vDycnJ7i4uEBZWRkSEhJ4+PAhBgwYgNmzZ0NFRQWPHz/GjBkzmrQjKioK7u7uePDgAUJDQyEgIICxY8e2+bp8U3xRy6yFtpw2dOT59wspLCwMS0tLBAYGQk5ODunpimAygW7deKNH8iUaGhrYu3cvXF1dERkZ2WgEHUXnQUWS8AkbNmyApqYmfv75Z16bUo+qqiq8ffsWhoaGfFeKmIK7VFRUIDAwEGpqajA0NKQcJBTfLYmJiRg2bBi0tbXh4eHBcZBcu3YNw4YNg5mZGfz9/alS2BTfDM+ePYOIiAjk5OTQs2dPmJmZwdHRERMmTMDcuXOxadMmnD17Fs+ePUOfPn1w5syZDv2NiI2NRUVFBaf07H8pLQXy8lj7XTmSpI5Zh7TiNACd6yQREhKCiIgIevw/P2bAgAF49eoVampq8O7dOxw+fBiTJ0+GiooKevfujZkzZwIAhg4d+tXkjV35XEOj08znKjQaDYaGhlBVVUVgYCAqKio6bKyQECAhgeVMmjSp8XaKioqcEr/5+fkIDg7Gpk2bUFtbi82bN0NXVxe7d+9GZWUlFBQU4OXlBQaDgZycHDx58qTZEseWlpb4448/oKuriytXriAvLw93795t0zVV1Vbh+cfnAIBhOsPa1EdnIicnB0NDQ7x9+xahoSx9EmNj7vVfUlKCCRMmYNasWfjIDlNpIb/88gvU1dWxceNG7hlE0WaoSBI+IDAwEOfOncO7d+/4SvuBEILQ0FAoKip2SN16Cv6B7SBRUVGBkZER5SCh+G5JSUnBkCFDICsriydPnkBGRgaEEOzZswcbN26Ei4sLzp49S0XVUXxTiIuLcyZg9vb2kJWV5fzJyMhAqJNDBF6+fAk6nQ5rtmDDf0hIYG3V1ABx8U40jMtklGSAUceAuJA4lCWUO21cBQUFFBQUoK6uDnQ6HQMGDEBZWRnk5ORQUVEBYWFh2NjYwNHRETdu3MCcOXMa7SuN5ePpsk4SgOUoMTIyApPJRGBgIAYMGNBsdZjWUlUF3LrF2h85EpCXb9l5goKCsLKygpWVFdatW4eCggLs2LEDW7duxcmTJ7F79244OzvjyZMnGDhwID59+oR3797BwsKi0T5/+OEHxMbG4p9//mn3815gWiAqGBVQllSGqUrDIsv8hpaWFj5/zsfFi58gJaUGExPuPfMymUzcu3cPACutrTViugICAjh79iynKli/fv24ZhdF6+GfGfl3SlVVFebPn48tW7agFy8T4hogKSkJlZWV6Nu3LzVp/oaprKxEUFAQunXrBmNjY+q9pvhuiY+Ph729PYSEhPD06VMoKSmBEIJFixZh48aNcHNzw8WLFykHCcU3h42NDScyasiQIbC0tISuri4UFRU73UECAP7+/rCysmo05Pz/kgI81RHgBsmFLPXZnnI9O/W3V0FBAYQQFBUVAWC9/0uWLMHGjRvx4sULFBcX48WLFxATE4Oqqip++umnRvtiR5Jodp6kSodAo9FgYmKCbt26ITAwEJWVlVzt/+FDoLgYUFIChraj+Iu8vDwOHTqE6OhoWFlZwcXFBdbW1sjPz4enpydERUURERHRZB8rVqxATEwMvLy82m4IAEYdA95J3gCAodpDIUDrGtNKGo0GGRlTlJYSVFcXQ1eXe33LyspiwYIFAFj6TW/fvm3V+b169YKbmxvmzZvH0xLVFJSThOfs3LkTEhISWLlyJa9NqUdpaSliY2NhZmZGVW34hqmsrERgYCAUFRVhYmJCOUgovluio6Ph4OAASUlJPH/+nKMNdfbsWZw8eRKnT5/Gtm3bqO8IxTcJnU7HsGHD8Jhdl5SHEELg7++PQYMGNdqGXZGCm5MbXsB2kmjLdW7OkML/BRjy8/MBsNJvjh49ig0bNmDgwIEQFRVFcnIyLl++jLVr10JUVLTBfkpKgKIilvgon8nptQm2o0RBQQGBgYFcm6Tm5ADPnrH2p03jjnaLrq4ubt++jRcvXkBAQACDBg3CgQMH8PfffzerLzJgwABYWFi0uzpVUHoQiqqKICcmBzt1u3b11dnExAhBQUER0tJpqKws5Vq/Dx8+xNmzZzn/3rNnT6v7WLVqFcTFxbFr1y6u2UXReignCQ8JDw/HwYMHce7cOb5yRBBC8O7dO2hpaXF+SCm+PaqqqhAUFAR5eXmYmppSkz+K75b379/DwcEB3bp1w/Pnz6H2/xINcXFx+PXXX7FgwQLOyhAFxbdKjx49EB4ejrq6Op7aERcXh9zc3EadJFVVQEYGa19Pr/Ps6gj4xUnSEHv37oWCgkKT9z52qo2yMvCtFPmi0Wjo27cv5OXlueIoIQS4fh1gMgETE+7qXwDAwIED8fr1a1y7dg3h4eGYMWMGFBUVoampiXHjxsHNzQ2vX7+udw6NRsPKlSvh7e2NDx8+tGncWmYtniSyUkmG6wyHoAD/zGNaQkQEICoqChsbcYSHh9crC9weDA0NQafTMXLkSBw6dAh37txBdHR0q/oQFBTE+fPn8ccff+D9+/dcsYui9VBOEh5RW1uLn376CatWrYKpKX/l8CUlJaGmpga9e/fmtSkUHUR1dTUCAwMhKytLlXWm+K4JDg6Go6MjNDU14evri27dugEAampqMHPmTPTo0aPdq20UFPxOQEAA/vzzT6xcuRJ0Op2ntvj7+4NOp6N///4NHk9KYk08FRWBrqwnX1pdis8Vn0Gj0dBTtmenjt2ck8TPzw9///03Vq9eDfEmRF/YTpKunmrzX9jlYmVlZREUFITq6uo29/XuHRATAwgKskr+dgQCAgKYMWMGEhMTERUVhatXr2LatGmoqqrCyZMn0a9fP+zevbueoCu7clRDVY1awuuM1yioLICMqAwGaAzgynV0Fvn5LEcrjQaMHq2F6upqJCcnc6VvLS0tzJs3D2/evMGsWbPQo0cP7N27t9X9mJqaYuXKlfjpp59QW1vLFdsoWgflJOERf/zxByorK7Fp0yZem1IPKs3m2+dLB4m5uTnlIKH4bnn69CmcnJzQp08fPHv2rF7knJubG96/f4+rV69SZX4pvmny8vI4IoH8EN7dnB4JW7T1W9EjUZVUhZhQ20RCY2Nj2zSBaspJEhAQgNGjR8PJyQnLli1rsp+uXtmmKWg0GszNzSEtLY3AwMA2OUpqaoCbN1n7w4ez9Eg6EkFBQRgYGMDZ2Rn79++Hl5cXsrOz4ebmho0bN2L8+PEcHZrc3FwAaFNhhjpmHR4nsFLzhukMgxC9a9V+Dg1lbfX0AFlZQZiZmSEmJgZlZWVc6X/jxo0oLS3FyZMnsWbNGly7dq1NTphNmzahoqICBw8e5IpdFK2DcpLwgPj4eGzfvh3nz5+HCB/FJxJCEB4eDk1NTSrN5hulpqYGQUFBkJKSoiJIKL5rbt26hVGjRsHe3h5Pnz6tV+Lcz88P+/fvx86dO2Fpack7IykoOpi6ujo4OzujtrYW169f5/niSEv0SNhOkq6uR5JUmASAJdraFoqLi2FiYoKffvqp1akCIiIikJSUxOfPn+u9HhwcjJEjR8La2hp3795t9hn1WxFtbQy2o0RKSgpBQUGoqalp1fmPHwOFhaxKNiNGdJCRzUCn07F161Y8ePAAL1++hKWlJSIiIpD4f/Vj3TZ8kYIzg/G54jOkRKRgr2nPbZM7HLaWqpUVa6ugoABNTU28e/eOK2k36urqcHV1xYEDBzB16lTIy8vj6NGjre5HVFQU586dw7Zt2xDPFmKi6DQoJ0knw2QyMW/ePCxYsAB2dvwlcpScnIzq6mr06dOH16ZQdABsB4mEhAQsLCz4qtw0BUVncubMGUybNg1TpkzB/fv3OeHkTCYT7u7umDlzJhwcHLB69WoeW0pBwR3S0tIwcOBAzJ8/HxcvXkRycjIIIdi+fTv8/Pzwzz//cLR4eElzeiQMBvDxI2u/q+uRpBSmAAB05HTadH5kZCQYDAYuX76MP/74o1XnJiUlQUBAAIWFhZzX3r17h+HDh8PY2Bienp5NptkAQGkpywHwrYi2NoaAgAAsLCwgISHRKkdJbi7gzSr8gilTAF4XRRs1ahRCQ0MhKSkJW1tbHD58GHQ6HZqt9HAxCROPEh4BYEWRCNO7VrW3vDyWc09AADAz+/f1Pn36cDXtZv369aioqMDp06cxceLEVpUC/pJ+/fph/vz5mD9/fr10KYqOh5oldTInT55ERkYGdu7cyWtT6lFWVoaYmBgqzeYbhcFgICgoCGJiYrC0tKQcJBTfFS9fvsSmTZswatQodO/eHa6urli4cCEuX74MISEhjnPExMQEU6dOhZGREa5evcpzbQYKCm5x5swZvHv3DsHBwZgzZw50dHTQo0cP7NixA9u2bYOTkxOvTQTASrURFBRsVI/k40egthaQlu741IWOhEmY+Fj0EUDbRVsjIiIgJCSEVatW4bfffsOjR4+aPYfBYGDfvn0wMjKCnJwcpk+fDgD48OEDhg4dCl1dXTx69KjRVKcvYeuRdOsGNFL85ptBQEAAlpaWEBMTw6tXr8BgMJpsTwhw7Rrrs2poWH8yzku0tbURFBSEqVOnwtPTE1paWq0u8f026y3yyvMgISwBB02HDrK042Cn2ujrA1JS/74uKMjdtBs1NTUsXLgQBw8ehLm5OWJjY5GZmdmmvnbt2oW0tDScOnWq3XZRtBxqptSJpKWlYd26dTh9+nSLfoA6C3Y1GyrN5tuE7SARFRWFlZUV5SCh+K7w9PTEoEGDcPbsWRBCMGfOHHh6enJCX2/evMlxjvTo0QNBQUHw9vbmi1V1CgpuwGQycenSJTg7OyMiIgL5+fnw8PDAzJkzsWrVKmzYsIHXJnJojR5JV84WzSjJQE1dDcSExKAiqdKmPt6/f48+ffpg//79GD16NGbMmIGYmJhG27958waWlpbYsGEDFi9ejKioKBgZGaGsrAyjR49Gjx494OXlBRkZmRaNz3aSfIt6JA3BdpSIiIggKCioSUfJmzdAbCyr1K+zM399VsXFxfH333/jwoULcHNza9W5TMLEg/gHAIAh2kMgIsg/kgEt5b+pNl/C7bSbdevWoaamBu/evQOAFjkyG0JSUhKnT5/G2rVrkcb+4lF0OFTIQCdBCMEvv/yCyZMnY+jQobw2px5Ums23C4PBwKtXryAsLEw5SCi+O0JDQzF9+nSMGzcO7u7u9SJD6urqMHDgQLx69QrDhw/HmTNn+C4FkoKCGzx//hxpaWmYPXs2AEBeXh5jxozBmDFjeGxZfdh6JD/99FOjbb4VPRK2aGtP2Z5t1gaLiIiAiYkJBAQEcPXqVdjZ2WHs2LF48+YN5OXlOe1KSkqwceNGHD9+HGZmZggJCYG5uTnn+ObNm5GXlwdfX9965zXHt65H0hB0Oh1WVlYIDg7Gq1evYGdn91UkRnk5cOsWa3/UKFYVJn6DRqNx7get4XXGa+SW5UJSWBJOPfkj+qw15OSwqtoICAB9+zbcpk+fPvD390dycjJ0dNqWCsdGWVkZS5YswV9//QVbW1ssWbIEAJosq90Yw4YNw6RJk/DLL7/g4cOHlKZgJ0DNmDqJq1ev4t27d63OG+1oqDSbb5fa2lq8fv0agoKCsLa2plIHKL4r0tPTMWbMGBgaGuLKlStfff5fvnyJV69e4c6dO3jy5AnlIKH4Zrl06RJ0dHTQr18/XpvSJM3pkTCZrPK/QNfXI2E7SdqaasNkMhEZGQkTExMAgJSUFDw8PFBYWIhp06ZxKt7cv38fBgYGOH/+PP744w+8efOmnoPkzZs3OHz4MHbs2AFt7dbZwtaG+Z6cJADLUWJtbQ1BQUG8fv36q+pCd++y9FpUVQE+WxNtF7XMWnjGeQIARuiOgKhg18uxCglhbQ0NgcaK1gkKCqJv375cS7tZs2YNCCGws7PDTz/9BFdXV5w/f75NfR08eBDv3r3DtWvX2m0XRfNQTpJOIDc3F8uXL8eJEycgJyfHa3M4UGk23y5sB4mAgABsbGwoBwnFd0VJSQlGjRoFYWHhRgUIr1+/Dk1NTYwfP77zDaSg6CTKy8tx69YtzJo1i+9XHtl6JI05c9LTgepqQFwc6N69k43jMu11kiQnJ6O8vBympqac17S1tXHr1i34+/vjl19+waRJkzB+/HiYmJggKioKK1asqLcYVlNTg/nz58Pc3BzLly9v1fjFxf+Ktn5vThLgX0eJgIBAPUdJUhLw8iWrzcyZwLe09vgy9SUKKgsgKyqLQVqDeG1OqyEEePWKtW9t3XRbRUVFaGhocCXtRklJCcuXL8epU6ewYcMGjB49us3aInJycjh+/DiWL1+OvLy8dtlF0TyUk6QTWLZsGZycnDBhwgRem1IPKs3m26S2thZv3rwBjUajHCQU3x0MBgNTpkxBWloaHj16BGVl5Qbb3Lp1C9OnT+f7iSMFRXu4c+cOysrK4OLiwmtTmqU5PZK4ONZWV5e/NB5aS3FVMT6VfwKNRmuXaCsATiQJm0GDBuHo0aM4d+4cAgICcP36dTx8+BBaWlpf9bF//37ExMTg7NmzrY4kZkeRqKkBzVQJ/mYRFBSEjY0NAFZETnV1La5cYR3r37/rRzt9SU1dDaeizUi9kRCit07slR+IiwPy8wExsZYJ6RoYGKCqqoor1W7WrFkDBQUFODs7Y8aMGQgODkYCO3ewlUycOBGDBg3CsmXL2m0XRdNQTpIO5t69e3j69Gmb6mN3JOw0m759+1JpNt8QTCYTwcHBIITAxsaGem8pvjtOnjwJHx8f3L59GwYGBg22uXHjBvLz8zFjxoxOto6ConO5ePEi7O3t0bNnT16b0iRsPZLGUm2Af50k+vqdY1NHkVTIyhnqLtUdYkJibeojIiICSkpKDTqBf/nlFzx9+hSxsbGYNm1ag47g2NhY7NixA2vWrEHfxsQZmiCFVb0YDfhevisEBQVha2sLJpOJEyfikZlJICEBTJrEa8u4i1+KH0qqS6Aoroj+Gg1XnuJ3goJYWysrlqBuc3Cz2o2srCz++ecfvHr1CmFhYZCSkmpXysyxY8fg7e2N+/fvt8suiqahnCQdSFFRERYtWoQ///wTKiptUy/vCNhpNhoaGlDkR0UpijZBCEF4eDhqamooBwnFd0tqaip0dHQwePDgRo8vWbIEU6ZMqReqTkHxrZGeng5fX982CTR2Ni3RI0lMZO13dSdJQj5rBVlPoe2hBmzR1sYi4YYMGdJoendeXh5cXFygqanZ6uombNhOEj73vXUKgoKC0NOzxYsXMsjPz8ekSaRRvYvOoK6uDsnJySgqKuJKhZZKRiWeJD4BAIzRHwNBga73bFlZCYSFsfYbqS7eIOy0m/Dw8Hb/X/bv3x/btm3DwYMHIS8vjytXrrS5TxUVFRw6dAiLFi1CUVFRu+yiaJyu90nvQqxevRomJiZ8F+aanJyMqqoqSqjwGyM+Ph6fP3/GwIEDW133noLiW6G8vBwSjTyh1tbWwtnZGbKysjh9+nQnW0ZB0blcuXIFoqKimDx5Mq9NaZZjx45BRESkUT2S1FSgqoqlR9KjRycbx2USC1jeHl35tpfoef/+fZv0lAICAjjCrp6enhATa30kCyH/ptu0xkkSExODiIgICAoKQkhIqEV/EhISkJWVhbCwcKvt7CwIAdzdhSAvrww6PREKCvkAeOPJy8vLw4QJExD0/7AJISEhKCoqonfv3rhw4QI02lCv+VnyM1QwKqAqpQrr7s2IefApb98CDAZLTLe1GjoGBgbw8/NDSkpKq8WN/8u6devg5eWFl/8XrgkJCYF1cwIpjTBr1ixcu3YNa9aswZkzZ9plF0XDUE6SDsLHxwc3b95EZGQkX+W8s9NsbG1tqUiDb4j09HQkJiZi4MCBbXrooaD4VigvL29U02Dbtm148+YNXrx4AVlZ2c41jIKiEyGE4OLFi5gwYQKkpaV5bU6T3Lx5E8ePH8fx48eb1SPp1atr65FU1VYhvSQdAKAj17byoqWlpUhOTv5Kj6QpCCE4cOAA1q9fj379+uH69etQU1Nr0/g5OSyHlbAwS5OkuXG9vLxw6NAheHt7t2k8ABAXF4esrCxkZWUhJyfXqn0ZGRkICHRc4HxwMPDhAyAqKohff+2O+PgXkJAQh7q6eoeN2RCRkZEYM2YMqqurcfPmTQDAp0+f8OnTJ1y8eBH9+/fH06dP0bt37xb3WVpdiqfJTwEAY/XHQoDWNRMQ2Kk2/fq1/v7BTrt5/fo1lJWVG12EYVNSUoJt27bB0NAQjo6O9VId6XQ6/vzzT1hYWAAA3Nzc8Pjx4zbNE2k0Gk6dOgVjY2NMnz690ehZirZDzZI7gPLycixYsAB79uyBJh/JfrPTMag0m2+Lz58/4/3797C2tub7h2EKio6kpqYGUVFRUFVV/eqYv78/du3ahR07dvB9KVQKivaSlJSEuLg49O/fHwwGg2+jC+Pi4jBv3jzMmDEDCxcubLRdfDxr29VTbVIKU0AIgYK4AuTE2lbt8MOHDwC+Fm1tjJKSEri4uMDDwwNr167Fzp0727VIxk610dQE/ut7IISgqKgIWVlZCAwMxOHDhxEdHQ0zMzNcunQJY8aMAZPJBIPBaNFfeXk5ioqKUFhYiKKionr76enpiIiI4LxeWlraoL1CQkKYNGkSli9fDltb2zZfd0OUlgI3brD2R40C9PSkICNjheDgYIiJiXXas/aDBw8wY8YM6OrqwsPD4ysHzYIFCzBs2DAMHDgQT5484UzSm+NhwkNU11ZDQ0YDZiotUDvlQ7KzgeRk1me1rW//l9Vu+vfv36RT482bNzh48CDn3z179sTly5fR//95Pubm5vjxxx9x5coVeHl54dy5c5g/f36b7NLS0sKePXvg6uqKiIiIZh04FK2DcpJ0AJs3b4aamlqTP/i8ICUlBZWVlVz/kaDgHaWlpQgODoaxsTG6devGa3MoKHgGIQQLFy5EZGRkvQcUgOVInDlzJhwcHLBu3ToeWUhB0Xno6Ohg69at2LFjByIiInD58uVWrSB3BuXl5Zg0aRLU1dVx+vTpRicedXXfjh4Jt1Jt6HR6o8LUX1JXV4cZM2YgICAAHh4eGDNmTJvHraioQFZWFh4/ZiAxUQhVVdFYteo5srKykJmZiaysLGRlZaGyshIAa6V77NixOHHiBOzt7Ts8qrq2thbFxcVfOVOSk5Nx+vRp2NnZwdraGsuWLcOUKVO4ksJz8yZQXs4qST1sGOu1bt26wdjYGMHBwRg4cCCkpKTaPU5jEEJw6NAhrF69GuPGjcPly5cbjMZSU1PDixcvMHLkSDg6OsLT0xMODg5N9p1blovnH58DACYZTOKrqPjWwC7JbGwMtGcdsaVpNwwGAwDLmZmUlIT9+/dj7NixCAoKgv7/b2C7du2Cu7s7qqursXLlSgwbNqxNqVAAsGjRIly/fh1ubm74448/2tQHRSMQCq7y6tUrIi4uTmJjY3ltSj3KysqIp6cn+fTpE69NoeASlZWVxNvbm0RHR/PaFAoKnrNnzx4CgFy8eLHe60wmk4wZM4YoKCiQjIwMHllH0RLKy8vJvXv3SHl5Oa9N+WZ48+YN6dWrFxEVFSWHDx8mdXV1vDaJEML6Xv74449EXFycREVFNdk2MZEQV1dCVqwghMnsJAM7iINBB4mrhyt58fFFm/uYOXMm6du3b4varlmzhggICBAvL682jeXj40PMzc2JrKwsAfD/vw0EOElERfuTXr16kUGDBpGZM2eSNWvWkEOHDpGbN2+SgIAAkpWV1aYxO4K6ujri6elJhgwZQgAQVVVVsn37dpKbm9vmPiMiWJ/Ln38mJCXl6+NRUVHE29ubVFVVtd3wZjh79iwBQNauXdui73ZpaSkZMmQIERUVJZ6enk22PRlykrh6uJIjr49wy9xOp6qKkOXLWe/Thw/t7y8vL494enqSsrKyBo/HxcWRtWvXEgCcz1ZBQQExMDAgPXv2JDk5OZy2P/74I1FXVyc9evQgQ4YMIcx23NxiYmKImJgYef36dZv7oPgayknCRaqqqoiBgQHZvXs3r02pB5PJJC9fviTv37/ntSkUXILBYBB/f3/y9u3bdt1YKSi+BW7evEkAkM2bN3917M6dOwQA8fDw4IFlFK2BcpJ0DOXl5WTJkiUEABk+fDhhMBi8NomcOnWKACBXr15ttu3Dh6xJzsmTnWBYB1JbV0uWPFxCXD1cSVZJ2xwIlZWVREpKimzbtq3ZtpcuXSIAyKFDh1o9Tm1tLXFzcyM0Go3Y29uTvXv3ksuXLxMvL18ybVoBmTu3muTnt+EC+IAPHz4QV1dXIiYmRkRERMicOXPIu3fvWtVHZSUha9eyPpfu7g23YTKZJCQkhDx//rxDvnN1dXWkV69eZNKkSa06r6qqikycOJHQ6XSyYcMGUllZ+VWbxPxE4urhSn72/JlklmRyy+RO58UL1nu0aRP3HKzh4eHk5cuXXz17v3379gtHIkhRURHn2MePH4mKigqxsrLiOFjs7e3JlClTiJeXFwFATrbzBrdr1y5iYGDQoU65742uqcDDp+zevRsiIiJYvXo1r02pBzvNpiWhmRT8DyEEYWFhoNPp6Nu3b5cNgaSg4AavX7/GrFmz4OzsjG3btn11/PHjxzAwMGhXmDkFRVdGXFwcR48exdq1a+Hn54fa2lqe2hMaGoqlS5di4cKFcHZ2brY9W7S1q6fapJeko6auBhLCElCRVGlTH97e3igtLcWUKVOabPfmzRssWLAAc+fOxfLly1s1RlZWFoYMGYKdO3di27Zt8PX1xdq1a/Hjjz9CR8cRMjJyUFAQRiMVhvkeQ0NDnDp1ChkZGdi+fTt8fHxgZmaGnTt3triPu3eBwkJAUREYO7bhNjQaDWZmZhAQEEBYWBhXyvF+yePHjxEfH4+VK1e26jwRERHcuHEDbm5uOHDgAExMTODv7885TgjBrehbAID+6v2hJtU2gV9eQwjAviwHB+4JPhsaGqKyshIpbHGe/yMsLAwBAQH06tULt27dgoyMDOeYpqYmHjx4gOjoaFhbW2PChAkIDg6GpaUlhg0bhgULFmD16tX4yC4b1QbWrFkDYWFh7Nmzp819UNSHcpJwiYiICPz+++84d+4cXwmklZeXIzo6Gn379qWq2XwjREVFobS0FNbW1qDT6bw2h4KCZ6SkpGDs2LGwsLDAuXPnvnIYlpaWwsPDg1J9p6AAEB0djf79+0NUVJRnNhQWFmLKlCkwMTHBoUOHmm1fWwskJbH2e/XqYOM6GLYeiY6cTpsXN9zd3WFoaIg+ffo02iYzMxMTJkyAubk5/vrrr1aN5eXlhb59+yI+Ph6+vr7YvHlzveeML0v/dvX1GXl5efz2229ITk7Gtm3bsHnzZuzbt6/Z8xIT/518u7iwqvw0Bp1Oh7W1NUpKShAVFcUdw//PoUOHYG1tDTs7u1afKygoCDc3N4SHh0NZWRmOjo6YP38+CgsL8S7nHZILkyFMF8YY/a67uJCcDGRkAEJCQBv+ixpFUFAQffv2RXR0NMrLyzmvGxsb49atW0hNTcVff/2F6urqeudZWFjg4cOHMDU1RXV1NWxtbTH2/x62AwcOQF5eHj/99FObnWlCQkI4d+4c9u/fj8jIyLZfIAUHyknCBWprazFv3jz8+uuvMDPjH/VnQgjevXsHdXV1KCkp8docCi6QnJyM9PR02NrackV0jIKiq1JUVIRRo0ZBWloa9+7da3Dit3XrVpSWlvJddB/F1zCZTE6EA5PJ5LE13x6lpaXw9/fHkCFDeGZDeXk5Zs2ahaKiIri7u0NERKTZc1JSAAYDkJICGiha1aVor2hrVVUVPDw8mowiqaysxPjx40Gn03Hnzp0W/R8DLLHJ9evXY8SIEbCwsEB4eHiDwp7JyaytllZbroA/YTsM3NzcsG7duiaddwwGcOkSa79/f6AlWsjCwsKws7NDeno6ktn/ge0kNzcXPj4+WLx4cbuiifv06YPnz5/j5MmTcHd3R2+D3tjvsR8AMFRnKGRFZbliLy/w82Ntra0Bbhd9UVJSgrq6OsLDw+s5NSZMmIAnT57A19cX165d++o8BwcHXLt2DY8ePYKfnx9HTFtaWhqnT5+Gn58fnjx50ma7zM3NsXz5csybNw91dXVt7oeCBRVawAXOnDmD4uJizJ49G4QQvkl/oKrZfFvk5OQgOjoa/fr1o8p8UXz3HDlyBKmpqQgLC2uwzGJERAQOHz6MXbt2tVk1nqJhmEwmqqurUV1djaqqKs62trYWdXV1YDKZnC17/7+v/3f75YOmj48PaDQaBAQEQKfTG92y9//7uqCgIERFRSEiIsLZioiIQOC/9Uq/E4KDg+Hs7AxCCCZNmtTp42dkZODYsWM4ffo0SktLce/ePWi1cJb9ZaoNnzxatQlCSLudJN7e3igpKWnUSUIIwbx58xAVFYWAgACoqLQspSc9PR3Tp0/HmzdvsG/fPqxevbrR7wo7qke37cV5+JatW7eipqYGK1euhLGxcYMOxUePgNxcVpWUyZNb3reEhARsbGwQFBQEcXHxFr83jRH//5rYLS3l2xQCAgL4+eefMWbMGExcNRHuj9wxeexkDPthWLv75hUlJUBYGGt/0KCOGYNd7ebjx4/o2bMn5/VBgwbhhx9+wNGjRzFnzpwWzQnLy8shLS0Na2tr7N+/Hz/88EObbCKEYPbs2bh16xZOnz7Nd1VWuxqUk6SdVFVVYefOndi9ezfS09ORlZUFY2PjTquN3hjsNBsbGxsqzeYboKioCG/fvoW5uTnk5eV5bQ4FBV8gLS3NKan3JUwmEwsXLkSvXr2wYsUKHljW9SCEoLa29ivHR0NbdhixsLBwPUeEkJAQ6HQ6hISEvnJktGRbXV0Nf39/2NvbQ1hYuEmnypfb/zpkqqqqkJ+fz7G3pqYGADjOkv86UP675aeU2fZQV1eHffv2YcuWLTAzM8OTJ0+g24mz25CQEBw6dAju7u4QFxfH/PnzsXTp0hY7SAAgNpa17eqpNjllOSitLoUQXQiasppt6sPd3R0GBgaN6stdvHgR//zzD27cuAFzc/MW9enp6Yk5c+ZAUlISL1++bDJ1o7CQ9ScgAGi27RL4GhqNht27d+PUqVMICQn5ykmSmgqwF/lnzADExVvXv7y8PMzNzfH27VsMGDAAsrKybbY18f81sZsqRdtaZJVkYTfLDun30/Ho0CN87P+R78qGt5SAAFbpcG1toKPWSISEhGBmZoY3b96gW7du9RYvlyxZgpEjR+L169ctSoe6e/cuXFxcYGJiguDgYISEhMDKyqpV9nz+/BmRkZGoq6vDxo0bsWnTJsydO5en6ZVdHWr23E5OnToFJSUluLi4gBCC5ORkzhfG0NAQ4q29i3IBQgjCw8OpNJtvhIqKCrx+/Rq9e/eGmlrXFNCioOA2cnJyKCwsbPDYu3fvEBQUhHv37nE9La2qqgqlpaVd9t5aW1uLsrIylJaWorS0lLNfWVmJuro6CAgIfOU4EBcXh7y8POff7GPcjsxgp9mIiIhw9beTHflSVVX1lcOntLS03r+ZTCbodDrExMQgJSUFSUlJSElJcfb/u+hQV1eHiIgIvhPRTk9Ph4uLC168eIH169dj69atneb8qa2txZgxY/DkyRP07NkTBw4cwE8//QQpKalW9VNd/W96RxMSHF2C+HzWyr+OnA4EBVr/6J2RkYH79+83KdL54MEDDBgwAFOnTm1Rnzt37sTmzZsxbtw4nD9/vtkFGHYUibo60MIsni4HjUaDpqYm0tLS6r1eWwtcuAAwmYClJdBCH9RXqKmpcZ7p7O3t23yfS0hIgLq6OsTExNpmSAM8jH+IitoKuIx3gUeAB0aNGoXXr193ud+62tp/U206KoqEzZdpN/369eP8BgwfPhw6Ojo4duxYi5wko0aNAsCKgAWALVu24NGjRy2yoaKiAlFRUcjLy0OvXr2gra0NGo2GQ4cO4fTp01i2bFkbr46CcpK0g4qKCuzZswenTp3iPCzq6elBXV0dMTEx8PX1hY6ODvT09Do1miMzM5Mj7EnRtWEwGHj9+jVUVVWho6PDa3MoKDqEiooKXL9+Hb1794aZmVmLHvzk5OQ4k9v/rpTo6OhAQEAAnz9/5op9TCYTHh4ecHd3h6enJ+h0OlJTUyEtLc2V/jsCtgPgvw6RyspKCAkJcSb98vLy0NDQgLi4OERFRSEkJMRXk31uICAgADExsWY/V4QQMBgMVFVVoaKigvN/l5+fj9LSUjAYjK+cJ+7u7ti5cyd27tyJpUuXdtIVNc2tW7fg6uoKCQkJ+Pr6YlBHzxT+w6VLl/DkyRNcvXoV06ZNa7PAeEICazVYQQHoYvO0r2A7SXoptD4kpqamBlOmTIGMjAwWL17cYBtCCF69egUXF5cW9XnkyBFs3ryZI1jaku8820nCxeAFvkRDQwOpqan1XnvwAMjKYmnjTJ/evv51dHRQXl6O169fY+DAgW1yXiYmJkJPT699hnxBTlkOfFN8AQAu5i745cEvsLGxwbhx4+Dr69ulohGCg1npNnJyLIdWR2NgYAAfHx9kZWWhe/fuAFi/OYsXL8batWvxxx9/NJteJScnhzFjxsDT0xMAEMsOoWuC2tpaJCQkICkpCd27d8fgwYPrvU/btm3DwoULMX/+fJ4s2H8LUE6SdnDixAn06NGDo07MRlRUFGZmZtDS0sKHDx+QlpYGAwMD9OjRo8MfPmtraxEdHQ1DQ8NvJmT4e4XJZCI4OBji4uIwNjb+5iYuFBRs1q5di2PHjgFgieiZmprir7/+ajTclMFg4OLFi5CXl28wmkFWVhbm5ubw9fXFvHnz2m3fli1bsHPnTpiYmGDZsmXYt28fLl26hCVLlrS77/ZSVVWF4uLir5whNTU1EBUV5UzoVVVVOfsiIiLU/aQBaDQahIWFISws/JUDjBCC6urqev/PMTExUFBQwKVLl1BSUgJPT0+oq6tz/p9lZGQ6dXJRVlaGX3/9FefOncOkSZNw+vRprqZnFhYWYt++fQgNDUXv3r1haGgIAwMDGBoaQkFBAQBrQr99+3ZMmTKlReV9m4I9T+jdu+vrkbTHSbJy5UqEhobi5cuXja7qp6WlISsrC/369Wu2vytXrmD58uVYs2YN3NzcWmwH20nyra/XaGhowI8digBWRR8vL9a+szPLUdIeaDQajI2NOWkVtra2rY7KS0hI4OpCqHuUO5iECRNlExh2MwTASsVycHDAnDlzcO3atS6h6UQI4O3N2ndyAjqjAKSQkBAMDAwQFRUFZWVlzqL4nDlzsHXrVuzYsQPHjx9vtp9t27YhOTkZUVFROHv2bKPtCCHIyMhAdHQ0xMXF0b9/f8g1UI973Lhx2LFjB/766y+sWrWq7Rf4HUM5SdpIWVkZ9u3bh4sXLzb6sCknJ4cBAwYgMzMTUVFRSElJgbGxcYMfZm6RmJgIERER9OjRo8PGoOh4CCF4//49GAwGbGxsusSPEwVFWwgICMCxY8fw+++/w8nJCcHBwTh9+jQmTpyId+/efaXvRAjB0qVL4e/vD29v70bTaRwdHXHlypVGxbSLi4uRn59fL6d79erVsLW1xeQvFPkeP36MnTt3YteuXdiwYQMA1gPqsWPHsGjRIq59Nz99+oR3797BzMys0YkQk8lESUkJCgoKUFhYiIKCAlRUVEBCQoIzMdfU1OTsU45y7kGj0TipRoqKiqisrMS0adMgISEBf39/LFq0CIWFhVi7di2qq6uRkpKC8vJyTqoS+09KSqrRz0x5eTlKS0vbJOpYUlICW1tbpKam4uzZs/jpp5+45girqqrCsWPHsHv3blRXV8PJyQk+Pj7466+/OBUUlJWVYWhoCFFRUaSnp+Px48ftHjcmhrXt6qk2ueW5KKkugRBdCFqyWq069+rVqzh+/DhOnDgBGxubRtsFBQUBQLOh/Q8ePMCcOXMwb968FpW7ZVNdDaSns/a/dSeJpqYmUlJS8OLFC9jaDsSFCzQwmYCVVdvTbP6LgIAALC0tERAQgPfv37cqXY8QgsTERMycOZMrtnzI+4APeR9AF6BjiuG/osDW1tbYtGkTNm3ahOXLl7ep1HBnExUFZGcDoqLAwIGdN666ujpSUlKQlJTE0UmTk5PDtm3bsHLlSsybN69ZnSAzMzNERERAQUEBgYGBcHJy+qpNQUEBPnz4gMrKShgaGqJ79+6Nfm5oNBq2b9+OuXPn4ueff4akpGT7L/R7g1C0id27dxNbW1vCZDJb1J7BYJCYmBji6elJQkNDSWVlJddtKi8vJ56eniQ/P5/rfVN0LrGxscTLy4tUVFTw2hQKig6joqKC9OrVi9jZ2ZHa2lrO6xkZGURJSYkMGzas3uuEEPLnn38SAOTMmTNN9v3o0SMCgMTGxjZ4fMaMGURAQIAsXbqUFBUVEUIIkZCQIHQ6nbi7uxNCCElNTSXy8vJk5MiRpK6ujnPuixcvCADi7e3dpuv+Ly9evCAqKioEAAFAdHV1yezZs8nz589JTk4OiY6OJgEBAcTT05M8ePCABAYGkpiYGJKbm0tqamq4YgM/UF5eTu7du0fKy8t5bUqTvH//njg5ORERERESHR1NCCGksLCQ9OrVi/Tp04fzeaqpqSG5ubkkJiaGBAYGkgcPHhBPT08SEBBAoqOjSVZWFgkJCSF79uwhjo6OREhIiEhLS5Pi4uJW27R48WIiISFBoqKiuHadtbW15OLFi0RDQ4PQ6XTyyy+/kOzsbM7x6upqEhkZSW7cuEHc3NzIpEmTSJ8+fcjKlSvbPXZJCSGurqy/kpJ2d8dTnn98Tlw9XMmBwAOtOi8iIoKIiYkRFxeXZp81ly5dSnR1dZu24/lzIioqSiZOnEgYDEarbImLY70Xv/1GSAsfe7ssCQkJRFdXlwAgamqLiY1NOFm4sJyUlnJ/rIqKCvLkyZNGf6caIjs7mwAgd+/ebff4jDoG2ey7mbh6uJJbUbe+GkdZWZkMHjz4q99hfuXgQdbn9ObNzh87Pz+feHp61ntuZzAYxNjYmNja2tZ7hmiKUaNGkaFDh9Z7raKigoSGhhJPT08SExPT4u8vk8kkNjY2ZM+ePS2/EAoOlJOkDRQXFxM5Obk2PSCXl5eTkJAQ4unpSeLi4rh64wkJCSFv377lWn8UvCEtLY08ePCgTQ/KFBRdibVr1xJhYWHORPNLnj59Smg0Gjlw4N+JxYMHD4iAgABZvXp1s32XlJQQOp1O/vrrr6+Off78mQgLC5Nhw4YRSUlJoqysTM6dO0cAEHV1dSIoKEjc3d2JjY0N0dDQIJ8/f653PpPJJKampmT8+PFtuOr6HDlyhNDpdGJvb0/evHlDbty4QY4fP05OnTpF7ty5Q/7++29y//59kpSURIqLi1vsmO+K8LuTJCUlhbi4uBAajUb09PTI48eP6x2PjY0lMjIyZNSoUQ3+tjOZTJKQkECuXbtGDh06xHmPjx07Rvbu3Uv++usvoq6uTk6fPs05Jz8/nxw4cID07t2bODo6Em9v768+AwEBAYRGo5HDhw9z5TqZTCZ59OgRMTExIQDIpEmTWjWJ4wbBwazJzvbtnTpsh3Am9Axx9XAlnnGeLT6nqKiI6OrqEhMTkxZ9HywsLMisWbMaPR4WFkakpaWJk5NTmxbpHj1ivR+nTrX61C4Jk8kk164FEV3dZ0RA4AwRFLQiU6ZMId7e3i2e7LaU4uJi8uDBA5KWltai9i9fviQAyIcPH9o99tOkp8TVw5Ws8lpFKmpYk/ucnBxy5swZYmpqSlRUVEhOTk67x+kM0tJYn9FffiGEV2vFb9++JSEhIfVee/78OQFAzp0716I+9u7dSyQlJQmDwSC1tbUkLi6OeHp6kpCQkDb9Nnp5eRF5eXlqTtEGqBj+NnD48GEYGRk1WEO9OcTFxWFpaQk7OztkZWXB19cXWVlZIIS0y6b8/Hzk5OQ0WhqOomvw+fNnvH//HlZWVnwtCklB0V5CQ0Nx4MABbNmyBX0aiKdnV8Jgp9NkZmbC2dkZo0ePxt69e5vtX0pKCgYGBggPD+e89u7dO+Tk5ODatWtgMpm4cuUKYmNj4eDgwNEuOXbsGMaPH48pU6YgLCwM7u7uHL0FNjQaDYMHD26RuBq7Yst/IYSgsLAQYWFh+P3337F27Vrk5uZCTU0NDg4OGD16NGg0GpYvX45x48bh5cuXkJaWprREeEB+fj5WrlwJfX19eHt748SJE4iKisKIESPqtdPX18eNGzfw+PFjbNy4EQBLlNjLywurVq2CiYkJ9PT0MHPmTFy9ehWpqamQlZXF2LFjMXr0aBgZGeHQoUOQlJSEt7c39u3bB3t7e2zcuBFmZmYoLS3FsGHDYGtrC09PT45Oyvz582Ftbd2oqGdrePv2LQYPHoyRI0dCRkYGr169wq1btxostd2RfCupNqSNeiTbt29HXl4ebt++3azoYnl5Oae6xn9hMpnw9fXFiBEjoK+vj3v37rVJJ4ddZehbT7VhU1tLQ1ycHZycBuPgwek4cGAmoqOjMWzYMOjo6GDnzp3IzMxEZWUl/P394cUWLWkB/33el5aWhpWVFd6/f98isfGUlBQAQM+ePVt3Uf+htLoUD+IfAADG64/H5b8vo3///lBVVcXPP/8MaWlp3Lt3D8rKyu0ap7N4+pS1tbAAuCjF1CoMDAyQk5OD/Px8zmv29vb48ccfsXr1auzevRvR0dGcz0BeXh5Onz6N4cOHw9TUFFVVVRgwYADKysrw6tUrzhzRzs4OlpaWbRJgHTp0KAwMDHDkyBGuXed3Ay89NF2RgoICIiMjQ/z8/NrdF5PJJB8/fiSPHj0iAQEBbfbyMZlM4ufn1+krPRTcpaysjDx8+JB8/PiR16ZQUHQ4Y8eOJQYGBg2mi9TU1BBjY2NiaWlJGAwGYTKZZOzYsURFRYUUFBS0eAxtbW2ydu1aQgghly5dIjQajQgICBBJSUkyceLEem29vLzIhAkTSF5eHqmpqSGLFi0ily9fbrTvjRs3Ek1NzUaPZ2RkkOnTpxMBAQEye/ZskpqaSmpqakhmZiYJDQ0ljx8/Jg8fPiRnzpwhU6dOJdnZ2fVWKH18fIixsTEBQGbPnv1dpFHyWyRJeXk52b17N5GWliaSkpJk+/btpLQFMfcHDx4kAEi/fv2IiIgIAUC6d+9O5s6dS/755x+Sl5fX6Ll37twhenp6ZPTo0cTNzY3cvn2bPHz4kISGhpKMjAzy5MkTMmDAAAKAmJiYkKlTpxIhISESGRnZrmtNSEggU6dOJQCIoaEh8fT05FnUEpNJyLp1rFVhLiyW85Sc0hzi6uFKFj1YRGpqW5YaV1lZSeTl5VsUMUcIIYcPH64XWcBkMklYWBhZvXo16dGjBwFATE1NyadPn9p0DUwmIStWsN6PlJQ2ddHluH2bdb2rVxNSVsZ6jclkkqCgIDJ37lwiLi5OBAQEiJCQECdN8uXLl832e+3aNSIlJUWWLVv21W/Zx48fycOHD0kZe8BGuHv3LgFAcnNz23x9hBBy+f1l4urhSnY+30kCAgMIAPLDDz+Q8+fPN3mP4kcKClgRJK6uhPD6ETo2Npb4+fnVu3/m5eWRqVOnEgkJCU5K7cCBA4mAgAAREBAgdnZ2BAB59OgRiYyMJNu3byf37t0jKSkpXLkP+/r6EllZWVJYWNjuvr4nKOHWVnLo0CFYWFhwpaQeux67mpoa4uPj8fz5c2hoaKB3794QaUUR+rS0NDAYDOjq6rbbJgreUFdXh5CQEPTo0QOampq8NoeCokPJyMjAgwcPcPz48QbFRX///XdER0cjNDQUgoKCuHnzJjw8PHDnzp1WCV/n5uaiW7duuHHjBubMmYM5c+bAzs4Onp6eWLt2bb22w4YNw7Bhwzj/bk6NXlRUFIWFhUhKSqpXnpvBYODIkSPYunUrxMXFsWnTJiQmJuLSpUswNDSEpKQk1NTUYGlpCXl5eSQnJ2PBggUQEBCAkpISysvL8fLlSyQkJMDOzg7BwcGNVvmh6Dg8PT2xaNEi5ObmYuHChdi0aVOjgrr/5ddff+UItu/ZswfDhw9Hnz59WhQFNHr0aLx58wZWVlYYN24cBAQEUFBQgNzcXMTFxaG6uhp79+5FeXk5zp49i5s3b8LNzQ1GRkZtus6cnBzs2rULJ0+ehLKyMs6dO4fZs2e3uWwvN/j0CSgoAAQFga7+WMOOItGW04YQvWVCyrdu3UJBQQEWLFjQbNsHDx5gxYoVWLp0KYSFhbF9+3Zcu3YNcXFxUFRUxNSpU+Hs7Aw7O7s2i0zn5QHl5YCQEPA91ARITv63QsqPPwISEqx9Go0GOzs72NnZ4c8//8TNmzdRVVUFe3t7/Pzzz3B1dUVoaGijpcZPnjyJRYsWwdHREefPn8e1a9ewa9cuzJs3D3Q6HZqamiguLsbbt28xYMCARr+D7DKzmZmZ6NatW6uuLScnBxISEihiFiEgLQAAMM1oGjYt2gRdXV08ePCgSxYK8PICmExAXx9oyyN0bGwsiouLQaPRIC0tDU1NzWZLxjeGrq4uUlNTkZaWxnmeV1JSwo0bN1BVVQVfX1/cu3cPubm5OHXqFMaNGwdFRUWYmJggMTERVVVVSEpKwsyZM6GlpdUmG/6Lo6MjzMzMcOjQIWzbto0rfX4X8NpL05X4/PkzkZKSapG3uC2UlpaSV69ekYcPH5LExMQW5T3W1NSQx48fk8zMzA6xiaJzCA8PJ/7+/lzPdaWg4Ee2bNlCJCQkGoyei4uLIyIiIpwIkM+fPxMlJSUyefLkVo1RVlZGAJDJkycTOp1OXFxcuKoBFRYWRpSVlYmAgAD58ccfSVRUFPH39ycmJibEzMyMHDlyhDx58oR4eHiQly9fkmPHjpGePXsSaWlp4ubmRj58+MBZIZo/fz7R1tbmCLz99NNP5OrVq9+0/khD8EMkSV5eHpkxYwZnVTUxMZFntjREWVkZSUpKIkFBQcTDw4M8evSIvH//nuTm5rbq852Tk0NWrlxJxMTEiIyMDNm7dy/fCIU/f85aET7QOp1TvuRs6Fni6uFKPGI9WnzOgAEDiKOjY7PtQkJCiLi4OLG1tSWWlpYEAJGUlCQuLi7k8ePHXBN1DgxkvR+//86V7viaqipCNm1iXW8LJSQIISyRXSEhISIhIUFGjBhBfv/9dxIUFESSk5NJaWkp2bt3LwFAli1bRurq6khWVhaZPXs25z0bMGAA2blzJ4mMjCT+/v4kPDy80bEyMzMJAOLh0fLPFBtbW1vSU7sn+c3jN+Lq4UrOhJ4haWlphE6nkyNHjrS6P36guJiQxYtZ71lMTOvPT09P50QDsf9oNBrR1tYmo0ePJmvWrCHnz58nr1+/bnHEf2ZmZou/g3V1dSQxMZG4u7uTTZs2ETU1NbJ8+XKu//6/ePGCSElJfaWxRtE4lJOkFaxbt44MGzasw8fJzc0lz549I8+ePWs2nO7Dhw8kICDgu3uY/pZIT08nDx8+5JsQcwqKjoTBYJDu3bsTV1fXr45VVFQQS0tLoqOjw5mwubi4EDk5uXpVNVpCSkoK54Fn6tSpra7m0BIqKirI0aNHiaGhIRk6dChZt24duXnzJvH09CTh4eEkOzu73rh5eXlk+fLlRFxcnAAg2traZNmyZSQjI4PrtnVFeOkkYTKZ5MqVK0RBQYEoKCiQy5cv8/3vKoPBINnZ2SQ8PJw8efKEeHp6ktevX5OPHz826vDIy8sja9asIeLi4hyHHb+FYJ88yZrwPHzIa0vaB5PJJL95syajsZ9alg4dFRVFAJDr16832S45OZl069aNGBsbE1FRUeLg4EBu3rzZId+dixdZ78ft21zvmu+4coV1rWvXEtLa/8ro6Giyd+9eMnToUCImJvbVxHvLli1f3VNCQ0PJvn37yMSJEzmpGLa2tuTevXskPT29wXFqa2sbFSVvDhkZGQINEInpEsTlmgsprCwk69atI9LS0qSki5aRunWL9Z7t3du2yku1tbVERkaGuLq6koiICOLv70/OnTtHVq1aRX744QeipaVV733U19cnu3btavT9IYT13X/58mWz4rpfzvfYVe6uXLnS+otoIUOHDiXr16/vsP6/NSgnSQvJzc0lEhIS5PXr150yHtuz+PDhQ/Lq1asG86BLS0uJh4cHp9wgRdejpKSEeHp6tnoCSEHRVbl//z4BQEJDQ+u9zmQyyY8//kjExMQ4x9gq/n///XerxwkNDSUAyIQJEzqkTG5ZWRkn9/j+/fvk1q1b5ObNm6SwsLDZyXVFRQV5+PAhWbhwIZGVlSUzZszgun1dEV45SdLS0sjIkSMJADJ9+vR25/rzAiaTSYqKikhcXBx58eIFuX//PkerrKysjHz69ImsXbuWSEhIEElJSbJx40a+1LmpqyPk119Zk57kZF5b0z5yy3JbrUeyfPlyoqSkRKqrqxttk5+fT3r37k169uxJdHR0iImJSYdGAbEjKyIiOmwIviAy8t+y022JSPiSqqoqEh4eTp4+fUquXbtGnjx50uw5lZWVxNPTkwwZMoRYW1uTO3fuNOq40NTUJMuXL2+VTYWFhQRCIA67HYjsj7JEzkKOhISEEDk5Oa6U7eYFZWWELF3a/s/nuHHjiIODQxPjlJHQ0FBy6dIlznOKgIAAGTFiBLl582aDv/lFRUXEw8Oj0flbazMHuMGrV6+IhIREl9Oc4RWUJkkL2b9/PwYNGgQbG5tOGU9AQAA6Ojro0aMHYmNj4efnB21tbfTq1YuTwx8VFQUNDQ3IyMh0ik0U3KW2thYhISHQ1taGiooKr82hoOgUPD09QaPRcOnSJYiIiEBBQQF3797F8ePHERUVhWvXrsHc3BwA8PDhQ6iqqmL27NmtHsfQ0BCXLl3CtGnTGtQ9aQs1NTXIyspCeno6CgsLoaysDB0dHSgrK3Oq8LQEMTExjBw5EiNHjoSsrCzOnj0LJpPZJXPBuzJ1dXU4deoU1q5dC2lpady/fx9jx47ltVltgkajQUZGBjIyMujVqxdqamqQm5uLjx8/Ijo6GgkJCYiKisKvv/6KX3/9FYqKirw2uUHS04GKCkBMrG3aAvxE3Oc4AICWrFaL9EgqKytx8eJFuLq6Nno/qa6uxoQJE5CXl4f+/fvDz88Pb9++bbN+QnOUlLA0SWi0b7uyTVkZcPEia3/wYKB37/b1JyIiAlNT01adIyoqitGjR+OHH37AmjVrcPfuXVRUVGDSpElfVSQaOXIkbt++jYMHD7b4dyM1NRXoDch1k8MCkwV4suEJbG1tQQjBkiVLWmUrv+DjA1RXA+rqQBtlmQAAgwcPxurVq1FeXg4JtgjNF0hISMDc3Bzm5uZwcXHBsWPHcPPmTZw7dw5Tp06Fn5/fV1qVMjIyUFdXR1RUFGfuyGAwEBcXh5SUFGhoaGDw4MGt0qBsL7a2tnBwcMD+/fvx+++/d9q4XRXqiawFZGdn48SJE9i+fXunj82+0drb26OoqAg+Pj5ITU1Fbm4uPn/+jN7tvZNT8ARCCCIiIiAsLEy9hxTfFVu3bsXq1atx7do1GBkZQU1NDUuXLoWqqipevnyJGTNmcNoGBQWhX79+bSp7KyIiAhcXl1Y5LxqCyWQiOzsbwcHB8PLyQlpaGrp3747hw4fDxsYG6urq7RpjyJAh+PTpEyIjI9tlJ0XT1NXVwcPDA0uXLsXIkSOhr68PcXFxLF68GDNnssp7dlUHSUOUlZXhzJkzGDVqFBYuXAghISH8+uuvsLGxQXJyMrKzsxstT81LoqJYW319oKv7DGM/s0qE91Zs2W/87du3UVRUhPnz5zd4nMlkYs6cOQgODoarqys8PT1x+vTpDi3PnJDA2nbvDrSh+miXgBDg6lWWQ0hVFZgwgbf20Ol0HDx4EAMHDkRqaioOHTpUr5R9TU0NSktLkZGRgcDAwBb3+ybuDaAJSEpJYoHtAvj7+cPW1hYuLi7tLifMCyorAV9f1v7IkSxHXlv54YcfUFdXh1GjRiEtLa3Z9jIyMliwYAEuXLgAAI2K7Pbp0wefP39Gbm4uUlNT4ePjg+LiYjg4OMDU1LRTHSRstm/fjhMnTiAnJ6fTx+5qUJEkLWDv3r0YPnw4Z3WTF8jIyKBfv37Izs7Ghw8fUF1dDU1NTZ58wSjaT1paGvLy8jBo0CBq9Zjiu6J79+7Yv38/du7ciQcPHqC8vByjRo2CvLx8vXYMBgMhISHYsWNHp9tICEFhYSHS09ORlZUFQUFB9OjRAwYGBpCUlOTqWP369YOoqCiePXvW6pVHiubJz8/HuXPncOLECaSmpqJXr17Q19fHyJEjoaOjAzs7O1hYWPDaTK7AZDLx/PlznDt3Drdv3waNRsOiRYvw22+/capgsCdXHz58QHh4ONTU1KCurg45Obk2OSO5DdtJ0p5VYX6AEIK4fFYkSUudJGfPnoWxsTF+/PFHCAgIQF5eHnJycpxtcnIybty4gYMHD2L9+vX4+eef6zmVOwK2k0RPr0OH4Slv3gBhYSyn3Lx5rCo+/MCCBQvg4+OD7OxsrFmzBnQ6HTNmzOBUfwOAmJgYDBw4sNm+mIQJjxQP0Ol0OOo5Qk+B9YYGBASAENKh19FR+PuzHCWqqoCZWfv60tXVhY+PD1xcXGBiYoITJ07A2dm52fNKS0sBANLS0g0eFxERgbq6OoKDgyEiIgITExOoqqry9F5rYWGBoUOHYu/evfjzzz95ZkdXgHKSNENGRgZOnz6NN2/e8NoU0Gg0qKmpoaKiAgkJCUhNTUVNTQ0MDAwg/q26+L9BiouLERkZCRsbm69CKCkovheEhYUxceLERo9HRESgsrISdnZ2nWZTeXk5MjIykJ6ejurqanTv3h3W1taQl5fvsIcaUVFRDBw4EKdOnYKjoyNPnfHfEuHh4Th69CiuXbsGQgimT5+OJUuWwNLSktemcZ3MzExcuHAB58+fR3JyMvT09LBlyxbMnTsXysrK9dpKSUmhT58+6N27NwoKCpCeno5Xr15xHuZ79OjRYLh5Z1BRwSq/CgAGBjwxgWtklWahtLoUwnRh9JRrfpU+Pj4ez58/x9y5c/H3339j6tSpqK6uRnp6OiIiIlBQUICKigocOXIE5eXlEBAQwKFDhzr8Or51J0lBAfDPP6z9MWNYaRv8xODBg5GdnQ1JSUmcOHECc+bMgZWVFd69ewddXd0Wf1cD0gKQVpwGKXEpTDaYXO8YPzhHW0t1NfDsGWv/hx/aF0XCxsHBAREREZzowocPH+L48eOQlZVt9By2k0RKSuqrYxUVFYiKikJOTg4EBQWhra0NNTW19hvKBbZt2wY7OzusWbOGU1Ka4msoJ0kz7N69G2PGjIGJiQmvTQHACrOLj4+HhYUFpKWlERMTA19fX+jq6kJXVxeCgtRbys+wV8f19PSgpKTEa3MoKPiWoKAgCAsLd7jToCGdkT59+kBFRaXREFpu8/vvv+PHH3+EpaUlFi5ciJ07d0JOTq5TxuZXCCH4+PEjNDU1Wxxtx2AwcOfOHRw9ehSBgYFQV1eHm5sb5s+f/83db2tqavDgwQOcO3cOT548gYiICKZOnYoLFy5gwIABzU58aDQaFBQUoKCgAGNjY+Tk5CA9PR1xcXGQk5ODuro61NTU2p2uFhYWBkVFRWhoaDTbNjYWYDIBFRVAQaFdw/IcdqqNnoIeBAWafy47f/485OTkYGtri7///hsXL15sdBHl9OnTqKqqavd70xwVFUBmJmv/W3SSEAL8/TdQVQVoawMjRvDaooZRVVVFnz598Ntvv+HPP/+Evr5+q36bSqtLcTfmLqprqiGfKw9pkYajHroS/v4sHRklJcDKinv9ysrK4urVqxg1ahQWLVqEgIAAXLp0CQ4ODg22b8hJUltbi8TERCQmJkJNTQ1DhgxBSUkJQkNDoaGh0eHf25ZgamqKUaNGYffu3Th+/DivzeFbqDj/JkhNTcXff/+NrVu38toUDrGxsZCXl4eysjLExMRgbm6Ofv36IS8vDz4+PsjIyOiyoXPfOoQQvHv3DhISEujVqxevzaGg4GtevXoFc3PzDom2IoSgoKAAb9++hZeXF1JTU+vpjHTv3r3THCQA64ElLCwMf/zxBy5fvoxevXrh6tWrnTY+P3L69Gloa2ujW7dumDx5Mo4fP46YmJgGf99ycnKwfft2aGpqYvr06RAWFsbt27eRnJyM9evXf1MOkpycHKxevRo9evTApEmT8PnzZ/z111/IycnBhQsXMHDgwFavDNPpdHTv3h22trYYPnw4unfvjtTUVHh5eeHt27coKCho03MFk8lEv379oKmpCX19fSxZsgT3799HcXFxg+3/n0EAQ8NWD8V3tEaPhMFg4MKFC5gwYQIKCgogJyfX5H1PSUkJTCYThYWFXLO3IZKSWI6Ebt2ARrIJujQ+PkB8PCAiAsydy98aOL169YKEhATKyspanaJ9J+YOKhgVMO1pimS/ZKSkpHSQlZ1DVRXg5cXaHz363/eNyWSipKQEnz9/RlZWFj5+/IjKyso2jeHs7Iz3799DS0sLjo6OmDhxInx9fb+6D2ZnZwNgOUkIIcjIyICPjw9HWNnc3BxiYmJQVlaGnJwcYmNj23zd3Gbr1q04f/58izRYvldohJpRN8qCBQtQUVHBNw+rJSUleP78OQYNGvRVaBf7yxkdHQ1xcXEYGRl99yuR/EZSUhISExMxaNAgSkuGgqIZevbsCQMDA1y/fr3BUNa2wGQykZWVhaSkJJSVlUFTUxOamppc658bZGdnY/bs2Xjx4gWqqqp4bU6nUlFRgadPn2LgwIEwMjLiVBPw8/PD69evUVtbCxUVFQwaNAhOTk7Q0tLChQsX4O7uDiEhIcyaNQuLFy+GUVcXtGiEuro6DBw4EDExMZg9ezbmzZsHY2PjFp+fm5uLmzdv4tq1a+jTpw/Onz/fZPvS0lJ8/PgRaWlpkJSUhI6ODtTU1Fo1STM1NYWQkBAsLS3x7NkzJCUlgU6nw8bGBkOGDMHQoUNhY2MDQUEhrF8PFBYCy5Z1bUcJkzCx4skKVNVWYaP9RmjINB1Fk52dDW1tbU50iK6uLqLY4iwN8PLlS9jb2yM6Ohp9+vThtvkc7txhTUb79wdmzeqwYXhCZiawezdQWwv8+CPQAlkPnlNdXQ1/f3/o6upCp4WlhuLz4/FH0B8AgCXmS2DbyxabN2/GunXrOtLUDuXBA8DTE+jWjYkffghGQMALvHjxAoGBgSgqKqrXVktLC6GhoV9pnrWUuro6nD9/HocPH0ZUVBQMDAywZMkSuLi4ICsrC7a2trC1tcXVq1fx4cMHVFRUwMDAAD169PjKWV1aWgp/f384ODg0qmHS2Tg7O0NSUhKnT5/mtSl8CeUkaYSkpCQYGhoiIiKCL1b9CSEICgqCjIxMkw+AtbW1SEhIQFJSErp3744+ffpQuhd8QEFBAadSR1tv1hQU3xOzZ8/GlStXICYmhhkzZsDV1RWWlpZtyp+uqanBx48fkZKSAjqdjp49e0JDQ4NrpYG5zebNm3HhwgWkp6fz2pROhe0kKSgowLx585CQkMCZDJSXlyMwMBB+fn7w9fXF27dvwWQyoauri8WLF2POnDlN5o5/Cxw5cgS//vorXr58if79+7fonNLSUty9exfXrl3Ds2fPICAgAFlZWaiqquL9+/ct6oPBYCAtLQ3JyclgMpno2bMntLS0WhQ2vnjxYvj4+HBWUFNSUvD06VM8ffoUPj4+KCwshJSUFGxtJ6Cy8jf07q2DEydE+UY8sy0kFyZjX8A+SAhL4I9hf7TonpWfn4+XL1/i+fPnMDY2xk8//dRo29jYWPTp0wfPnz+Hvb09N02vx/79rGiS2bOBfv06bJhOh8FgOUiysgATE2DRIu5oWnQGrXmWZNQxsOPFDuSW5cJe0x4zTWZi+vTpePnyJcaOHYsVK1bwxfymNZSXAxs2sKJJhIUv4tixOZCQkEC/fv1gb28PPT09iIiIQFhYGEwmE7NmzYKDgwPu3LnTLu0VQgieP3+Oo0eP4t69e5CUlISkpCTU1NRw7NgxfPr0CTo6OtDT02tS9uDDhw8oLi5uc9U+bhMXFwdTU1NER0dDW1ub1+bwHZSTpBHmzJkDAJzyTrwmOzsb4eHhGDJkSIse7NmCQXl5eejVqxe0tbU7NXyc4l9qamrg7+8PHR2dFnv/KSgogPT0dJw/fx5nz55FRkYGzMzMcP/+fai3UF2vpKQEycnJyMjIgJycHLS1taGiosIXDydNMW/ePHz48IEvBMM7E7aTpLi4GLNnz0Z5eXmjouQlJSVISkqCqanpd1Eh7OPHjzA0NMTcuXNx7NixJtvW1NTgyZMnuHr1Kjw8PFBVVQV7e3s4Oztj8uTJ2Lp1K168eNFiJwkbQghycnKQnJyMwsJCqKuro2fPnk2uil67dg0zZ85EXl7eV2lPdXV1CAsLw7Nnz3DjRj4iIvRBp8dixoxPcHV1Rf/+/fn+u9oQjxIe4X7sfZirmuNny5+53n9+fj4UFRVx+/btJsWv2wODASxfDtTVAbt2AYqKHTIMT/jnH5amhbQ04OYG8FEgYYtITExEcnIyBg0a1KSj0jPOEw/iH0BaRBrbHLdBXEgcb9++xebNmxEZGYnq6mo8evQIVtwU9ehg7t0DHj8GevQAdHT+wcyZzkhLS2v0meD+/fsYP348jh07hsWLF3PFhrS0NJw+fRrl5eVwcnKCiooKDA0NW1RAg8Fg4NmzZ+jbty9UVVW5Yk97mT17NgQEBPD333/z2hS+g1L5bID4+Hhcv369yXDHzqSurg4fPnxAnz59WrzyKS4uDisrK3z+/BmRkZFITU2FoaFhl5ggfEsQQhAaGgpZWVnKS0tB0UrU1dWxZcsWbNq0CevWrcOBAwdQUVHR5DmEEOTl5SEpKQn5+fno0aMHBg4cCBkZmU6yuv1kZWXxjQo+L9DU1ATAijowbCTvQlpaGmbtrfvYRSCE4Oeff4aCggL27NnTYBsmk4mAgABcvXoV7u7uKCwshImJCbZt24bp06fXE04lhLTpOYBGo0FVVRWqqqooLi5GcnIynj9/DkVFRY5+zH/7HTBgAACWEPO4cePqHaPT6bCysoKVlRXExYHQ0AqIiHjAz28TLl++jD59+mDBggWYNWsWFLqQkitbj0RfUb9D+peTk4OAgAA+ffrUIf0DQEoKy0EiK9v1RXS/JCKC5SABgDlzup6DBAB0dHRQUFCA0NBQ2NraNvhdzi7NxuPExwCA6UbTIS7EmsBbWlri8ePHKCgoQN++fTF+/HhkZGR0iXlBaSlLRwYAxo4FVFScAAAvXrzAzJkzGzxn3LhxWLp0KVauXAkDAwMMGjSo3RElQkJCGDRoEOh0OoyNjaHYCg+ikJAQ+vTpg6ioKHTr1o0vFq83b94MIyMjbNiwAXrfokJzO/j2l1/awLZt2+Di4sI3q/7JyckQFBTkPDi2BkVFRQwaNAi6uroIDw/Hq1evUFJS0gFWUjREfHw8ysvLYWZm1iV+hCgo+BE6nY7AwEA4OTlBX7/hiUdtbS1SUlLg6+uLd+/eQUFBAUOHDoWZmVmXcpAAlJOE/VuXmJjIY0v4g0uXLsHb2xunTp36Sj8nIiICa9euhZaWFhwcHPDkyRP8/PPPiIyMxPv37/Hbb799VVmGGwHEMjIyMDMzw9ChQyEvL493797B19cXKSkpqK2t5bTT0NCAuro6AgMDG+2rpoYloCkmJo7t26cjPj4ez549g7GxMdauXQs1NTUsXbq03TZ3Bow6BpIKkgAAfRQ7Ri9EQEAACgoKHeokiY9nbfX0uk4qSnOUlAAXL7L2Bw/uuro3NBoNZmZmKCsrQwK7RvMXEEJwNfIq6ph1MFY2hrnq1xXiJCUlkZGRgWnTpnWZZ9MnT1j3Ck1NVpqUsrIyTExM8IxdC7gR9u/fj759+8LJyQnm5uY4fvz4V9olLaGkpASvXr1CeHg4dHV1MWjQoFY5SNhoamqCTqcjmV3vnMfo6urixx9/xLZt23htCt9BOUn+Q3R0NO7cuYNNmzbx2hQAQFVVFeLi4mBsbNzmGxmNRoOWlhaGDBkCKSkpPH/+HBEREaipqeGytRRf8unTJyQkJMDS0pJvtQ8oKHgNIQRMJrPJNqGhoXj16lWDE6XKykpERUXB29sbqamp0NPTw9ChQ6Gvr98l9ZiKiorqaXF8jygpKaFXr17YuHHjd+/Uz83NxYoVK/Djjz/ihx9+qHds3759MDU1xdmzZzFq1Ci8fPkSKSkp2LNnT7PitdyaGImKikJfXx9Dhw6Fnp4eUlNT4e3tjaioKOTm5mLPnj0oLi5GNLt0TQPEx7MENOXlWeV/BQQEMHjwYNy4cQOpqamQlJTE69evuWJvR5NYkIhaZi1kRWXRTaJbh42jpKTUoU4S9txbV7fDhuhUCAEuXGCVje3RA5gwgdcWtQ8hISFYWVkhPj7+q89BYHogEvITIEwXxgyjGQ1+14WFhWFtbd1lHNG5udU4dCgMN2/ehKpqMMdxN2TIEDx79qxJx6+oqCiCgoLw4MEDaGlpYfny5VBVVcWsWbPw8uXLZp3GNTU1iIiIwPPnzyElJYUhQ4ZAS0urXXMyY2NjxMfH8404+6ZNm3Dr1i3ExMTw2hS+gnKS/Idt27Zh7ty5bYra6Aiio6OhrKzcJm/lfxESEoKxsTEGDRqE8vJyPHv2jCPERsFdqqqqEBoaCiMjo29eTJCCoq1UVVXhhx9+gIODQ5NO26NHj0JTUxNjxozhvFZeXs7RMygvL4e1tTUcHBygoaHBFyGsbeXChQuora2Fs7Mzr03hGTQaDffu3UNGRgamT59eLzLhe2Pp0qUQFBTEoUOH6r3u5eWF9evX47fffkN2djb++usvDBgwoEX6LG1Nt2kKOp0ODQ0NODg4oFevXggODsbLly+Rl5eHn376CSdOnGj03C9L//7XrBs3bqCwsBDHjx/nqr0dxZelfztyhV5JSQmfP3/ukL5ra1mCrQDQxXQ9G8XXF4iKAoSEgPnz0aWFgdnIysrCyMgIoaGhnMl2SXUJbkffBgCM6z0OCuL/5koFBAQgif3GApg6dSq8vLzAYDA61/BWQAjB3bt3YWy8Dq9fv4WQUBoWLnSA1/9rAOvp6SEjIwNlZWVN9kOn0zFq1CjcvXsX6enpcHNzQ2BgIOzt7dGnTx8cOHAAeXl59c5hMplITk7mPGMMGjQIxsbGXFn0VFRURLdu3fjGKaGlpYW5c+dS0ST/gXKSfEFERAQ8PDywYcMGXpsCACgsLERWVlajOdltRUpKCnZ2drCwsEBycjL8/f07dEXie4PJZOLt27dQUlLiG2cbBQW/wWAwMHXqVLx48QJv3rxp9L6bl5eHf/75B4sXLwadTkdlZSXev38PX19fAICTkxOsra2hqKjYZcKGG4PJZOLEiROYNGkSVFRUeG0OT+nTpw/c3d3x+PFj/PPPP7w2hyfcvXsX7u7uOHLkSL2Fko8fP8LZ2RnDhw/H7t27W1RlpjNITU3FsmXLYGxsjGXLluH9+/eYNGkSnJycUFhYiMrKygbP+/CBtf3vo05aWho2bdqExYsXw9rauoOt5w5sJ0kfpY4rzQt0bCRJSgpLuFVKCuATbcl2kZHBKmcMAFOmfBvXxEZTUxNKSkoIDQ0Fk8nEzaibqGBUQENGA049nVBTU4OMjAwEBgZiyJAhMDIywtatW3Hz5k1UVVWhpqamwZQdfsHLywsTJ/4CUdEhmDx5Cnx8lmLIkMEYO3YsPDw8cOPGDTg6On6VhtgUqqqqWL9+PRISEuDj4wMzMzNs3LgR3bt3x6RJk/Do0SPk5OTA398fKSkpsLCwgJ2dXavGaAmGhobIzMxEYWEhV/ttKxs2bMD9+/cRGRnJa1P4Bkq49Qu2bt0KV1dX9OjRg9emgBCCyMhI6OjotEgxuS0oKytDSUkJKSkpCA4OhqKiIoyMjCAhIdEh430vxMbGoqamplFBLQqK7526ujrMmTMHT548gYeHB2JiYrBy5Uo4Ojpi1KhR9dqeOXMGdDodLi4uiIyMxMePH6GqqopBgwZx/aGF1zx79gwJCQk4f/58u/sqLi7G1atXYW1tDQsLiy55Lxo6dCj69euHmzdvwsXFhdfmdCpFRUVYvHgxxowZg2nTpnFer6ysxMSJEyEjI4OrV6+2KWqK25EkMTEx2LdvH65evQppaWmsX78eS5Ys4ZQoLS0tRVxcHJ49ewYtLS3o6elxUuHy84HcXEBAAOjdu76NS5YsgYyMDHbt2sU1WzuS8ppypBanAgD0FTpGtJWNsrIyXr9+jaKiIq5Hq8bFsbb6+l1fj6SmBjh7lhUdY2oKdGDFZJ5Ao9FgamqK58+f48GbBwj5HAIajYYR3UfA0MCQU3obYEUvTJs2Dbt27aoXncfPi6Tx8fEQFJyCESNGwtSUBmNj4M6dO3B2dsakSZNQW1uLK1eutKlvAQEBODk5wcnJCfn5+bh69Sru3r2LgIAAFBcX4/Pnz/jhhx+grKzM5atiIS4uDh0dHXz48AEDBgzg+W+0uro6FixYgK1bt+L27ds8tYVfoCJJ/k9YWBi8vLywbt06XpsCAMjMzERlZWWHKw0LCAhAR0cHQ4YMgYiICPz8/BAVFcXX4Xf8DLs8opWVVZO10ikovlcIIVi0aBGuX7+Oa9euYcSIEfj1118xatQozJkzB5mZmZy2DAYDly5dwo4dO/D27VtUVFTA3t4elpaW35yDBACOHz8OExMT9O/fv139JCQkwNbWFosXL4aVlRV69eqFLVu24OPHj/XaEUKarRbEa6ZMmQJvb28UFxfz2pROZc2aNSgvL8eJEyc4D8+EECxcuBAxMTG4c+cOxwnRWrgh3AoAb9++xaRJk2BoaIhnz55h//79SE1NhZubWz3bpKSkYGlpCXt7e1RUVODZs2eIiopCTU0N2EUEdXQAMbF/+378+DE8PT1x4MCBJksM8xNx+XEghEBVShVyYnIdOtbChQtRUVGBNTHzqAABAABJREFUYcOGcf27wRZt/RZSbW7dArKzWeV+XVy6vtOnIQQFBWFiZoIrEVdQWVmJwT0Hw+uGF5KSknDu3Dk8fPgQoaGhSExMxLFjx1BdXY2ioiKkpqYiMTER9nzsOUpKIhASsoGAAI2jIyMsLIzr16/D2dkZ3bt350oZbGlpaQwePBirVq2Co6MjXr16hU2bNkFPTw+DBw/GrVu3uHbf/BI9PT1UVFTUe+7hJevXr8fjx4/x7t07XpvCF1BOkv+zZcsWLFy4kC/qVtfV1SEqKgoGBgadNtEWERFB3759MWDAABQWFsLHxwepqakdclP4VqmqqsK7d+9gamr6TU7gKCi4wZEjR3D69GmcPXsWkydPBsBaDbtw4QKEhISwZcsWACwHiaenJ7Zu3QpjY2P0798fNjY2Xa5STUvJycmBp6cnFi9e3K4VJR8fH9jY2IAQgujoaDx9+hQDBw7En3/+CQMDAxw9ehTe3t5YtmwZdHV1ISkpiVmzZvGtY3zSpEmoqamBp6cnr03pND5//oyzZ8+iqqoK48aNw4wZM7B161asWbMGFy9exOnTp9G3b992jcFkMtukR0YIgb+/P4YNGwYrKytERETgzJkzSEpKwooVKyApKdnouTIyMrCxsUH//v1RUlKCp0+fwscnB0xmHQwM6reVlZWFhIQE9u7di5SUlFbbyQuiP7HEVQyUDJpp2X4MDQ3x9OlTJCQkYMSIEVwTOGYw/tUjaaSQWJfh/Xvg+XPW/k8/dc1yvy3FJ8sHQjJCqC6qxjDNYejbty8YDAY0NTUxcuRImJubc347BQQEICMjAw0NDejo6PA8gqExCAHCwnpCREQE/foBXxZ8ExQUxMWLF5GSkgKxL72rrR6DIDU1FT4+PigsLMTAgQMxdOhQHDlyBNnZ2bh48SIYDAamTJmC/v37Izg4mAtX9i+CgoIwMDBAVFQU6urquNp3W1BVVcXChQs5z2HfPYSCvH79mkhISJDc3Fxem0IIISQxMZH4+voSJpPJk/GZTCbJyMggXl5exM/Pj+Tn5/PEjq4Ek8kkr1+/JiEhIbw2hYKCbykpKSEKCgpkwYIFDR5ftmwZ0dfXJ3FxceThw4fk/PnzZOTIkZ1sJW8ICgoiAEhERESb+ygtLSUAiK6uLklNTa33G1JaWkoWL15MABAARF1dnfzyyy/Ezc2NACA+Pj7cuIx2UV5eTu7du0fKy8vrvW5ra0vGjh3LI6t4g4+PD9m/fz+ZP38+sbe3J8rKygQAWbFiRbv7XrFiBQFAREVFiZGREZkwYQJZu3YtOXv2LHnx4gXJzs7+6vmjrq6OeHh4EFtbWwKAmJqakuvXr5Pa2to225GT85lMnpxJRoxIJb6+SYTBYNQ7HhkZSbS1tYm8vDx59uxZm8fpDJhMJln/bD1x9XAlkbmRnTbu27dviYyMDOnXrx8pKSmpd6yiooLk5OS0qr+4OEJcXQlZvZoQHj2CcoX8fEJ+/ZV1Le7uvLamY4n/HE9cPVyJq4crueF7g7x584bU1dURCwsLYm9vz2vz2kx4OCG9evkSFZVbpKCA+/3n5+cTPz8/4uXlRTIzM5ucc/n6+hJTU1MCgLi4uJCMjAyu2cFkMomvry9JSkriWp/tIScnh4iLi5M3b97w2hSeQ+UDgBVFsmTJEnTr1nHl2lpKXV0dEhMT21Xyt73QaDR0794dKioqSExMRFBQEFRVVWFgYNAuj+23TGZmJgoKCuDk5MRrUygo+JYjR46gtLQUmzdv/upYXV0dBg0aBHNzc6SmpsLS0hKrVq1CaWkpDyztfPLz8wGgXZXM2LnliYmJ0NTUhKCgIBQUFODk5IRly5bh2LFjWLBgASdakRCCoUOHYvv27SgoKODKdXQEU6ZMwYYNG1BSUtJlUi/aCztX/kuqqqq4UtZ6+/btGDx4MBISEpCQkID4+Hhcv34daWlpnOhRKSkp6OnpQU9PDz179sTDhw8RGRmJAQMG4NGjRxgxYkS7n1GKixUgJ0egpFQJGi0Ez57FQ09PD1paWqDT6TAyMkJISAhmzJiB4cOH48CBA1i+fDlfrnznlechvyIfggKC0JPv2DTpL7GwsMDTp08xZMgQ2Nraolu3bsjOzkZ2djYnuuTOnTuY0MKat9+CHgmTydIhqagAtLSA8eN5bVHHwahj4NL7SwCA/hr9Ma73OPj6+iI7Oxtubm4YN24cnj9/DgcHBx5b2jqYTODuXaC6uhrdu8dCjovZa5WVlYiKikJOTg709PSgq6vbrLaTo6MjQkNDcf78eWzcuBG3b9/GunXrsGrVqnbrRtJoNOjr6yMyMhKampo8r86nrKyMJUuWYMuWLXj8+DFPbeE1372TJDAwEEFBQbh69SqvTQHAUocXFhbmi7QfOp0OfX19aGhoIDo6Gj4+Pi2+oXxPVFVVITIyEqamphAREeG1ORQUfElxcTEOHDgAV1dXqKurc15nMplITU1FfHw8pKSksHv3bqxYsQLdunVDeXn5dyMkzS7nqaCg0EzLxunZsydiY2ORlpaGgoIC5OfnIzs7G//88w/s7OxgbW2NCRMm4Pz585yKBmztCH5R2G+ISZMmYdWqVXjw4MF3XRqZGw4SAJCUlPxKIBlg/ZYlJSVxHCfsbUBAAExMTHD8+HEMHDiQKzYArKo2NBoNlpbicHCwR25uLmJiYpCYmIhevXpBU1MT8vLyePToETZs2IAVK1YgLCwMR48eBYPBQElJCUpLS1FSUsLZ19DQQL9+/bhmY0thp9royutCRLBznwOsrKzw9OlTbN++HVJSUjAzM4OKigpUVVVx6dIlrFixAiNGjGjRIteXTpKuiocHK2VIVBRYsAD4luXhPOM9kVeeB1lRWUw2mAwRIRGYmJggIiICw4YNg4mJCY4dO9blnCSBgSwtmdraYujpJXOlz9raWs79TVVVFYMHD27Vwi+dTseCBQswdepU7Nq1Czt27MCZM2ewf/9+TJs2rV3OW1VVVcTGxiI1NRXa2tpt7odbrFmzBj179kRQUBBP7qf8wjd862gZbm5uWL58ebseTLlFXV0dEhISeBpF0hBiYmKwsLBAQUEBIiMjkZqaCkNDQ6ipqfGVnbyAEIKIiAgoKipC7cuESQoKinr88ccfqKqqqlfqNzc3F5GRkaDRaDA2NoaqqirKy8vx4sULODs7o7y8/LvR98nJyYGUlFS7y7nq6+tD/z8znK1bt+Lx48c4cuQI1q9fj1GjRuHmzZuQkJDAsWPHcOzYMQwaNKhd43YkmpqasLOzw/79+zFx4kSuOQso6iMqKgpDQ0MY/rcWbwfBrjRpbMxylqioqEBZWRnZ2dmIiYlBUlISTExM0K1bN+zbtw99+/bFvHnzcPny5Sb73bBhA7Zv396pizmdqUfSENbW1njw4MFXr9va2sLQ0BC///473NzcmuyDwWCV/wW6rpMkJgZ48oS17+ICtCMwj+/5WPQR3kneAABnY2eIC7EiGrp3746srCxERETA0dGxy0UDVFcDnp6s5+uqqjvQ1OzZrv4IIcjKykJUVNT/9U36tVn0GmBpK+3fvx+urq5Ys2YNZsyYgdOnT+Pu3btt1kxjR5N8+PCBL6JJFBUVsXz5cri5ueHZs2c8tYWXfNfCrf7+/ggNDcXKlSt5bQoAIC0tDUJCQnwRRdIQ8vLysLe3R+/evREZGYnAwEAUFRXx2iyekpWVhfz8fJiYmPDaFAoKvsXDwwO7du3CqlWroKqqioqKCgQHB+Pt27fQ1taGo6Mjx+lqb2+P5/9X2/sWI0nYK/O5ubkghCAqKgozZ87Exo0bYWFh0SFj0ul0jB49Gt7e3qioqMCDBw/Qt29f6Onp4fDhw6irq+vwSmrt5cSJE4iNjcWKFSt4bQoFF8jPB7KyWKV/v/TJ0Gg0qKmpwdHREdra2ggJCUFwcDAqKiowY8YMvHv3DpcuXcLdu3fh4+OD4OBgxMTEIDMzEyUlJdizZw/27t2L0aNHd1oKWS2zFnH5rBAMXjlJGkNPTw8rVqzA3r17kZaW1mTbpCRWqVxZWUBJqXPs4yYlJcD58yzBz4EDAUtLXlvUcdQya3Hp/SUQQmDV3QqmKqb1jpuYmCA/Px9mZmZITExEdXU1jyxtPU+fAsXFgKBgMfLzb7er2ltRURECAwMRGRmJ3r17w97evl0Oki/R1dXF3bt38fTpU7x7967dAspqamoQEhJq9nvaWaxatQohISGc57Hvke/WSUIIgZubG1auXAk5bia7tRF2FIm+vj5fR2fQaDRoaGhg8ODBkJeXR0BAAMLDw7vUDbgl1NXV4fXr17h06VKjD1rV1dWIiIig0mwoKJogKCgI06ZNw4QJE+Dm5oa4uDj4+vpCSEgIQ4YMgba2NgQE/v0pcnBwQGxsLPLy8r45J0lNTQ3s7e0xcOBAqKioQFpaGkZGRnj58iWOHDnSKSt+rQkvzs/PR3JyMt6/f4+AgACkp6d3oGVN07dvXxw5cgQnT57EP//8wzM7KLgDO4pERwdoKKVfQEAA2traGDx4MAQFBeHr64u4uDjo6urCxcUF48ePh5OTE6ysrNC7d2+oqalBSkoK69atw+PHjxEcHAwrKyu8f/++w68lpTAF1bXVkBKRQg/pHh0+XmvZtGkTZGRksGbNmibbdWU9EkJYDpKSElYVlGnTeG1Rx/Ik8QkySzIhKSyJaYZfX6yICCvtRk5ODlJSUohn13XmcwoLAS8v1r6ychCAujY5SaqrqxEeHo6AgADIy8tj8ODB0NDQ6JD51ZAhQ/D06VPExMTghx9+aLOOGjuaJCEhoU2Vx7iNnJwcVq5cCTc3t++20ul36yTx8fHBhw8f8Ouvv/LaFABAeno66HR6l0nZEBISgoGBARwdHVFTU4Nnz54hMTGRL77YbSUvLw+XL1+Gs7MzlJWVYWdnh9mzZ0NNTQ2zZ8/Gq1evODeKiooKeHt7IzMzE2PGjMGePXt4bD0FBf8RExOD0aNHw9raGocOHcKLFy+QnZ2Nfv36wczMrEHnIlvzwNfXF5mZmXzhxOYWt2/fRm5uLh48eIC7d+/Czc0NFy5cQGJiIhYvXsxXaST79++HoqIidHR00LdvXwwcOBD6+vq4cuVKp9qRnZ2Nmzdv4u3bt5gxYwacnZ3h6uqKOPaMjqJLEhHB2jYXhCkqKgpzc3P069cP2dnZ8PPzQ25ubpPnDBs2DG/fvoW0tDTs7Ow63KnGTrXpo9iHLxe5pKSksHr1aty8eROVlZWNtuvKeiReXqxUGyEhwNWVtf1WySzJxMP4hwCAGcYzICXScEpq9+7doaioiMWLF2PFihWoqqrimg1VVVUIDw/nWn9s7t0DampYztOMjHswMjJqVeQHk8lEYmIinj17hpqaGjg6OsLAwABCHfyBsLS0hLe3Nz58+ICRI0eirKysTf2oqamBTqfzTTTJr7/+isjISPj6+vLaFJ7wXTpJCCHYvHkz1qxZwxdK+UwmE/Hx8XwfRdIQEhISsLa2hrW1NdLS0uDr64ucnJwu43WMj4+Hm5sbrKysoKKiglmzZiEuLg6//PILAgICkJWVhW3btuHly5fo168f+vbtiyFDhmDkyJEoLCzE77//DhkZGWzYsAF3797l9eVQUPANmZmZGD58OIyMjLBr1y5ERkZCR0cHDg4OTT70yMrKQkxMDLt27cKnT58wderUTrS6Yzl27BgcHR0xatQojB8/HmvWrMHs2bPbrUPCbd68eYMNGzZg0aJFnJSGDx8+YNq0aXBxccGSJUtQU1PT4XbcvXsXRkZGmDZtGqysrCAtLY3Hjx+jrKwMU6dORV1dXYfbQMF9qqv/nZAbG7fsHHl5eTg4OEBHRwehoaF48+YNKioqGm3fs2dPBAYGYtKkSXB2dsbKlStRW1vLBeu/htd6JC0hNTUVOjo6jUaSVVcDHz+y9nv16jy7uEFSEnD/Pmt/xgyATzPWuQKTMHHx/UUwCROmKqawUG06RdPCwgI2Njaora3F9OnTwWAwuGLH/PnzYWZmBnd3d670B7A+f69fs/anTQMCAl5iwIABLTqXEIKcnBz4+voiLS2NMy/pzEhUa2treHl54f379xg1ahTKy8tb3Qc7miQ+Pp4vFp1lZGSwevVqbN68ucvM67jJdync+uTJEyQmJmLp0qW8NgUAS4uETqeje/fuvDalzSgpKWHQoEFITU1FWFgY5OTkYGRkxFPRxdraWmRnZyM9PR3p6elIS0tDTk4Opk+fDnl5eezYsQOXL1+GjIwMhg0bhiVLlmD48OH4H3vnHRbF1bbxe+lNBaWDdBtSFURQBEFi7yUmsaKixm5ij91o1ERjiSZRsWtieVWKjWoDRKU3Aem99777fH/sBwlRkT67uL/r4mKcPXPOPc4yM+c5T1FWVm7Uz6ZNm7BhwwZ4eHjgzJkzAICvv/4aampqiImJAQDMmjUL8+bNw8uXL6Gvz7svSgIEdAZJSUkYO3YsxowZg4kTJ0JaWhrm5ubNCkvbvHkzWCwWioqKYG1tDWNj408eww+EhITAz88Pt2/fZlrKJ9m2bRuMjIzw66+/NlqBc3Z2xtChQ7Fq1Sq8fv0aP/zwA0aPHt3uq3SVlZVYs2YNzp49i6lTp+Lo0aPIzc3F27dvERMTg7dv36K0tBQ1NTWCsvR8SEwMN/eFvDzwn8dtk7BYLGhra0NVVRVRUVHw9vZusuKelJQULl26hCFDhmD9+vUIDg7G33//DUVFxXY7l/KaciQXJwMABigMaLd+25unT59ixIgRH/08Ph5gswE5Of5Kdlpezi33y+EA5uZAVy/E8Sj+EZKLkiEpKomvDb/+5MKquLg4Bg8ejHXr1sHR0RELFizA5cuXG4W4tpSrV6/i6tWrMDExwbx586ClpQVzc/NW9wdww6X+/pu7bWkJSEnlIiYmBtu3b//ksaWlpYiIiEBRURH69+8PTU3NNp1fWxg6dCgePnyI0aNHY+LEiXBzc2txiWA1NTW8ffsWqamp0NTU7CClzWfVqlU4evQoHj16hDFjxjAtp3OhzwwOh0NmZmZ0+PBhpqUQERGbzabHjx9TSkoK01LajerqagoLCyMXFxcKCwuj6urqDh2vrKyMLl68SN9//z3NmjWLLC0tSV1dnYSEhAhAw0+3bt1IUVGRJCQkSFhYmJSVlen48eNUWVnZovECAwMpMDCw0b7S0lIaOHAg9enThwoLC9vx7AQI4C/i4uLoiy++oLNnz9KjR48oPz+/2cc+efKEANCiRYsIAN24caMDlXY82dnZ9PTpU7p9+zaNHz+e1NXVqba2lmlZn2T8+PE0ceLEj34eEBBARkZGBIAUFRVp7dq1FBwc3OZxy8vL6e7du2RmZkZSUlJ05swZ4nA4be5XAG9x+TKRkxPR9ett6yc/P598fHzIw8ODsrKymmz75MkTUlRUJHV1dXr58mXbBv4Xr9JfkZOLE+3y2dVufbY3BQUFxGKx6Pz58x9tc+sW95pcuNB5utoKh0N06hRX97ZtRC18leM7UotTabnbcnJycSL/VP9mH8fhcOjly5d0+/ZtEhISomXLlrX6vpqZmUndu3enb775hiorK2no0KGkrKzc5jlMYCD3Oq5aRVRYSHTlyhUC0GS/nT3XaAnPnj0jaWlpsre3p4qKihYfn5KSQo8fPyY2m90B6lrOoUOHyMzM7LN7Hn924Taurq5ITU3Ft99+y7QUANxcJCwWC+rqvJfsq7WIiYnB0NAQNjY2KC0thZeXFxITE9vddSwyMhKrVq2CqqoqFixYgLt37yI3Nxd9+vTB/PnzcerUKdy/fx/h4eEoKipCSUkJEhMTsWDBAhw6dAgJCQlYtWpVi/IApKenIy8v771qNjIyMg3jT5s2Denp6e16rgIE8APl5eUICgrC3LlzISYmBgcHh2bHE1dUVMDR0bHBvVZNTQ1TpkzpQLUdS0JCAnR0dDBixAhMnz4dDx8+xI4dOyAiwvsOnBoaGkhOTv7o5xYWFggJCUFwcDC+/vprXL16FaampjA2Nsaj+qx7rcDX1xcAN4wzODgYixcv5rsQVAFNQ9T8fCSfoiUhOCNGjEBQUBDU1dVhbW2Nc+fOtW3w/4cfQm1evHgBImrSkyQ6mvt7AO86w7yHlxcQEgKIiABLlgA8lNKp3anj1OF88HmwOWwYKxvDQs2i2ceyWCwYGRlBUlISFy9exO+//45Nmza1OnyitrYWqqqqkJCQwN27dyEuLo6JEye2Og9HTQ1Q72A5ZgwgLV2L3bt3Y/To0ejdu/d77TkcDhITE+Hl5YXS0lLY2NjA0NCQp8JWhw8fjvv378Pf3x+TJ09uMhfQh1BTUwOLxWI0Wfq/WbFiBVJTUz9YZrxLw7SVpjNhs9lkbGxMv/76K9NSiKhrepH8Fw6HQ5mZmeTh4UHe3t6Uk5PTpv6qqqro6tWrZG1tTQBISUmJtm3bRklJSe2kuOmx79+/T2lpaR9t4+XlRYqKitStWzf69ddf+WLVWICAtlJXV0cxMTHk6upKQUFBNHfuXJKQkKDnz583u48NGzaQqKgoBQQEkKSkJO3du7cDFXcsHA6HxowZQxoaGhQeHk55eXk8syLUHH766SeSlZVtdvuamhpydXUlMzMz6tevX6vGjI+PJ2VlZbp79y4VFRW1qg8BvE9y8j8rxu35eKyqqqKgoCBydXWlmJgYqqur+2i7pUuXEgBaunQpVVVVtXpMDodDGx9vJCcXJ4rIjmh1Px3Njh07SFpa+qPnWlrKvSZOTkTFxZ0srpXExxMtW8bV7OPDtJqO5270XXJycaJ1D9dRcVXrLlJaWhrdv3+fjh8/TgBo3759repnz549JCoqSm/fviUiovDwcOrWrRtNmjTpo393TeHmxr2OmzcT1dQQnThxglgsFoWGhr7XNicnh7y9vcnDw4MyMzN53rPBx8eHJCUlafTo0S32Wk9OTuYpb5KjR4+SiYkJz+jpDD4rI8mtW7dIVVW1xV/UjiI5OZk8PDw+iy9cXV0dxcXFkZubG718+ZLKysqabO/q6kpLliyh33//nSIiIiguLo42bNhA8vLyBIDs7Ozoxo0bnepeFxgYSC9fvvzkTbmgoICWL19OLBaLTE1NKSAgoJMUChDQ+RQVFZGXlxf5+Pg0hNZUVlbSiBEjqGfPnhQTE9OsfupDbLS0tEhMTOyT7vO8zN9//00AyMXFhWkpreLatWsEgIpbOGNydXUlABQdHd2i4+qNSoaGhnT37l0qLy9v0fEC+AdXV+6E6PTpjum/PgTH29u7SWPb2bNnSUxMjDQ0NMjZ2blVCxqpxank5OJEK9xXUE1dTVtkdygvX74kMTExWrRo0QffX1694l6T3bsZENcKSkuJNm3iaj5zhht205VJLEykZa7LyMnFiV6nv251P/VhN69evaK9e/cSADp27FiL+6moqCAtLS0aP358wz53d3cSEhKi7777rkV9FRYSrVzJvZavXhEVFxeTvLw8LVy4sFG7srIyevnyJbm5uVFcXFyrjDFM4enpSRISEjR58uQW6Waz2eTh4UHJyckdqK75VFRUkKqqKt2+fZtpKZ3GZ2MkYbPZNHDgQPrtt9+YlkJEvPfl7ywqKysbVnsiIyPfezGpra2lFStWEADS1tYmYWHhhpwicnJytG7dumZPutqT9PR0un//fosMbC9fviRTU1NisVhkYmJCc+fOpYMHD5K7uzulpKTwvAVcgICmYLPZ9PbtW3J1daXo6Oj3jL0FBQWkr69PWlpalJmZ+cn+OBwO3b17l/r370/Lly/vKNkdTnV1NamoqNDUqVPb3FdUVBRFRERQdnZ2p74UvnjxggBQeHh4i46rqKggaWlpOnDgQJPt/nvfv3XrFgGgu3fvCowkXZz9+7kTohY4mbUYNptN0dHR5OrqSm/fvv3oszY6OppmzpxJAKhfv370999/t2jR6kHcA3JycaITL0+0l/QO4/z58x+dFNfniOGHFFAcDtGxY1y927d3/TwkNXU1tNNnJzm5ONGZN2fa3F9lZWWDR/SGDRsIAK1cubJFucOI/rln379/v2HfsWPHCAD9+eefze7n7FnutTx4kHttt27dSpKSkg0e2zU1NRQZGUmurq4UHBzMM4vcLcXNzY2EhIRo1apVLXr357XF9JMnT5KBgQHP6OloPhsjyfXr16l3795tcq1sT3jNjaqzKSwspKdPn9KDBw8oOTm54aaxe/duEhYWpt9++404HA6VlpaSl5cX3bx5s1XJj9qD5oTZfIza2lo6f/48LV68mIYOHUoyMjINRp+pU6cKDCUC+JLS0lJ68uQJeXp6UkFBwUfbRUVFEQBasWJFJ6pjlqqqKurZs+d7K2HNhcPh0P379xtCCut/WCwW9erVi/r370/W1tZ07dq1dlb+D6mpqQSA3NzcWnzs9OnTqWfPnrR8+XJydXWl8vJyYrPZ9Pr1a9qzZw9ZWFiQiIgI/fXXXw3HDBo0iOzs7BoStwqMJF2T4uJ/wjo6I6KqoKCAPD096enTp1RaWvrRdkFBQTRu3DgCQCYmJuTm5tasZ/PhF4fJycWJfBJ92lF1x7F+/XoSEhKix48fN9q/dSv3mrTQJsoI7u5crStWELXilYzvuBV5i5xcnOj7R99TWXXTHtjNJTU1tWHR75dffqFu3bpRz5496cSJE832qOJwODRo0CD68ssvG+379ttvSUREhLy8vD7Zx9u33Gu5dClRUhI30bmEhARt27aNOBwOJScn04MHD+jp06ddoiDC6dOnCQAdOXKk2cfwWlqGqqoq6t27d6Pnd1fmszCS1NXVUb9+/Vpk3exI6r1IOiOPBi/D4XAoLS2NHj16RL6+vuTv708iIiL0ww8/MC2tEa9evWpWmE1zYLPZlJiYSCdOnCAAdL2t6f0FCOhEOBwOJSQkkKurK4WFhTXp3cDhcGjmzJkkLS3dYo8EfufUqVMEoMkqGqdOnaJ9+/bRkydPqLKykmpra+n69etkbGxMAGjIkCF069Ytev78Od25c4f+/PNP+vHHH2nt2rVkZ2dHwsLCzXoRbQ11dXUkIiJCp06davGxKSkptGrVKtLR0SEAJC4uToqKigSAunfvTjNmzKAvvviCunXrRnFxcUREtHDhQlJTU6Pi4mKBkaQL8+IFd1L044+dN2ZtbS2FhYWRq6srJSQkNPkcf/bsGY0YMYIAkJWVFfn6+n60bXlNeUMIRG55bkdIb3fq6upozJgxJCsr25BPIjeXe02WLSPikTXEjxIdzZ1QOzlxv0tdnfj8eFrqupScXJwoNOv9/Byt5d9hN0REWVlZtHjxYmKxWDRw4MD3jGgf47vvviMNDY1G+2pra+mLL74gERERGjt2LF24cOGDBo66OqJdu7jX8soV7r7IyEgCQI8fPyZfX1969OgRpaWldanFxE2bNhGLxaJbt241+5ikpCTy8PDgmf+HP/74g/r3789XIU+t5bMwkly6dIm0tbWppoY3YkZ5rbQT09TW1lJERATduHGDdu3a1eI4+I6kNWE2zWX69OmkpKTUJSzkAro+FRUV5OfnRw8fPmxWAub9+/cTgM8qfrWeuro6MjY2JgsLCyopKXnv86KiIhIRESERERECQGJiYqSsrEwA6IsvviBvb+8mX4hqa2vJwcGBevbsSfHx8e2mm8PhUFBQEO3bt4/ExcVpy5YtbeorJiaGfvnlF9qyZQv5+Pg0PIOLi4tJT0+PBg0aRFVVVRQWFkYA6Nq1awIjSRfm9GnupMjVtfPHzs7OpocPH5Kfn1+TXqkcDocePXpEgwcPJgDk4OBAgYGB77V7nf6anFycaIf3jo6U3e4UFhZSv379qF+/fv/v0cu9JocOMa2saYqKiL7/nv/KFLeWqtoq2ua1jZxcnOhCcPufcGVlJbm7u1N6enrDvjdv3jR4MDYnLKQ+5Oa/XtZlZWV04sQJGj58eMPzbeLEiRQR8U9yY09P7rVct46oPkVhaWkprV+/nv73v/9RdHR0lyx8wGazafbs2SQhIUF+fn7NPoaXvEmqq6tJS0uLLl++zLSUDodF1MoaUHxCXV0d+vfvjx9++AELFixgWg6ICN7e3tDT04OmpibTcniGbdu2wdnZGZcvX0ZVVRX69OkDPT09CAsLM6apuroa3t7eMDQ07JASzenp6RgwYADmzJmDU6dOtXv/AgS0F2lpaQgLC4OysjIMDQ0hKiraZPv79+9jwoQJ+OGHH7Bnz55OUslbPHv2DCNHjgSLxYKFhQWWLl2KuXPnAgBu3ryJWbNmIT4+HiUlJXj27BkSEhIwd+5cDB48uFn9FxYWYsiQIRAWFsaNGzfeK0veXEpLS+Hh4YH79+/j/v37yMzMRLdu3eDg4IDt27fDxMSkVf1+ijdv3sDMzAwXL17EvHnzMGrUKHA4HKxZswYODg6QkpLqkHEFMENdHbB+PVBdDWzdCjDx+lNbW4uwsDBkZ2fD2NgYampqH21LRLhz5w62b9+OqKgoTJkyBXv37oWBgQEA4GLIRfil+mGUzijMHDizRTrKy8uRm5uLvLy8Rr9zc3NRUlICISEhCAsLt/hHRESkWe0SEhKwdu1ajB49GpMnuyMkRBgTJwITJrTpv7fD4HCAo0eB2FhATQ3YvBngoWqvHcL18OvwTfKFnKQcdtrshKSoZLuPkZaWhoiICIwcORLi4uIAuN/706dPY8WKFdi8eTMOHDjw0eMzMjKgpqaGmzdvYsaMGR9sk56ejps3b+L3339Heno6rl69ClvbSdi+HaiqAubMAays2IiPj0dcXBxCQkKQlZWFkydPtvv58grV1dVwcHBAVFQU/P390adPn08ek5SUhHfv3sHOzg4sFqsTVDbN+fPnsX//fkRHR0NERIRpOR1G1z2z/+fSpUsQEhLCnDlzmJYCgHvDYLPZH6z9/bkSGBiIn376Cbt378aoUaOQn5+P8PBwpKSkYODAgVBRUWHkphAeHo5evXo1+SLVFtTU1LBv3z6sXbsW8+bNw9ChQztknK4Gm81GcXExiouLUVRUhKKiIpSXl0NXVxd9+/Z9z7BGXI85CAkJMaSYf6mpqUFYWBhyc3NhYmKCHj164Pnz5/Dz84Ofnx+SkpJQW1uLurq6Rj+FhYUYP348du3axfQpMIa1tTXi4uLw6NEjbNq0CefPn8fcuXPx/PlzLF26FMOGDYOuri4AwNTUtMX9y8nJwc3NDdOmTcPgwYOxceNGbN++HRISEs3uIz4+HkOGDEFhYSEGDBiAr7/+GuPGjcPw4cMh1sGzkPr+1dXVERcXB1FRUQQGBnbomAKYIy6OayDp3h3Q0GBGg6ioKAYPHoyMjAyEhoYiMzMTRkZGH/yus1gsTJs2DZMnT8a1a9ewc+dOGBkZ4ZtvvsHOnTsRkRMBANCX10deXl4jQ8eHjB//3ldZWfneeDIyMpCXl0ePHj3A4XDAZrNb/dNcHj16BHn5fEhLK2LAgNb/v3Y0Li5cA4m4OLB0adc3kETmRMI3yRcAMN94focYSADuO2h6ejrCw8NhZmYGgPu9//bbb1FTU4N169ahR48e2Lx58wePV1VVhaamJvz9/T9qJFFTU8PatWuxePFizJs3D1OmTMG0aS7o2XM8tLQAHZ1MeHlFQExMDJaWlrh9+zYiIiI65Hx5BXFxcdy9exdWVlYYN24c/P39IS8v3+QxGhoaiI2NRXp6eocs2raUuXPnYv/+/bh8+TIWLlzItJwOo0t7krDZbPTp0wd79uzhCSNJvReJrq4utLS0mJbDE5SUlMDCwgIyMjLw9/dvsEgSEVJSUhAdHY1u3brBwMAAPXr06DRdGRkZCAkJgZ2dXYsmHS2FzWbDwsICtbW1ePXqVYdPTPid1NRU2NraIiEh4YOfS0lJwcTEBAMHDkR+fj4SEhKQkJAAYWFhrF69GmvWrIGcnFwnq+ZPsrOz8ebNG1RVVcHPzw++vr4ICQkBm81G9+7dYWlpif79+0NMTAwiIiIQERGBqKgoREREICMjgwULFqBbt25MnwbjhIWFwdjYGNevX4eoqCi++eYbWFpa4s6dO5CVlW1z/9XV1Th48CB+/PFHaGpq4syZM7CxsfnkcTU1NRg2bBiKiorw6NEj6OjotFlLSzh16hRWrFiBsWPH4uHDh1BQUMD333+Pvn37CjxJuiA3bgBeXsCwYcC8eUyrAaqqqhASEoLi4mKYmppCUVGxyfY1NTVwdnbGnj17kFOdg27juqGqvArVLtUgduPXaBaLhV69ekFBQQHy8vJQUFD46La8vDzk5eUhKdl+E+GPGVnq6uoa/Ts7WxxnzypBXJzrqcGg4+5HiYgATpzgbi9ZAvz/XL7LUlZTht2+u1FSXYKR2iMx22B2h4xDRCgoKIC0tDS8vb1hYmICVVXVRm127dqF3bt349SpU1i+fPkH+/nqq6+QnJwMPz+/T47J9RQ8gZMnJaCvr48dO8TQowfXQK+hoQEWi4WjR49i69atKCsrY9STvDNITEzE0KFDoaurCy8vr0/eA3jNm+TKlSvYsWMH4uLiuuy16tKeJB4eHqiqqsLs2R1zk2kpGRkZYLPZ0GBqGYXHePz4MRYvXoyioiIEBAQ0ctlisVjQ1NSEqqoqYmNj8fTpU2hoaKB///4NboEdRXV1NcLCwmBkZNShBhIAEBYWxh9//AFLS0tMmjQJt27dgoyMTIeOya8UFRVh7NixyMjIwNq1a6GmpgZlZWWoqKigZ8+eSElJQVxcHIKDg/Hq1SvIy8vDwsICX331FdLS0nDo0CEcOXIEa9euxc6dO7vsTb2tJCQk4M6dO1BTU8PZs2fh5eUFXV1dDBs2DEuWLMGwYcOgr68v8MxpJsePH0evXr2QkJCAH374AV9++SUuXLjQbvcxcXFx7NixAzNnzoSTkxNsbW2xePFiHDp0qEmD4LZt2xAaGgp/f/9ON5AA3HAbgOvN8scff2Du3LngcDjw8PDodC0COhYiIDSUu93KqLB2R0JCAhYWFkhJScGrV6+grq6OgQMHftR1XExMDMuWLcP8+fOx9re18Cvwg7akNsaPHv+e4UNOTo7R54uQkBCEhIQ+GRYZE8P93a8fbxpI8vKAc+e427a2Xd9AQkS4EnYFJdUlUOmmgukDpnfYWC4uLpgyZQpGjhyJlStXIjQ0FPLy8g0LdcuWLcPLly+hoqKCFStWoHv37vjmm2/e68fS0hL/+9//8PbtW/Tr1+8TowqhZ88VcHBIRb9+OQgK+h++/fbbRqkHjIyMUFVVhfj4+Gb0x99oa2vDzc0NNjY2mDt3Lm7cuNHke1W9N0l9mBPTzJ49Gxs2bICnpydGjx7NtJyOgZFMKJ3EzJkzafPmzUzLICJuMjAvLy9KSEhgWgpPsH79egJA9vb2lJiY+Mn2paWlFBAQQG5ubhQfH9+hSW+Dg4MpICCgUzNJe3p6Urdu3cjMzIyys7M7bVx+4u+//25UEvVDP3Z2dh9N0JyVlUUbN24kISEh2rp1ayer5w/evHlDZ86coZ9//pm2bdtGd+7coaysLKZl8S25ubkkISHR8P3csGFDh9672Gw2nT59mkRERMjc3Pyj7R48eEAA6Oeff+4wLZ+ivuLIvzPkC0oAd00yMrhJGr/9ljcrqJSVldGzZ8/Iw8OjyZLm9Rx8fpCcXJzoSdKTTlDXcfz6K/e6eHoyreR9amqI9u7l6tu/n6gL5vB8jxcpL8jJxYmWuy2n5KLkDh1r+/bt1KNHDxo2bBgBoD179tC5c+coMzOTYmJiiMVikbGxMbFYLAJAwsLCdO/evff6SU9PJz09PZKQkKCff/75oxVP2Gw2Xb6cRmPGJNHs2Rnk4/OKevfuTcrKyvTnn39SRkYGERHl5OQQAPr777879Px5iXv37pGQkFCz5qsJCQnk5eXFM5VuNm3aRLNmzWJaRofRZZcC8/LycO/ePZ6JlcrIyEBtba3AiwSAq6srjhw5gsOHD8PDw6NZoUcyMjKwsLCAubk5kpOT4ePjg+zs7HbXVlRUhLS0NBgYGHSqO5u9vT2ePHmC1NRUDBs27KPhJJ8zs2bNQnZ2NhISEhAZGYnXr1/j2bNnePz4MVxcXPD777/j6dOn2Lp16wePV1JSwsGDB7Fr1y7s378fLi4unXwGvI2vry/i4+MRHByMr776Cvv27cOUKVOgpKTEtDS+paioCH379sXmzZsRGxuLQ4cOdagHjpCQEPLy8lBXV/fBVT8AKCsrw/z58zFy5EisW7euw7R8CkNDQ0yYMEHg0fUZEBLC/d2/PzevBK8hLS2NYcOGQUNDAy9evEBycvJH25bXlCOhkPt8NlA06CyJ7U5tLTdPDACey0dCBFy7BqSmAjIywLJlQBfODQkAyKvIw18RfwEAJvWbBI0eHTtXiI2NhYmJCZ4/f47g4GDk5eVBRkYGI0aMwLhx46CsrIyXL18iPj4e69atg7S0NObNmwcOh9OoH1VVVYSGhmLZsmXYsGEDrK2t8fbt20ZtsrOz4eb2FHfucKCgoIhly1Rga2uGV69eYdCgQVi2bBlUVVVhbm6OU6dOQVpaGmFhYR16/rzEpEmTsGfPHvz888+Ij49vsq2GhgZqa2uRmZnZSeqaZuHChbh37x7y8/OZltIhdFkjybVr12BhYYG+ffsyLQVEhLdv36JPnz6f/QthaWkpVqxYgTFjxuC7775rsSFCUVERtra20NbWxps3bxAQEIDS0tJ20UZECA8Ph46ODqSlpdulz5ZgamoKf39/sFgsWFpaIigoqNM18DqKiorQ1taGvr4+Bg8ejOHDh8PBwQETJ07E0qVLcfDgQfz8888fNICw2WwcPXoUR44cgbi4+AeT532OsNlsuLu7IzU1FXfu3MG+ffvei00W0Dr09PQQGhqKAwcONCuDfVs5evQotm/fjr1792LNmjUfbCMkJARVVVW8fPkSN27caNU4RIQBAwZg/fr1qKqqaotkAZ8B9UaSDiqU1C6wWCz07dsXFhYWiIqKasi/9F+icqNARFDtpoqekj0ZUNo+xMZyDSVycoCKCtNqGvP8OeDnB7BY3DwkXT2NGIc4cA52RnVdNfr06oMvdL/o8DH/HR5jYmKCY8eOQU9PD3v27IGMjAz27dsHcXFx6Ojo4MiRI0hPT8ezZ88+aOSXkpLC0aNH8fTpU+Tl5cHExAQ///wziouLERAQgDdv3iAyciB69VJH//6SsLbmHqekpAR3d3fk5OTg8uXLDWOVl5d/dguF69evh6KiInbu3NlkO2FhYfTp0wdv374F8UBK0X79+sHc3BzXrl1jWkqH0CWNJESEc+fOwdHRkWkpAIDMzEzU1tYKSv4C2L59O/Lz83Hq1KlWe2oICQlBR0cHo0aNgpSUFHx9fREREYHa2to2acvIyEB5eTmjhjVtbW28ePECWlpasLGxwaNHjxjT0lKKiorg7e2Nd+/eoa6ujhEN69atw+TJkzF//nwkJSU1+mz9+vVYv349Fi5ciMTERHz55ZeMaOQlKisr4erqipiYGNy7dw9nz54VJLblU37//XesX78emzdvxrZt2z7aTkpKCi9evMDUqVPx1VdfYcOGDS3+e2WxWKiursbRo0dhbm6O0PqEEwIE/IeiIiApiTvhNTZmWs2nUVBQgI2NDYqLi/H8+fP3jOn1VW342YsEACIjub/19bnXhldISgL+4jpUYOpUrvdRV+dR/CO8K3gHCREJLDRZCCFWx07NiAixsbHvvesaGhpCVlYW9+/ff2/+JCMjA0NDwyb7HT58OEJCQrBy5UpER0fDw8MD1dXVUFV1QFKSAoSEWJgzB/ivnaVXr16YM2cO/v77b+Tl5cHHxwd79+5tl3PlFyQlJbFjxw5cv379k140mpqaqKmp4RlvEkdHR5w7d44njDbtTZc0kgQFBSEhIeGjJak6E4EXCVBYWIghQ4ZAQkICx44dw+7du6Gtrd3mfsXExGBkZNTwQuPp6YmkpKRW/aHW1dUhMjKyycRtnYWCggK8vb1hY2ODCRMm4MKFC4zqaQ7R0dEYNGgQ7O3toaenB0lJSejp6WHcuHGd6jbJYrFw/vx5yMrKYtasWaipqQEAuLu74/jx4zh+/DiOHDkCFV5bOutk4uLicPToUfzvf/+Dh4cH3rx5g2vXrjHiQSWg7Vy6dAnLly/H6tWrsX///k8aoKWkpHD58mUcPXoUR48exZgxY5CXl9eiMa2traGgoAAhISFYW1ujvLy8LacgoItSbz/T1uaW/+UHpKSkMHz4cPTo0QO+vr7Izc0FwH2fi8zlWhf43UgSFcX9bcBDp1FWBvz+O1BXB5iaAl90vEMF4yQXJcPlLdfz9SvDr9BLqleHj1lTUwMiwoMHD1BUVNSwX1RUFPr6+oiMjGxRKel6iAg5OTmws7PD9OnTcezYMXzxxXhs28b9m7Gz+3T5b1FRUdja2kJXV7fF4/M7jo6O0NXVbXKRA+B6k+jp6fGMN8nMmTMbQrW7Gl3SSOLs7Iwvv/ySJ6qEZGZmorq6+rP1IuFwOJg3bx7i4uJw8OBBXL9+vd3j4Lt37w4rKyuYmJggLi4Ovr6+LX7hf/fuHcTFxXmi/jjAjZG+e/cuFi5ciIULF+LHH3/kiZvhh/Dx8YGVlRWkpKTw8uVLPH78GCdOnMDUqVPx7t07zJw5ExUVFZ2mR05ODjdu3EBISAg2bNiArKwsLFy4EOPGjcPKlSs7TQevkZycjMOHD2Pw4MHYsGEDVFVVER0djTFjxuDKlSuC8tN8CBHhyJEjWLBgARYvXoxff/212R56LBYLa9euhaenJ8LCwmBmZtailxxra2vk5+dj69atKC0tRXFxcWtPQ0AXhh9CbT6EsLAwTExMoK+v35CbIakoCaXVpZAQkYBuT/6dxBUUAJmZXA8SXvHU4HCAs2eBwkJASQmYP5+3PFw6ghp2Dc4FnwOHOBikMggWahadMq64uDhcXV0RFBQECwsLxMbGNnzWu3dviIuLfzI3xn/Jy8uDr68v4uLiYGJigrFjx+LRo0cwN98JT88QyMoSJk1q7zPpWoiKimLPnj1wc3P7ZEllLS0tVFdXIysrq5PUfRwZGRl8+eWXcHZ2ZlpK+9P5uWI7loqKCurRowf5+fkxLYU4HA75+PhQfHw801IYY9++fQSA3NzcOmW8uro6io2NJVdXVwoMDGxWlYSKigpydXWl/Pz8TlDYMjgcDu3Zs4cA0NKlS6myspJpSY24cOECiYiIkIODAxUVFTX6jM1m08qVKwkAubq6drq2EydOEADq378/KSkpfZZVg7Kzs+nYsWNkaWlJAEhWVpZ+/fVXunPnTkM2eQH8SW1tLX377bcEgLZs2dKmqjnJyck0ePBgkpCQoEuXLjXrmJiYGAJAGzduJAD07t27Vo9fj6C6TdeiooJo+XJuhRJ+LpJVUFBAjx49ol9cf6HFdxfT6VenmZbUJp4+5V6TgweZVvIPd+5wNa1cSZSezrSazuFa2DVycnGiDY83UFl1WaePHxcXR/379ydZWVl69OhRw/78/HxydXWlioqKT/ZRXl5OgYGB5ObmRrGxsY2q26SnE02alEbA7/T332875By6Gmw2m4yMjMjGxuaTFWzi4+PJx8eHJyrdvHjxgmRlZZv1neEnupwnyZ07d6CiooKhQ4cyLQU5OTmoqqpqVvWWrkZFRQW2bNmC7du3Y/v27Rg/fnynjFuf1GjUqFEQERGBt7c3oqOjm4y5j4yMhIqKCnr25L0kbCwWC9u3b8f58+dx7tw56Orq4uTJk4wkSyQiPHz4EEePHoW7uzt++OEHLFiwAAsWLIC7uzt69OjR0LawsBCTJk3Cb7/9ht27d2PcuHGdrnfFihWYOXMmYmJicOHCBSgqKna6Biaoq6uDu7s7pk2bBjU1NXz//feQl5fH1atXcePGDZiZmWHs2LGffcgRL5ORkYHjx4/j6dOnH/y8rKwMU6ZMwR9//IE///wT+/fvb1PVHA0NDTx79gyzZ8/GvHnzsHbt2k/meOrbty8UFBQQGBgIAKiurm71+AK6JhERAJvNTQzKz0Wy5OTkYGNjg9jiWGRmZUJHRodpSW3i3/lIeIHQUODBA+72vHnA55A3PDQrFL5JvgCABSYLIC3W+aGuenp6CAgIgKWlJcaOHYtjx46BiNCzZ0+oqKggqj4m6wPU1dUhOjoa3t7eEBERgb29faO0AkTA1auAvLwShIQikJPzuLNOi68REhLCjz/+iCdPnuDx46b/z7S0tFBVVYWcnJxOUvdxLC0toaSkhLt37zItpV3pckW1nJ2d4ejo2KnlWz9GQkICtLW1P7tcJI8ePcLy5cuRkZGBPXv2YMuWLZ2uQUJCAqamptDS0kJ4eDhSUlKgr68PdXX1Rt+N/Px8ZGVlwd7evtM1toQFCxZg2LBh2LdvH9asWYOffvoJW7ZswaJFiyAhIdHh4wcHB+O7776Dj48PxMTEGnJ9/PTTT9i4cWOj/9Pg4GBMnz4dRUVFuH//PsaMGdPh+j4Ei8XCpUuXsHnzZgwaNIgRDa2Fw+HAz88PqampqK2tRU1NDWpqahq2P7SvpqYGlZWVePz4MTIzM2FsbIwjR47g66+/RnV1NYKDg6GqqooBAwZ0aBlaAa2jpKQE//vf/3DlyhV4e3uDiGBrawsfH59G7TIyMjBhwgTExcXB3d0do0ePbpfxJSUl4ezsDHNzc6xZswbnz5+HhIQEhIWFISQkBGFh4UbbQkJCKC0tbQjRERhJBPwXfg21+RA1qAF1J0ixpVD4thCZPTL50tDMZgPR0dxtXshHkpMD1Hvp29sD5ubM6ukMiqqKcDH0IgBglM4o6CswZ63q0aMHXF1dsXnzZqxduxY+Pj44efIk9PX14eXlhfz8fPTq9U+eFCJCWloaoqKiICUlhWHDhn0w2fuLF0B8PCAtLQIzs3g8fZr9WYc7t4Tx48fDysoKW7duhYODw0ff14SFhaGlpYWEhAQoMWyFZrFYcHR0hLOzM7766itGtbQnXcpIkpSUhKdPn+LKlStMS0FZWRny8vJgamrKtJROIzs7G+vWrcP169dhZ2eHhw8fMl6CWU5ODtbW1khPT0dkZCQSExNhaGgIOTm5hpK/ffv2haSkJKM6m0OfPn1w8eJFbNu2Dfv27cPq1atx4MCBDjWWpKam4ocffsDly5fRv39/uLm5YezYsUhLS0NNTQ309PQatb948SKWLVvW8IBtjwS9bUFCQoKvDCSpqam4ePEizp8//14JPFFRUYiKikJMTKzh59//rt+eNm0aHB0dMWjQIBARoqOjkZiYCFNTU0FpXx6jpqYGDx8+xJUrV+Dq6orq6mrY2trizJkziIyMfO9ZFhERgXHjxoHD4eD58+cwbudyISwWC99++y2GDBkCT09PsNlscDgcsNnsj27Lyclh165dyMjIgElXmA0LaBfq6rieJAB/VLX5FPUJWw01DWHdxxpBQUHQ1tbGgAEDeGJRrrkkJgJVVYC09KeTaHY01dXA6dNcPbq6wPTpzOrpDDjEwfng8yivKUfvHr0xdcBUpiVBWFgYhw8fhqWlJVauXIkBAwZg//79cHBwQHh4OGxsbMBisVBYWIjw8HBUVlZi4MCBUFNT++B3v7QUuH2buz1pEiAjY4rz58+DiPjqb4UpWCwWDhw4ABsbG/z2229YtWrVR9tqaWkhLi4O5eXljCfenzdvHn744QckJSV1mQiKLmUkOX/+PMaNGwdlZWWmpSApKQkqKiqdssrfGRARUlNT8fbtW8TExDT8vHv3rsEtu7CwEFJSUrh48SLmzp3LMzdDFosFdXV1KCsrIy4uDi9evICqqiq6d++O2tpavsui3bdvX1y6dOk9Y8nWrVsxb968VicsrqqqwvHjx5GVlQUOh4PS0lJcu3YN3bp1w6lTp7B48eKGyj8a/3m7Kisrw8qVK3Hx4kXMmTMHSkpKuHTpEkxNTTFo0KCPPkwFcCfKLi4uOHfuHB49egRJSUnMmjULFy5cgKmpaYMBpKX/f9XV1Xjz5g0qKysxYsQIdOvWrYPOQEBrSE5Ohrm5OXJzc2FsbIw9e/bgq6++akgeffPmTRw9ehS5ublQUFCAh4cHZsyYAS0tLbi7u3dokmkzMzOYmZk1q211dTXu3LmDWbNm4fLly5g6lfmXfgHM8/Ytd/LbowfQFd6XQ7O4ZXqMlIygqqqKbt26ITAwEEVFRTAzM+ObxNf/DrVh0qGQCLhwAcjI4FY9cnICPgen68fvHiMmLwZiwmJYMmgJRIR4Zxo2bdo02NvbY8uWLVi9enWDN0NCQgKKi4uRkZEBXV1d9OnTp8kqkDdvAhUVQO/e3Io2ZWVDcODAAcTFxTG+cMovjBgxAmvWrMHatWuhpaWFiRMnfrCdhIQElJWVkZiYCAOGXcOUlZUxduxYXLhwAbt27WJUS3vBO3+dbYTNZuP8+fM4efIk01JQV1eHlJQUWFh0TqbqjqKmpgY+Pj64d+8e7t27h4yMDADczNh9+/ZFv379YGFhAQkJCRARJCUl4ejoCHl5eYaVfxgREREMGDAAmpqaCA8PR2RkJNTU1JiW1Wr69euHy5cvNxhLVq1ahbVr18LKygqjR4/G6NGjYWJi0qzQisTERMyYMQORkZHQ0dGBkJAQREREsH79emzatAndm6jdGBISgtmzZyMtLQ379u3DhQsXkJ2dDTExMeTn5wMA5OXlMWjQoAajyfjx45u0etfU1ODq1avo1q0bpk+f3mUNLFlZWRg7dixCQkIwdOhQ/Pnnn/jyyy/bbNAoKyuDv78/evTogREjRkBUVLSdFAtoL3r16gU1NTVUVFTg5MmTGD58eKPPBw4cCABYtmwZIiIiEBsbi9GjR+PGjRtN/j12NuLi4njx4gUWLlyIadOmYefOndixY4cgpOszpz7UxtiY/6uU1HHqGjxJjJW5bjHdunXDiBEjEBwcjCdPnsDS0pInKip+inojyf/fXhjj0SMgKIhrGFm2DJCVZVZPZ5BUlIR7MfcAALMNZkNJhvcS9fTo0QOnTp3CN998g2+//Rbe3t6ora2FoqIi7OzsICUl1eTxkZHAy5fcv/k5cwB3d1csW7YMPXv25BtDIq/wyy+/ICUlBbNnz4avry/MPxKLpq2tjcDAQPTv379J41Vn4OjoiNWrV3eZdwAWEY/WFW0hHh4emDt3LlJTUxmfECQnJyMhIQG2trZ8N7krKSnB/fv3cffuXTx48AAlJSXQ0tLC5MmTMWrUKOjr60NTU5Pv86xERkY2JDuqq6uDgYEBlJWV+e56/ZukpCS4u7vj8ePH8Pb2RllZGRQUFODg4AB9fX0oKipCSUkJurq6DRMwAHB3d8ecOXPQs2dP3Lp1q0UhYg8ePMDUqVMxYMAAfPPNN9ixYwf69u2L27dvQ0dHB2lpaQgKCkJwcDCCg4MRFBSEtLQ0WFpawtPT870HLofDwfXr17F9+3YkJSWBiGBpaYljx4599AHxX6qqqvjCgysxMREODg6oqKjAvXv3mn1+n6KgoAAvX76EhoYG9PX1+fo73dUpLi7GlClTEBAQgBs3bjRaLaqtrYWqqiokJCQwduxYjBs3DhMmTGD8JehjEBEOHDiAH374AZMmTcLly5dbbOyrqKiAh4cHHBwcPvkyLoB3IQI2bQKKi4HVq5mfkLeVyJxIHH95HD0keuDgqION7qlEhKioKKSkpGDo0KEfzM/AK5SWAhs2cK/PoUNcLx8miIwETpzg6pgzB7C2ZkZHZ1JVV4W9T/YiryIPZqpmWDxoMc8+m4kImZmZiIiIQEFBAbKzs/Hu3TuMGzcOo0eP/qjuqipg925uiWl7e8DQMBr6+voYPXo0Lly4wBNe/vxGRUUF7O3tkZCQgICAgA+GsBMRfHx8oKurC01NTQZU/kNtbS3U1dVx9epVjBo1ilEt7ULnF9TpGGbPnk0bNmxgWkZD2d/ExESmpTSbvLw8cnZ2pvHjx5OYmBgBoEGDBtHu3bspNDSUJ8pLtSelpaXk6upKRUVFxOFwKDExke7fv0/Pnz+n4uJipuW1C9XV1eTr60tbt26lIUOGkIKCArFYLAJAAOjhw4dUV1dH27dvJwA0ceJEKigoaNEYnp6eJCEhQRMmTKClS5cSAJo/f/4ny3f6+/uTlJQUTZo0iWpra4mI+3fj5uZGRkZGBIAmT55MERER5O3t3bBv/vz5jcrWcjgcSk1NJVdXV9q7dy9Nnz6ddHV1CQCNHj36kyWdKysr6fr16zRu3Dj6+uuv26WEaXMJDw8nFRUV0tXVpYSEhHbrNzMzk1xdXT/rsuP8RmVlJU2bNo2EhYXJ2dm50Wc1NTV8d/91dXWl7t27k76+PsXFxbXoWEEJ4K5BQgK3nOvq1UT/f4vna+pLtV4OvfzRNvHx8eTq6kpZPFzr+OVL7nXZs4c5DdnZRGvXcnVc/vh/Z5fjXNA5cnJxoi2eW6i8hnfvb8XFxfT8+XO6f/8+JSYmEofDodDQULp58yYpKytT3759ac+ePR98X7p+nXtdt2whqqriPtu6d+9O27dvZ+BMug45OTmkq6tLRkZGH22TmJjIM+WAv//+e/rqq6+YltEudAkjSX5+PomLi1N0dDTTUig/P5/c3NwaJn+8SlVVFd26dYsmTZpEIiIixGKxyNramo4ePUpJSUlMy+tQAgICKCQkpNG+mpoaCg8PJxcXFwoJCaHq6mqG1HUctbW1lJWVRf379ycrKytycHAgISEh+vHHH4nNZreor6dPn5KUlBTZ2NiQhYUFiYqK0u+//97sG/T9+/dJWFiYnJyc6Pnz52RtbU0AaMSIEeTn59eobV1dHf3+++/Uq1cvkpaWpkWLFpG9vT316tWrwegjJydHdnZ2tH79ejp69Cj17NmTdHV1KTw8vFFfHA6HXr9+Td9++y3JysoSALKysiI1NTUSExOjTZs2dbihzN/fn+Tk5MjY2JgyMzPbrd+kpCRydXWltLS0dutTQOdQV1dHTk5OBICWLFlCL1684ImXndYSHR1Nffv2JVlZWXr48GGzjxMYSboG//sfd7L0559MK2k7HA6HNnlsIicXJwrNCm2ybVpaGrm6uvLsO5SzM/e63L7NzPiVlUS7dnE1/PRT1zCgNQf/VH9ycnGipa5LKT6fNxcwqqqqKCQkhFxcXCg8PJxqamoafR4cHEyurq40f/58kpGRIQBkaWlJv/32GxUVFVF8PNHSpdxrGxX1z3ELFy4kHR0dvn6e8QJnz54lAB+dW9bW1pKbm9snFwc7g6ioKBIXF2/xwisv0iWMJCdOnCArKyumZRAR0evXryksLIyRsXNzc2np0qX0+vXrj7bhcDi0c+fOhgnikCFD6MSJEzy9+tGeZGdnk5ubG1VVVX3w89LSUvL39yd3d3d69+5di40HvAybzabvvvuOAFD37t1JXl6ePDw8WtzPy5cvqVu3bmRsbEzy8vKkrq5OAQEBLe7n/PnzDUYOY2Njun//fpMP0oKCAlq7di3179+fpk6dSrt376Z79+5RcnLye8clJCSQkZERSUtL07Rp02jEiBHUv39/kpOTIwCkqqpKmzdvprdv3xIRUVlZGe3cuZMkJSVJUVGRzpw5Q3V1dS0+p0/x6NEjkpKSouHDh1NhYWG79MnhcCgmJobc3NwoNze3XfoU0PlwOBw6fPgwqampEQDS1NSkjRs3UnBwMF++YBYWFtK4ceNISEiIDh8+3KxzEBhJugY7dnAnS4GBTCtpOylFKeTk4kQr3FdQTV3NJ9vn5uaSm5sbxcTE8NTfLYdD9N133OsSE8PM+L//zh1/wwaioqLO18AE2WXZtOr+KnJycSLXt65My3kPNptN8fHx5O7uTv7+/lRaWvrBdlVVVeTm5kbZ2dlUXl5O169fp/Hjx5OwsDBZWAyn7ds55OREdPFi4+M8PT0JAPn7+3fC2XRdbty4QQCafG8MCwtrcv7XmVhaWtLJkyeZltFmukROkkGDBmHFihVYtGgRozqqqqrg4eGBkSNHdnoCrzdv3mDcuHHIycnBrl27sHPnzg+2++WXX/D9999j3bp1cHJyQv/+/TtVJ5NwOBz4+vpCU1PzkxVtsrOzERERARaLBQMDAygqKnaSyo6hqqoK8+fPx82bN8FisTBkyBDcvHnzgxUysrKyEBERgbS0tIaf7Oxs5OXlobCwEO/evYOioiLS0tJgZ2eHa9euQUFBoVW6rl69CmFhYcyaNavdkzyVl5djw4YNiI+Ph6KiYsOPsbExHBwcPpjbITU1FVu2bMHVq1dhbGyMuXPnoqysDMXFxR/96dGjB5YtW4ZFixY1mVDzypUrcHR0xBdffIEbN260S84FIkJYWBiysrJgaWnJUwk9BbQODoeDZ8+e4fr167h16xby8/Nhbm6Ou3fv8l0JZzabje3bt+PAgQP45ptvcObMmSbLrQtykvA/2dnAjh3chJy//AI0cbn5ArdYN7i+dYWxsjG+Nf+2WccUFxcjICAAysrKMDIy4oncE6mpwL59gLg4cOQI0NmpjR48AO7e5X4vvv8e0NHp3PGZoI5Th8MvDiOpKAl9evXBesv1EGLxTjLLnJwchIeHAwAMDAygpNR0Itl3794hOTkZtra2De9rT548ga3tEdjYHIK5eT/s3g38+9bNZrOhoaGBadOm4cSJEx12Ll2dhw8fYuzYsYiPj//o/KW0tBS+vr5wcHBgPC/f2bNncfr0abx584ZRHW2F740kwcHBsLa2RmZmJuMlLt++fYv8/HxYWVl16rjOzs749ttvUV1dDQCIjY1Fnz593mvn4uKCKVOmYPPmzdi/f3+nauQFEhISkJiYiJEjRzZrQs7hcJCYmIi3b9+iV69eGDhwIF9kr/8vBQUFmDp1Kvz9/VFbW4tVq1bh559/fi/TeGlpKfbv348jR46gpqYGALcqTe/evaGoqAg5OTkUFRUhLi4O7969w9atW7Fnzx6+T+L7IQICAvDdd98hJCQEPXr0aPInNjYWf/31FyQlJbF48WKsXr26UY14NpuNLVu24PDhw1iwYAH+/PPPdkkuzWaz8fr1a5SVlcHS0lIwqeyC1NbWwsPDA0uXLoWYmBi8vLwafbf4hRs3bmDhwoXQ0tLCH3/88V4ln3oERhL+59Ej4H//4yZrXb2aaTVtZ/+z/UguSsY843kYpjGs2cdVVFTA398fMjIyMDMzY/w5WW+kMDICVqzo3LEjIoCTJz+vRK0AcCvqFjzeeUBKVArbbbajp2RPpiUB4Fa/i4yMRH5+Pvr16wdtbe1mvxP7+PhAW1sbOv9v5UpNBezsPJGWloGHD6fAxub9hZrvv/8ely5dQnp6OuOFNfiVzMxMGBgYoF+/fnj8+PFH5yJ+fn7o1asX+vXr18kKG1NaWgplZWW8ePECJiYmjGppE4z6sbQDK1eupIULFzItg9hsNj18+LBRYsmOpqampiGOferUqSQmJkarV6/+YNuQkJCG0IOuFELSXKqrq8nd3b1VYUX/jtWMiIh4L1aTl0lKSqIBAwZQz549ydDQkCZNmvReGzabTc7OzqSsrEwSEhK0Y8cOiouLo8rKSqqoqKDbt2/TrFmzSEpKigCQubk5ubi4MHA2vEtaWhpt2bKF5OTkSEhIiGbMmEF+fn5UWFhIY8eOJSEhITpy5Ei7uV9XV1fT06dP6enTp10yf46AxiQlJZGuri6pqanxRO6t1hASEkISEhLEYrHohx9++GAbQbgN//PTT9yQCl9fppW0ncLKwoZcEsVVLc9VxUv36Z9/5l4XH5/OHTc7m2jNGu7YV6507thMEpoVSk4uTuTk4kRBGUFMyyEi7pwhIiKiIffex8LOmyIrK4vc3d2purqa2GyiffuIvvmmjMTFV9HKlSs/eMzt27cJQKcmx++KBAYGkoyMDI0aNYoqKys/2CYjI4MePnzIE/O8BQsW0KpVq5iW0SZ4x++rFVRVVeHq1atwdHRkWgqysrLAYrE6tcTVtm3bcP78eZw5cwaDBw+GqKgotm/f/l67kJAQjB8/Hv369cOlS5e6RO3qlhITE4OePXt+0p3wQ4iLi8PY2BgjRoxAUVERvLy8kJycDGLYCevt27fw9PREZGQkCgoK3tMTHByMoUOHoqqqCu7u7oiMjMSkSZMatXnx4gWGDBkCR0dH2Nra4u3bt9i9ezdkZWWxf/9+qKmpYfr06YiNjcX27dvx7t07BAYGNipVKgBQU1PD/v37kZqaipMnTyI0NBRWVlbQ0NCAv78/7t+/j3Xr1rWL23VFRQWePXsGMTExWFlZvecRJKDroampiWfPnkFOTg4jRoxAYGAg05JajLGxMaKioqCkpIR9+/bBwsIClZWVTMsS0I4UFQGJidxtY2NGpbQLYdlhAABtWW10F295KOO/79HPnj1DRUVFe0tsFlVVQHw8d7szyzFXVQGnTgGVlYCuLvDll503NpMUVhbiQsgFAICdth1MVUwZ1UNESE5OhpeXF4qKijBixAgYGxtDXFy8xX0pKSlBTk4OMTEx8PAAUlIABQVpbN/eB6dOnUJISMh7x3h4eEBLS+uD5WsFNB9zc3O4urri+fPnmD17Nmpra99ro6ysDBaLhaysLAYUNsbR0RFXrlxBVVUV01JaDV/Plu/duwcFBQUMG9Z8F8iOIjExEVpaWp0We+rl5YXDhw9j//79WLx4Merq6tC9e3fIy8s3anflyhVYWlpCSUkJrq6ukJaW7hR9vERJSQmSk5MxsI1vBz169ICVlRWMjIwQGxuLJ0+eID8/v51Utpz58+fDwcEBBgYG6NWrFyQlJaGlpQVLS0tMmzYNI0aMgLq6Ovz9/ZGWlgYOh4P9+/fD2NgYpqamMDY2bnB7r8+BICQkhHXr1kFTUxO//PIL5s2bh5iYGAQHB2Pz5s0NLpYCPoy0tDSWL1+OmJgYuLi4YP78+Xj58iVGjx7dLv0XFxfj2bNnkJeXx5AhQxh34RbQeaioqMDX1xc6OjqwsrLCxo0bGZt0tRZtbW2kp6djwoQJCAwMhLKyMl6/fs20LAHtREgIN6RCRweQlWVaTdupN5IYKRm1ug9hYWEMGTIE8vLyePbsGYqLi9tLXrOJigI4HEBREWhl+rAWQwQ4OwOZmdzvwtKlnZ8HhQnYHDbOBJ1BeU05NGU1MV1/OqN68vPz8eTJE8TGxsLIyAhWVlbo0aNHm/o0MDBASEgmbt/mhmXPnAls3LgM/fr1w8qVKxst2HE4HNy9exfTpk3jidw8/I6trS1u374Nd3d3rFq16r3PWSwWtLS0kFhvrWaQ4cOHQ15eHi4uLkxLaTV8bSRxdnaGo6Mj4394JSUlKCgogKamZqeMl5+fj3nz5sHOzg7r168HAMjKyqKoqKihTW1tLVavXo25c+di9uzZeP78Od8l/WsPiAjh4eHQ1tZul5w1LBYLqqqqsLOzg6qqKvz9/fH69WtGJisWFhaQk5PD06dPcfPmTRw+fBhff/01+vfvj4qKCnz55Zfw9fWFkpIShg4dig0bNmDChAkYMWIErKysYGlpiYsXLyIwMBBKSkpYvHgxdHR0cOHCBXz33XdITk7Gr7/+ynhsIz8iJCSEiRMn4sSJE+jbt2+79Jmbm4vnz59DS0uLZ5IBCuhcevXqhWfPnmHv3r04fvw4DAwM8PjxY6ZltQghISG4urri1KlTKCsrw5AhQ3Dw4EGmZQloB+pz9A0axKyO9qC6rhrRudEAAGPltrnFsFgsGBkZQUtLC8+fP0deXl57SGw2/5+bE4aGnTfmvXtAaCjXMLJsGdDGeTnf4BrrincF7yAhIoElg5ZARIgZy1BFRQVev34Nf3//Ru+s7fHeIC3dDcHBxsjOLkD//gRLS0BUVBQnT57EixcvMGbMGDx79gwAN79bVlYWpk6d2uZxBXAZN24cjh8/jj/++AN+fn7vfa6pqYmCggKUlpYyoO4fWCwWHB0d4ezszKiONsFosE8bSEpKIlFR0U7NAfIxQkND6c2bN50yFofDoalTp1LPnj0pLS2tYf/FixcJAOXk5FBmZiZZW1uTqKgonTp1qlEeBA6HQ+Hh4VRc3PL4Wn4kIyOD7t+/32F5RCoqKuj169fk6upK0dHRH61h3hHUl1abPn06eXt7tyrfRXBwMM2aNYuEhIRIWVmZDh069Nl8N/iJ9PR0cnV1paSkJKalCOARYmNjyc7OjgDQ5MmT6eLFi5Sdnc20rBYRFRVFvXr1IgBka2tLRUVFgpwkfEpJCdHSpdzcE3l5TKtpO8GZweTk4kRbPbe2aynfpKQkcnV1pfT09Hbrsyn+Xfq3s9IZBQZyx3NyIvqcKr9GZEc05CF5nc5MKdba2lqKjo4mV1dXevPmDVVUVLT7GI8eES1eXEeTJiVSZGRmo89u375NBgYGBICsra1p4sSJpKSkRHV1de2u43Omrq6OBg8eTKamph/8v339+jWFhoYyoKwx6enpJCoqSsnJyUxLaRV860ly8eJFjB49GioqKozqqK2tRWpqaqfE2tXV1WHdunW4c+cOzp49CzU1tYbPLC0t0aNHDxgaGmLw4MGIj4+Hr68vli9f3mA5joyMhL29PQwNDSErKwtDQ0MsWbIEu3fvxsqVK/HNN9/g5cuXHX4enQURITo6Gv369euwjNqSkpIYPHgwrKyskJOTAy8vL6SlpXVKvhI7OzucPn0aUVFRsLOzw8CBA3H8+PFGHkUf49mzZxg3bhxMTU3x6tUr/Pbbb0hMTMSGDRsEZWR5jIyMDAQFBcHMzKzTvNUE8D59+vSBp6cnzp8/j/T0dMyfPx9KSkowNzfHjh07+CKMZcCAAcjIyMDIkSPh6+uLQV3BBeEzpT7URlMT6NWLaTVt59+hNu3ptaepqQkzMzMEBQUhIyOj3fr9GMnJQGkpICEB6Ol1+HBITgYuXuRuf/EFMHRox4/JCxRVFeF8yHkAgI2WDQarDu7U8YkIaWlp8PLyQk5ODqysrDBo0KAmS663hsxMrpeQkJAwvvlGFNnZ0Y3ed6dNm4bQ0FDcvXsXVVVVcHV1xZQpUwShwe2MsLAwTp48ieDgYJw5c+a9z7W1tZGamvrBvCWdiaqqKr744gtcrL8p8Bl8aSThcDg4f/48TyRsTUtLg4yMDOTk5Dp0nNraWowZMwYnT57EyZMn33Nd69OnD6KiomBtbQ19fX28efOmoRRxVVUVvvvuOxgbGyMtLQ03b96Es7Mzhg0bhsDAQJw+fRpPnz7F8+fPMWvWLJSVlXXouXQWmZmZqK2t7ZSJZc+ePRv+7yMiIvD8+fNmGSvaAovFwrJlyxAZGQkfHx8YGBjgu+++g5qaGqZOnYpDhw7h2bNnDckRiQj379+HtbU1RowYgdTUVFy9ehWxsbFYtmwZ43XVBbxPZmZmg4GkM5NCC+APWCwWFixYgFevXiE7OxuXLl2Cnp4eTp48CXNzc6SkpDAt8ZOIiYnB29sbhw4daghbjImJYVgVUF5ezpcJcpmiK4XacIjTYCRpa6jNh1BWVsbgwYMRFBSEzMzMdu//39SH2ujrd3xOkOJibqLW2lrAwAD4XCIsOMTBuaBzKK0uhXp3dczUn9mp4xcVFeH58+eIiIiAvr4+rK2t0bNn+5cb5nCACxeAujpuAuBp05RRU1Pz3ndYSEgIkydPxsuXLxEQEIADBw60uxYBwNChQ7Fw4UJs27btvfyIcnJykJaWRlpaGkPq/sHR0RHnz58Hh8NhWkrLYdSPpZV4eXmRoqIi46VYORwOeXp6doobUVhYGAGga9eutei4lJQUMjc3J3FxcTpw4ECTJb/evXtHkpKStGHDhrbKZRwOh0Pe3t6MlByrra2lyMhIcnV1paCgoI+W6uoIMjIy6Mcff6SRI0eStLQ0ASAREREyMzMjU1NTAkCWlpbk4uLCEyXCBHyczMzMTnXLFtB1OHfuHLFYrA5xte5IYmNj6e7du9S7d2/GyoynpaXR5s2bSU5OjgCQt7c3Izr4ibIyomXLuOEVfBbx9UHeFbwjJxcnWvNgDdWxOy5MoD6MMjMz89ONW8m+fdzr8uJFhw1BREQ1NUQHDnDH2rGDiM9uPW3CJcaFnFycaNX9VZRVmtVp41ZWVlJQUBC5urpSVFRUh4d7P3jAvb5r1hAVFHD3xcfHtzrcW0DbycrKoh49etDSpUvf+ywpKYm8vLwYvzbV1dWkoKDAl89SvvQkOXfuHObOndthIRTNJS8vD9XV1Y3CXjqKu3fvAuCWUWwuvr6+GDx4MLKzs/HixQts3ry5yZJfMTExqK6uhkgXSEGemZmJ6upqRsITREREoK+vj5EjR6K2thZeXl6Ii4sDm83u8LFVVFSwdetWeHt7o6ioCMHBwTh+/DgGDBiA8vJy/PDDD3jx4gUmTpz4WZaC5heys7Px+vVrDBo06LNMuCygbURHR0NLS6vdXa07mvpn6fDhwzF58mT88ssvnVZqPTIyEnPnzoWWlhZ+++03LFiwAIaGhti/f3+njM/PhIZyV5nV1bkVVPidei8SA0UDCAt1XJiAqqoqTE1N8fr1a2RnZ7d7/0VF3BKtLBbXs6OjIAKuXuWWf5aSAlasAPjs1tNqYvJi4B7nDgCYYzQHSjJKHT4mm81GXFwcvLy8UFtbi5EjR2LAgAEd+u6ekQG4unK3Z80C6p3ntbS0UF1dzRMlZz9HlJSUsGfPHvz55594U+/O9/+oq6ujqqqK0SqcANdbdO7cuTh37hyjOloD382GCwsL8b///Y8n4q0TExOhqanZ4bF2V69exY4dO7B7927o6+t/sj0R4ddff8WGDRtgY2ODv/76CwqfqPsWFBSEWbNmYcKECdi7d297SWcEIkJsbCz69OnDaByktLQ0hgwZgtzcXERERCA5ORkGBgZQUlLqlMokIiIiMDExgYmJCZYvX97h4wloH3JycvDq1SuYmpoKDCQCWkV0dHSznhW8ypkzZ6CpqYnvv/8e0dHROHHiRIcbfL7++mtkZmbi8OHDcHR0RPfu3XHz5k3MmjULgYGBGDJkSIeOz890pVAbAAjNCgXQttK/zUVNTQ1EhFevXmHIkCFQbEcrU0QE97emJtCRqca8vAB/f0BICHBy6hqGsuZQXFWMc0HnQEQYrjEcQ9Q69h5BRMjKykJkZCSEhYVhYWEBeXn5Dh0TANjsf8JsDA0BS8t/PhMWFkafPn3w9u1bKCsrC6ruMcC3336LM2fOYOXKlXjx4kXDAqiwsDA0NTWRmJjYKd+Tpli4cCHMzc1x8uRJyPJRfXi+W0r+66+/YGxsjIEDBzKqo7KyEtnZ2dDS0urQcXx8fLBw4UIsWLAA27dv/2T78vJyzJkzB+vXr8e6devw6NGjTxpIUlJSMH78eAwYMADXrl3j+wRLWVlZqKqq6vBr01wUFBRga2sLPT09BAcHw9/fHyUlJUzLEsCD5ObmIjAwECYmJp3ioSag61FXV4fIyEgMGDCAaSmthsVi4cCBA7hw4QIuX74MXV1dnDx5EtXV1R02ppmZGeTl5bF27dqG5NXTpk1D3759BTH1TVBZCURzK+V2CSNJbnkuMkozIMQSgoFiB7pf/At1dXUYGxsjMDAQubm57dZvGNchBkYdaOuJiABu3eJuz5wJ8PFtp0VwiIMzQWdQUl0C1W6q+NLgyw4dr6SkBP7+/ggJCYGenh5sbW07beL76BE3Ia+UFDBnDtcz6d9oamqiqqqqQ7yhBHwaERERnDx5EgEBAbh06VKjz7S0tJCVldWQm5ApDAwMYGRkhL/++otRHS2F74wk586dw6JFi5iWgaSkJCgoKEBaWrrDxoiKisLUqVNhY2ODP//885MW2vPnz0NPTw93797FX3/9hcOHDzfL/W7BggWQkJCAm5tbh55PZ0BEePv2LfT09HjK2MNisaClpQV7e3t069YNT548QVhYGGpqapiWJoBHyMvLw8uXL2FkZAR1dXWm5QjgI8rLy3Hnzh3Mnz8fioqKSEpKgrW1NdOy2sz8+fMRGRkJBwcHrFmzBnp6evjjjz865L45duxYREdHIzk5uWGfsLAwNm/ejLt37yIyMrLdx+wKhIVxV5pVVLg//E5wVjAAoG+vvpASleq0cXv37g0jIyO8fPkSeXl5be6vthaoz3/cUUaSrCzgzBluuM2wYcDIkR0zDi9yN+Yu4vLjICEigWVmyyAmLNYh49TU1CAsLAxPnjxBt27dMGrUKGhpaXWax0ZaGuDmxt2ePRv4kBOAiIgI9PT0EBMT02nhkQIaY2Njg6+++gqbNm1qVDRCWloaCgoKSEpKYkxbPYsWLeK7kBu+MpKEhoYiKioKX37ZsRbbT8HhcJCcnNyhZX+zsrIwbtw4aGho4NatWx/Nv0JESE1Nxc8//wxHR0eMHDkSERERzf4/Sk5Oho+PD/bu3QslpY6PpexosrOzecqL5L+IiYnB0NAQtra2KC8vh6enJxITE/kz67OAdiM/Px8BAQEwNDSEhoYG03IE8Am+vr6YPHky5OXlMW3aNAQFBWHFihV4/fo1Jk2axLS8dkFPTw8XL15EVFQURowYgeXLl6Nv3744d+5cu5Y3HDVqFISFhfHgwYNG+7/55hv07t0bP/30U7uN1ZXoaqE2wZlcI4mpimmnj62hoQFDQ0MEBAS0OY9AbCxQXc2d1HaEzb2iglvJpqqKW1r466/f9zDoqoRmheJR/CMAwDzjeR2Sh4TD4SAhIQGenp4oLy+Hra0tDA0NOzUXY10dN8yGzQaMjYGmIg61tLQaPOwFMMPhw4dRXl6OXbt2Ndqvra2N5ORkxucZX375JSIjIxFW7+LGB/CVkeT8+fOYOXNmgyssU2RkZEBERKRdY0f/TWVlJaZMmYKamhq4u7ujR48eH227efNmaGhoYMOGDViyZAmuXr3aIuPNlStXICkpiSlTprSDcmb5txcJryef7datG4YOHYpBgwbh3bt38PX1bVc3WwH8Q72BxMDAgJFEwwL4k5ycHEyePBlJSUnYu3cv4uLiEB4ejr1792Lw4MFMy2t3+vXrh6tXryIiIgIWFhZYvHgx+vfvj4sXL6Kurq7N/cvKysLKyuo9I4mYmBg2bNiA69evIyEhoc3jdCWqqoB6B5uuYCQpqipCQiH3GpsomzCiQVNTEwYGBggICEBBQUGr+6kv/Wto2P7GCzYb+OMPIDubm8Bz2bKOLy/MK+RV5OF8yHkAgL2OPQartv+9Njc3F76+vkhISMDgwYNhaWmJbt26tfs4n8LNDUhNBaSlPxxm82/qvUnevn0r8CZhCDU1NWzfvh0nT55EYmJiw35FRUWIiIggIyODQXVAjx49MGPGDJw/f55RHS2Bb25r1dXVuHLlCm7fvs20FCQmJkJbW7tN7m5EhHPnzmHQoEEY9K+3Cw6HgwULFiAsLAxPnz5F7969Gx1XV1eHly9f4t27d0hMTMSpU6ewfPlybN++HSot9HV98uQJ9uzZg0WLFkFGRqbV58Ir5OTkoKKigme9SP4Li8WCsrIyFBUVkZCQgMDAQMjLy8PAwIDvw54ENI+CggIEBARAX1+fb763AniDbdu2QVhYGN7e3ujVqxfTcjoNfX19/P3339i2bRt2796NBQsW4Mcff4SNjQ1EREQgLCwMERGRhm0JCQmMHz8e5ubmn3xmjx07Fj/++COqq6sbVYJbtGgR9u7di8OHD+P06dMdfYp8Q0QEd7VZURHoCimU6hO26sjpQFZCljEdWlpaICL4+/vD0tISPXv2bNHxRI2NJO0JEXD9OjeUR1wcWLkSYGD+zgi17Fr8/vp3VNZWQkdOB9MGTGvX/svLyxEREYG8vDz069cPOjo6jFUhjI8HHj7kbs+d27zEv9ra2oiPj0dOTk6X8EznR1auXIlDhw7h6NGjOH78OIB/wv0TExMZD+V2dHTEjBkzcPDgQYiJdUyIWnvCN0YSFxcXyMnJYcSIEYzqKC4uRnFxMSwsLNrUz/nz57FkyRIAwMyZM7F8+XLk5ubi4cOHuHHjBm7fvg0zM7NGx1RUVGDq1Kl4/PgxAG7pJwsLC+zYsQPKysotGj88PByTJ0+GtbU1jh492qZz4QWICDExMXzhRfJfhISEoKenh969eyM6Oho+Pj7Q1tZG3759GS9zLaDjKCwshL+/PwYMGNChoXsCuh6vX7/GuXPncOLEic/KQPJvjIyMcPv2bQQHB+Onn35CeHg46urqUFdXBzab3bBdWFiIPXv2wNDQEEuWLMGcOXMgV1+/8j8oKyujvLwc6enp0NHRadgvJSWFdevWYdeuXRAXF4eysjJUVFSgrKzcsK2goPDZVXaoD7UZPLhrhFrU5yNhItTmv2hrazcYSqysrD76nf0QWVlAXh7Xu6N///bV5e0NPHvGvd6LF3dMKA+v8nfk30gtToWMmAycBjtBRKh93jVra2sRGxvbMIkdNWpUIyNtZ1NVBZw/zzWIWVoCps38c/i3N4miouJndz/kBaSlpbFixQr88ssv2LlzZ8P7gYaGBmJiYlBcXNxkdEJHY2NjA1lZWbi4uGDGjBmM6WguLOITv6ixY8fC2toaW7duZVRHSEgIAMDExKTVfSQkJMDY2BjTp0/HiBEjsGvXLqSmpgIA5OTksGvXLqxevbrRMYWFhZgyZQrevHmD69evw97eHlJSrUsqlpycDCsrKygpKcHX15fx8KX2ICcnB2/evIGDgwPfGUn+S1FRESIiIlBWVoYBAwZAQ0ND8LDpYhQVFcHPzw/9+vWDrq4u03IE8BEcDgfDhw9HWVkZgoKC+P5+928qKirg4eEBBweHVj/f/gubzcbjx49x9uxZuLi4QFhYGDNmzMCSJUswYsSIhntrZWUlBgwYAAMDA7jVZyr8FyUlJVi8eDEiIyORmZmJwsLCRp8PGjQIJ06cgJWVVbvo5nVqaoDvvuP+3rqVW2aWnymvKcf3j78HhzjYa7cXitK8Ucf23bt3ePv2LaysrJpdOvPxY+D2bWDgQOA/r5JtIjwc+O037uR55kxg1Kj265vXCUgLwPng82CxWFhtsRr6Cm0vsU5ESElJQXR0NGRkZGBgYMAT5VEvXwaePwd69QK2bwdaUn29rq4OHh4eGDx4cIelJBDQNDk5OdDU1MS2bdvwww8/NOwPDg4Gi8Vq0/y1Pfjxxx/x4sUL3L9/n1EdzYEvcpKkpqbCy8sL8+bNY1RHTU0N0tLS2rTqy2azMX/+fMjLy+P48eNwdHREXFwcQkJCkJ+fj4KCgkYGkvLycuzbtw86OjoIDQ3F48ePMXHixGa/QKampsLZ2RmzZ8+GnZ0drl+/jjFjxkBcXBz379/vEgaSei8SXV3dLjFhkJWVxbBhw2BoaIi3b9/i6dOnbYpNFsBbVFRUICAgAH369BEYSAS0mGvXrsHf3x/Hjx/vEve7jkZYWBhjx47F7du3kZqait27d+Ply5ewtbVFv379cOjQIWRnZ+PIkSNIT0/HkSNHPthP9+7dcePGDURGRqKgoABVVVVITk5GQEAA/v77b7BYLAwbNgzz589HVlZWJ59l5xMZyTWQ9OoFdIVc0+E54eAQB2rd1XjGQAIAurq66NOnDwICAlBRUdGsYzqi9G96+j+VbIYPB+zt269vXie9JB1Xwq4AACb0ndAuBpKCggI8efIEb9++haGhIYYNG8YTBpLQUK6BhMUCFixomYEE4HqT6OrqCnKTMIiioiLmz5+PEydOoKqqqmG/trY20tLScOjQoYYFfyaYP38+PD09kZaWxpiG5sIXRpJLly5h1KhRjMdSpaamokePHm1yVTp48CBevHiBixcvNhgoxMXFYWxs/F7caUlJCezt7bF3717MmzcP0dHRzVqlKigowLZt26Cvrw8NDQ0sXrwYiYmJqK2txddff438/Hw8evSoxSE6vEpubi7Kysq6VMgCi8WCmpoa7O3toaysDD8/P7x584bxWucC2kZtbS0CAgKgqqoKPT09puUI4EMePnyIwYMHw9bWlmkpfIeysjI2bdqE2NhY+Pj4YMiQIdixYwfU1dWxZ88erF69Gn379m1WX+Li4tDQ0ICFhQVmzZqFly9f4s8//4S7uzv69u2LI0eOtGv1HV6jq4XaBGUGAQBMlZkPtfkvenp6UFFRQUBAwCe/UxUVwLt33O32ykdSUgKcPMmtltOvH/DVV13jmjeHqroq/PHmD9Sya6GvoI9xfca1qb/Kykq8efMGfn5+UFFRgb29PdTU1HjCW7i0lOtFAgAODkAzb4Xvoa2tjdLSUkExAgb57rvvkJubi0uXLjXsk5WVhbS0NJ4/f44xY8YgJSWFEW3q6uqwt7dvpI1X4XkjCYfDgbOzMxYtWsS0FCQnJ7cpuaKnpye2b9+OrVu3fjK3SllZGcaNG4eYmBj4+fnh2LFjn0zMWlVVhV9++QW6uro4fvw4rKyscOPGDeTl5eHly5d49uwZXrx4gefPn6NPnz6tPg9eor6ija6ubpfM3yEsLIx+/frB/v+Xbby8vPD27Vuw2WyGlQloKRwOB4GBgZCSkoKBgQFPvBQJ4D9UVVVRVFTEtAy+hsViwdbWFleuXEFGRgaOHDmC6dOnY/v27a3uU1hYGEuWLEFsbCzmzZuHDRs2wMDAANu2bYOXl1eXMnDX1v7jrdDcfAW8THVdNaJyowDwRj6S/8JisWBoaAgpKSkEBgY2WcozMhLgcABVVa6XT1uprQVOnwYKCrgJepcu/Xwq2RARLodeRnZZNuQk5eBo6gghVuumTWw2G2/fvoWXlxcAwN7eHv369YOwsHB7Sm41RFwDSWkpNwnz5Mmt70tUVFTgTcIwffr0wZQpU/DLL780ul/U1NRg1KhRqK2txYQJE1BaWsqIvkWLFsHZ2ZnxssSfgueNJE+fPkVJSQkmTpzIqI6SkhJUVFS0uIJMPcnJyZg9ezZGjRqF3bt3N9m2oqICEydORFhYGB49etRkOcfi4mKw2Wxcu3YNAwYMwKZNmzB79mzEx8fj7NmzmDlzZiMPFSsrq2avlPEDeXl5KC0tbZRkrysiKSmJwYMHw8rKCllZWfDy8kJ6errgAcQnEBFCQkJQW1sLMzMzxjLWC+B/evfujdTUVJ5/ueAXevbsiVWrVuHatWvt4u7es2dPnDx5EkFBQRg8eDDOnj2LUaNGQU5ODnZ2dti3bx+uX7+O06dP48cff8T3338PJycnBAQEtP1kOomoKK5XgZwc0BUcOCNzI1HLroW8lDzUuvFmmR4hISGYmZmhtrYWISEhH332t2dVGyLg4kUgIQGQkuJWsvmcCu95JXrhdcZrCLGE4DTYCd3EW17Gh4iQnp4OLy8vZGVlwcrKCoMHD4ZkS+NYOhg/P26ojYgI4OjYdkOYjo4OSktLkZeX1z4CBbSYjRs3IjY2Fi4uLg37SkpKoKysjEuXLiEpKQlffvklI4suEydORFFREZ49e9bpY7cEnrcHOzs7Y86cOYyXCkpLS4OSklKrYsCrqqowY8YMyMjI4Nq1a01ajisqKjB58mS8evUKjx49+mgVnZqaGqxbtw6nTp2CiIgI6urqMGnSJDx48AD92zudOY/S1b1IPkTPnj0xYsQIpKamIjw8HImJiTyT7EvAx4mNjUVeXh6sra0FeSQEtAkNDQ3U1NQgJyeny4RMfgg2m42amhqem0w0F2NjY1y7dg1EhMjISHh5ecHLywuHDx9GSUkJhIWFIScnh549e6Kqqgq3bt3C69ev+cLg//o19/egQV0j7CI485+qNrzs4SciIgILCws8ffoUsbGx6NevX6PP2ez2NZLcvw+8egUICXE9SD6nqq6x+bG4HXUbADBr4CzoyLX87/LfSfj19fXRu3dvnvx+5eUBf//N3Z48uX0qFv3bm0RBQaHtHQpoMUOHDsXw4cOxceNGVFRUYMqUKfjiiy9w4MAB9OvXDzdv3sS0adOgp6eHHTt2YPny5Z02lxIXF8ecOXPg7OwMGxubThmzNfD023pxcTFu3bqFly9fMqqj3hJsYGDQquNXrVqF8PBw+Pn5vVeusa6uDq9fv4a3tze8vb3x4sULsFgsPHjwAMOGDftgf5mZmZg5cyYCAwOxf/9+SElJYdCgQbC2tm6VPn4lLy8PJSUlbS7HzG+wWCxoaGhARUUFcXFxeP78OdTV1TFgwABGy8YJ+DCpqamIj4+HtbU13074BPAO3bpxVzO7gpGkvvRlXFwcYmNjkZGRgZEjR2LYsGGIiIiAqKgo0tLS3svXxU+wWCwYGBjAwMAAa9asQV1dHSorKyEjI9MwYSosLISZmRmmTZsGPz+/dqvs0xHU1HBXnAHAzIxZLe1BHacOYdnc2CFezEfyXyQlJWFpaYlnz55BSkoKvXv3bvgsPp6bk0RGBmhrTvDXr4H6Beivv27/UsK8TGFlIf588yc4xIGFugVstWxbdHx1dTWio6ORlpYGHR0dWFhY8OxCHocDODtzPcP69GnfikU6OjqIj49HXl4e5OXl269jAc3mxIkTWLVqFb755ht069YNM2bMABGhX79++OKLLxAXF4edO3di3bp1ePfuHY4dO9Zp2hwdHTF06FCcOHGCZ4uI8LTP919//QUDAwMYtlf2qVZSVFSEmpqaVpWz+uOPP3D27FmcPn0agwYNathPRHB2doaSkhIsLS1x4MABSEhI4Mcff0RYWNhHLWv+/v4YPHgwEhMT8eTJE2zZsgVr1qz57AwkAHd1XkdHh2cfPh2NqKgo9PX1MXLkSFRXV8PT0xPx8fECN3weIi8vD6GhoTA3N+fZh4AA/uLu3btQVlaGvn7bKywwyevXrzFw4EAYGBhg6tSp2LdvH4KDuSv648ePxw8//IDKykqE1s/IuwgiIiLo1q1boxVlOTk53L17F3FxcViyZAlPh1FGRHAnVL16dY1Qm7d5b1FVV4Xu4t1b5S3ABN27d4e5uTlCQ0MbhTPUF6wwMuJ6f7SWhATgwgXu9qhRwOf0elnHqcPvr39HaXUp1LurY47RnGZ7f3A4HMTHx8PT0xPV1dUYOXIk9PX1efod9f59bqJfCQluNZv2jAT+tzeJAGYwMTHBs2fPEB8fj/Xr1+Pp06e4evUqxMXFERwcDFVVVZw5cwYHDx7Eb7/9hvB6V7ROwMjICAMHDsRff/3VaWO2FJ42kjg7O8PR0ZFpGUhLS4OKikqLEyy5u7tjxYoVWLlyJRYuXNiov3HjxmHRokWYMGEC/P39UVBQADc3N6xfv/6jVS9cXFxgZ2cHHR0dvHnzBpaWlm06L34mLy8PRUVFfOGa3NFIS0vDwsIC5ubmSElJgbe3N7Kzs5mW9dlTWlqKwMBAGBoatsrAKkDAf6mpqcG1a9fwzTff8G3YFofDweHDh2FlZYUePXrA29sbWVlZKC4uxoMHDwAAW7duxbZt2yAmJoaIiAiGFXcOhoaGcHZ2xrVr1+Dq6sq0nI/y6hX3t5lZFwm1yeIa5kyUTXgyFOJjKCoqwtDQEIGBgSgtLQXRP0YSE5PW95uXB5w6xU3YamQETJ/eHmr5h78j/kZSURKkRKWw3Hw5xIQ/HepPRMjKyoK3tzdSUlIwZMgQWFhYQJrHE7i8ewe4uXG3v/kG6AhnDx0dHRQVFSE/P7/9OxfQbHR1dbFr1y7ExcVh8ODBCAwMRGBgYMPnq1evhp6eHlavXt2pRnpHR0c4Ozt32ngthWeNJBEREQgLC8Ps2bMZ1VEfatPS8sOvXr3CrFmzMHHiRPz6668AuC+4hw4dQv/+/REWFgY3NzdcvHgRQ4cO/aSl+cKFC5g2bRrGjRsHT09Pvnezbitv376Fjo4O47lqeAlFRUXY2to2GNH8/f0Zy1z9uVNVVYWAgABoa2tDU1OTaTkCuggPHjxAfn4+5s+fz7SUVrN06VJs3LgR69atw4sXLzBy5EgoKSm9N0F9/vw5WCwWiouLGVLa+dSHUvGqa3pV1T85L7pCqA2HOAjJCgEADFIZ1HRjHkRTUxNaWloICAhAfHwVCgoAMTGgtU5m5eXA8ePcCie9ewOLF7evZwGv8yLlBZ4mPwWLxcLiQYshL/Xpv8PS0lIEBAQgKCgIurq6sLW15YscHJWVwLlz3OS8FhbAkCEdM46YmBh0dHQQExPTMQMIaBEsFgsrV67E06dPISEhgYqKCgDc6/Trr7/C19cXt27danG/sbGxuH//Pu7fvw93d/dmJyL/6quvEBoaisjIyBaP2Rnw7O3v/PnzmD59OuMJKfPz80FELXppiY+Px/jx42FsbIyvvvoK8vLyMDAwQP/+/bFlyxYsWrQIkZGRGD9+fLP6++WXX7Bw4UI4Ojrixo0bkJCQaO3pdAny8/NRVFQE3bYG3XZBhISEoKOjg1GjRkFaWhq+vr4IDw9HTU0N09I+G+rq6vDy5Uv07Nnzs0miLKBzuHjxIkxNTRkPQW0L//vf/+Do6IiDBw9+1Mjt7e2NsWPHwtraGuvWretkhczx66+/wtzcnGe9RMPCuB4GiorcSTS/867gHUqrSyElKoW+vfiz6t+AAQMgJyeHW7e4obb6+kBrojvq6oDffweys7lVi1auBD6nFGfJRcm4Fn4NADCp3yQMVBzYZPuamhqEh4fD19cXMjIyGDVqFLS1tfmich0RcPUqkJ/P9R75+uuOHU9XV1fgTcJDzJgxA6mpqRASEsK1a9ca9o8ZMwaTJk3Cd99912A8aQ7v3r2DgYEBxo8fj/Hjx2PChAmwtLTE3/XZgJtAVlYW06ZNw/nz51t1Lh0NT/4119TU4NKlS1i0aBHTUpCeng5VVdVm3/iys7MxduxYyMrKwsXFBb/99hvU1dVha2sLa2trBAcH49ixY802/hw8eBDff/89tm7dij/++INnaqozicCL5NOIiYnByMgINjY2KC0thZeXF5KSkng61r0rQEQICgqCsLAwTEz4y31bAO9CRDh+/DhcXFywYMECpuW0CTMzMzg7O+OLL75ASH18wH9wdHTE6NGj4erqyvMu6+1FZGQkPDw8sG7dOp69b9RXtekqoTb1XiRGSkYQFuLPdysWiwVTU1O8e9cNeXl5MDZu+TOeCLh0CYiN5eamWLUK+JwK5pXVlOH317+jjlMHIyUjjNUb+9G2RITExER4eXmhtLQUNjY2MDQ05Kv30Zcv/6latGgR95p3JGJiYtDW1hbkJuERxMXFsWjRIgQEBCA2NhZ1dXUNnx05cgQ5OTk4ePBgs/vbu3cvevXqhcTERKSlpSE9PR3jxo3DDz/8gNra2k8ev2jRIly6dIknF3N50kji5uaGbt26MV4WiMPhICMjo1mhNllZWdi0aRP69OmD0tJSPHz4EDk5OXj69Cm2bduGkydP4uLFizAyMmr2+Lm5udizZw/Wr1+PH3/8kWdfnDqTwsJCFBQUCLxImkn37t1haWkJExMTxMfHw9fXF7m5uUzL6rJERkaitLQUQ4YMERg0BbQLRUVFmD59OtasWYNVq1Zh+fLlTEtqEw8fPsTdu3eRkpKCQYMGYf78+fDz88OrV68aVrUmTZqEmzdvflZek7/++itUVVUxY8YMpqV8kIoKbtJWADA3Z1ZLe0BEDflITFV4v6pNUxQVCQNQR21tDUREolp8vJsbd+IsJAQsWwaoqbW/Rl6FQxycDTqLgsoCKEorwtHU8aPv2rm5ufD19cW7d+9gamoKS0tLvkvInpcHXL/O3Z4wAeistH56enooKChAYWFh5wwo4D2Ki4tRVFQEgOuRHxwcDENDw0bhNbq6uvj+++9x8OBBJCUlfbLPuLg4XL58GVu2bIGWlhbU1NSgqqqK/fv3Iz4+vlkeIra2tpCWloa7u3trT63D4EkjibOzMxYuXMi421pubi6EhIQ+WX7w/v370NLSwunTp/Htt98iNDQUOjo6+P3336GgoIBp06a1avzjx4+DxWJh69atrTq+K5KYmIjevXvzldWeaVgsFlRUVDBy5Eioq6s3JGwqLy9nWlqXIiEhAampqRg6dKjg+ymgXairq8OECRPg4+ODO3fu4OjRozxdKaE5sFgsTJ48GeHh4fjtt9/w8OFDDBs2DEOGDMGmTZsAAMeOHeP782wJubm5uHz5MlauXMmz5x0SArDZgKoq94ffSS1JRX5FPkSFRaGvwN+VokJCAGFhYQwbpoD8/BQkJCQ0+1g/v3+Sd86ZAwwY0DEaeZV7MfcQnRsNMWExLDdfDklRyffalJeXN7w39e7dGyNHjoSysjLfLVyy2cDZs9zcQn36AGM/7jDT7oiJiaF3795ITEzsvEEFNGLt2rXo27cvLly4gAsXLmD69OkQEhLCrVu3GnmZb9myBdXV1fjf//73yT737NkDZWVlODk5Ndpfn25iz549qKysbLIPISEhLFy4kCcTuPKckSQjIwOPHz/micR0aWlpUFNT++SN8NChQzA1NUVKSgp++uknKCkpwcvLC2fPnsXixYtbNWEqKSnBiRMnsHTpUvTq1au1p9ClqK6uRnp6OrS7Qt1BBhAWFkafPn1gb28PUVFR+Pj4ICoqqpGrnYDWUVBQgKioKL7IaC+Af9i1axcCAgLg5uaGKVOmMC2nXREVFcXy5cuRkJCA4OBghISEwNfXFwD4bvLRVv766y+w2ez3XjR5ifpQm67gRQIAQZlBAAADRYNmVTDhZeqj1oYMEYeFhQWioqJQUFDwyeNiYoDLl7nbY8cCw4Z1nEZeJCgzCA/jHwIA5pvMh2q3xta/uro6REVFwcfHB6KiorC3t4eenh7feom6uQGJiYCkJODo2PlJebW1tZGens6TYRWfA/369UNubi4WLlwIOTk5LF++HHJyclBTU8Pjx48b2klLS2P8+PHw8PBosr+YmBhcu3YN27Zt+6DX5549e5CdnY1Tp059UtuCBQvw6NEjZGRktPzEOhCeM5JcvHgRdnZ20NDQYFQHm81GZmZms0Jt/Pz88OWXXzbkGbl37x7GjRuHESNG4IcffmjRuAUFBbh79y4WLlyIyspKrF+/vjXyuyQpKSno2bMn37k38hoSEhIwNTXF8OHDkZ+fD09PT6SmpgrylbSS6upqvHr1CgMGDPik15kAAc3F29sb+/fvx549ezCsC89epKWlYWJiAmNj4882jFJRURF1dXWoqqpiWsoHKSsDoqO5212hqg0R4XUG1+pjpsrfJ1ReDsTHc7eNjYGePXtiwIABePXqFaqrqz96XGYmN1Erh8M1fE2e3EmCeYT0knRcCLkAABilM6rR94CIkJKSAk9PT+Tn52P48OEwNTXl6/C/uDjg/yusY84cgIlXle7du0NOTg7JycmdP7iAhhQWX3/9Nc6ePQtpaWlYWlpi2LBh+Pnnnxu1HTJkCAIDA5ucF/zyyy9QVVX9aP5QPT09LFq0CAcOHEBJSUmT2jQ0NDBy5EhcunSphWfVsfCUkYSI4OzsDEdHR6alIDs7GxISEujRo8cn27JYrAYX2StXrmD69OmYNGkSXFxcICUl1azxoqKiMHjwYPTq1QtTp05FUFAQfvnlF6h9TsGhTUBESEpKEniRtCOysrIYPnw4DAwMEBUVhWfPnjVr9UnAPxAR3rx5Azk5Oeh0VnCvgC5PTk4OvvnmG9jZ2TWEoAjoutjZ2QHgGsZ4kaAg7mRaQ4Nb2YbfSStJQ255LkSFRWGoyL+VogBuSWYOB1BX51YqAQAdHR3IyckhKCjog5OckhLgxAluGVhdXWD+/K6RiLe5lNeU49SrU6iuq8YAhQGYrj+94bOCggI8e/YMMTExMDQ0xPDhwxmvstlWysv/KfdrZcWsoVNbW1tQRIAhzMzMICUlBWNjY0yaNAkAdx4gJiaGsrIyBAYGNrQdMmQICgoKmgzdS05OhqWlJcSbKIO1fft2lJeX45dffvmkPkdHRzg7O/PUd4OnjCSvXr1Cbm4uJvOASbu5oTYAN4yBzWbjyJEjmDt3LubNm4fr1683O8wmKSkJDg4OqK6uxsWLF5GUlITExESsXLmyrafRZcjOzgaHw4GysjLTUroULBYL6urqsLe3h6KiIvz8/PDmzZtPxhAK4BIbG4uKigqYmpp+diECAjoGDoeDBQsWgM1m4/Lly3zr2i2g+SgoKMDY2BheXl5MS/kg/65q0xWo9yIxVDSEuAh/17mtD7UxMflnX33Fm/LycsTGxjZqX10NnDzJLf+qqAh8+23rSgbzKxzi4EzQGeRV5EFeSh5LBi2BEEsIlZWVePPmDfz8/KCoqAg7O7tmzwF4mfrKRYWF3Ov95ZfM6lFRUQGHw0F2djazQj5DREVFYWVlhSdPnjTsY7FY6Nu3L8aOHYs9e/Y0GCjM/z+u8t+Gk/9SVVX1Se8qNTU1rFixAr/++itKS0ubbDt58mTk5OTgdf0DhwfgKSOJh4cHRo0a1aRVqjOora1FdnZ2s704hISEsGbNGnz33XfYvHkzzp07BxERkWYdm52djS+++AISEhLw8PDAvHnzoKmp2Rb5XZLExERoaWkxnsy3qyIiIoL+/fvDzs4ORAQvLy/ExsaCzWYzLY1nyc3NRVxcHMzNzXk22aIA/iEvLw9PnjzB+vXr8eDBA1y8eBEqKipMyxLQSdjb28PDw4Pnqj8UF3NLwwJdw0hCRHiT+QYAMFh1MMNq2kZtLRAZyd02Nm78maioKMzNzREXF9dQ0Y7D4XoUJCcD0tLcUr8yMp0smmH+F/0/ROdGQ1xEHN+afwsJYQnExsbCy8sLRAQ7Ozv079+/2e/wvI6vL9eQJiICLFnS8eV+P4WQkBA0NTUFCVwZwsbGBs+fP2/0bq+urg4jIyN4e3vj9OnTAIBevXpBV1e3zUYSgJswtqKi4pOVbiQkJBqeg7wCT804PTw84ODgwLQMZGVlQUZGptm5LywtLQEAR48exYEDB5pteS4uLsaYMWNQVlYGDw8PwQvxRygrK0NeXp7AeNQJSElJwczMDJaWlsjIyIC3tzcyMjJ4yv2NF6hfdTI0NGxWSJ4AAU2xfv16KCgowNbWFr/99ht27dqFsZ1ZekAA48ybNw/l5eUwNjbG06dPmZbTQFAQdzVaRwfoCjnkU0tSu0yoTXQ0UFMDyMkBvXu//3mPHj1gaGjY4B166xYQGsqdMK9Y0TVCp1rCy7SX8HjHnYDNN54PVhmr4R3H0tKyIRyhq5CaCtRXd50+nRsuxwtoaWkhLy8PZWVlTEv57LCxsUFJSQlCQ0Mb9nXv3h09evTA1q1bsW7dOgQFcZNa1+cl+RjNNZKoq6tj5syZOHbs2CcXXh0cHARGkg9RXl4OPz8/jBo1imkpDaE2zcXNzQ3R0dFYu3Zts4/hcDiYPn06kpKS8OjRI0E+gyZISkqCiooKXyfN4jd69eoFGxsb9O3bF2FhYfDz80NxcTHTsngCDoeDN2/eQFFRkfEE0wL4n7y8PPz2229YtWoVIiMjUVFRgZ07dzItS0AnY2xsjLCwMGhra8PW1hbbtm1DbW0t07Lw6hX3d1fwIgGANxlcL5KuFmrzsbU5DQ0NKCoq4syZeHh6chc7Fi7k5iL5nEguSsblMG4pHxs1G1QlViEsLAx9+/aFjY1Nl6siWVUF/PknUFfH9TIaOZJpRf8gISEBFRUVJCUlMS3ls2PIkCGQkJBoFHIDcMNi7OzsYGhoiJkzZ+Knn36Cj49Pkx4/zTWSAMC6deuQkJAAV1fXJtuNGjUKfn5+KC8vb1a/HQ3PGEmePn0KdXV1xrPbV1dXIzc3t1lVbeoRFxdH//79m2xDREhPT2/495kzZ+Dl5YWbN2/C0JC/VzM6krq6OiQnJwsStjIAi8WCpqYm7O3tISsri6dPnyI0NLTJjPmfA9HR0aipqYGRkRHfxysLYJ4LFy4AAHbs2AF9fX1B6NZnjIaGBry9vbFv3z4cOnQIw4YNQ1xcHGN6CgqAd++4E/DB/B2ZAqBxVRt+D7XhcICwMO72v/OR/BfuM8oIHh49UVRUiGnTuo7Bq7mUVJfg9OvTqKqtQs+6npBJk4GsrCzs7e2hqanZ5Z7jRMC1a0BODtfLiBcT82prayMlJQV1dXVMS/msEBcXx9ChQz9oJMnLy8O1a9eQn5+PnTt3Yty4cU0mE6+pqWl2WJq5uTmGDRuGI0eONNlOV1cXqqqqePbsWbP67Wh4xkhSn4+EaTIzMyErK9uuLndVVVVYvHgx1NXV8dNPPyEjIwMbN26Eo6MjT5wzL5OWlgYpKSlBaVUGERUVxcCBAzFy5EhUVVXBy8sL7969A4fDYVpap5OZmYmkpCSYm5t3mZhlAR1DUlIS8vPzm2zD4XDw559/YubMmZCvL00h4LNGWFgYW7duxYsXL1BYWAgjIyNMnToVFy9e/OT3qb2pz5/Xpw/A5wU+AHBDbfIq8rpEqE1CAlBaCkhJca/Px0hMBJydRaCgoIDevZNhZJTVeSJ5gDpOHf54/QeSs5NRnlOOMUpjYGdnh4EDB3ZZg7S/P/DyJSAkBCxezM0/w2v07NkTkpKSjRaPBXQONjY2ePbsWaN3eGlp6YZKN8HBwUhJScG5c+eadABQUFBATk5Os8ddt24dnj17hjdv3ny0DYvFwqhRo3gm5IZnjCSenp48kY+kpaE2zeGrr77CtWvXMGPGDGzZsgW2traQkJDA4cOH23WcrgYRITExEdra2l3O0s+PyMjIwMLCAmZmZkhOToaPj89nlaG8oqICwcHBMDY2Rrdu3ZiWI4DHGTlyJAYMGAB3d/ePtvHx8UFcXByWLl3aicoE8ANDhgxBcHAwdu/ejezsbCxcuBCKioqwtbXFr7/+2imJDwVVbXiX+pQChobAxwpgZWdzK9nU1gKmpmJYvVoBwcFBqKio6DyhDHPG7wyeRDxBdUU1tjlsg42VDWS6cLbazEzg+nXu9sSJgJ4es3o+BovFgra2NhITEwU57zoZGxsbFBQUICIiotF+NTU1pKenQ1tbG0pKSp/sp3fv3khNTW32uFOmTIGWlhaOHj3aZDsHBwd4eno2u9+OhCeMJFlZWYiMjISdnR2jOiorK1FQUNCuRpJ79+7h7t27uHLlCm7cuIENGzYgLi4Ox44dE3hHfIKCggJUVFS0KPRJQMdT/6Kura2NN2/eICAgoMsn4GKz2Xj16hXU1NQE30cBDXA4HKSmpr7nVZWamoqkpCTIyclhwoQJWL16Naqqqt47/o8//oC+vj6GDx/eWZIF8BEyMjLYuHEj/Pz8kJGRgd9//x3S0tLYtGkTdHR0YGxsjJ07dyI4OLjdJxo5OdwqKEJCwKBB7do1IxBRQz4Sfg+1IQKCg7nbHwu1KSkBjh8HysoATU3AyQnQ1FSHmpoaXr161eUr15WVleH3B7/DJcwF3bt1x84JO2GgZcC0rA6lthY4c4abzLd/f2DMGKYVNY26ujrKy8t5rqJXV2fo0KEQExN7L5RGVVUV+fn5qKysbFY/LTWSCAsLY82aNfj777+b9CCys7NDREQETyzC8oSRxMvLC6ampownTsrIyECvXr3aLUFoWVkZVq1ahXHjxmHatGlgsVg4ePAg3r17h9mzZ7fLGF2ZxMREaGhoCMIaeBAhISHo6OjA3t4ekpKS8PHxQUREBE8kGuwIIv+/zqKBQdd+yRLQNMnJybh8+TLWrl2LESNGQFZWFhoaGjh16hQAICUlBXv27MGIESMgJiaGp0+f4vjx4/jzzz8xaNAgzJw5ExMnTsSoUaMwfPhw3LlzB0uXLhV4ygn4JMrKyliyZAnc3d2Rl5fXkM/s2LFjGDRoELS0tLB69WoEBAS0y3j1RQ0GDAC6guNcSnFKlwm1SU8HcnMBUVFg4MD3P6+qAk6cAPLyAAUFbqlf8f93nDEwMAARNTzTuhq1tbWIiIjA1QdX4ZPrAzU1Ncw1nwtjFeNPH8zn3LjB/W506wYsWsQ1cPIyIiIi0NDQQEJCAtNSPiskJSUxceJEnDx5slFOGElJSfTq1QsZGRnN6kdDQwOpqaktMtA7OjpCUlISJ0+e/GgbeXl5mJiYwMvLq9n9dhQ88SfEK6V/09LS2nWVeM+ePcjNzcWJEycaXoJZLJagkk0zqKqqQmZmpiBhK48jLi4OY2Nj2NjYoLi4GJ6enkhKSupS7pPp6elIS0uDmZkZhD/m1yygy+Ph4YH+/ftj3rx5cHd3h4qKCrZt2wYHBwf8/PPPGD16NLS0tHDo0CHY29vDz88PSkpKWLVqFV69egU9PT0UFxdDSEgIvXr1gp6eHlauXImFCxcyfWoC+Ixu3bphxowZuHLlCnJzc+Hp6YlJkybhzp07GDZsGKKjo9vUPxE3pwEAWFi0g2Ae4E1m16lqUx/SP3DgP8aPethsblWTlBTuZHn16sZGLmFhYZibmyMtLa1L5YMgIiQlJcHT0xMpuSmIkIyArJwshqgPwRg9HnepaAfevAHqK4c7OgLduzOrp7loa2sjMzPzg56WAjqObdu24d27d/jrr78a7a8PuWkOvXv3RllZWYsqX3bv3h2LFy/GH3/80aQHOq+UAmZ8iZ6I4OHhgUuXLjGqo7y8HMXFxVBRUWmX/sLDw3H06FHs2rVLYBRpBcnJyZCXl+/SsaNdie7du8PKygqZmZmIjIxEUlISDAwM+D4ZZXl5OUJCQjBo0CBI82L2MwGdQv0k1M7ODleuXIGcnFzDZyNGjMDw4cOhpqaGs2fPYtasWe/dtwwNDeHi4tLZsgV8BoiKisLe3h729vb4+eefoaamBmdn5zblPEtO5obbiIk1XTmFX/h3qI2ZKv8nWKkPtflvGBQRcOkSEBnJvXYrVwKKiu8fLy0tDVNTUwQFBUFWVpbvn215eXkNnqz9Dfrj0rtLqKEaaPTQwAKTBV3eUy8nh3vdAW6Ijb4+s3pagoyMDHr16oXk5GT069ePaTmfDaamppgwYQJ+/PFHfPXVVw0LgKqqqggLC0N5efkn7wu9e/cGwA0vlm1BZu81a9bg5MmTOHXqFDZu3PjBNqNGjcKCBQtARIz+/TLuSRITE4OCggIMGzaMUR1paWlQVFSEmJhYm/vicDhYvnw59PT08P3337eDus8LDoeDpKQkgRcJn8FisaCqqgo7OzuoqqoiICAAr1694tskcUSEkJAQqKurt5vxVABvw+FwkJKSAk9PT5w6dQpr1qzB2LFjMXHiRNja2uL27duNDCQAYGlpiZKSErx48QKOjo4Cw64AxhAXF8ecOXNw6dKlNoU+1nuRGBu/76nAj/w71MZAkb9DJjMzuT/CwoCRUePP7t0DAgK4YRZLlwJaWh/vR0VFBerq6ggJCeFbz8+Kigq8evUKAQEBUFVVxciRI/Eg6wEySjPQXbw7vjX/FmLCbX+n52Vqa4E//uCGWOnpAZMmMa2o5WhrayMpKemzrJjIJNu3b0dMTAyuXr3asE9MTAyKiorN8ib5t5GkJWhqamLRokU4dOgQSktLP9hm+PDhyM/Px9u3b1vUd3vDuJHEw8MDI0aMaLc8IK0lPT293UJtTpw4gRcvXuDUqVMQ7wpvGJ1MVlYWWCxWs7IrC+A9hIWF0bdvX9jb20NYWBje3t6Ijo5uFPvIDyQmJqKiogIDPxT0LaDLUFRUhB9//BEmJiaQkZGBpqYmHBwcsHbtWjx+/BhiYmLYtGkT7ty589HnFL+vxAroOixcuBA5OTm4f/9+q47ncIBXr7jbQ4e2ozAGqQ+1MVIy4vtQm6Ag7m99fUBS8p/9vr7Agwfc7TlzgOakz9LX10d5eTmSkpLaW2aHUldXh+joaHh7e0NYWBijRo1C37594RbvhtCsUIgIieBb828hJyn36c74nL//BtLSuCFVS5Z8vNIRL6OsrAwWi4WsrM+rPDXTDBkyBLNmzcLGjRtRVFTUsL+5ITcqKioQFhZGSkpKi8feunUrSktLceLEiQ9+LiEhAWtra8ZDbhg3knh6emLUqFGMaigpKUFFRQWUlZXb1A8RYdeuXVi7di3Wrl2LkSNHtpPCzwtB2d+ugaSkJAYNGoRhw4YhNzcXXl5eSEtL44tVq/LyckRFRcHExESQOLiLkpubi61bt0JTUxN79+6FsbEx9u/fD3d3d8TFxaGiogLR0dG4d+8edu3axbghX4CA5mBsbIzBgwfj3LlzrTo+OhooLQVkZLhJW/mdRlVtVPi7qg3wj5Hk36E2wcFAfWqBSZOA5jpmi4qKwtTUFJGRkSgvL29foR0AESE1NRVeXl7Izc3FsGHDMGjQIEhISCAwPRAP4rhWonnG86At1/U9kQMCgGfPABaLm6i1BREPPAWLxYKWllanlDUX0JgjR46gvLwc27dvb9inrKyMsrIylJSUNHksh8MBh8Np1Tty79694eTkhJ9//vmjOU1GjRrFeClgRo0ktbW18PX1ZTxpa3p6OpSUlNo0GaqpqcHChQuxe/duHDhwAEeOHGlHhZ8PJSUlKCgogIaGBtNSBLQTcnJysLa2hr6+PiIjI/H8+XOeLvlWH2bTu3dvKCgoMC1HQDuTkpKCtWvXQlNTE8ePH4eTkxMSExNx8eJFrF27FuPGjYOenp7AOCaAb1m0aBHu37+PzMzMFh9bH2pjZsafq9L/pT7URkxYjO9DbXJyuF4DQkLcUCgAiI8Hzp7l5iMZMQIYN65lfSooKKB37948H3ZTWFiIZ8+eISoqCvr6+rC2tm4IfUwqSsLFkIsAgDF6Y2Ch3kWyDTdBRgZQHyUxYQL/GzQ1NTVRUFDwyYm5gPZFTU0Nu3fvxqlTpxD0/xZYUVFRKCsrf9KbpH7RU1NTs1Vjb9myBZWVlfj1118/+LmDgwN8fHwYrZrJqJHk5cuXkJCQgNF/Ays7ESJCWloa1NTUWt1HRUUFxo8fj2vXruHq1avYvHmzwAuilSQmJkJNTU0QptTFYLFY6N27N+zt7SEvL48XL14gKCiIJzOaJyUloby8HPr8lP1MQJPcvHkTDg4OUFFRgaamJi5duoSNGzciOTkZhw8fFuScEdCl+OqrryAqKorLly+36LjqaiAkhLvd5araKPF/VZt6L5J+/QBpaW5ukt9+A+rquEaTr77iehW0FF4Ou6mqqkJQUBBevHgBBQUF2Nvbo3fv3g3v2IWVhfgt8DfUcepgpGSEKf2nMCu4E6iu5lYwqqnhGkdaahjjRcTFxaGmpsaT38GuzqpVq6Cvr4/ly5c35IWpD7lpynBaH2bT2kVtVVVVLF++HEeOHPngwqmxsTHExcURWF+PngEYNZJ4enrC3t4eQgwW8y4uLkZNTU2b8l+sWrUKfn5+ePz4Mb7++ut2VPd5UVtbi9TUVEHC1i6MiIgIBgwYADs7O7DZbHh5eSEuLg5sNptpaQC4YTaRkZEwNTWFqKgo03IEtANBQUH45ptvUF1djcWLF+Ovv/5CUlISdu3ahV69ejEtT4CAdkdWVhbTpk3DuXPnWuQdEBbGnYDJywNd4TFMRHid8RpA16hqU28kGTwYKCoCjh8HKioAHR1g8WKuh0lrEBUVhYmJCSIjI3km0TqbzUZsbOz/sXfecVXW7R9/H/beG2SICMhwMZwogg0bmtZjppmzNNO0afX0q6ee5pOZDe1paKZW2i61UhDNhSAiS4aylL335ty/P85zSBKQcQ6Hcb9fL1/ccu77+70OHO5xfa/r8yEsLIzW1lZmzZqFp6dnuwq/ptYmdpzfQVVjFXaGdqycsHLIL1AKAuzdK0uQmZjI2mxU+AilUFxcXLh69apKKweGI5qamuzYsYOoqCg+++wzAKytrWlsbOzS3leeJJELuPaGZ599lubmZrZu3XrDa2pqaoSEhKi05Ualf1pHjx5VeatNYWEhlpaWbfZHPWXv3r3s3LmTjz76iJkzZyo2uGHGtWvXMDQ0vME9QmTooaenh7+/P4GBgeTm5nLs2DHy8/NVWu4rttkMPWpra1m0aBE+Pj6EhYXx6quvsnDhQoyMjFQdmoiIUlm5ciVpaWmcOXOm28dERsq+Bgb2riJhoJFZkUlpXSnaGtqDvtWmtFRmzSyRyCpJPvgAysrA2hrWrZNZ/vYFKysrHBwciI2NVfl1OD8/n2PHjpGXl8ekSZPw9/dHT0/vhv12X9xNdkU2BloGrAtYh47G0NeNOnkSoqJkiZHVq2WCrUMFU1NTDA0Ne+yWItJ3pk2bxkMPPcTmzZspLi5GXV0dS0tLCgsLOz3m6tWrWFhY3PC32ROsra1ZtWoV//3vf2lsbLzh9dmzZ6tUvFVlSZKqqirOnTunctHW4uJirDoyku8GqamprFmzhgcffJCHHnpIwZENLwRBaBNsFRk+WFhYMGPGDNzc3Lh48SJnzpxRWU+q2GYz9Ni0aRM5OTl89dVXCrF3FxEZLMycORNnZ+duC7hWV8OlS7LtodJqE50rs+kZZzNu0FvBxsbKvo4cKdOiyMkBIyPYsEEmsqsIvLy8VNp2U1VVxZkzZ7h48SJubm7MmDEDCwuLDvc9dPkQ5/POo66mzhq/NVjodbzfUOLqVZmbDcA998gsf4caLi4uZGZmDmh9nKHK22+/jSAIbN68GZAlTouLizvd/+rVqwrRj3z00UcpKiri+++/v+G10NBQzp07p7LnApUlSY4fP46rq6tKBTqbm5spKyvrVZKkvr6ef/zjHzg4OLB9+/YhX+KnbEpLS2lqauqTNozI4ESubB4aGoqxsTEnTpwgPj6epqamfouhrq6OpKQkxo0bJ7bZDELKy8s5ceIEn376KU899RR33XUX7u7ufPrpp2zbtg13d3dVhygi0q/IS5Xj4uK6tX9MjMz+18lJVp0w2JEK0rZWG387fxVH03diYmStFkVFkJIC2tqyBEknOYReoaq2m6amJuLi4jhx4gTGxsaEhobi7Ozc6X31+bzz/Jr6KwCLfRbjZu7Wb7Gqiro6+O9/Zfozvr6g4iJ8pWFvb09TUxOlpaWqDmXYYWVlxRtvvMHOnTs5c+YMVlZWlJWVddr+pKgkiYeHB7NmzWL79u03vObk5ISLiwsnTpzo8zy9QWVJkqNHj6q8iqSkpAR9ff1elQo98cQTpKWlceDAAQwUlcYfxsjFc3vb9iQy+NHU1MTb25uZM2dSV1dHWFgYGRkZbUJSykIQBGJjY3FwcOh1VZlI/1NTU8O+ffu48847sbKyYubMmaxZs4affvoJqVTKnDlz+Prrr1m5cqWqQxURUQnl5eXdbh2Uu9oMlSqS1JJUqhqr0NfSx9NycFt/VFRAerrsX0mJrNVi7VrogxRAp/Rn241UKiUjI4OwsDDq6+uZOXMm3t7eXS5UZJZn8sXFLwAIGRnCVMdu+h0PYgQBdu+W/e7NzWH58qHRDtcR6urq2NnZkZOTo+pQhiWrV6/Gz8+PtWvXoqWlhZ6eHiUlJR3uq6gkCciqSU6fPt1hUj80NFRlLTcqS5KEhYWpXI+kqKioVw9FBw4c4OOPP2bbtm0qdeYZKkilUvLy8sQqEhEADA0NmTRpEhMnTiQzM5Pjx49TVFSktPnkbTZeXl5Km0NEMUilUsLDw1myZAlWVlYsWbKE8vJytm7d2rb6eeXKFQ4dOsTWrVu5//77xSo/kWFLYWFht+5xioshI0P24OU/+IsuAIjOk7XaTLCdgIba4Lbzjo2Fa9egpkZWQbJ8uXItX+VtN9nZ2Uqbo6ioiOPHj5OZmcnEiROZNGkShjcR2CitK+Wj6I9obm3G19qXe8fcq7T4BhJHjshcpzQ04OGHoQ8SEIMCBwcH8vLylL5AJnIj6urq7Nixg4SEBLZu3YqVlVWH99+CICg0STJ37lzs7Ow6rCaZPXu2ysRbVZIkycnJ4fLlyyoXOu1NkiQ9PZ3Vq1ezcOFCVq9eraTIhhdFRUVoaGhgZmam6lBEBhDW1tYEBwfj5OREdHQ0586do6amRqFziG02gwO5G83IkSMJDQ0lOjqaF198kczMTE6fPs1jjz3GmDFjROtwEZHrKCoq6pZzn9xh0dNTpnMx2GmRtnAhX2YFE2AfoOJo+s6330JWFlhawv33Q4CS35Iy225qamo4d+4c0dHRODk5ERwc3K3PaENLAx9GfUh1YzUORg6snLASNckQsXXpgpQU+PFH2fb994Ozs0rD6RfMzMxQV1fvUg9DRHn4+fnxxBNP8Nxzz1FYWNjh76GoqIiamhqF6UhqaGjwyCOPsHfvXioqKtq9FhwcTGpqqkqqi1SSXg8LC8Pf3x8TExNVTA/ITtQNDQ09soAsLy9n3rx5WFpa8sknn4grlAoiNzcXe3t78ecpcgNqamq4urri4OBASkoKERERjBw5ktGjR/c5qSG22QwMBEHg1KlTFBYWUl1dTU1NTbuvSUlJREREYGBgwMKFC1mxYgWTJ08WzxciIjehOwtBgjD0Wm0SixKpb67HRMcEN7PBrVdx4gQcPy7bvv9+CA7un3mtrKywt7fn4sWLCjnfNjc3k5aWRkZGBo6OjoSGhnY7qS0VpHwa8yl51XkYaRvxWMBjw8LJprwcPv1U9jc6ZQpMm6bqiPoHiUSCg4MDOTk53UqgiSieN998k9jYWJYvX8727dupra1FX1+/7fXU1FRApieiKFavXs2rr77Kl19+yYYNG9q+b2Jigr+/P+Hh4f1ukqKSJMlAsP4tKirCzMysned6V9TV1XHXXXeRl5fHqVOnRAtJBdHS0kJ+fj7ThsvZX6RXaGtrM3bsWJydnUlISCA8PBxPT08cHR17ffOWnZ1NbW0tAcpelhPplOjoaB5//HHOnj3b9j0dHR0MDAwwNDTE0NAQW1tbdu/ezYIFC9pdpEVERDqnsbGRysrKmy5GXb0KhYWgqQnjxvVLaEpH7mrjZ+c3qJOpycmwdavsIdnXFxYv7t/5vby8iIiIIDs7G+deljDIy/KTk5MxNDQkKCgIY2PjHo1xIOkAiUWJaKprsi5gHaa6pr2KZTDR0gIffyxrsRoxAh54YOjqkHSEvb09p06dorW1VdQqVAEaGhrs378ff39/MjIycHd3byeAn5qa2raIqShsbW2ZP38+27dvZ/369e3O3XIr4P5OkvR7rZpUKiUsLEzloq09sf5tbm5m4cKFxMbGcvjwYTyV2Qw6zCgsLERHR6fHF02R4YmxsTFTp07F19eXtLQ0Tpw40SsV9KamJpKTk/H19RXbbFRAXV0dy5cvJyAggNraWo4ePUp5eTlNTU3U19dTXFxMRkYGcXFx/P777yxdulRMkIiI9AB5y8Qrr7zCtWvXOt1PXkUydizoDIHF+YaWBuIKZeJ/g7nVJisLduyQudlYWsKyZf3/kKypqYmvry/Jycm9cpsrLS3lxIkTpKWl4evry5QpU3p8r3c86zgRmREArBi/AmcT5x7HMRg5cED2GdDTgzVrZEnM4YSxsTE6OjoUFhaqOpRhi4WFBT///DORkZGEhYW1E3JOSUlh5MiRCm9xXrduHampqRw7dqzd90NDQ2+IoT/o9yRJYmIitbW1TJo0qb+nbkMqlXY7SSIIAg8//DC///47P/zwA4FDpR51gJCbm4uDg8OgXu0R6V8kEgl2dnbMmjULW1tbzp49y/nz56mvr+/2GKmpqZiYmIilnCriwoULfPHFF7z++uvExMQQGhqKiYmJmLASEVEQampqHDp0CHV1dW677TbKyspu2EcqhWhZ0cWQabWJK4ijubUZK30rHI0VIyrY3xQUwPvvy6oIJBJwd4eJE1UTi7W1NcbGxm3l9d2hrq6O8+fPc/bs2bZrtZ2dXY/v85KKkvgm8RsA5nnMY4LthB4dP1g5e1bWZiWRwMqVirV5HixIJBLs7e1FlxsV4+vry7333ou5uTlvv/122/dTU1PbVZYoiunTp+Pl5cVHH33U7vuTJ0+murqaxMREhc/ZFf2eJDl69CgzZsxAS0urv6duo6ysDA0NjW61zGzevJkvvviCL774gltvvbUfohs+NDc3U1hYKLraiPQKdXV13N3dCQkJQSKREB4eTkpKCi0tLV0eV1VVRVZWFt7e3mJyTkVY/O+ub+rUqd1ueRQREekZdnZ2/PHHHxQWFnL33XffIMKZnAxVVaCvD0PF3CsqV6ZCG2AfMCjP7+Xl8N57UFsrqx7w8ABHR1CVbJZEIsHb25usrCyqq6u73LelpYWUlBSOHTuGRCIhJCSE0aNH96pdIq86j09iPkEQBCaPmMxto27r7VsYVFy7Bvv2ybbvvBO8vVUbjypxcHCgsLCQ5uZmVYcyrFmwYAHq6urs2bOH3bt3I5VKSU1NVageiRyJRMKaNWv4+eefqaysbPu+lpYWM2bM6Hcr4H5PkgwU619LS8ubXkC3bNnC22+/zXvvvcfi/m4GHQbk5+e36Q6IiPQWXV1dJk6cyJQpUygsLOTYsWPk5uZ2WJYnCAKJiYk4OzuLnzsVIq/gEUtpRUSUi7u7O4cOHSI2Npb777+/XRJZLgUUEABDoe2/pqmGS8WXAPC3H3xexrW1sG2bLFFibQ0jR8psX/38VBuXkZERzs7OJCYmdnpdzcnJ4dixYxQWFjJlyhQmTpyIrq5ur+araqziw6gPaWhpwM3cjSW+SwZlwqun1NXJdEiam2XJkTvuUHVEqsXQ0BADAwPy8/NVHcqwRiKR4OLiwgMPPMCyZcsYN25cm06JIhEEgQcffJBr164hlUppaGho97oqrID7NUnS2NjIiRMnVJ4kKSwsJDIykvPnz3e6z/bt23nqqad47rnnePzxx/sxuuGD3NVGREQRmJmZERQUhIeHBwkJCZw6deoGK7HCwkIqKyuVUiYo0n1MTEzQ0tISkyQiIv1AYGAg33//Pb/99huPPPIIgiBQXw8XL8penzxZpeEpjAv5F5AKUkYYj8DGwEbV4fSIxkb44APIzwdTU1mbRWam7DX/AZDvcXd3p7y8/IZzdkVFBadOnSIxMRFPT0+CgoIwMzPr9TzNrc3siN5BaV0pVvpWrPVbi4ba0K82FAT4/HMoKZG116xYMbyEWjvD3t6e3NxcVYcx7LG2tmbKlCn8+eef2NjYIJVKmaiEHsAffvihra3n7xVos2fP5sSJEzQ2Nip83s7o1yTJmTNnMDExYcyYMf05bTvS09OpqKjghRdeICIi4obXBUHgpZdeYt26dWzcuJHXXntNBVEOfRobGykuLhaTJCIKRSKRtNkLmpubc+rUKWJjY2loaEAqlZKYmIiHh4dK2/1EZL8nKysrMUkiItJP3HbbbezcuZOdO3fy4osvEhMjW7G2tZW1cwwFrm+1GUzInUwyM2WtT48/LtsWBHByGhiaFFpaWnh6epKYmNi2yhsbG8upU6cwNzcnNDSUESNG9KniQxAEdl3cRUZ5BnqaejwW8Bj6WsNDsPvwYUhMlLVYrVkj+xyIyFpuiouL+/XBWORGrKysqKysJCAggCNHjlBWVsaECYrVCJJIJDg5ObX9X02tfYrCy8sLIyOjdm6IyqZf07NyVxtVlc1lZ2ezceNGQkJCqKyspKysDEEQkEgkNDQ0cOjQIfbv38+3337Lm2++yTPPPDMsSvxUQV5eHiYmJujp6ak6FJEhiIaGBmPGjMHJyYmkpCTCw8MxNzdHTU2t3UlYRDW0trZSVlZ2U3tSERERxfHggw9SWFjI008/TWLibVhbT2Py5KGxYl1eX86VsiuAzPp3sCAI8MUXcOkSaGnBY4/JEldyXYqBUEUix8nJiczMTKKioigtLcXS0pLg4GCFOY/9kPwDMXkxqKups8ZvDdYGw0NYPSEBfv1Vtv3AAzLLXxEZenp6mJiYkJ+f32sbapG+o62tjbGxMcXFxTg4OGBqqhwbbicnJ2pra/H29r5BN1QikbS53MycOVMp8/+dfq0kOXr0qMqsf2tqarj77rvx9fVtq1548803iY6OpqGhgTlz5nDvvfcSExPD7t27efbZZ8UEiRKRu9qIiCgTfX19AgICGDduXJsAWFFRUb/biIm058qVK9TV1TFu3DhVhyIiMqx46qmnWLv2//j550tkZKQPGVeb6LxoBEHAzdwNM93et3v0J4IA33wjcxhSV5dVEIwcCRUVcEWW71G5HokcQRAoKipqE9wfN24cAQEBCkuQnMg6wZH0IwAsHbsUd4vh0RJbWAiffSb7LAQFwZQpqo5o4CG63AwMrKysKCoqUuocTk5OmJmZcejQoQ5F/UNDQ/tVvLXfkiTl5eVtVo/9jVQqZdmyZWRkZDB58mTGjh3Lpk2bAEhISOAf//gHkZGRHD9+nPT0dJYuXdrvMQ4n6uvrKSsrw87OTtWhiAwTiouLsbGxYfTo0cTGxhIZGXlTpX4R5REXFwfA2LFjVRyJiMjw49ZbX2LUqFEcO/YhMTHhqg5HIUTnyryM/e0GUOnFTTh0CI4fl1XyLF/+l8NQTIzsodnVVaZPomqqqqo4e/YssbGxjB49GhsbG4qLixU2fnxhPF8nfg3A3e53M8lhksLGHsg0NMCOHbKvrq6wcKGqIxqY2NvbU1ZWRn19vapDGdZYWloqfZHR0dGRq1evdvp6aGgo58+fp7y8XGkxXE+/JUmOHTuGp6enSh6MX331Vb7//nv27t0LwKhRo3j33XdxcnLikUce4ffff+fHH39kxowZ/R7bcCQ3Nxdzc3N0dHRUHYrIMKCiooKcnBy8vb1xcXEhJCQEAwMDjh8/TkJCAk1NTaoOcdgRFxeHnZ1dmxWwiIhI/yAIcO6cGjNmzMDfv5V77rmH2NhYVYfVJwprCrlaeRU1iRoTbBXbJ68sjh//q8Xi/vvbt9XIPQVU3WrT1NREQkICJ06cwNDQkJCQEFxcXPD29iYnJ+cGYfTekF2RzacxnyIIAlMdpzLHbU7fAx8ECALs2iUT6jUxkVURdbBwLgLo6Ohgbm5OXl6eqkMZ1pibm9PS0kJVVZXS5nBycqKsrIyampoOX7e3t8fDw6NDTVFl0G9JErkeSX9z6dIlXn75ZV555RXGjBmDpaVlmxjMsWPHeOONNzhy5Ai33nprv8c2XBFbbUT6C7nl78iRI9vKgrW0tPDx8WHGjBnU1NQQHh5OZmYmUqlUxdEODy5cuMDXX3/N+PHjVR2KiMiw4/JlKC0FfX11Dh9+HQ8PD26//XbS09N7PWZBQQE7d+5UWRujXLDV09ITQ+2Bb+1+9ix8LSuc4M474fr2+tJSyMiQVZcoWBex20ilUjIzMwkLC6OmpoaZM2fi4+PTJniur6/PyJEjO7UE7i6ldaV8GPUhTa1NeFp6sthn8bBpcz98WOYupaEhS5D8TX5B5G84ODiILTcqRk1NDQsLC6W23Mg1A7OysjrdR65L0h/0W5Lk6NGjKrH+feedd7C3t+fZZ5+lqKgIS0vLttdGjhzJ008/3W8CMCIybZjKykpsbW1VHYrIMCAvL4+amhrc3NxueM3IyIhJkyYxfvx40tPTOX78uEJLiEXa09TUxMsvv0xgYCBGRka88847qg5JRGTYITcGmDgRzMwMOHToEEZGRtx66629dpt64oknWLlyJTt37lRgpN1DEASi82StNoPB1SY2Fnbvlm2HhMiSJNcjryIZPRqMjfs3NpC1pspbzydMmMCkSZMwNLwx8eTm5kZNTU2vV/frmuv4IOoDqhqrsDeyZ43fGtTV1G9+4BAgPr69UKuLi2rjGQzY2tpSWVlJbW2tqkMZ1lhZWSn1Ptnb2xugy+rG2bNn95suSb8kSTIzM8nOziYoKKg/pmsjNzeXvXv3smnTJtTU1CgrK8PKyqpfYxBpT25uLtbW1qIFq4jSaWlpISkpiTFjxqCpqdnhPhKJBBsbG2bNmoWjoyNRUVFERUWJF2IFk5CQQGBgIK+99hovvPACUVFReHh4qDosEZFhRWOjTO8CYPJk2VdLS0uOHDlCXV0dc+bM6bFWU0pKCt988w0jR45k48aNZGRkKDjqrsmuzKawphBNdU3G2Yzr17l7yqVL8OmnslaLKVPgvvtudBaKluV7+l2wtba2lnPnzhEVFYWjoyOzZs3Cxsam08oOTU1NxowZQ1JSEq2trT2aq0XawsfnPya/Oh8THRPWB6xHR2N4tF8XFsLnn8s+AzNnwtSpqo5ocKClpYWVlZVYTaJirKysKC0tpaWlRSnjm5iY4O7uzrlz5zrdZ8aMGWRlZXVZbaIo+iVJEhYWxuTJkzvMRiuTbdu2oaenx+rVqyktLUVHR0dhStwiPUcQBHJzc9vchURElEl6ejra2tqM6IafnpqaGqNGjSI0NBQtLS0iIiK4dOkSzc3N/RDp0GfhwoU0NDRw7tw5Xn75ZTFJKiKiAi5elCVKLCxg1Ki/vu/s7Mzvv//OlStXuOeee2hsbOz2mK+//jp2dnacO3cOCwsLli1b1uOH5r4QmRMJwDibcQP6QfvKFdi+HVpbZVU8Dz54Y4KkqAiuXQM1tf5rtWlububSpUtERESgra1NaGgoo0aNamtL74oRI0agra3NFbkVTzcQBIE9cXtILUlFW0ObxwIew1R3AKjT9gMNDbLPQEOD7O/vvvtUHdHgwsHBgdzcXFWHMazR19dHR0eH0tJSpc0RGBjYZZLE0NCQSZMm9UvLTb8kSVTRalNZWcnHH3/M2rVrMTIyoqioCCsrq2HT7zgQqa6upq6uDhsbG1WHIjLEaWho4PLly/j4+PTob15bW5tx48Yxbdo0ysrKCA8P5+rVq6JlcB/Jyclh1apVTFBVk72IiEhbq83kyTc+oPv6+vLLL79w6tQpHnrooW5pNF25coV9+/axefNmLCws+PLLLzl16hTLly/n8ccf55577uHWW29V2g11q7S1zdVmIDuiXL0KH3wAzc3g7Q0rVsgSIX9H3mrj6QkGBsqNSRAErl69Snh4OGVlZUybNo1x48ahra3d7TEkEgk+Pj5cvnyZhoaGbh1zMO0gkTmRqEnUeGTiI4wwvvkixlBAEGDnTigokAm1PvKIKNTaU2xsbKirq1OqcKhI10gkEqVbAQcGBhIXF9flOaW/Wm6UniSRSqWEh4f3u2jrxx9/TGNjIxs2bABoS5KIqI6cnBxsbGw69L4WEVEkly9fxtLSEjMzs14db2JiwtSpU/Hx8SElJYU///yTsrIyBUc5PGhpaaG6uhrTgeBlKSIyTCkvh5QU2fakTvIJM2bM4KuvvuLAgQNs2rTppsnh1157DWtra1atWgXA9OnTefXVVzl48CBhYWHU19cTERHBl19+qci30kZScRI1TTUYaRsxxnKMUuboK/n5sG2brHrAza3rh+P+arUpKyvjzz//JCUlBV9fX6ZOnYqJiUmvxjIzM8PS0pLLly/fdN8z185wMO0gAIt9F+Nl5dWrOQcjhw5BXJzsd792rSjU2hs0NDSwtrYWW25UjNwKWFkEBATQ3NzMxYsXO91HU1OT3377TemGC0pPksTGxtLS0oJ/P3qZNTY28t5777F06VJsbW2pq6ujtrZWtJtUIWKrjUh/0dDQQHZ2Nu7u7n0aRyKRYG9vT0hICDY2Npw5c4aYmBjq6+sVFOnwQG4T2dubcBERkb4TGSlbzXZzk7XbABw+fBg7Ozu+llutAPPnz2f79u28//77vPXWW52Ol5GRwZ49e3jmmWfQ0fmrzeWFF16grKyMpKQkfv/9d+bNm8fnn3+ulGo8eauNv70/apJ+8yHoNiUl8N57UFMDTk7w2GPQWadhXp7sn7o6jBunnHjq6+uJiYnhzJkz2NjYEBISgp2dXZ8rrN3d3cnOzu5y5Te5OJk9cXsAuN3tdqY5TuvTnIOJ64VaFy8GZ2eVhjOosbe3Jzc3V6zuVSGWlpbU1tYq7V7Y19cXbW3tLltuYmNjaWho6DKRogiUflU5evQowcHB/Vo9sHfvXgoLC3nqqacAWRWJmZlZp+KNIsqnvLycpqYmsZpHROlcuXIFS0tLhT2Uq6ur4+7uTkhICADh4eGkpqb2a9/9YEaeJBErSUREVIMgtG+1AZkWxaZNm2hsbOSBBx5g5cqVbYLVa9as4aWXXuK5555j165dHY75xhtvYGFhwcMPP9zl3CtXriQpKYmoqCiFvR+QuaPEFcQBA7PVpqICtm6VfbWzg8cfB50uJFPkrTZeXqCnp9hYWltbSU1NJTw8HICQkBDc3d1RV1eMm4yJiQmWlpadapPkVuXy8fmPkQpSAuwDmOs+VyHzDgby8uCzz2TbM2fKBHtFeo+1tTVNTU1t9xUi/Y+mpiampqZKqybR0tJiwoQJnSZJsrOz+fbbb1FXV+fIkSNKiUGO0jMXYWFh3HPPPcqepg2pVMp//vMf5s6d27aS/HfrX5H+Jzc3Fzs7O4VdlEVEOqKhoYGsrCymTVP8KpWuri4TJ06krKyMhIQEsrOz8fb2xtbWVtQ66oLy8nJATJKIiPQFQRD4888/0dTUZEoPn7SysmSuGpqaMtFQgG+//Za0tDQuXrxIbGws69at48yZM/z666+MGjWKl156iYKCAlavXk15eTnq6urk5OSQm5tLTk4OZ86c4a233kLvJk/0oaGhjBgxgs8//5zAwMBevvsbuZB/gRZpC7aGtowwGli6FjU1sgqSkhJZ1c7GjdCVZ4AgKKfVRhAE8vLySEpKQltbmylTpvS6BfVmuLu7c+rUKdzc3NrpmlQ0VPBB1Ac0tDQw2nw0D417aNhcL2tr4aOPZGLJo0fDP/6h6ogGP+rq6tja2pKTkyPeU6gQuS6Jk5OTUsb38fEhWn5S/BtyZx1ra2vCw8PZvHmzUmIAJVeS1NfXc+rUqX4VbX3//fdJTU3lueeeA2RJk+LiYrGCQYXIL9R2dnaqDkVkiJOeno6FhYVSWzvMzMwICgrCw8OD+Ph4Tp8+TWVlpdLmG+wUFhYCYpJERKQ3lJSUsGXLFjw8PJg5cyZBQUHs2bOnR2PIq0gmTPirmkH+oOro6MiyZcuIiYlBKpVy++23U1JSgkQi4aOPPmL+/Pk8+eSTbN68mZ9++on8/HwcHR15+eWXWbdu3U3nVldXZ/ny5XzzzTcKtVaXt9pMcpg0oB66Gxrg/fdlWiQmJrBpExgbd31MTo7M2UZTE8aOVUwclZWVnD59moSEBDw8PAgKClJaggRk1SQWFhbtqkkaWhr4MOpDyuvLsTGwYa3/WjTUhocmXWsrfPKJLFFmbi7TohHXCBWDvb09+fn5YsuNCrGysqK4uFhpmiBqamqdntflRQ8bNmzg5MmTSm2BV2qS5NSpU1hZWeHm5qbMadpIS0vjueee4/HHHycgIACQlXqrqamJ/fAqpLq6mubmZlETRkSpNDY2kpmZ2Wctku4gkUhwdHQkJCQEU1NTTp48ycWLF3tknTlc+P333xkxYgSOjo6qDkVEZFDx0ksvYW9vz/PPP8/EiRM5duwYy5YtY+nSpWzbtq1bY7S0/FWlIG+1AVnfN0BCQgIAHh4e/P7771RVVTF37lwaGhpQV1dn//79VFRUUFdXx+XLl4mIiGDv3r3885//bKdF0hXLli2jurqaZcuWcfLkyT7fWJfWlXK59DISiYRAe8VVp/SVpib48EPIzpa502za9Jf+S1fIfz8+Pl235HSHxsZGLl68yMmTJzE1NSUkJARHR8d+SSS5u7uTmZlJY2MjLdIWPj7/Mdcqr2Gobcj6wPXoaSq4j2gA8+23MqFkbW1Yt075bkXDCQsLCxobG6mpqVF1KMMW+TO1stqepFJppzbkhoaGaGtro66ujqWlJadPn1ZKDKDkJInc+rc/Ts6tra0sW7YMBwcHXn/99bbvy1ttBtJKw3CjuLgYc3NzsdVGRKlcuXIFCwuLfq1Y0NTUxMvLi5kzZ9LY2EhYWBjp6elKV9weLEilUn744Qfmz58vnoNFRHpIQUEBTU1NHDlyhK+++org4GA+/fRTnn76aTZu3Mi777570zHi46GuTlbVcH3+ePTo0WhpaREfH9/2PRcXF3755RcuXLjAsmXLkEqlSCQSjI2N+/T36+LiwgcffEB0dDRBQUG4urry4osvkpaW1qvxzuXKetXdzd0x1R0YFWotLfDxx3D5MujqylpsbGxufpwg/KVH0pdWG6lUypUrVwgLC6OxsZHg4GC8vLz6VYvP1NQUc3NzLl++zO6Lu0kuTkZbQ5v1Aeux0Bs+i2QnT0JEhGx75UoQ/QoUi7q6OhYWFkp1WBHpGmVbAbe2tnb6zHj93Mq2AlZ6kqS/rH8PHDjA2bNn2bVrV7se2eLiYlGPRMWI9ssiyqY/q0g6wsDAgMDAQPz9/cnOziYiIqKtzWQ4c+7cOfLz81mwYIGqQxERGXS8++67eHt78/DDD1NVVQXIbhDffvttHnnkEV5//XWam5u7HEO+yDZpEly/MKepqcmYMWPaJUkAAgMD2bdvHwcOHOCf//ynwt7LY489RkZGBidOnCA0NJT3338fd3d3Nm3a1KNxBEFoa7UJdBgYVSRSKezcCUlJMvea9ethRDdlUjIzobRUVnHg49O7+QsLCzl27BhXr17F39+fwMBA9LsSQVEi7u7u7Ivdx9lrZ1GTqLHGbw1OJsrRLRiIXL4MX30l2547V3HtUyLtUeYDukj3sLS0pLi4WCljl5WVYdBF+ZWDgwM5OTmEhoYOziRJcXEx8fHxbY4Qyuarr75i8uTJ7QQbpVIpFRUVSu3DFOma1tZWSkpKxCSJiFJJT0/H3Nxc5boXVlZWzJw5ExcXF2JiYoiMjKS6ulqlMfUXgiBw+fLlNqFWgB9++AErK6seC02KiIiAvr4+P/zwAwUFBSxfvrxdD/7DDz9MaWkpx44d6/T4igrZgzt07Krh6+vLwYMHOXDgQJsYHsC4ceOwtrbmjTfeoLS0VFFvBzU1NYKCgvj0008pKCjg7rvv5syZMz0aI7sym8KaQjTVNZlgO0FhsfUWQYA9eyAmBjQ04NFHwdW1+8fLDRzGjevcHrgzqqurOXv2LDExMbi6ujJz5kyV32tdqLhAclMyVVVVPDTuIcZYjlFpPP1JaamsmkgqlVUF3X67qiMaulhaWlJaWiq6DKoQMzMzKioqlFI5nZCQgLe3d6evOzk5cfXqVUJCQoiLi6OkpEThMYASkyTh4eH4+Pj0ywm7vLycP/74g4ULF7b7flVVFWpqal1mo0SUS2lpKVpaWuLvQERpNDU1kZGRobIqkr+jpqbGyJEjCQ0NRU9Pj+PHj5OYmHjTFd/BzoULFxg9ejRmZmZYWloyZcoUdu7cyT333CO22omI9BI3Nze+/PJLfvjhB9555522748fP55Ro0Zx4MCBTo89e1b2ED9qFFhb3/j6888/j6enJwsXLmTUqFEsW7aMkSNH4urqSkFBAS+//LLSFpl0dXUZOXJkl0nkyspK3nnnHZ5++um278mrSMbZjENHo48CHn1EEGD/fjhzRlals2oVeHp2//jW1r9abXpi/NPc3ExCQgLHjx9HX1+f0NBQXFxcOu3h7y+ic6P5NulbTIxN8Fb3ZoKV6pNY/UVjI2zfLnM2GjECHnoIxA5T5WFoaIimpqZCk7giPcPAwAA1NTWFLwTW1taSnp7eppvVEY6Ojly9ehVzc3N0dXXb7M0VjdLOqGFhYf3mavPzzz/T0tLCfffd1+77FRUVmJiYiL3wKkTeaiP+DkSUxZUrVzAzMxtwFWNaWlr4+voyY8YMqqqqCAsLIysra8gqsstFa9988002bNiAq6srPj4+PPzwwyqOTERkcDN37lw2b97M5s2b20qLJRIJCxcu5IcffqCpqemGYwThr1abqVM7Htfd3Z3w8HAuXLjAtGnTiI2N5Y477uDnn3+moqKCl156SanXbkNDww5vsHNycnj66acZMWIETz/9NO+88w4tLS20Sls5nyfLKkxymKS0uLqDIMAPP8i0JyQS2UPx+PE9G+PSJdlDtaFh95IrgiCQlZVFWFgY1dXVzJgxA19fX7R6WoKiBFJKUth1cRcAczznEOIUQnp6uoqj6h8EAXbtkrkUGRnJhFoHwK9kSCPXpVBWu4fIzZFIJJiYmLSrHlYEly5dQhAEfLroP3R0dOTatWtthRC///67QmOQoxQvLkEQOHr0KJ9++qkyhr+B/fv3M3369BssZsvLy1Vefj/cKSoqGjAr/CJDj6amJjIzM5l8vW3DAMPIyIjJkydTUFBAUlISmZmZ+Pj4DDm3J7nTxS233ML4nj4tiIiIdMmrr77KhQsXWLhwIefOncPNzY1//OMfvPbaa4SFhTFnzpy2fRsaGjh4MI3iYl+0tWHixK7HHj9+PHv37lXyO7iRvydJ4uPjeeedd/j666/R19fn0UcfxcHBgfXr11NZWUluSy7VjdUYaRupvI3j11/hyBHZ9uLFMs2XniJvtfHza68X0xElJSUkJCTQ2trKuHHjsLGxGTCLT9cqr7Ejeget0lb87Py4b8x9lJWVERkZiaur64BI4iiTgwchNlbWbrV2LYiPHf2DlZUVaWlpeHl5qTqUYYupqanCHW4SEhKQSCRd/l4dHR1pbm6msLCQsWPH8vvvvyMIgsLPiUqpJLl8+TIFBQXt9EGURWlpKWFhYTe02sBflSQiqqG+vp7q6mpROFdEaaSnp2Nqajrgqkj+jkQiwdbWluDgYBwcHDh37hzR0dHU1dWpOjSFYWhoCMB5ef24iIiIwtDQ0OCbb77B0tKSO++8s231Tl1dnYsXL7btl5ubS1BQEPfdt5WTJ08yfnwL2toqCvomyJMkYWFh3HrrrYwdO5bjx4/z9ttvc+3aNd588822G+WKigrO5ciyCv72/qhJVNdacvgwHDok277/fpg+vedjNDZCXJxsu6tWm9raWqKiojh37hwODg4EBwdja2s7YBIkJXUlvH/ufRpaGnC3cGf5+OVIJBLMzc0xMTEZ8tUkMTGyJAnIkmUjR6o2nuGEpaUlVVVV1NfXqzqUYYsyKkmKi4sxMjJqZ8Lyd1xcXABZviE0NJTi4mKuXLmi0DhASUmSsLAwpk2b1uUbVBQ//PADUqn0BveElpYWqqqqxEoSFVJUVISpqemQX0UQUQ0DTYukO6irq+Pm5kZISAgaGhocO3aM5OTkdqKJg5VRo0axZMkSHnvssS7FJEVERHqHqakpBw8epLi4mLvuuouQkBDGjh3L2rVrATh79ix+fn7k5ZXj77+W1NQUduxYMmBdIAwNDZFKpcyePZuioiL27dtHeno6mzZtaku6yhe6CkoLuFhwEVBtq83Ro/Dzz7LtBQsgOLh341y8CE1NYGkJzs43vt7S0kJycjIRERFoamoSEhKCm5vbgNJ3qm6sZlvkNqoaq3AwcmCt31o01P4qUHd3dycjI2PI6nFlZcnabABCQjoWRxZRHlpaWpiYmIgtNyrE1NSU6upqhd7D2traUllZSUNDQ6f7jB49Gg0NDZKSkvD390dbW5uwsDCFxSBHaUmS/rL+3b9/P8HBwVj/TZWssrISbW1tdHV1+yUOkRspLi5WudK6yNAlIyMDExMTzM3NVR1Kj9HR0WH8+PFMnTqVkpISwsPDuXbt2qDWK5FIJOzcuZPg4GDmzZtHbGysqkMSERlyuLm58f3337dVFhw9ehRTU1N27tzJzJkzcXV15cMPzzF+fAAPPXQrWVkR+Pv7t6s2GSjMnDmTlStXEhYWxoULF3jggQfQ1NRst488SXI+9zwt0hZsDW0ZYdRNf10Fc/w4fPedbHvuXLjllt6PJW+1CQxsL/ApCALXrl0jPDyckpISpk6dyvjx49vaGQcKjS2NfBj1IUW1RZjrmbM+cD26mu3vty0sLIZsNUl5uUyotbkZvL3h3ntVHdHwRLQCVi06OjpoaWlRWVmpsDFtbW0ByM/P73QfLS0tXF1dSU1NZezYsdTV1SlFl0QpSZILFy4wqTcNmj2ksLCQiIiIDlttRD0S1SIIQptoq4iIomltbSUzMxM3NzdVh9InTE1NmTZtGl5eXly6dImTJ09SVlam6rA6pK6ujtLSUurq6jq1fNPU1GTnzp1IJBLuvPNO0Z5PREQJBAcHc/HiRf78808MDQ1Zv349K1euZNmyZf+rTpO1Hy5a5EhMzHksLCyYMmVKl044qsDe3p7PPvuMkJCQTttHjI2NAYgpjAFkVSSqaDU5dQq+/lq2PWeO7F9vqa6G5GTZ9vWtNmVlZZw8eZJLly7h5eXFtGnTBuR9bKu0lU9iPiGrIgt9LX0eD3wcEx2TDvd1c3MjMzNzSF0LGhvho4+gshLs7GD16ptryogoB7l462BeYBrMSCQSTE1NFdpyI9cX7SpJIt+voKAAU1NTLC0tiYmJUVgMchQu3FpbW0t2djaePfFB6yVyoZZ77rnnhtcqKioG5MVluFBRUYEgCKImjIhSyMvLQ0tLa0jo3UgkEhwcHLCxseHKlSucOXMGOzs7PD09B1QlnJubG3l5eW3/19HRQVdX94Z/8vLqtWvXDqjScBGRoYRcq2PVqlXs3r2bHTt2sGbNGnJzZW0AamoyMVFDwxGcPHmS1atXs3DhQuLi4nj11VdVbhfbXU6cOAG6UKdTh55Ej0D7HnjlKojISJDr2s6eDXff3bfxzp8HqVTWZmNlJdNvu3TpEvn5+YwaNYpRo0ahoaEUX4U+IwgCe+P3kliUiKa6Jo8FPIa1QQf+0v/D0tISLS0t8vLyGDFCNRVAikQQYOdOuHZN5kr02GMwwIp8hhWmpqZIpVLxmU+FmJiYKFS8VV5Jcv39ZkfY2Ni07TN27FjCw8Opq6tTqNSHws/CaWlpmJiY3ND+ogwiIiIYO3Zshy4R5eXlODo6Kj0GkY4pKirC0tJy0NyIiQwuMjMzcXFxGTDidYpAQ0MDDw8PHB0duXTpEuHh4YwePRpXV9cBkWxwc3NDT0+Pl156ifr6+k7/BQUFsXHjRhwcHFQdsojIkMfU1BRDQ0OWLl0K/GX7O3as7CEOQE9Pj7179zJ27Fg2b97M+fPnWbp0KZMnTx7w59EPPvgAj9kemJub427ujqlu/z4InT8PX3whezieOVOmQ9LXH5e81WbixFbS0tJJS0vDxsaGWbNm9YuWX1/4JfUXzlw7g5pEjYcnPsxI066VSiUSCc7OzmRmZg6JJMmPP8r0ZORONoOw23dIoaamhqWlZZsGokj/Y2pqytWrVxU6nra2dreSJBcuXAAgICCAP//8k7S0NMaNG6ewWBSeJElOTsbDw0PpF11BEIiIiGD+/Pk3vNbY2EhdXZ1YxaBCioqKhsQFUWTgUVFRQVVV1ZD9fOnp6eHn50dpaSkJCQlkZ2fj5eWlckeDRYsWsW7dOm655RaxjU5EZIDw6KOPsmXLFvbt28fy5auJjJR9f+rU9vtJJBKeeeYZvL29eeqpp1iyZAkA1tbWTJ48maeffpopA0x5MikpiYiICOa+PxeAKSP6N76LF+Hzz2UJkmnTZE42fT0FFxVBRoZAfX0ddXXnyMtTY/LkyYNCW+t41nEOXz4MwGLfxfha+3brOEdHR5KTkwe94+SZM/DHH7LtpUvB1VW18YjIsLKyIicnZ1CJ+A8lTExMqKuro6mpSSFGHXI3yJu129jY2FBQUADAuHHj0NTUJDk5WaFJEoUv8ycnJ/dLq01mZiZXr14luANp8YqKCvT19UVXFRXR3NxMeXm5+CAlohTkK1J/F/gbapibmzNjxgxGjx5NfHw8Z86cUag41s0oLi7mgw8+oKqqCoAFCxYgkUj4Tq5cKCIionJcXFy46667+OCDD4iLE6itBRMT+F83zg3MmTOHS5cuUVJSwsGDB1m1ahXHjx/nyy+/7Ne4u8OHH36IhbsFFo4W6GjoMN52fL/NnZgIn3wia4uZNElm76qIHHVERC2FhYXo619l/HhXZsyYMSgSJBfyL/BN4jcA3O1+N9Mcp3X7WE1NTUaMGEFmZqaywlM6ly//1XI1Z07Xts0i/YuVlRVlZWVD1kVpoKOlpYW+vr7CdUluVkni6OhIZWUlZWVl+Pr60tjYyKVLlxQWAyghSZKSkoKHh4eih72BY8eOIZFICAoKuuE1sTdNtZSUlKCvrz/gy0ZFBh9NTU3k5OS0eaQPdSQSCU5OToSEhGBiYsKff/5JXFwcjY2NSp/7448/ZsOGDbi7u7N3717Mzc2ZPXs2X8vVC0VERAYEGzZsICEhgd27ZS4ikyffXEjS3NycO+64g3//+9/Y2Nigr6/fD5F2n4qKCr788kum3j8VdTV1/Oz80FLvn4WvlBTYsQNaW8HPDx56qO/CnI2NjVy8GMcPP+Sira3FkiVuODk5DehWJzkpJSl8fuFzBEEgyCmIOW49V611cXEhJyeHpqYmJUSoXIqL//o8TJjQd00aEcWip6eHnp4eJSUlqg5l2GJqaqpQXRIHBweys7O73MfHxweAhIQERo0aBciqDxXJoKwkaWpq4j//+Q+hoaEdlu6Vl5cP6pK+wY7oaiOiLLKzszE1NcXIyEjVofQrmpqaeHl5ERwcTH19PeHh4aSnp3fqMqMIjh8/zrRp05g2bRoPPvgg06dPx9PTk1OnTnHt2jWlzSsiItIzZs2ahbv7JA4elCVJeto1U1NTg4GBgRIi6z27d++msbURc29ZlUV/tdpcvgwffggtLTJdlxUr+pYgkUqlpKenEx4eTmamFH19F6yszPDzG5jCrH8nqyKL7dHbaZG2MMF2Aot8FvUqsWNkZKRw7YL+oK5O5mRTWwtOTrB8uWIqikQUi2gFrFpMTEwUWkkybtw4YmNju7zHHT16NJqamiQkJKCuro6mpubAriRpaWnh8uXLSq8k2bZtG+np6WzZsuWG1wRBEO1/VYjc+ncouI6IDCwEQSArK2vYVJF0hIGBAZMmTcLPz4+srCwiIiIoLCxU+DyNjY2cOXOG+fPn8+233xIWFkZ5eTnvvvsuAPv371f4nCIiIr1DIpEQGvoimZnZWFqW09M1ioGUJBEEgZSUFD788EOCHwhGQ1sDawPrmwqEKoKMDPjgA2huBm9vePhh6ItmdmFhIREREWRlZeHn50dz83g0NTUZN25wOKLkV+fz/rn3aWxpxMPCg5UTVqIm6f1jg4uLC5mZmYPGrlUqhU8/hfx8WQvbo4+C2MU/MBGTJKpFXkmiqL9tPz8/qqqquHLlSqf7aGpq4unpSUJCQlsMGRkZCrUbV2iSRN5vqMyHmJaWFt59911WrFjRVmpzPfX19TQ3N2NsbKy0GEQ6p7a2loaGhg4dh0RE+kJhYSFSqbTNHmw4Y2VlRXBwMM7OzsTExBAZGUlNTY3Cxo+KiqKhoYGZM2cCEBISwsWLF3n33XcxMjIiIiJCYXOJiIj0DUEAXd1QtLQ0uXq1Z+1wgiCoPEkiCAL79u1j8eLF2Nvb4+npSW5uLl63yYRVJjtMVnpbSnY2vP8+NDaChwesWSNzMOkNNTU1REZGEhMTg7OzM8HBwVhYWBEdLXs9IEBxcSuLsvoytp3bRm1TLc4mzqz1X4uGWt+qX2xtbWltbR0UD7OCAPv3w6VLssTIY4/JEiUiAxMLCwvq6+sVeh8k0n2MjIxoamqivr5eIeP5+fkBEC0/aXaCr68v8fHxALi6uiKVShWqfaTQJElKSgpubm5K9Xc/dOgQBQUFPProox2+Xl5ejpGR0YCwzByOFBUVYWZmptTPgMjwJDMzE2dnZ9FW+n+oqanh6upKSEgIurq6REREkJiYqBDxMvlN7PVjaWpqsmnTJtLT0/n000/7PIeIiIhiSEuDqiotxoxx5eDBV3p0o9rU1ERLS4tKkyRvv/02S5YsIS0tjQcffJDffvuNpKwk6nXrkUgkTB4xWanzX7sG27ZBfT24uckqBnqjC97c3ExiYiIRERHo6uoSEhKCq6srampqpKRAVRXo63cuqjtQqG6s5r3I9yivL8fW0Jb1gevR0eh76YuamhrOzs5kZGQoIErlEh4Ox4/LWmtWrIAhaqY3ZNDQ0MDc3Jzi4mJVhzIs0dDQwMjISGG6JKampri6unL+/Pku9/Px8WnTIXFycsLY2JiUlBSFxAAKTpL0hx7JZ599xsSJEzu1+BFFW1VLcXGxqEcionBqamooKSnByclJ1aEMOLS1tRk7dixBQUFUVlYSFhZGdnZ2n8oe586dy9ixY3n00UdvKF20sLDAzs6ur2GLiIgoiNOnZV8ffNCdiooinn/++W7//ctXXlWVJPnjjz947rnneOGFF4iOjuatt97itttuI75Mtjo4xnIMJjomSpv/2jXYulWmOTFypKxiQFu7Z2PIW0HDwsKorKxkxowZjB07Fu3rBjp3TvbVz69vLTzKpqGlgQ+iPqCwphAzXTMeD3wcAy3FfTacnZ0pKSmhtrZWYWMqmthYkJu4LVgA4/vPVEmkD4gtN6pF0bokfn5+N02S2NjYUF1dTUNDA05OTgiCQHJyssJiUHgliTL1SHJzczl8+DCrV6/udB9RtFV1SKVSMUkiohSysrKwtbVFZzA0cqsIY2NjpkyZwtixY0lLS+PEiROUlpb2aiwNDQ3eeustYmJiRMtfEZEBTF0dXLgg254/35pt27bx3nvv8dhjj3VL2PngwYMAKhHDTk9PZ9GiRdx2223861//avu+VJByNucsoFzB1pycvxIkLi6wYUPPtUJKSko4ceIEly9fZty4cUyZMuWGn2VTk+zBGwa2dWxzazPbo7eTXZGNgZYBGydtxFRXsYuOOjo62NjYDFg74Kws+PxzWbvNjBkQGqrqiES6i5WVFcXFxUoVtBfpHEU63Hz22WdIJBIuXLjQpcaI/Hm/srISJycnysvLFZokUWhPRHJyMqFKPKPs2rULHR0dFi1a1OHrgiBQUVGBr6+v0mIQ6ZyysrK2kisREUXR0tLC1atXCRzId5cDBIlEgp2dHdbW1qSnp3P27Fmsra3x8vLqkSV3S0sL77zzDubm5gr9ube0tNDU1CTag4uIKIioKJnQqL29zH1j/fr16Orq8vDDD1NbW8tnn33WYftrbW0tGzZsYOfOnfzjH/8gKCioX+Oura3lnnvuwczMjH379rVrkU4tSaW8vhw9TT3GWo9Vyvw5OfDuu7IEibMzPP446Op2//i6ujqSkpIoLCxk9OjRuLq6dtrmHRcn0zoxN5dVqwxEpIKUzy58RmpJKjoaOmwI3IC1gbVS5nJxcSEqKgoPD48B1ZpdUiJzNpIL995/v+hkM5gwMjJCQ0ODsrIyURdRBZiYmJCYmIggCH3WkHruuefaLJ2Tk5Px9vbucD+5/mhlZSWtra1IJBKFttso7OwkL3FRVruNVCrl888/5x//+EenD+HV1dWA6spGhztyVxtlC6yJDC9yc3PR1dXFzMxM1aEMGtTV1Rk9ejQjRowgOTmZY8eOMWrUKEaNGtWtm9InnniC48ePc/ToUZydnfscT3JyMrt27WLPnj2oqakRGxsrVpyJiPQRQYCTJ2XbU6f+9UC3atUq9PT0WLp0KXV1dezduxet62w5Lly4wKJFi8jJyeHzzz9n+fLl/X7d3rRpExkZGURGRt7QIn36mqx/KMA+AE31XoiD3IS+JEjkLo7p6enY2dm1aUJ1xVlZUQyTJg3Mh25BENgTt4eLBRfRUNNgXcA6nEyU19pqbm6Ojo4Oubm5A6aFtq5OliCprpbpj6xe3TfrZ5H+RyKRYGlpSVFRkZgkUQGGhoYIgkB1dXWfF8u9vb3JysrCwcGhy/Pr9UmS6OhoRo8eTXJyskISNaDAJElhYSGVlZWMHj1aUUO249ixY2RlZXWr1UYUdlQNxcXFjByoyyQigxJBEMjMzMTFxUVMvvUCXV1dJkyYgIuLCwkJCWRnZ+Pl5YW9vX2HP8+YmBjee+899u7dy/bt29vcbXpDRUUF33zzDV988QXnzp3DzMyMRYsWceDAAZYtW8bBgwfFc7WISB/IypI98GtqwuS/aZs+8MAD6OnpsXjxYnR0dFi2bBmBgYFUVFTw4osv4u3tzYULF3B3d1dJ7L/++isbNmy4YYWwrrmOiwUXAeW02uTm/tViI0+QdKewTRAEcnNzSUpKQldXl6lTp3ZL/66iQuaQArIkyUDkh+QfOHPtDBKJhNUTVzPaXDn38XIkEgkjR44kMzMTR0dHlV/bW1rg44//svp97LHBYdEsciNWVlaDQhh4KKKmpoaxsTEVFRV9TpKMGzeO3NxcTspXATpBPk9lZSVqamoYGBiQmppKUVER1tZ9r4RT2B1qcnIyTk5O6OvrK2rIduzbt4/Ro0cz+e93AtdRUVEh6pGoiNbWViorKzE3N1d1KCJDiPLycmpra3FwcFB1KIMaU1NTpk+fzpgxY0hKSuLUqVNtAluNjY3s27ePyZMn4+fnx59//smHH37I2rVrbzrujz/+iIWFBUFBQWzcuJEvv/ySX3/9lQceeABbW1vWrVuHhYUF3333HXl5eXz44Yfs3r2b3377jW3btin7bYuIDGnk948TJ3b8oD9v3jwuXbrEww8/TGxsLOvWrWPz5s2sX7+es2fPqixBUlpaSkFBAWPH3thKcz7vPM2tzdgZ2uFo7KjQefPyZBUkNTWy1qTuJkjKy8s5deoUSUlJjBkzhunTp3fbIODcOVnFj6srDMTiuT+u/MGR9CMALB27lHE24/plXgcHB2praxUq9NgbBAH27IHUVJlg7/r1otXvYMbMzKyt9UKk/zE1NVXI3/S4ceO4fPlyW4dIZ0RERCCRSDA2Nuazzz6jvLwcR0dHhemSKKySRJmirS0tLfz66688/PDDXWacy8vLcXNzU0oMIl1TWVmJpqbmTctORUR6wrVr17C3tx9QfcuDFYlEwogRI7C1teXy5cucOnWKoqIi3nzzTa5cuUJoaCg//fQTd955Z7ct1OPi4mhqasLW1pZDhw61JT48PDz417/+xYMPPoitrW27Y26//XaeeOIJnn32WaZOnUpAQIDC36uIyFCnvh6io2XbXcmJODk58fHHHwMyHY2ysjKVJ53llo0d9ZmfuXYGkFWRKLLC4O8Jko0bb54gaWho4NKlS+Tl5eHq6oqbm1uPrkWC8FerTRfreyrjZPZJfkj+AYAFYxYoVST372hoaGBvb09OTo5KW2kPHYLISFlrzSOPgLgeM7jR09NDU1OTyspKsUVbBZiYmJCent7nceQOtvHx8UydOrXT/Xbs2MGdd95JWloaABkZGdxyyy2kpKT0qRJajsKePJSpR3L69GlKS0uZN29ep/u0trZSVVUlVpKoiPLyckxNTVVeNikydJBKpeTl5eHv76/qUIYUGhoa6Orq8u677zJp0iTefPNNbGxsmDRpUreTI3IqKipwdHRk//79AFRVVVFQUICbm1uX54I33niDM2fOsGDBAmJiYkR9kmGKVCpFKpXS2tqKVCqlrq4OkD2cqqurt/0Trys3cu6czDXF1rb7YqB6enoDQjQ5KSkJDQ2NGxa18qvzySzPRE2iRqCD4gSj8/NlCZLqanB0vHmCpLW1lYyMDNLS0rCysmLWrFm9+rldvSqbW0NDVu0zkLiQf4F9CfsAuHXUrdzieku/x2Bvb09MTAze3t4qab08dw5+/VW2/cAD4OXV7yGIKBiJRIKJiQkVFRVikkQFmJqatlXy9PR+8no8PT3R1NTk4sWLnSZJGhsbiY2NZfXq1bS0tADw6quvUlJSMjArSRYsWKCo4drx008/YWdnh5+fX6f7yCsZBsINwHBEbHUSUTQlJSVIJBKxhUvBHDt2rE0Ae9u2bdjZ2ZGQkEBERAReXl7Y2Nh0+6H073/3RkZG3epF1dLS4rvvvmPChAksXLiQo0ePitVCQwh5wqO6upq6ujoaGhpobGxs97W5uRlBENodJ//c/b0PWSKRoKmpiY6ODtra2u2+6unpYWhoiJ6e3rDRuLlesDUoaGCKgXZFYmIi7u7u7cRkgTbbXx9rH4y0FeOSl58PW7b8JcjZVYJEEAQKCgpISkpCXV2dwMDAPglAyqtIxo3rXltPf5FcnMznFz5HEASmOU7jHo97VBKH/GdbUlLS74nytDTYvVu2feutMH16v04vokQU1fIh0nP09PTQ0NCgqqqq2y2JHaGlpYWXlxcXL17sdJ8rV64glUrx9PRs06F59tln+fzzz/nxxx97Pff1DPhKEkEQ+PHHH5k3b16XN0Dym3VxxUk1lJeXq7yEV2RokZOT06nAqEjPEQSB999/nyeffJKZM2eyf//+tgTUzJkzyc7O5uLFixgbG+Pt7d2tZEdfkqP29vZ8++23hISE8Oyzz7Jly5ZejSOiWhobGykvL6e8vJyamhqqq6upra0FQF9fH319fXR0dNDX18fc3LwtuaGpqYm6ujpqamptX+vr6zl69CihoaHo6Oi0VZi0trbS3NzcLsnS0NBASUkJtbW17eYzNDTEwMAAU1NTTE1N0dbWVuWPRylcL9g6GJ3Rk5KS8Prbsr1UkHL2miyroKi2j+srSEaMgE2boDPZvKqqKhITE6msrMTT0xMnJ6c+XXtaWmT2zDCwWm2yKrLYcX4HLdIWxtuOZ7HvYpVdYyUSCfb29uTm5vZrkqSgAHbsgNZWWYXPParJEYkoCRMTE3Jzc1UdxrBEIpG0Jan6kiQBWcvNH3/8wdtvv427uzt33HFHu8U0ebWIp6dnm11wVVUVnp6evP76632aW45CkiTV1dXk5OQoRZMkLi6O7OzsLlttAIX8QkR6R3NzM7W1tWIliYjCaG1tJT8/nylT+q9HeihTX1/PmjVr+PLLL3nyySd58803211sJBIJzs7O2Nvbk5qayokTJ3BycsLDw+OG1d7rqaiowN7evtdxBQUFsWXLFh5//HH8/PxYtGhRr8cSUT5ye7+ysrK2f7W1tW1JCRMTExwcHPpc2SGRSNpabbrD9ZUr8kRNXl4eNTU16OvrY2Zm1vbP0NBw0CderxdsVZJWvtJJTEykrq6urfo3qSiJqsYqDLQM8La6UaukpxQUyBIkVVVdJ0iamppISUkhOzsbFxcX/P390dTsu+1wYqLMQcfICMaM6fNwCiGnKodtkdtobGnEw8KDVRNWoSZRbfWVvb09Z8+exdfXt0/l+d2luho++EBm+TtyJCxfPvgqsUS6xtTUlJqaGpqbmxXytyzSM+TtTn3lgQceIDY2ltdee42qqirWr1/P+++/3/Z6WloaJiYmWFpatrMC9vDw4Nq1a9TU1GBgYNCnGBSSJElNTcXMzAxLS0tFDNeOn376CWNjY2bMmNHlfn29WRfpPeXl5ejp6Q3JFTsR1VBUVISWlpaYeFMA165dY/78+SQmJrJnzx6WLFnS6b6ampp4e3vj5OREUlISYWFheHh44Ozs3OEDb0VFxQ0rwj1l/fr1REVFsXLlSry9vfHx8enTeCKKpaWlheLiYgoLCyksLKS5uRlTU1PMzMzw9vbGzMysy0RafyC3/vv7DVFTU1NbMic3N5fExEQ0NTWxsbHB2toaCwuLQdfm1V3B1oHMRx99hL+/Pxs2bOCzzz4D/hJsDXQIREOtb7+TggJZi01VlUyIs6MEiVQqJSsri5SUFMzMzJg5cyaGhoZ9mvd65K02kybJREFVTWFNIdsit1HXXIeLqQtr/df2+eesCExNTdHS0qKoqOgGkW9F09wM27dDSQlYWMCjj8qqsUSGFtra2ujq6lJRUaGU51KRrjE1NSUvL6/P48yePZuLFy8iCAI7duxg3bp1TJgwgWXLlrXNI0+GXZ8kcXFxwdTUlNTUVCb2UQxKIWdIubONMlZnfvrpJ+64444ub8Kam5upqakRK0lUhKhHIqJocnNzxVYbBZCens7MmTORSCScPn2aCRMmdOs4Q0NDJk2aRGFhIYmJiWRlZeHt7X1DSbQi/vYlEgmffPIJ8fHxLFmyhOjoaJU/dA93mpqayM3NpaCggJKSEnR0dLCxsWH8+PGYm5v3y4qvItDS0sLGxgYbGxtAVqFWWlpKYWEhCQkJNDQ0YGFhgY2NDfb29oPic9cbwdaBhpeXFx999BErVqxg5syZzL1vLnGFcUDfW20KC2+eICkqKiIxMRFBEJg4cSLW1tZ9mvPv1NRAQoJseyC02pTWlbI1citVjVU4GDmwIXADOho6qg4LaN9yo8wkiSDAzp2QkSHTh9mwARSYExMZYMhbPsQkSf9jYmKi0EoeiUTC2rVriY2NZc2aNXh5eeHv74+npyctLS1cuXKFoqIigDYDEQ8PD1JSUgZGkkRZeiSZmZnExcXxwgsvdLlfRUUFurq6YiWDiigvLxfFNUUURktLCwUFBQQN1mXSAUJGRgbBwcHo6ekRERGBnZ1dj8ewtrbG0tKSzMxMoqOjsbCwwMvLq23FXlEJUj09Pb788kv8/f155ZVX+Pe//93nMUV6RmtrK4WFhVy7do2ioiKMjY2xs7PD29sbAwODIZGwVFdXx8rKCisrK7y9vampqWl7z4mJiVhZWTFixAisra0HZCLoesHW6dMHd5vAsmXLOH78OGvWrEHPW49WaSvOJs44GPVe2+z6BIm9vSxBcn1xUU1NDUlJSZSUlODh4YGLi4tSxH6jo2V6F46O0IvTrkKpbKjkvcj3KK8vx9rAmo2TNqKnOYBUZJG13Jw8eZKWlhalVXZ9/z1cuCBzGnr0UVBwXkxkgGFiYiKKt6oIHR0dhVfySCQSPvzwQxITE7nnnnuIiYlpyzskJyeTmZmJvr4+Tk5OgEynRBEONwq5OiQnJytFj+Snn35CW1ub2267rcv9qqqq2kptRPofsZJERJEUFBSgp6fXLeHQ4UhUVBRNTU1d7pOVlUVwcDDa2tocO3asVwkSOWpqari6uraJaR4/fpykpCSampqoq6sjKiqKysrKXo8vZ9y4cbz00ku88cYbRMkVD0WUTkVFBXFxcfzxxx8kJSVhbGxMcHAwQUFBjBo1akhoeHSERCLB0NCQUaNGERQURHBwMMbGxiQlJfHHH38QFxenkL5qRZKd/Zdg66RJqo6mb0gkEt566y1q62r5IuILAKY5Tmu3T0tLCw0NDd0aT95iU1kpS0xcnyBpbm4mKSmJiIgIdHR0CA0NxdXVVWluSPJWG1VXkdQ21fJe5HsU1RZhrmfOpkmbMNQeeOUTRkZG6OnpUVBQoJTxw8Lg6FHZ9tKl8DfnaZEhiOhwo1qMjY2pqqpS6Jja2tp8//33tLa2ct9992Fubo6pqSnJyclIpVI0NTXb7lU8PDwGTpIkJSVFKZUkERERTJs27aZ9orW1tegPVvWyQU59fT0NDQ1ikkREYchbbURu5IsvviAwMJD33nuv033KysoIDg5GU1OTiIgIhf0stbW1GTt2LNOnT6e8vJxjx47x3//+l99++43Ro0eza9cupFJpn+bYvHkzEyZM4KGHHqK+vl4hcYvciCAI5Ofnc+rUKU6dOoUgCAQGBhIaGoqHh0efxc4GIwYGBnh4eBAaGkpgYCCCILT9fPLz82+wK1YFf/4p+zqYBVuvx8bGhsBbA4m9HIu2hjb+9v5trx05cgQPDw+CgoJu+rPPy4N33vkrQfLEE7JWCkEQyM7OJjw8nPLycoKCghg7dqxSq47z8mTJLDU18Pe/+f7KoqGlgW3ntpFXnYexjjGbJm3CVHdgtqRf33KjaM6fh2+/lW3Pnz843aBEeo6xsTENDQ3ifYSK0NfXb3OdUyR2dnYcOHCA06dP89prr7VVjGhqarZbPPT09CQlJaXP8/W5rq25uZnLly8rPEkiCAJnz55l7dq1N923pqamTyulIr2noqICQ0PDQSd+JzIwaWpqoqioqM9ioEORiIgIHn74YXR0dPjll1945plnOtzvxx9/5OrVq6Snp2Nra0thYSGVlZVt/yoqKtq2q6qqmDdvHuPGjet2HMbGxkydOpX8/HzU1NT48ccf+fXXX1mxYgW///47+/fv7/V71NDQYPfu3UyYMIGnnnqKV155RWzlUyDNzc1cvXqVjIwMpFIpI0eOJCAgYFBocfQXEokEc3NzzM3NGTNmDNnZ2cTHx5OYmMjIkSNxdHRUiWPC9YKt06f3+/RKY/Ts0UQdj8Ld0B0dDR0KCwt54okn+Oqrr/D19SU6OpqwsDBmz57d4fE5ObB1q0wHRK5BYmAApaWlJCQk0NzcjK+vL7a2tv1SERUZKfvq46M6zYum1iY+jPqQ7IpsDLQM2DRpE5b6A1ubwd7enrS0NJqamhR2PkpLg127ZNvBwXDLLQoZVmQQoKmpiaGhYZscg0j/oq+vr7TKsOnTp/Piiy/yyiuvMHLkSNTU1Jg8eTLNzc1t+3h6enL58uU+t/D1+ck2IyMDdXX1tj4gRZGenk5JSQmTu1GvKFaSqA7RellEkeTn52NkZDQsV7K7IiUlhfnz5zNjxgzuvfdeHn30UUpKSrCwsLhh38OHDxMYGIizszOhoaGEh4d3OKaBgQH19fXk5+fz3//+t+37CQkJvPDCC0ilUrS1tdHR0WHJkiXcfvvtbftIJBJMTExoaGhg9OjR3HLLLQQFBbF27VoOHz7MnDlzev1ex4wZw5tvvsmmTZvYvn07tra2eHt7tznfTJ06ldGjR/d6/OFIc3MzGRkZpKenY2BgwJgxY7C1tVVau8FQQUtLCzc3N1xdXcnPzyc9PZ3U1FRcXV0ZOXJkvyZLoqL+Emx1de23aZVKfXM9Go4aCAiUx5XzyaVPePbZZ1FXV2f37t08+OCDTJw4kXfeeafDJMm1a7IESW0tODnB44+Dmlo9588nUVBQgJubG6NGjeo3fRmpVCasC6prtWmRtrAjegeXSy+jo6HD45Mex9ZQua4xisDAwAAjIyPy8/MV8jyRmytzsmlpgQkT4B//GNwaPiI9R65LomzXJJEbMTAwoKamRmnj//Of/yQ8PJwLFy6wZcsWCgoKaG5uRhAEJBJJmyNjRkZGn+4X+3yHlJycjLu7u8IvQmf/19QZeJPaOKlUSl1dnZgkURGiHomIIsnJyRFbbf5GcXExd9xxB3Z2dnz33XfMmzcPQRA4fPjwDfvm5+dz9OhR5syZgyAIREdHs2rVKo4fP05sbCwZGRmUlpbS3NxMdXV1m+aEHKlUyqpVq4iPj0ddXZ3a2lp+++03dsmX4/5HWloakyZNYu7cuXzyySeEhITg4uLCjh07OHToEHV1dX16zxs3buTSpUt88803rFy5Ej09PX755RdWrlyJn59fn8YeTsiV38PCwigqKsLf35+goCDs7e3FBEkPUFNTw97enqCgIPz9/SkqKiIsLIwrV67Q0tKi9PkF4a9Wm8Eu2Ho9UblRaGpr4mLhwr82/YtHHnmEe+65h5SUFJYuXYpEIuGpp57iyJEjxMXFtTs2KwvefVeWIHF2hscea+HatRTCw8ORSCSEhIQo5d60K5KToaJC1gqlCidzqSDlswufcan4ElrqWmwI3ICjsWP/B9JLFNVyU14O778vq75yc4MVKwaGDbNI/2JqajrgdKWGC/r6+tTV1fW5BbszNDQ0+P3337ly5Qp3331324KF/Hqsrq7O6NGj+6xL0udKErn9r6I5e/Ys7u7umJmZdblfbW0tampqYjmVChAEgfLycsaMGaPqUESGAA0NDZSWlnbbpnY40NDQwLx586ipqSE8PBxjY2OMjY0JCAjg119/ZenSpbS2tvLHH3/wySefcPDgQXR1dbnvvvuoqKigqqqK2bNnM2PGjA7HLy0tbVcJ9vXXXxMVFcWJEyfa3IVCQ0PbPWgcOHCAlStXYm9vz+bNm3nzzTdxcXFh/fr1gMyV7PDhw0yePBk7O7tel7h7enri6enJwoULAZn7iru7O/6qbPQfJEilUrKyskhLS0NHR4cJEyZgZWU1JAVY+xtLS0ssLCwoKioiOTmZK1euMHr06LaVK2UgF2zV0Bj8gq3Xc+rqKQCWhyznt5TfeOONN244V913330899xzbNmyhS+//BKQ2bhu2wYNDeDiInDvvXlERiahra3NlClTbnrfqCzkgq3+/rLfVX8iCAK7L+4mNj8WDTUNHvV/FFezwVVyZG9vz6VLl2hoaEBHp3cWxXV1sgRJRYWs6urRR2VCxyLDDxMTE5KTk9uqC0T6D11dXdTU1Kirq1NaZbi+vn5bgYS8paa1tbUtYSK3AZ47d26v5+jzaVxZ9r9nz57tUauN+AfQ/9TW1iKVSkUXEhGFkJeXh5mZmZjwvI5du3YRFRXFqVOncHZ2bvv+nXfeydtvv83LL7/Mzp07uXbtGmPHjmXbtm0sXrwYExMTPvjgAwBGjhzZ4djl5eWUlJQwatQoAOrq6ti8eTPz589vZ7/c2tqKmpoaTU1NPPXUU3zwwQcsXLiQTz/9FENDQ5qamti4cSNOTk7cfffd7Nmzh/DwcPT09MjIyMDHx0ch1WYHDx4kPT2dr776qs9jDWVKSkqIj49HEATGjh2LjY2NeH1UMBKJBGtra6ysrCgoKODSpUtkZWXh6+vbYQtcX5FXkfj5DQ3BVoCrlVe5WnkVDTUNnrjvCV5c/GKH+2lqarJx40aeeeYZXn/9dRobHXj/fVmCxMGhHj+/GK5cqWHMmDGMGDFCZZ/1+nq4eFG23d+tNoIg8FXCV0TmRKImUePhiQ/jaan4+3Jlo6uri5mZGXl5eZ1et7qiuVnWYpOXByYmsGED6A0st2ORfsTY2JjW1lZqa2vFFu5+RiKRoK+vT01NjcJ/9nJB3usX+K5PkshRhA1wn5c9lFFJUlVVRXx8vKhHMsApLy/H2NhYLNsWUQhiq82NHDp0iOnTp9/Qdjh37lyqq6t55513uO2224iKiiI2NpZ169aho6PD6tWr2bBhA6tXr2bixIkdjp2amgrQdv7+4IMPKCws5K233mq3n1QqRU1NjQULFvDxxx/z4Ycf8vXXX7e16fznP/9h3rx5LFq0iPPnz/Pyyy9z4cIFDhw4gLm5OadOneLixYvdtvLsjK1btzJlyhQCAgL6NM5Qpb6+nvPnz3Pu3DkcHR0JDg7uN7HK4YpEIsHW1pbg4GAcHR2JjIzk/PnzCnVUGKqCrfIqkvG249HX6voebtWqVejr6/PSS/vYtg1qa1vQ18/F2zsCOzszQkJCcHR0VOlnPSZG9pBuayvTR+kvBEHgh+Qf+DP7TyQSCSvGr2Cszdj+C0DB9LblRhBg5064fBl0dGD9elBRQZHIAEFNTQ1jY2PRClhFKMvh5vnnn8fb25vS0tK278mrna9vf5VXkvSFPj3dCoKglEqSP/74A6lUyi3dkKJWRpZKpHuIeiQiiqKxsVEU2PobDQ0NHDt2rJ1gqhwfHx+io6PJz8/nk08+wd/fH4lEQmZmJlOnTmXv3r3s3LmTTz75pNMHB/nFw83NDUEQ2LlzJ4sWLWqrLJHT2tpKdHQ0Bw8eZO/evaxbt67dmGpqauzZswcfHx/uvPNOKisrefPNN9m9ezdVVVUEBwfT1NREeHg4V65c6VWP6oULFzhx4gSbNm3q8bFDHalUypUrV9oEemfNmsWoUaPE5HU/oqamxqhRowgJCQHg2LFjvf6s/51z54aeYGtjSyPncmQKp9Mcp910f0NDQ+6770X27TMjP78UNbVUFizI45ZbZjBmzBiVuA39HXmrzeTJ/asZc/jyYY6kHwFgie+SdjbKgxFbW1vKyspobGzs9jGCAAcOwIULoK4ua7FxcFBikCKDBhMTE1GXREXIK0kUzalTp8jLy2PdunV8+eWXfPnll22VJNcnSeSVJDezkO+KPt1F5eXlUVNTo3CngYMHD+Lt7d2uvLwzxEoS1SE624goiuLiYoyNjXvdhzwUOXHiBPX19Z06xRw8eJA77riDadOmMWXKFCZNmsT48eMpLy/nzJkzLF++vMvxU1JScHJyQk9PjwsXLpCWlsbixYtv2E8qlZKamoqnpyf33ntvh2PJhVX19PS4++67eeCBBxgxYgT79+9HX1+fgIAAAgICuHr1KseOHaOgoKBHF66tW7fi5OTEvHnzun3McKC6upqTJ0+SnZ3NpEmT8PPzE9vVVIiuri5+fn4EBASQnZ3NyZMnqa6u7vV4ggAnTsi2h5Jg64X8CzS0NGChZ4G7uftN909KEqitXY6//1QMDK7y8stWTJ3qP2Du/QoL4coV2e/nJl4DCiU8I5xfUn8B4B9e/+hWwmmgo6Ojg5GREcXFxd0+5uhROHZMtr18Objf/CMlMkwwNTUVK0lUhIGBgcIqSQoLC/n555+5dOkScXFxzJw5k/379/PQQw+xfPly8vPzUVNTY/v27W3HjB49murqavLz83s9b5+SJCkpKTg7Oyv0pqy1tZXDhw9z1113dWt/MUmiGqRSKZWVlWIliYhCKCoqwtLSUtVhDCgOHz6Mo6Njh8LI9fX1vPnmm0ilUtzc3PD09MTHx4dHHnmEmJgYxo8f3+XYgiBw8uTJtrG/+uorrK2tmTVr1g37ylfDN2/e3GV1gpWVFd9//z1JSUn85z//Yfbs2Rw9erTtdUtLS2bOnImrqyuxsbGcPXuWqqqqm/4c8vLy+Oabb3j88cf75Hc/lBAEgYyMDE6cOIG5uTkzZ85UihaGSO+Qf9bNzc05ceIEGRkZvVrNunJFpq+gpaU6S1llcPLqSUBWRXKzFpnIyBr+7/8KqKiowcgoi/DwBVhamvRDlN3n9GnZV29vmRZGf3Dq6ikOJB0A4G73uwkZGdI/E/cDVlZWFBUVdWvfqCj4/nvZ9r33ykRzRUTkmJiYUFlZqTSXFZHOUWS7zWuvvca8efPw8vKiqamJ119/nc2bN/P2228zc+ZM/v3vf7No0SJeffXVtmoSPT09nJyc+tRy06c7zuTkZIXrkZw7d46SkhLuvPPOm+7b2tqqVOVckc6pqqpCTU1N/NmL9BlBECgqKupUO2O48ttvv3H77bd3+BBx5swZGhsb2b59O76+vj0e+5dffuHMmTMcOnSI1tZWvvnmGxYuXNhhEkIqleLk5MSiRYtuOu748eN55pln+Pe//82///1vdu7cSX5+flsblZqaGi4uLtjb25OamsqJEydwdnbG3d0dLS2tDsd855130NXVZeXKlT1+n0OR+vp6YmNjqampYdKkSWJyZICirq6Ot7c31tbWxMbGUlBQwPjx43u0qCSvIgkMHDoClPnV+aSXpaMmUWPyiM4zP01NTfz8cxa7dmmhr2/I7bdbMmVKOX5+mRw4cKDDqjdVIJX+1WozdWr/zBmZE8ne+L0A3OJ6C3PcOq42HKxYWVlx4cKFm7qSpKTAF1/ItkNCIDS0f+ITGTwYGBigpqZGVVWVuKjbzxgYGLTZAPe1/Tc5OZlbb72VJ598kpKSEiZNmtSmW/rggw8ybtw4vv76a1xdXdvdx3p4eJCcnNzhAmB36HMliaL1SH799VcsLCxuECrsiLq6OtTV1cUSfRUg1yMRRQFF+kpVVRUtLS0qs20ciFy+fJnLly932moTFhaGlZUV3t7ePR5b7lJzyy23cPvtt3PixAny8vJ44IEHOtz/0Ucf5ZNPPul23////d//4ezszIEDslVOuVbG9WhpaeHj48OMGTOorq4mPDyczMzMdqs9lZWVPPbYY2zdupU33nhDdNECCgoKiIiIQEdHh+DgYDFBMgiwtLQkODgYHR0dIiIiKCgo6NZxVVUyjQWAThy8ByVywVYfax9MdExueF0qlZKZmcl//xvF118bYW1tx+zZ5ixYUMrTT29CXV0dvQGUMUpMlP2uDA3Bx0f580XnRvPFxS8QBIGZzjOZ7zl/yN2HmZmZ0dzc3GWrWk4O7NgBra0y16f77hs67WgiikMikYi6JCpCR0cHNTU1hVSTpKamMmHCBGbPns2iRQxTQX0AAQAASURBVIvanfNsbGwIDw/HycmJ+fPntzvO09NTtZUk3Vld7Am//vord9xxR5tSbVfU1NSgp6c35C4QgwFRj0REURQXF2NhYdGtv/nhwm+//YaWllan2e/w8HBmzZrVq+z89u3bycjI4Mcff0QikbB3715GjhzZqWvMsmXLejS+jo4Ob7zxBgsWLMDT05OjR4+yZMmSDvc1MjJi8uTJFBYWkpiYSFZWFl5eXkRERLBx40ZqamrYunUrjzzySE/f5pBCEARSUlJIT09n3LhxOIiqhIMKTU1NJkyYQE5ODufPn2fUqFG4u7t3ee9y6pTsAXDkSBgxoh+DVSIt0hYicyKBjgVbi4uLSUhIIDlZn/PnJ2BhoUtAgAQPjzP4+99Ha2sr4eHhzBhAWSN5q01gICi7G/BC/gV2xu5EEASmO03nfu/7h+T9r7q6OhYWFhQVFXWYHC8tpc0GevRoWLZMTJCIdI5cl6Q7OpciikNuA1xbW9vmhtgbamtruXbtGu5diA15eXmRnp5+Q1urp6cn+/fv7/Xcfa4kUWS7TWZmJklJSd1qtQFE72sVIiZJRBRFUVERVlZWqg5jQPHbb78RFBTU4fmtoqKCmJiYNieNnrJ161aWLVuGt7c3X3/9Nbt27WLt2rUKvdn2/19juLu7O2FhYV3qMUgkEmxsbJg1axYjRozg9OnTxMbGcsstt5CcnMzGjRuHtRZJU1MTkZGR5ObmEhQUJCZIBjEODg4EBQWRk5PDuXPnaGpq6nA/qRT+/FO2PXNm/8WnbOIK4qhpqsFExwRvq7+q4Gpra4mKiiIqKorycjfi4wPQ0dFj8mQJs2dfIzh4Bi4uLly4cGFAJUiqqiA+Xrat7Fab+MJ4Po35FKkgZfKIySz2WTwkEyRyLC0tO9QlqamRJUgqK8HODtauhQFgbiQygBErSVSHInRJ3njjDTQ0NNraazpDIpHcsHDYVxvgXidJKisrycvLU2i7zeHDh9HU1OyW9S+Ioq2qoqWlherqarG/T6TPtLS0UFpaKiZJrkMqlRIREdHpefDEiRNIpdJeJ0mKi4sZO3YsR44c4aGHHuKhhx7iySef7EvIN+Dg4ICJiQnGxsbk5eV16yKlpqaGuro669atY8SIEdx3331UVVXR3Nys0NgGE5WVlZw4cQI1NTVmzJghthwNAYyMjNoe9E+cOEFlZeUN+yQkQHk5GBjAhAn9HaHykAu2ThkxBTWJGs3NzVy6dImIiAi0tLTQ1Q3l6NERgIQpU+Chh8DKygItLS3uuusu7OzsVPsG/kZkpCyh5eIie2BXFklFSfz3/H+RClIC7ANYOnbpkE6QgEyXpLS0tJ2lZ2MjfPABFBSAqSls2DB0tHpElIepqWlbW7dI/2JgYNAnG+DTp0/zxhtv8PLLL/fKSdfT05Pc3NxumQR0RK+TJKmpqVhYWGBubt7bIW7g9OnT+Pn5dftGsKamRqwkUQFVVVVoa2uLVpMifaa0tBQdHR0x2XkdEokETU3NTltpzp49i729PS4uLj0eu7W1lfr6epKTk5k/fz6zZ8/m008/VfgNt0QiwdfXl5qaGrS0tAgLC7vpMYIgsHr1ajQ1NVm6dCnTpk2jtLSU8PBwrl692iev+8FIUVERp06dwtHRkYCAgG5rwogMfDQ1NQkMDMTR0ZFTp07dsGJ+/Ljs69SpQ2eVvKSuhOTiZECWJLl69Srh4eGUlZUxbdo0ysvHsX+/NoIAQUGwdCmoqclslW+99VZ+/vlnFb+D9gjCX602yqwiSS5OZnv0dlqkLUywncDy8ctRk/RNBHEwYGBggLa2NqWlpQC0tMg0SLKyQF8fHn9cligREbkZOjo6aGtr9/pBWaT39KWSpKqqigcffJBJkybx7LPP9moMeZ4iNTW1V8f3+kybnJyscNHW6OjotjLt7iBWkqgGMTkloijkrTZDfVWsJ0gkEkaMGMG1a9c6fL2n58nrkV+sPv74Y3x8fDhw4IDSHr59fX25dOkSU6ZM6VaS5PPPPyc8PJxPPvkEQ0NDTExMmDZtGj4+PqSkpPDnn39SVlbWrbnz8/PZvHkzW7duHZQ3RteuXSMqKgpfX9+baleIDE4kEgnu7u74+voSFRXV9vdeVASXLsk0FoKCVBykAjl9VZZRcNJ34tL5S6SkpODj48PUqVOJjDThm29k+4WGwgMPtNeYmDt3LpGRkd0Wve0PMjNlFQ1aWsqznU0rTeOj6I9okbYw1mYsqyasGhYJEpD9fVhZWVFcXIxUCrt2QXIyaGvD+vXwP8M0EZGbcr02hkj/0ttKkoSEBKZNm0ZxcTF79uzpU8u1p6cnycnJvTq212dbReuRlJWVceXKlU7FA/+OfEVUTJL0P2JySkRRFBUVYWlpqeowBgxSqZTz58/T2traYZJE/npvkyTyi5WHhwcHDx5U6t+xj48PaWlpjB8/noSEhC73zc3N5cknn2T58uXceuutbd+XSCTY29sza9YsbGxsOHPmDDExMdTX13c4Tl5eHmvWrMHFxYW33nqLJ554gjfffFOh70uZCILA5cuXiY+PJyAggBFDRbFTpFNGjBhBQEAA8fHxXL58mePHZRVT3t4wVMyLpIKUPzP/pLikGN1iXWxsbAgJCcHOzp5ffpHw44+y/e64A+6990YRzjvuuAOJRMKvv/7a/8F3wimZSQ8TJ4IyDBbTy9L5MOpDmlub8bby5uGJD6OuNrzEza2srCgsLGL/fjh/HtTVYc0aWXuTiEhPEJMkqkFfX5/6+npaW1u7tb9UKuXdd9/Fz88PqVTKqVOnGDlyZJ9i6IsuyYCpJDl//jxAt2/+a2trO7X/bWpqYsuWLYwdO5YPPvigna2kSN8RkyQiiqC+vp7a2tphnySpq6vjl19+4eGHH8bBwQF/f3+KiooI6mAZ+fLly1RVVeHn59eruaytrXn++ec5cuSIQlslO8LX15fW1lZ0dXW5evVqh9oi9fX1HDx4kIULF6Knp8eWLVs6HEtDQwN3d3dCQkIQBIHw8HBSU1NvuPBu3LiRAwcO8NJLL1FeXs6LL77Iu+++S1ZWljLeokIRBIHExETS09OZOnWqqNMzjLCysmLq1KmkpGTw66+lMnvXmaqOSjG0trbyy7lfSMpIQk9dj1V3rsLd3R01NXW+/RYOH5btN38+3H13xy4lFhYWTJs2bcC03DQ2yh7aQTmtNlkVWbx/7n0aWxrxtPRkjd8aNNSGn3i1paUlx4/rExbWgkQCK1bAmDGqjkpkMNJXbQyR3qGjo4O6ujp1dXXd2v+TTz7hySefZN26dZw/f56xY8f2OQaVVJIkJycrtJIkKioKY2NjRo0a1a395Q/qfy9DTk1NxcfHh2eeeQYLCws2bNiAr68vmzdvJiwsrNMVSJHuI7bbiCiCoqIiTE1Nh7XWwj//+U/Mzc2ZO3cux48fZ9GiRURERFBUVMTjjz9+w/7yZHJvkyTq6uq89tprCq9QeP/993nrrbfa6YZ4e8vcK5qbm2ltbeXq1asUFRXxxx9/8NZbb3H33Xdjbm7OXXfdRWFhIXv37r2pY5auri5+fn5MnjyZ/Px8jh07Rl5eXtu8sbGxLFu2jOeeew4TExOeeeYZzMzMeO655xT6fhWNIAjExcVRWFjI9OnTRVHsYYiJiQl6ekGUlzcglRbi6Tm4NXgEQSAvL4/w8HCOpR/DxtqG+f7zMdQ3RCqFffsgPFy27/33w3UFZB0yd+5cwsLCBsSDTkyMLFFiZQXdvGXtNlcrr7ItchsNLQ2MNh/No/6Poqk+PK+Rp09rEhfnSH19PfffD7287ImIiJUkKkLe6tSd87YgCHz44YcsWLCAd999t8MiiN7g4eHRv0mSpqYm0tPTFVpJIu+z70ys8O90VM1QVlbGnXfeiZqaGhcvXiQ8PJw///yTsWPHsmvXLmbPno2pqSmhoaHs2rVr2AkBKgJBEMRKEhGFIFr/ypxmGhsbOXPmDGlpaWzZsoWZM2d2mjiKjo7G1dUVMzOzfo60a3766Sc2b97M2rVr26o79PX1sbe3b9MRmThxItbW1tx222289tprVFdX869//YuUlBQuX77cI7cec3NzZsyYwejRo4mPj+f06dMUFhaSnp7elpwB2erRa6+9xjfffMPZs2cV+6YVhCAIxMfHU1xczNSpU8Vz6zDm3DldrK1tcHXNIzExftDeo1RWVnL69Gni4+OxcraiwagBbW1tgpyCkErhiy/g5ElZ1chDD0Fw8M3HnDt3Lo2Njfzxxx9Kj/9myFttpk7tuPKlt+RU5fBe5HvUNdfhaubKYwGPoaWupbgJBhHnz8M338gT4/lDprJKRDXIK0kG6zl1MNPdBNXp06dJSkpizZo1Cp3f09OT9PT0Xjkl9ipJcuXKFbS0tHB0dOzN4TcgCALnzp3rUZ/936sZmpqaWLhwIeXl5Rw6dAgfHx8Apk+fzr59+ygoKCA+Pp4333wTDQ0NVqxYwdy5cykuLlbIexguNDU10dLSIt7Ii/QJQRAoLi4e9kmSf/3rXxgYGLBv375u7d8X0VZl4+DgwKeffsqiRYtISUkhNDSU3NxcvLy8ePLJJ3nsscf49ttvuXLlChUVFURERPD000/j7u7eq/kkEglOTk6EhIRgamrKuXPneOSRR25I3i9dupRx48bxxBNPDLgbJEEQSEhIoKioiKlTp4qOYcOYrCzIzgYdHQ1WrvSgqKiIhISEAfeZ7YrGxkbi4uI4efIkpqamhISEkNGagQQJXlZemGhZ8MkncO6czLlm1SqYMqV7Y7u6uuLt7c3u3btV+jMpLIT0dFlyZNIkxY2bX53Pe5HvUdtUi4upCxsCN6Ctoa24CQYRly7Bzp0yB6HQUA3c3a8Mqr8DkYGHvr4+LS0tNDU1qTqUYUd3kyQ7duzAzc2NWbNmKXR+R0dHNDQ0uHLlSo+P7VWSJCUl5X89pYpR2c7IyKCwsJAp3b1a8lclSXNzM59//jkeHh4cP36c7777rkORF4lEgo+PDxs3buT333/nl19+4ezZs/j4+BATE6OQ9zEcqKmpQVtbu09KwyIi5eXlAMO+rcDGxob/+7//Y8eOHe3ETfPy8njiiSfw9PRssy5raWkhNjZ2QCZJJBIJU6dO5fvvv+eXX35py9wfOXKETZs28c477/Dvf/+be++9F1dX1x5fO86cOcOrr77a4UqApqYmXl5e6OvrY2pqSklJCenp6W1aVOrq6mzZsoXIyEj279+vkPerCOQaJAUFBUydOhU9PT1VhySiQk6ckH318wMrKz2mTp1KQUEBiYmJA/4BUSqVkp6eTlhYGA0NDQQHB+Pl5YVEXcKZa2cAmGwXxPbtEBsLGhoyAc6etk88//zz/Prrrzz99NMq+5nIbX99fEBRl6/CmkLePfsu1Y3VOBo7siFwAzoaSlCDHQRkZcHHH0Nrq+zzsWKFPhLJX/cMIiK9QUNDA21tbbHlRgV0Rw+mpaWF7777jqVLlyostyBHXV0dd3f3Xom39ioSRYu2njkju4j2NEnS2NjImDFjWLVqFRMnTuTChQvM7GZN3l133UVCQgKOjo7cfffd5Obm9ib0YUdtba2oRyLSZ4qLi7G0tBStTYENGzbg6urKxo0bycrKYu3atbi4uLBr1y6qqqpYsmQJzc3NXLt2jfr6esYMQOU6+e9x3rx5hIeH8/LLL5OYmMjs2bP7NK4gCGzZsoWgoCD+7//+j+XLl3cqxD1p0iTeeecdCgsLyc7OJiIigsLCQgBmzZrF3XffzfPPP09LS0ufYlIUqamp5OXliQkSEWprITpatj1jhuyrnp4sUZKXl9eWKB2IFBYWEhERQXZ2Nv7+/gQGBrZVmsbmx1LdWI2BmgUn9vuSlASamvDYY9AbPb5Fixaxbds2tmzZwr///W8Fv5Ob09oK8q49RQm2FtcW8+7Zd6lqrMLByIGNkzaipzk8zwf5+fD++zK9F09PWL4c1NUlWFpaUlJSourwRAY5onirauhOJYm6ujpubm4kJSUpJYbeirf2qhxA0fa/p0+fxtPTs9t99nL7323btlFeXk5cXBy+vr49ntfGxoZffvkFf39/5s2bx4kTJ2htbWX//v0UFBRQW1uLq6srHh4e+Pj4YGxs3OM5hhqiHomIIqioqMBiqPhb9hEtLS22bt3KnXfeiaurK+bm5vzrX//i0UcfJSUlhSlTpvDvf/+bZ555BmBA3ixKJJK2ld2pU6cyVQFPENXV1SxdupSffvqJZ555hrFjx/Lggw9iaGjI9u3bb0iw6evrExAQwO+//86BAwfIysoiJiYGMzMzvLy8eOmll5g4cSI//fQT9957b5/j6wtXr14lPT2d6dOni+dTEc6cgeZmGDGivb2pvr4+kydP5uTJk+jp6SmsxVkRVFdXk5iYSHl5OR4eHjg7O9+wAvhn9p+0NGpSGrmEmmo1dHRkCRI3t97Pu2HDBqqrq/nnP//J1atXcXV1xcTEhEWLFin9Hi0xEaqqwNBQVknSV0rrSnn37LtUNFRga2jLxkkb0dcanueD8nLYtk2WMHR2hrVrZRVHAKamppSWlqo0PpHBjyjeqhqutwFWV+/YxlwikbBkyRJeeeUVqqurMTQ0VGgMvbUB7lWSJDk5mbvvvrs3h3bI6dOne3RTXVtbi0QiYceOHbz//vu9SpDIkSdKpk2bxuLFi8nKyiI+Ph5LS0t0dHS4du0aUqkUQ0NDTp061ae5hgI1NTXDvkVCpG8IgkB5eXm3nayGA3fccQcvv/wyJiYmrF69uq2yICAggBdffJFXX32VpUuXYmlpOSDtbK9PkiiKbdu28ccff/Dzzz+3XW8aGhpYuXIlhoaGvPXWWzckSmbNmsX27dsBGDlyJA4ODqSkpHD8+HFcXFy49dZb2bJli0qTJMXFxcTHxxMYGIiRkZHK4hAZGAjCX602M2feKARqZGSEv78/UVFR6Orqqtwyvbm5mdTUVDIzM3FycmLixIload0oLppfnU/itWySDt7CGO2R6BnC44/LHoD7yvPPP49UKuXDDz+kqKgIkGmW9LVy7WbIW20mT4ZO7vW7TWldKVvObqGsvgxrA2uemPwEhtqKfTAYLNTWyhIk5eVgbQ3r14P2dXIspqamvdITEBG5Hn19faqqqlQdxrBDbgNcW1vb5T3PokWLeO655/jxxx9ZunSpQmPw9PTk4MGDPT6ux+02giAotJKkoqKCpKSkHiVJampqKCoqYvTo0TzyyCN9jmH8+PHs2bOHn376ieLiYi5evEhBQQFZWVnU1tYSHx+Pq6sr99xzz7DvixQrSUT6SkNDA01NTWJl1t946aWXePzxx29ovZg8eTKtra20trbi7Ow8YJIkgiBw/vx5nn76aaKjoztdIegtBw4cYN68ee0S8itWrGDr1q385z//4fXXX7/hmODgYEpLS0lMTARkVTq+vr7MmDGDqqoq1q5di5GRUVuLZ39TVVVFdHQ0vr6+Kn/YFRkYXLoExcWgqwudyQ1ZWVnh4+NDdHS0ym7yBUEgKyuLsLAwqqqqmDFjBr6+vh0mSAB+SzhL/E+z0a51xcJEmyefVEyCBGRJ2dDQUHR1dTExMeH7779XeoKkqgrkslE96AzvEHmCpLSuFCt9K56Y/ARG2sMzYdrYCB98IGu1MTWFjRvh7x3dxsbGNDY2Ul9fr5IYRYYGYruNapDbAN+sisfJyYmgoKBuGxn0BHklSU8X83qcJMnJyaG+vh63vtRLXkd0dDSCIPRIj+T8+fOkpaXxzjvvdGqV2VPmz5/PsWPHiI6ObnPGAVkGzMfHhx9++IGKigrWr1+vkPkGI4IgUFNTIyZJRPpEeXk5hoaGovhvNzl37hwmJia4ubnh5OSk8iRJQkICL7zwAm5ubvj7+7N7924WLVrEyy+/3KNxBEHo1JItNTWVhIQE7rvvvhte27hxI6+88gr//Oc/ef/999u9NnnyZNTV1Tl58mS77xsZGTF58mT8/f1ZuHAhqamp/d621NjYSGRkJCNHjhxQbRMiqkVeRTJlSvvV87/j5OSEi4sLkZGRNDY29k9w/6OkpITjx49z5coVxo0bx+TJk7tcEcwvauLj9w2oKzdmtL01Tz8NDg6KiUUqlfLWW28xffp07OzsuHjxIvPnz1fM4F0QGQlSKYwcCba2vR/n7wmSJ6c8iYmOicLiHEy0tMhEWjMzQV9fVmnUUde9hoYGRkZGw36RUqRvyB/UB7oQ9lCku61OixcvJiwsjPz8fIXOP3r0aGpra3usP9rjJElycjIuLi7o6ChGeVsurNfdm8bm5mYiIyPR1tbmjjvuUEgMcoKDg7Ht5Orn4uLC5s2b+f7774dtJrKxsZHW1lYxSSLSJ8rLyzE1NVV1GIOGqKgoAgICkEgkKq8kOXnyJL6+vmzfvp2ZM2dy9OhR8vLy2L59e4+tfHfu3Imenh633HILH3/8cbue82+//RYDAwNuu+22Do/95z//yVNPPcXjjz/Orl272r6fm5tLa2srDh08kUkkEuzs7GhqauLgwYOcPXuW6Oho6urqehR3b5BX3Ziamvba8lhk6FFSAvHxsm25YGtXeHh4YGpqSkxMTL/c6NfV1REdHc25c+dwcHBou0fqSnC7qAieebmI6godzMylvPl/5lhbKy6mp556is2bN7NixQpOnDiBk5OT4gbvBEEAed61L3JLYoLkL6RS2LVLVkmlpSXTqukq+WRiYkJFRUW/xScy9BBtgFVHd6t47rvvPtTV1fn+++8VOr+Ojg4uLi49Fm/tcZIkJSVFoc42VVVVaGpqot3VEsr/aGhoYOHChejr63Prrbf2uzPGvffeS0NDA4cPH+7XeQcKtbW16OjoiBUAIn2ioqJC1LXpAfIkCYCzszNXr17t1OFF2YwbNw4XFxfGjBnDxx9/TGhoaK/PB//973/x9vZGKpXy2GOPMWfOnLbXvv32W+666y50dXU7PFYikfD222/z8MMPs2rVKn7//XcATp06BUBgYGCn8y5dupQTJ05w8uRJNDQ0OHbsGMnJyUp1vUlNTaW+vp5x48aJjk4ibRw/LnsA9/KiW4kEiUTCuHHjqKurU6rjTUtLC8nJyRw7dgwNDQ1CQkJwc3O7aUtdTg68/Tak5hSjZ1rFE0+2Ymmp2M/77NmzsbS0ZP/+/Xz66acKHbszLl+WJX+0tTtviboZYoLkLwQB9u2D8+dl2i5r1sgqdLrC1NRUrCQR6RMaGhro6OgM24VuVdLdShJTU1OmT5+ulOdsT0/PHou39jhJkpaWptCVsKqqKoyMjG5641hbW8ucOXP47bff8Pb2Vmiipru4uLgwYcIEvvvuu36feyBQU1Mj2v+K9AlBEKioqBArSXpAeXk5NjY2AFhYWNDc3ExlZaVKYjE0NGTPnj1ERkby1ltv9Xqc1NRUoqOjeeGFFwgLC2PPnj1ERUWRl5dHWloa8fHxHbbaXI9EImH79u1Mnz6dF154oa1tU1dXl5deeqnT43R1dRk5ciTnz59n/PjxTJ06leLiYsLDw7l27ZrCV+iLioq4cuUKAQEBCmsPFRn8NDb+JQQaHNz94zQ1NfH39+fKlSttoqWKQhAErl27Rnh4OCUlJUydOpXx48d3q3I4PR3eeQfyS6sRjK4yfn44t3gFKDQ+gNtvv52UlBRCQ0NZt25dv5wL//xT9jUwsOuWqM4QEyR/IQjw3Xdw6pRMpHjVKlmS8GbIK0nEVgmRviA63KiGnujBzJkzh4iICIVX+bq7u/d4caHHSZLS0lKFCs7JkyQ349VXX+Xs2bP88ccfSCQShbX79JR7772Xw4cP90uJ9kBDFG0V6Ss1NTVtblEi3UNLS6tNuyMzMxNjY2OVVuJMnTqVZ599lpdffpmYmJhejbF3716MjY258847AbjllluQSCQcOXLkpq0216Ours4LL7zAhQsXCA8Px83Njffee49PPvmEH3/8scNjvvnmG6Kjo3nuueeAv1YuvLy8uHTpEidPnlTYimV9fT0xMTH4+vqKTjYi7Th3DurqwNISvL17dqyxsTE+Pj7ExMQoTMyyvLyckydPcunSJby8vJg2bVq3k9lJSbB1K9TXg9T0Mr7zjjLJ1atTt5b6+noOHjzIww8/jKOjI9OmTeOLL77o9sOLmZkZ48ePx8zMTOl/V9XVEBsr2w4K6vnxYoKkPYcOQViYbHvpUpgwoXvHGRkZIZVKxSoAkT4hireqBh0dHRobG7uV5JwzZw4NDQ0cP35coTFYWlpSVlbWo2N6nCRRtH9xfX39TRMemZmZbN26lWeeeYZJkyYhCEKniurK5p577qG2tvYGYcDhgJgkEekr5eXlmJiYoKbW41PPsCQxMZHm5mZaW1sBWQWGu7u7yls2Xn75ZUaPHs2SJUt6JSKZlJTUboXa3NwcPz8/fv/9d7799lvuvPPOTltt/k5oaCiurq5s3boVgNWrV3PPPffw0EMP8e6777aLr6GhgaeeeooFCxa0c8OQSCQ4ODgQEhKClZUVp0+f5sKFCzQ0NPT4vckRBIGYmBhsbGxEoVaRdggCRETItoODb7T97Q5OTk7Y2Nj0WZ+kvr6eCxcucPr0aaysrAgJCcHBwaHb55jz5+Gjj6C5Gdw9mzGbuQcN7WaCnG7MKKSmpnLPPfdgYWHBXXfdxfHjx1mwYAF6enosX74cOzs71q1bR0FBwU3nTU5OZsyYMUo/F0ZGygRGnZxgxIieHSsmSNoTHg6//irb/sc/euYSpKamhrGxsahLItInxEoS1aClpYUgCN1qa/bw8MDFxUXhLTeGhoZUV1f36JgeP6l0t/Kju+jo6Nz0RvSZZ57BwsKCZ555hqamJtTU1FSmi+Hm5oampibp6ekqmV+ViEkSkb4i6pF0n927dxMQEMDo0aNZuHAhINOEUpbw57vvvsuKFSt44okneOWVV3j//ff58ssv+eWXX/jzzz+Jj48nMzOTnTt3MnPmTC5dukRlZWWvVmV8fHxISkpq93B366238ssvvxAXF3fTVhs5zc3NPProo6Snp+Pn5wfIEh67du1i0aJFPPPMM3h4eLBv3z6kUil5eXnk5eV1ah2voaGBh4cHs2bNorW1lbCwMNLS0tqSVD0hIyODhoaGdm5pIiIAqamQlydr3eiLnayPjw8NDQ1kZGT0+NjW1lbS0tIIDw9HKpUya9YsPDw8enRvdfIkfPYZtLaCnx+MvfMMLZI6bA1tcTNr74BYUVHBHXfcQXx8PC+99BLJycmkpqaydetWjhw5QkZGBo8//jj79+/H3d2d9957r1P3K5AlSZTddn29YOv06T07VkyQtOf0aThwQLZ9990QEtLzMURdEpG+IiZJVIOGhgZqamrdWlSTSCTMmTOHQ4cOKbS9zsjIiKqqqh4do/JKkpslSa5cucJ3333Ha6+9hr6+Pk1NTWhpaalsJVVdXR1HR0cyMzNVMr+qkNv/ipokIn1BdLbpmtbWVn7//Xfuvvtuli1bxqJFi9qcJU6fPs358+fx761y4E1ITExk165dbN26lR07drB582Yeeugh5s6dy4wZMxg7diwjR45k1apVGBsb891335GVlYW5uXmP55owYQLFxcXk5eW1fe/WW2+lvr4efX19br/99puOUVZWxm233cZnn33Gp59+yr/+9a+214yNjfnvf/9LQkICY8eOZcmSJfj5+XHkyBGAm1Yv6unp4e/vz6RJk8jLy+PYsWPk5eV1+4JdU1NDcnIy48ePF4WuRW7g2DHZ18mToZsFUx2ioaHBuHHjSE5O7nayUhCEdp/pyZMn4+fnh56eXo/m/uMP2LtXlkgICoIVKwRO58r8jIOcgtrdo0mlUpYsWUJZWRlHjx5tS15ev4+LiwuvvPIKaWlpLF68mCeeeIIJEyZ0WHItCILCTQQ64vJlKCzsuWCrmCBpT0wM7Nkj2549G67T6O4RosONSF+Rt9uI2jb9i0QiQUtLq9vOQnPmzCErK6vHQqtd0S+VJIpOkujq6nbZUyvveZf3rjc2NnbLCUeZqNqGUxWI9r8ifUUqlVJVVSVWknRATk4Or7zyCiNHjuT2228nKyuLffv28fnnn6Onp0dxcTELFy5k0qRJrFmzRikxfPbZZ206Hbfccgs5OTk0NDRQWFhIamoq586d448//iArK4vffvuNBQsW9LrtccL/GtEvXLjQ9r3AwECMjIy6dLWRk5KSQmBgIHFxcYSFhbFq1aoO9/P09OSnn37i5MmTaGtrs3btWoBuJy4sLCyYMWMGbm5uxMXFcebMmZuuRAiCQGxsLE5OTr1KIIkMba63/e2JYGtnWFhY4OjoSGxs7E1v/CsrKzlz5gxxcXGMHj2aGTNm9PgzKgjw44/www+y/992GzzwAGRVZpBblYumuiaTHCa1O+a1117j8OHDfPXVV4y8iY2JmZkZ27dv5/z58xgaGhIcHMyiRYvIzc1t26e5uZn6+nql/31dL9jaXRk8MUHSnsRE+Pxz2edm+nRYsKB37WUgqySprKxUmbubyOBHT0+P1tbWXrUJi/SNniRJgoOD0dHRUWjLTW+SJD1e4lJ0u83NkiTx8fHY2dlhYWEB0FZJokqcnZ2Ji4tTaQz9TU1NDbq6uje1ABQR6YzKykrU1dXFRNt11NXV8cADD/Drr7+iq6vL/fffz+rVqwkICGhbZW1tbWXx4sU0Nzezf/9+pTmkqKmp8frrr+Pt7c2KFSv48ssv0dXVxc7Oru2fra0tcXFxbf8fM2YM1t3xLv0bDg4OmJubc+HCBe666y5A5trx66+/4uzs3Olxzc3NHDx4kOXLl2Nvb09UVNRNH7oApk2bxpkzZ/jxxx/5+uuve7QCLZFIcHZ2xt7entTUVE6cOIGjoyMeHh4dJuzlbTaqcGATGficOCF7YBwzBv5nWtVnxowZQ0REBBkZGbi6ut7wemNjIykpKVy9epWRI0f22mlJKoWvv/4reTB/Ptx6q2z7z2zZN/3t/NHT/Ksqpba2lrfffpunnnqqW2LMciZMmMCpU6fYs2cPzzzzDO7u7jz//PMsXrwYMzMzAKUumNXU/CXY2t1WGzFB0p60NPj447/asR54oPcJEpC1Sqirq4uLLSK9Rm4DXFtbqzIDkOGKlpZWt5NTurq6zJo1i8OHD/Pkk08qZP7etNv0OEmijEqSxsZGpFJph2KO8fHxjB07tu3/AyVJ8vPPP6s0hv5G1CMR6StyPRJVi44OJC5dusTPP//Ma6+9xvr16zs8t7766quEh4dz5MgR7OzslB7TAw88QGBgIDExMeTl5ZGfn9+m5REXF0deXl7bhcbGxoa8vLwe/04lEgkTJkxoV0kCENSBfUR6ejpHjhzhjz/+4NixY1RXV3P77bfz9ddfY2xs3KM558+fz/z583sUqxxNTU28vb1xcnIiKSmJ8PBw3N3dcXFxabt21dXVkZyczKRJk8Q2G5EbaGyUWZ+CYqpI5GhoaDB+/HgiIyOxtbVta52RSqVkZmaSmpqKmZkZwcHBvW6ZbWmBXbtkQq0SCSxe/FfyoLaplvN55wGY4Tyj3XG//PILNTU1vaqAU1NT46GHHmLevHm89NJLvPTSS7zwwguMGjUKUG6S5HrB1u7oLosJkvZkZ/8l6OvjAytWQF/12iUSCSYmJm0C8CIivUHeciNWevYv2tra3a4kAVnLzcaNGxVWnKH0SpLm5mYaGhoUXkkCMteBjnpi4+PjWbRoUdv/B0qSpKSkZFhpdNTU1IhJEpE+IeqR/D975x0V1fW14WeG3hQLXRBEEVGxi2JBxF6S2HtLNFGT2BNN4s9EE2PUWGJNLImJJZbE3hUBRbGLAnZAAakqvU/5/phvJiJtgIEBnGetWUy55czlzr3nvGfvd+dHbkI3evToAgWSs2fPsmTJEpYsWYJXaZzuSomjo2OBM9Jy0tLS+Pfff5k4cSIRERHUr1+/xPto3bo1u3fvLvCzmJgYli5dyunTpwkNDUVbW5uOHTsyf/58evXqRdu2bdUmtpmYmNChQwfi4uIIDg7m2bNnNG/eHHNzc0JCQvJEPmrQ8CbXr/9X9lfVfr5169bF2tqakJAQ2rVrR3x8PEFBQQC0adOmVBFfcnJy4LffZKkTWlqyAe//+yQDcDnyMiKJCNuattSvmfdasGvXLjp16qRUxFdh1KxZk7Vr1/Ldd9/h7e3N6dOnMTExoWnTpqXeZlFIpf9FyygTRaIRSPISHQ2//AJZWeDkBJ98IjtvVIFcJHFwcFDNBjW8c2jMW9VDSdJtAHr27IlIJOL69ev06NGjzPuvUaMGmZmZiEQipSexSiSSyBUYVRu3QsEiSVJSEhEREbi6uirey87OVvtgXR4O/vz583K7SVc20tPTFSGuGjSUhqSkJKysrNTdjEqFXCQpaFZMJBIxffp0vLy8+Prrryu4ZUVjbGysKKF7+/btUokkzs7OREVFkZGRke/a//HHH3PlyhVGjBhB79698fT0VKk4rwosLCwwMzMjPDycmzdvYmxsTEpKikpu5hqqH1Lpf4atpS37WxwuLi6cP3+eixcvkpaWli/SqTRkZMgiAp4+BR0dmDYN3uz2SKQS/J7JDFs97T3ziJfx8fGcOXOGDRs2lHr/b2JqasqQIUMYMmSISrZXGCUxbNUIJHl5+RLWroX0dLC3h08/lZ03qqJWrVo8ePBAdRvU8M5hZGSkMQBWA7q6umRkZCi9vJmZGSBL1VcFcu0iNTVV6QnbEoskAoFApSKF3I+kIKM++SzImyJJTk6O2mej5SJJaGjoOyWS2NraqrsZGqooYrGY1NTUEqVHvAvIU1UKEgD27dtHaGgo+/fvL9MgpzyQSqWsW7cOKL1oHhMTg6mpab5r//nz5zl+/Dj79u1j+PDhZW4ryNIOLly4gJmZWZ70zbIiFApxdHTExsaGCxcuIJFICA0NxcnJqdy8YzRUTVRV9rcwcnNzCQ0NRSKRkJ6eTvfu3cucc5+SAuvWQWSkrArP55/D2wFmwfHBvMx4iaGOIe1s8ioK+/btQyAQKF3Su7IgL/vbvn3Rhq0J6QmsClhFYmaiRiABkpJg9WpITgZra5gxQ3nDW2WpWbMmqampiMVijUeehlJhbGxMVFSUupvxzqGrq1sicUquNagq6sfIyAiBQEBKSorSOkKJet4pKSmYmJioNMw5NTUVLS2tAm/m9+7dQ0dHh8aNGyvey87OVnu6jY2NDfXr1+fEiRNqbUdFUtBsrwYNypKRkYFQKCy2asm7hL+/PwsXLmTAgAH5RBCJRMLSpUvp37+/ohJMZSE3N5fp06ezfPly1qxZg4mJSYFlOovj8ePHNGrUKM/9RCwWM2fOHNzd3VUysHr9+jWrVq3CycmJnj170q1bN0JDQ8u83beJjY1FV1eXLl26kJSUhLe3N8+fP9eUGdSgwMdH9resZX/fRiqV8vz5c7y9vUlKSqJz585oa2sTGxtbpu2+fg0rV8oEEhMTmDcvv0AC4PvMF4DOdp3R1crbN9u1axf9+vWrUrn/6ekgt0oqKtUmLi2On6/8TGJmIhbGFu+8QJKaKosgefVKlk42axaUR9C3gYEBQqGwRDPSGjS8iaGhoeb8UQMl9STR1dVFW1tbZSKJUCjE2Ni4RL4kJRJJVG3aCih8PQoSXu7du4eLi0ueGbnK4EkiEAgYNWoU//zzT4n+4VUViUSCSCRSe+llDVUXuaeNxrRVRkBAAH379qV9+/bs3bs33+f//vsvDx48YOHChSrZ3/Hjx1m8eDHbtm3j9OnTBAcHk5SUVKJBfGpqKmvWrKFBgwbs2LGDrl27smrVKjp06ICXlxfe3t4latOTJ09wcnLK896RI0cICgoiJCQEW1tbLC0tMTMzo3bt2tSoUQMjIyP09fWpXbs2586dK3L7e/bswcbGhq+//poOHTpw9uxZ6tSpw+DBg1XaQcrNzeXBgwc0bdqUWrVq4e7ujqurK48fP8bPz49Xr16pbF8aqiavXoG8IF63bqrc7iv8/Px4/Pgxrq6uuLu7U7t2bZo1a8aDBw/Izc0t1XZjY2HFCoiPh9q14csvoV69/MvFpcUREh+CQCDIZ9iak5PDjRs36KbKL1wBBATIDFvt7GSmrQURnRrNz1d+JikrCWsTa+a5z3unBZLMTJkHSUwM1KoFs2dDeQWNyqPZNZ4SGkqLrq4uIpFIU0q6gimpJwn8Z7KrKkpq3lqidBtVl/+FooWX27dv50m1AdmNtzIM1keNGsVPP/3EuXPn6N+/v7qbU67IT2p1i1Maqi7p6envjMlxcVy/fp0+ffrQqlUrjh07li9CSyqV8sMPP9CjRw86dOhQpn1lZGQwa9Ystm7dSp06dXj9+nUeYcTQ0BBra2tMTU2pWbNmnseb7z148IBNmzaRkZGBnp4eWVlZPH36VFEtpm/fvuzevbtE5rKPHz+mV69eed5r166dQhjS0tJCW1sbLS0txUP++tChQ4wYMYLr168rKl28TUREBDk5OURERGBjYwPAoUOH6NChA/Pnz2f9+vUlPZwFEh4ejrGxMZb/X89VIBBgbW2NhYUFoaGhBAQEYGlpiYuLiyYa7x3F11fmSdKkCajClikjI4P79+8TGxuLk5MTjo6OeVIPLC0tMTIyIjw8PJ8QWRzPn8tSbNLSZCWKZ82SDXwLwu+5zIukmXkz6hrmNSvW1dXF3d0db29vZs+eXaI2qAtlDFujUqJYE7CGtJw06tWox6wOszDRU+3kYVUiOxvWr/8v4mjWLCjvwCEjIyOVDpw0vFvIxzI5OTmaMsAViJ6entIlgOUYGBgobDlUQUnLAJfYk0TVkSTJyckFCi/379/n5s2bzJo1S/GeWCxGJBJVisF68+bNcXFxYc+ePe+ESKKtrV3pfBE0VB00JaRl3L59m969e9OsWTNOnDhR4DE5e/Ys9+7d4++//87zvlQq5eHDh1hZWSlV/jAoKIiRI0cSHh7Otm3b+PDDDxGJRMTExBAVFcWLFy+IiooiJiaG5ORkkpKSSE5OJjo6muTkZMUjPT0dHR0dcnNzMTc3Z/z48QwePBg3NzfFNcHDw4PXr18rfRySkpJISEigUaNGed63tbXl+++/L3b9sWPH0r59e95//32uXr1a4H3Jw8MDiUTCixcvFCJJ8+bN6dOnD48fP1a0QyqVltrnSiQSERoaSps2bfJFSWlpaeHk5IStrS0PHjzgwoULNGzYkIYNG2rKA79DvFn2t3v3sm1LJBLx9OlTnj59irW1NV5eXgWmMAoEApydnbl16xYNGjRQ+nx7+BA2bZK1uX59madEYdp2tiibK5FXAJlha0EMHz6cefPmKcq/V3aePv3PsLV9+/yfP096ztqra8nIzaC+aX1mus3ESPfdva/l5spMfUNDZSlkM2fKhLXyxtjYWBNJoqHUyCdcNCJJxfJmBI+y48nc3FyV+ruVNJKkxJ4kqo4kefz4cYGlJjds2IClpWWevPTKFNEgEAgYPXo0R44cqfa5bdnZ2ZUiekdD1eVdKpddGMHBwfTs2RMnJydOnjxZqOBsbW2Nra0tH374IcuWLePp06csW7ZMIcz+8MMPRe5HKpXy66+/0r59e4RCITdv3uSjjz5CIBCgo6ODnZ2dwvNj9uzZrFixgt9++419+/Zx+vRpAgICuH//Pi9evCAtLY2cnByuX79Oo0aNyMzMpH379nTs2DHPTe7evXs0L0FN0ydPngAUOcstFosLTQcyNTVl37593L9/n++++67AZdq2bYuhoSF+fn553k9OTlYM2Pr06YO1tXWpqweFh4djZGSkcGEvCAMDA1q3bo27uzvx8fF4e3sTFRWl8St5R5CX/a1bF5o1K902pFIpUVFReHt7Ex8fT6dOnWjdunWRHk9mZmaKaBJluHlTFhGQnQ2NG8OcOYULJADXXlwjMzcTcyNzXMxcClxmyJAhiEQijhw5olQb1E1Rhq3hieGsubqGjNwMGtRqwKwOs95pgUQkgs2bZYbEenoyQa2ivP016TYayoqurm6Joxo0lI03I3gKIzQ0lDt37iheZ2VlqVTIKmkkido9SUJCQvJViElKSuLPP/9k6tSpeQSRnJwcdHR0Kk1Ew8iRI0lPT+fYsWPqbkq5Uhl8YDRUbTSRJLBlyxZ0dXU5c+ZMkVV+mjdvzv3795k2bRr/+9//aNSoEd9//z2urq7UqFGjyN9iamoqw4YNY9q0aUyaNInr16/j4lLwAEZZdHR0aNmyJbdu3aJ///4MHz6czz77TNHBuHXrFrGxsflSI4tCHsnxdiSJnNzcXNq2bYtQKMTU1JR69erRvn17xo0bxw8//MCBAwf46quvMDAwYNCgQYW2293dPY+pbFpaGt7e3tjb23Pr1i2uXbtG3759WbZsGf/884/S7Yf/ZvUbN26slNdO7dq16dKlCy4uLoSEhODv768pQ1jNebvsb2m6LomJifj7+xMSEoKLiwtdunRRKvJJIBDQuHFjnj59ikgkKnJZX1/Ytk028G3duviqJFKpFJ9wmROth71Hoee/jY0NnTt3Zv/+/cW2V92kp8OtW7Lnb6faPH39lLVX15KZm0nD2g2Z2WEmhjrvbuqcWAxbtkBICOjqyqoeNWhQcfvXpNtoKCul8cfQUDaEQqEigqcgjh49SsuWLWnXrh2//PILUqlU5ZP05epJkpqaqtJIkpSUFCIjI/OJJGfOnCEjI4PJkyfneb+yDdYdHR1xc3Njz549jBgxQt3NKTcq23HXULUQi8VkZma+8yKJgYEBRkZGSoWdGxsbs2rVKiZOnMjDhw/p06cPJiYmmJiYULdu3QLXiYuLo3///jx+/Jh//vmHIUOGqLT9JiYm7NmzBw8PD2bNmkVAQADu7u5s3rwZZ2dnupcgl+DZs2fo6ekRHx9f4D1FIBAQGBiIkZERCxcuJDU1lYiICB49esSJEydITExEX1+fEydO0Llz50L3M3DgQGbOnMnkyZOZP38+o0aNwsTEhE8//ZSlS5diY2PD/v37GT58ONOnT6dbt26FHt+3CQ8Px9DQEHNzc6W/t0AgwNbWFisrK548eYK/vz82NjY0adJEE/ZbDXn8WFb2V1e35GV/s7KyePDgAS9evMDR0ZFGjRqVOE3L3NwcQ0NDnj17VqB3j1QKx46BvFCfhweMHFm8mPPk9ROiU6PR1dLF3bboLzZ8+HDmzJnDq1evKnWVG7lhq62tzLRVzuNXj9lwfQPZomwa123Mp+0+RU/73Y2slUhg+3aZEbG2Nnz6KRSidZcbxsbGZGZmasoAayg1Ja20okE1FORLIpVKWbZsGQsXLuSDDz7AwcGBWbNmcePGDXJzc1UeSVKu6TaqjCS5f/8+QD6RRM7b+6qMg/WRI0dy6tQpsrKy1N2UcqMylF3WUHVJT08vtMz3u0SNGjVITk4u0TrNmzdn2LBhmJiYkJ2dTVpaWoGD+NDQUDp16sSLFy+4ePGiygUSOQKBgKlTpxIQEEBycjJ//PEHy5Yt4+7duyUaAA0dOhQbGxtatmzJb7/9li/1RFtbm88++4yaNWsyd+5cFi9ezB9//MGVK1d49eoV8fHxREVFFSvMfP7552zZsoX9+/fj5OSkOD52dnb4+/vTo0cPtLW1Wb9+PYmJiYWm7ryNRCIhLCwMJyenUlVs0tbWpkmTJnh6epKbm4u3tzdPnjxBLBaXeFsaKi/ygk8dOoCynr1isZgnT57g7e2NSCTC09OTJk2alMrHRiAQ4OTkRGhoaL5KDhIJ7N79n0AycCCMGqVctIu87K9bPbdiIyqGDBmCtrY2Li4uLFmyhJcvX5b4e5Q3Uul/qTZdu4L8J/0g4QHrrq0jW5RNE7MmfNb+s3deINmxQxZxo6UF06aBs3PFt0NfXx8tLS1Nyo2GUqOJJFEPBR13X19fvvnmG7755hv++ecfVq1axd9//83BgwcBVB5JUmXSbUJCQhAKhTi/dZWV59m+7WhbGb0xmjRpQm5uLvHx8epuSrlRWSoKaaiayFNt3vXyvzVr1iQ5ObnUXhTyUrJviyS3bt3C3d0dLS0tAgICaNmyZVmbWiytWrUiKCiIiIgIvvjiixKLqI0bNyYwMJDRo0czdepUBgwYQGBgYJ6SpWlpaQUeK4FAgJmZmVKijEAgYMqUKQQHB/Pll1/mOT6enp5cuHCBu3fvMnDgQLS1tendu7dS7Y+NjUUgECgq2pQWIyMj2rdvj5ubG1FRUfj4+BATE6PxK6kGxMfDvXuy5z16FL+8VColJiYGHx8foqKicHNzo127dmWOwLO0tEQgEBAbG6t4LzdXli5x6ZJMEBgzBgYM+E8cKIqkrCTuxMhyxrvZdyt2eSsrKwIDA7GxseHbb7+lSZMmpf0q5cbjx7Kyx28atgbHB7Ph+gZyxbk0M2/Gp+0+RVfr3Z0skkplotq1azIh7eOPS++xU1Y0ZYA1lBWNJ4l6KEgk2bBhA02bNmXJkiUKO42RI0dy9epVevXqRbt27VS2/ypl3BocHEyDBg3ymY8VJpJUxkgSuWFfQkKCmltSflTG466h6qDxI5FRs2ZNcnNzS31jlleP2bFjB0ePHiU9PZ1z587RrVs3HBwcuHz5Mvb29ipscdEYGBhQu3btUq9vYmLCli1bOHbsGLdu3aJVq1YYGxvTunVrJk6cyK5du/jiiy9UIq7Z2dmxfPnyPMdnyJAhREZG0qpVK7Kzs/Hx8WHgwIFKbS88PBwHBweVCX9169alW7duNGzYkMDAQAICAko026Gh8nHhgmxg2awZWFgUvWxKSgoBAQEEBgbSsGHDEqV9FYdAIMDe3l5h4JqZKSvxe+eOLF3i449l0RPKcvH5RSRSCY3qNKJejXpFLisSidi1axfDhw/nzp07tG7dmq1bt5bl65QLctuiDh1kXix3Y++y6cYmRBIRLSxbMK3dNHS0VFdhoaohlcLevbIqTQIBfPQRVIAWXyQakURDWdCk26iHt8WpqKgojhw5wvTp0/P1p1xdXTlz5kyJy9gXRZUqAVyQaStUTZGkOkeSaNJtNJQFTWUbGXKz1uTk5FKlHjVq1Ih58+Zx+PBhDhw4gK6uLhKJhF69erF//36VCVEhISF89913WFpa0rFjR9zd3ctVfBkwYIDC0TwwMFDxaNq0KR9//HG57bdLly68//77uLm5MXfuXKWvcSkpKbx+/Zq2bduqtD3ywayNjQ2PHj3Cz8+P+vXr4+zsrLn+VjEyMuCKrDouPXsWvlxOTg4PHz7k+fPnODg40K5dO5WWO5RTv359Hj16RFRUKn/8YUJUlEwMmD5dVslGWUQSERefXwSUiyJZt24dc+fOpW/fvqxevRpPT89KF1GYlASBgbLnHh5wK/oW225vQyKV0Ma6DR+1+ggt4bvreyGVwr//yoQkgQAmTgQVX/pKhUYk0VAWNOk26uFtceq3337D0NCQcePGVcj+q4xxq1gs5vr168yZMyffZ0WJJEVVhVAHmkgSDRqKJj09XalqDNWd+Ph4hEJhqQUjPT09Vq5cycqVK3ny5AknT54kJyeHWbNmqWRgJZVK2bx5M3PnzsXa2hotLS02bNgAwNWrV3FzcyvzPgrDyMiIzp07F2nCqmq0tbU5fPhwidcLDw/Hxsam3FIQdXR0aNasGfXr1yc4OJjz58/j7OyMvb19panspqFoLl2SldKtV69gEUIikfDs2TMePnxI7dq16datm8orB76Jnp4e+vp2LF6cgVBoQo0apSvZejvmNqnZqdTUr0kry1bFLp+UlISdnR0nT54sZcvLH39/mddGo0bwguv8fvt3pFIp7W3aM6nVJISCd/s3d/QonDsnez5mjCzapjJgbGxMVFSUupuhoYqiEUnUg66ursKbLycnh61btzJ+/Phyvf+9SUmNW0skkqjSuDU4OJjk5GQ8PDzyfVaUJ0llG6zr6+tjbGxc7UUSjSeJhtKSlpamSbcBbt68iYuLi0qORaNGjZg5c6YKWiUjISGBjz76iGPHjjF9+nR+/vlnDAwM+N///seqVatUGu5YlRGJRERGRtKpU6dy35eJiQkdO3YkLi6OoKAgnj17RrNmzUpUTUdDxSMWg4+sOi5eXvl9PuLj4wkODkYqldKmTRssisvFUQEREXDkiBNRUfG0bClhzhwh/z+/UyLkhq1d63ctNLoiIyODZ8+e4eLiglgsrtTCnlj8n2FrLed7/H5HJpC427ozrsW4d14gOXlS9gBZ1aO3SyOrE00kiYayUFCVFQ3ljzzdJjMzk8OHDxMXF8f06dMrbP8lNW5VWySJn58furq6Bc5OFhVJUhkH62ZmZtVWJJFKpZpIEg2lRiwWk5WVpUm3QSaSlDRFIzMzk6lTpxIbG8uJEydKVeGiOM6dO8f48ePJzc3lyJEjvPfee4BMEPjzzz8ZPXq0JhLo/4mLi8PAwECpMs6qwsLCAjMzM8LDw7lx4wZ169alWbNmGuGxknL7NiQmQo0a/5mAgkwsDgkJ4eXLlzg7O+Pg4FAhAsLDh7B5M+Tk6GNpKWLChFjMzKxLvJ2I5AhCX4eiJdSia/3CTUxmzZrF1q1b+eKLLyq9SHL3rizdJlkaxTXxrwiEUrrU78KY5mMqXVpQRXPuHBw5Ins+ZAh4eqq3PW9jZGSkKQOsodTII0mkUuk7/1uvSPT09Hj58iWGhobY2tri6emJi4tLhe2/ypQAvnjxIm5ubgXm5suFkLdVvsoYSQIy0z155YnqhkgkQiKRVMrjrqHyIy//WxnFzYokOzube/fulUgkiYmJoVu3bhw4cIDz58+zfPlylbdp3rx59OrVi2bNmnHv3j2FQAJw4sQJIiMjFSq/SCTC39+fZcuWERwcrNK2VBWioqKwsbGp8E6VUCjE0dGRHj16oKenh4+PDyEhIXmqAWlQP1IpnD8ve+7hITNGzc3NJSQkBF9fX/T19enRoweOjo4VIh7cugXr10NWFjg7C5g1S0RKSulSFORRJK2tWlNDr+DJshcvXrBjxw66d+/OmjVr+OWXXyr1ANbPD16kvCDR7CgCoRhPB0+NQILMf+Sff2TP338fevVSa3MKRFMGWENZkHu6icVidTflnUJXV1dxzCMjI/nss88qdP9VIpJELBbj5+fH1KlTC/xcIpEA5OlEVOaIBm1t7Wr7Q8vJyUEgEJSLmZyG6o/ctPVd73QGBQWRm5vLxYsXSUlJoW7dutSpU4e6devSrl27fBW+AgMDGThwIBKJhEuXLvHvv/+yePFiBgwYQIsWLcrcnkePHjFq1CiCg4P5+eefmT17dr5B28aNG3F0dCQkJISVK1dy5swZEhMT0dLSYtWqVVy8eLFCZwDUjbzUuzq/s56eHi1btsTBwYGgoCC8vb1xcXHB1tb2nf+NVQbCwuDZM5k40rWrlOfPI3jw4AHGxsZ06dKlQj3VfH1lFUmkUmjdGj78ELKyrPH1fUxubm6J7unpOelcf3EdAE/7wkMKVq9ejZGREYcOHVJcY1RVpUfVREdLOXstkufJ4bRr+oSejj0Z0mTIO/878veHv/+WPe/bF/r1U297CuPNMsCqrLqp4d1AR0cHgUBATk5OuUToaigYXV1dhEIhAoGAe/fuFVi8pTwpN+NWkUhEZmamSiJJrl69ysuXL+lXyNVXLji8OQMhEomQSqWVckZaIBAglUrV3YxyQS5MvesdBw2lIzMzM58A8C5ibm6Oh4cHd+7c4fz58yQmJiquGXPmzGHVqlWKZY8cOcKYMWNwdnbmyJEj2NjY0KxZM44fP864cePw8fGhTp06JW6DRCLB29ubrVu3cvjwYRwcHLh69SqtW7fOt+yrV6849/9ufePHj6dNmzZ8/vnn9OvXD0dHR7p3707Pnj25dOkSDRo0KOVRkfHll1/y/Plz2rRpQ9u2bWndunW5pLNIpVJyc3NLLbTHxMRgYmJSYQZjRVGzZk06depETEwMwcHBhIeH07x58zKVZNZQduRRJM2apXH79k1ycnJwdXXFysqqwu6hUikcPy57gCyiZeRIEApBR0d2/sbExGBnZ6f0Ni9HXiZXnIttTVvsTOxITk7OJ/i8evWK3377jVmzZlGjRg3atWtHcHAwWVlZqvx6KkEqlbJq73WeJWVTx+EFw9p60b9R/3e+n3PtGuzaJXveo4csiqQyY2hoSEZGhrqboaEKIhAIFP4YhoaG6m7OO4Oenh4CgQATExOaNWtW4fuvUaMGGRkZSqfpKR3vKVdeVNFBPHz4MBYWFoVWSyhIJJFHNFRWxa+6iyQaNJSGyuojVNHY2dnh6+vL48ePefXqFbm5ubx8+ZLJkyezb98+RfRcXFwcgwcPplevXly8eBEbGxtAdmPZtWsX0dHRtG/fvsTpLgcOHKBhw4b06tWL4OBgli9fzu3btwsUSADq1KnD3r17+fXXX4mJieHmzZssXrwYNzc36taty9mzZzE0NKRHjx68ePGiTMdm165dXLx4ke+//x4vLy9q1apFo0aNGDlyJKtWrSpRaGRRrFu3jnr16vHgwQPFe8nJyTx48EBx/ItCnmpTWRAIBFhbW+Pl5YWlpSVXrlzh1q1b+by8NFQML1/CjRsiEhISMDQMwMrKCi8vL6ytrSts8C2RwJ49/wkkAwfCqFEygUSOjY1NiX6zuaJcvv3jW44ePcqGuRswMDCgdu3a+Pv751nuzJkzpKenY2lpqXhPX1+/Qv17lEEqlbLz9n7O+qYBMOE9ewY4DXjnBZKbN+GPP2QiW7duMHRoftPhyoamQomGsqA5fyoebW1tpFKp2iZ05BqGstEkJRJJ5OFtZUEqlXLkyBEGDhxYaE6uvMP6pkgi9yOpjDeyytgmVZGdna0Z5GooNRqRrWC0tLSoU6cO48eP58WLF1y9ehWQmdFJpVIGDBiQb3bD1dWVGzduYGxsTIcOHTh06JBS+0pPT+fjjz/G0dGRy5cvExISwuzZs4u9lo8YMYJPPvkkz6BHjqWlJefPn0ckEtGrV68yucTn5OQwc+ZMkpKSePDgATt37mTAgAE8ffqUefPmcebMmVJv+022bdtGQkICffr0ISIigk2bNuHo6IiLiwt169ZlwIAB7Nmzp8B15aKWtXXJDS/LGy0tLRo3boyXlxcA3t7ePHr0qNqmgFZGxGIxu3ZFExX1ggYNshg+vDONGzeuUD+OnByZQevFi7LB7ZgxMGBA/oGutbU1CQkJSvvZfLnqS67eu0pNw5pM7DWRjRs30rJlSz7//PM859iQIUOYNGkSn3/+ObNnz0YkEqny66kEiVTCn3f/5J9zEYhzdGjXyJ7JfdzV3Sy1c+sWbN8uE0g6dZJFHlWFbq1mkKuhLGjOn4pHIBAgEonUJpLIi0ioXCRJSUnB2Ni4zGZjDx8+5MmTJ7xfRBxfYZEklXWwLhKJqq1QohnkaigLldVsubLQvn179PX1OXv2LCC7gDs7O3Pr1q0Cl3dwcODKlSv06tWLwYMHc/To0WL3sXv3bpKTk9myZQvu7u4qu1bVrl2b2rVrk5qaqtSA/MaNG7i4uODh4cHcuXPZs2cPjx8/VpwjWlpaODs7M3bsWNasWcPEiRPR1tZWDP7Lwv379wkODmbjxo1IpVIaNmzIp59+ynvvvcepU6eYOXMmJ06cYMyYMQUKPi9fvsTIyKhSV5QxMDCgTZs2uLu7Exsbi7e3Ny9evKi2UY6VAalUyosXLzh50gd/fwmWlhZMmmRb4SmGqamwejXcuwc6OvDJJ9C1kAI0RkZGGBoa8vLly2K3e/fuXdYdX4erqyvLpi7jp6U/8cknn7Bx40YCAwPZtm2bYlk9PT22b9/Ohg0b2LBhA7169apUVf9EEhFbb23lSkQAsSGNaVy3MePes6sSYkB5cvs2bNsmi0Lq2BHGjq0aAgnIzjnNIFdDaZGn22ioWBITE2nXrp1a9i0UCjE2NlY6QrlEkSSqMEc6cuQIhoaGRXZ85R3uNwWZyjpYz83NJSgoqNoaGFbW466haqA5f4rm+++/Jzc3l759+wKQlZWFWCwmJiam0HWkUilxcXGYmpri5ORU7D5+//13+vbti4ODg8raLRKJGD58OOHh4Zw4caLYnN7o6Gg++OAD9PT0sLS05PDhw4wZM4bGjRuTlpZWoAB+8eJFGjZsqJLyw/v376dGjRp89NFHnDlzhlGjRnH9+nV+//13+vTpw4gRI9DX1+ezzz4rsC3x8fGYm5uXuR0VQe3atenatSvOzs4EBQVx+fJlkpKS1N2sakdSUhKXL18mKCiI1NTm1K5tg729PhXdFXj5ElasgPBwMDSE2bOhVaui1zE3Nyc+Pr7IZbKyshg+eTimjqa4tXejm303xWcdOnRg/PjxfPPNNyQmJireFwgEfPrpp3h7exMcHEzbtm0VEWfqJFecy+Ybm7kdc5uMBAtsccfG1AL3dzyI5M4d2LpVJpB06ADjx+dNzarsaCIBNJQFjchW8Tx69Ii4uDh69OihtjaUpAyw0gYfqampKvEjOXLkCL179y5ypkUujryZJ15ZB1uBgYFkZGTQuXNndTelXKjMETwaKj+a86dwfH19+fHHH/nhhx8U/kyzZs3i+fPn7N+/v8B1MjIyGDhwoKKyibOzc7H7cXBwwN/fn6ysrAJLrpeG5cuXc/78eU6dOkXz5s2LXFYqlTJkiKxqxMmTJ7GysgLg9evX3Lp1i/v37zN06NB8602YMIEBAwawe/duxo4dW+q2Hj58mHXr1jFo0CD09PRo0qQJf/75p+LznJwcxo0bh52dXYFllqVSKfHx8cV+z8qEQCDAzs4OKysrnjx5gr+/P/Xq1aNJkyaa32MZyc7O5sGDB0RFRdGgQQPatXNj8WIdBALw8qrYWfjnz2UlflNToU4dmDEDCsiOy4e5uTlBQUFFLvP1118TKg1lkOcg2tm0o5ZBXrHyp59+4uDBg3z33Xf88ssveT7r2rUrt27dYvDgwfTs2ZOaNWvSs2dP+vTpQ/v27cnJySEjI4OMjAysra3L9beVJcpi4/WNPH71GB0tHRqnfkKUYV3atYNKHBhW7ty5A1u2yAQSNzeYMKFqCSSgiQTQUDY050/Fs3PnTqRSaYVXtXmTkpQBLlG6TVkjSWJiYrh27VqRqTaAQkB504BOLBZXStPWy5cvo6+vX6gBYlVHky6hoTBu377Nvn37uHz5Ms+fPy8wx72yipvq5tWrV4wdOxYPDw/mz58PyNJifvvtNzZs2FBgmd+MjAwGDRrE9evXOXnypNLhiosXLyYmJoZff/1VZe2PiYmhSZMmSs0GpKWlcfXqVZYsWaIQSEAW8dCzZ09mzpyJhYVFvvX69+/PiBEjmD17tlKpAW+TnJzMxIkTGTRoEF26dOHnn3/Ot0xGRgYffPAB9+7dY+fOnQVGxKSnp5OVlVVpS5kWhY6ODi4uLnh6epKTk8P58+d5+vSpUka1GvIikUh4+vQp58+fJycnB09PT1xcXAgJ0eHVKzA2ls3GVxTBwbBqlUwgsbWF+fOVE0gA6tatS2ZmJmlpaQV+7u3tzZqNa3Ab7Ebt2rXxapA/8tfKyor//e9/bNy4sUAjaVtbW65evcrVq1eZPXs2UVFRTJkyBVdXV9q2bUvXrl3p06cPXbp0KbeUsIzcDNZeXcvjV4/R19bnI5dZxD6RmS97eJTLLqsEgYF5BZKJE6ueQAKaSAANZUMjklQsEomEnTt3Ym1tXWbrjrJQkjLAFRpJcuzYMQQCAf379y9yOXlH9c3SXhKJpFL6fvj7+9O+fftqOzuniQTQUBjDhg0jLCxM8VogEGBhYUG9evWwtbWlXr16dO/eHT8/v2Kjx6oTe/bs4dtvv8Xa2pp69erleciPy7Rp08jMzGTXrl1oaWnx4MEDPvnkE8aNG8dHH32Ub5tpaWkMHDiQ69evc/z48RJFrjk5OTFx4kR+/PFHJk+erDCuKo709HTmzJmDg4MDX375ZZ6bmqWlJXFxcUptx9jYGG1t7VJ1Rn755ReaNGnCnDlz+Ouvv5Re7/79+/Tt25fExER+//13Jk6cmO/+kZyczMCBA7l9+zYnTpygffv2BW4rPj6e2rVrV0qRXlmMjIxo3749CQkJBAUF8ezZM5o3b16gOKUhL/L0tuDgYIRCIe3bt8fMzEzxubzsr4eHzA+kIrh8WVaqVSKBJk1g6lQoSZCYtrY2derUIT4+Pt/1QCqVMn/+fBw8HWjavCn2pvY4mBacqjdz5ky2bt3KrFmzOHfuXL7fmJaWFm5ubri5ufHtt9/y6tUrHj16hIGBAYaGhvj7+zN58mTi4uIKNIguC6nZqay9upaolCiMdI2Y6TaTh9fqIxJB/fpgb6/S3VUZ7t6F336TnTvt21ddgQT+S7eRSqWVcnygoXKjEdkqFj8/PyIiImjYsKFavdLKJd0mJSWlzCLJkSNH6Ny5c7EzcgWJJJXxIiiVSvH39+fDDz9Ud1PKDU0kgIaCCA8PJywsjJ07d9KqVSuioqLyPQICAvDy8mLkyJHo6uoybNgwxo0bR5cuXdSqIpc3bdu2xdHRsdiqLIcPH1aUlJ03bx4ikYiVK1fmuc6lp6ezfft2vvrqK4yNjTlz5gydOnXi5MmT6Ojo0LBhQ2xtbYsdwC9atIidO3fyyy+/8M033xT7HaKjo3nvvfcICQkhOzsbf39/du7cqfAHsbS0JCEhAZFIVOy+BQIBtWvX5vXr18Xu920sLCyYOXMmixcv5vfff1dKqJBKpXz66afo6+tz79497AsYDSUkJNC7d2/Cw8M5d+4cHTt2LHR7r1+/rpJRJAVhZmZGt27deP78Obdu3aJWrVo0a9ZMJam01ZHU1FSCg4NJSkrC2dmZ+vXr57l2hYdDaChoa8vKppY3UimcOAHHjsled+gA48bJ9l9S6tatm8dPRE5oaCi37tzig/UfIECAVwOvQvteenp6rFmzhoEDB3Lo0CEGDx5c5D7r1KmD+xtGIPIBSlhYmEpFksTMRNZcXUNcWhw19Gowu+NsLI2s+c1P9nlF/K8qI/fu/SeQtGsHkyZVXYEEZCKJVCpFJBKhU1EKpYZqg8bTpmLZsWMHDRs2xMLCQq3RrCVJtylRJElZ0m0yMjLw9vbmxx9/LHZZ+YxzZRdJoqOjiYuLK3QGsjqgSbfRUBAXLlxAKBQyYMAATE1NC8wvTEtLw8fHh8DAQHbv3s3OnTvZvn07dnZ2jBkzhnHjxtGkSRM1tL58cXJy4vTp0wQHB7N27Vp27dqlOFZDhgzBwMCAGjVq0O2NnvqsWbO4dOkSvXv35tixY+jr67N+/Xo2btxIcnIyI0eO5Mcff8Tc3JyxY8fmKVWrra2Ng4MDjo6ONGzYMM/fBg0aoKenh52dHdOmTWPFihVYWlrSokULmjZtWmB0z+3bt3nvvfcQCAQEBAQQExPDmDFjaNu2LQcPHqRFixZYWloilUpJSEjIk0JTGLVr1+bu3bskJSVhampaouMZEBBAly5dlI7kOHPmDL6+vhw7diyPQJKTk0NERARPnz5l9uzZJCYm4ufnh6ura5HbS0pKwtbWtkRtrswIhUIcHBywsbHh0aNH+Pr6Ym9vT+PGjTXX+v8nJyeHR48e8ezZM+zt7WnTpk2Bx0YeRdKuHajA175IJBLYswcuXZK97tsX3n+/9B4opqamREZG5nvfxMQEQ0dDLt+8TGdBZyQWEqKkUZibmxd4DPr370/fvn2ZO3cuffv2LVHEYIMGDQCZMOOuIhfVhPQE1lxdw6uMV9QyqMWcjnMwNzInKAhevZKZ27Ztq5JdVSnu3YNffwWxWPb9P/ywagskILv3CYVCsrOzNSKJhhKjEUkqjjt37rB7925++uknhEJhlYkkKVF1m7LMNl2/fp3s7GylctiFQiH6+vr5RJLKNvssL1H8Zqni6kZubq6m46whH97e3rRu3brIAa88Cqlx48YsWbKE0NBQLl68SO/evdm0aRMuLi6MGzdO6bSNqkazZs3Ytm0bz58/58svv8TX15dRo0aRlZWVRyAB6NmzJ1euXCEpKYnWrVtjZ2fHqlWrGDduHKGhoezatQtDQ0N69uzJv//+y969e3n69Clnzpzhl19+YeDAgejp6eHj48NXX33FwIEDcXFxwdzcnO3btyOVSvn6669xcnJiypQptGvXDmNjY5o0acLIkSNZtmwZJ06cYPfu3XTp0gUrKyuuX79Oy5Yt6du3L7du3aJmzZp07NiRNm3aKIxUk5OTlToWHh4eHDhwADMzM3r06MG6det49uxZseslJCRw5swZRfUfZVi0aBFaWlps3ryZXr160bVrV+zt7TEwMKBRo0b07duXnJwc/P39ixVIcnJySE9PV0mFncqGrq4uzZs3x8PDg9TUVLy9vQkPD3+nSwZLJBLCw8Px9vYmNTUVDw8PmjdvXuA98PVrWflUgPI26s/Ohk2bZAKJQACjR8MHH5TNJNbU1JT09PR8gwRzc3MmfT+J9Ix0Dq05REe3jtja2qKnp0fdunVp1qwZPXr0YOzYscybN49Vq1bRtm1bnj17xqpVq0rUBiMjIxo1asSSJUsK9DUpKTGpMfx85WdeZbzC3MicLzt9ibmRrCqVr69sGXd3eNe6NEFBsggSsRjatIGPPqr6AgnIohQ1A10NpUVz7lQMIpGIyZMn4+LiwowZMxAIBGrtZ5RLJElKSkqZOoqXL1+mRo0aSjvaGhoa5vMkqWxihNH/W6Onp6eruSXlg/wkrmwRPBrUi1Qq5cKFC0ycOLHI5d6OQhIKhXTp0oUuXbqwbt06du7cyVdffcWxY8dYunQpU6dOrXS/cVVgYWHBd999x+eff07dunXzXNfepFmzZly7do0ZM2bQrFkzpk+fTp06dQB48uQJ/fr1Izk5GR8fH0V6iKOjI7169cqzHYlEQkxMDKGhoezYsYPJkydz+PBhtmzZwo0bN8jIyCA4OJi7d+9y9+5d7t27x6lTpxQ3jaFDh/Lnn3/mMTF1cHDg8uXLLFmyhFevXjFs2DBcXFyUKkEM8Ouvv/LNN99w/Phxjhw5wrx585g5cyaurq7069cPZ2dn7OzsqF+/PvXq1SMzM5PLly9z6tQpAL766itGjx6NnZ1dsfvq1KkTZmZm6OjoYGRkhJ6eHp06daJBgwaKhzIpSiCLIjEyMqrWQnGNGjXo2LGjwnfj2bNnNGvWLI/vxrtAQkICwcHBiMViWrVqhYWFRZH3vgsXZNEdzs5Qr175tSs1FTZsgGfPZJ4nU6ZAAb7OJUZPTw9DQ0OSkpLylLcOSwwjUzeTgf0H0qN/D8IehPHkyRNSU1Pp3LkzCQkJxMbGEhkZyY0bN4iNjVVcO3bv3s3ChQtL1I5Tp04xaNAgOnTowO+//87w4cNL9X0ikyNZe3UtaTlpWJtYM7vjbGroycJ7Xr6EkBDZcu+aYWtwsCyCRCSC1q2rj0AiR2O+qaG0yK/vlTFToTqQm5vLr7/+yu7duwkMDCQgIABdXV2EQqFa021q1Kih9ARfidJtlOmgFsbly5fp2LGj0oOgt91nK+NJLB9EFOYQX9WRiySVLYJHg3q5f/8+cXFxdO/evcjlijL91dfXZ8qUKQwePJivvvqKzz77jD/++IPNmzcrXbWlqhEaGgrIxJDCsLCwYN++fYrXmZmZbNiwgaVLl2JlZcXVq1cVIeqFIRQKsbGxwcbGhq5duzJo0CCmTJlCs2bN2Lx5M8OHD6d9+/Z50gSlUinPnz9XVK0JDQ0lKioKY2Nj7OzssLa2xsDAgGXLlpX4ewcGBmJqaoq9vT3Tpk1j2rRppKSkcPbsWY4ePcqff/5JTEyMYvk3Oy6WlpZ06NCBHj16YG1trdT+1qxZU+I2FkZiYmKJ04OqIgKBAEtLS8zMzAgPD+f69euYmZnRtGlTxWRAdSU9PZ2QkBASEhJo3LgxDRo0KPael5n5X9pLz57l17b4eFi3DhISZOVqP/sMivn5l4hatWqRmJjIhQsXOHToEM+ePeOB4QNSjVMhEvbd3Ye2tja2traEh4czbty4AkWQjIwM4uLiShVt7OjoSEBAAFOmTGHEiBFcv36dn376qURGyaGvQ1l/fT2ZuZnUN63PTLeZGOn+d976+cn8XJo0gTf0oGpPSAhs3vyfQDJ5MlS3eQhNNICG0qIRScoPsVjM+PHjOXDgAH379uXw4cOKPqdAIFC7J0lUVJRSy5YokqS0niQSiYQrV64wd+5cpdcxNTUlKSlJ8boynsRaWloYGhpW20gS+Ulc2Y67BvWRmZnJ33//ja6ubrEVVpQx/a1Tpw5btmxh0qRJTJ8+HTc3Nz755BN+/PHHapfiIL8ojxgxAi8vL7p3746np2eBFUbEYjE7d+5k0aJFxMTE8PHHH/PDDz+U6pgMHDiQ4OBgpk+fzogRIzh06BAbNmzgwYMHXL9+nWfPnvH8+XPF483rrhyBQICVlRUtW7Zk7ty5eHp6KnVdOHToEMOHD0cikTBkyBBmz55Nx44dqVGjBkOHDmXo0KGA7LyKjIxUtEFLS4suXbrg6OhY4uuPRCLh6NGjBAUFERcXR3x8PGlpaVhZWSmqC3Xt2lWpKJikpCRFNM+7gJaWFg0bNqRevXo8ePAAHx8fGjRogJOTU5Wu7lMQubm5PHnyhLCwMGxsbPDy8kJfyRIxFy9CVhZYW4OSwbEl5tkzWQRJairUrQszZoCqixFlZ2dz8eJF5s6dS8eOHWnk2ghpPSnGJsZ85voZ7Rq3w9raGi0tLfr168fy5csZPXp0vt+koaEhDg4FV8BRBiMjI3bv3k379u2ZN28et2/fZu/evXkiXArjQcIDNt3YRI44h0Z1GvFZ+8/Q1/7v/5idDf7+sufF6PrVipAQWYqWSAStWlVPgQQ0FUo0lB65GP4up5iWFzNmzODAgQPs378/n6F3tUy3KYsnyaNHj0hOTi6RMdfbIolEIqmUEQ1GRkbVPpJEI5K8u6SkpHDlyhUuXrzIxYsXuXHjBjk5OQwfPjxPOkZBlMT0t2PHjty4cYNNmzaxcOFC/v33X1auXMn48eOrzfn3/vvvc/DgQS5cuMCFCxfYunUrIIss6d69O927d6dr165cuXKFBQsWEBwczLBhw1i6dCmNGjUq077r1q3Lvn37GDRoEJ9++iktWrQgPj4eHR0d7O3tsbOzo0OHDowYMYL69etTv359bG1tSUtLIzIykoiICCIjIzl+/DheXl506NCBb775hv79+xf6/zl69CjDhw9n0KBBeHp6smbNGtzd3enQoQPbt2/HxcVFsayBgQFOTk75hIvc3FwWL17Mr7/+SpcuXRg5ciQDBgwoNLrh0qVLzJ07lxs3bmBubo6FhQUWFhYYGhoSFBTEyZMniY2NpVOnTvjLR05FkJqaWqbBX1VFX1+fVq1a4eDgQFBQEOfPn8fFxQVbW9sq/3uUSqVERkZy//59jIyM6Ny5c4mihUQiWaoNyKJIyuNw3LsHW7dCTg7Y2cHnn6vWGDY9PZ3vv/+eCxcuMGXKFE6fPk3v3r05+OAgZ56ewbmuM4M75u3Yzp8/n27dunHq1Cn69eunusb8PwKBgFmzZtGqVSvef/99evbsyd27d4tc51b0Lbbf2Y5YIqapeVOmtp2Krlbee87165CRIROaigjiq1bcv/+fQNKyZfUVSEATSaKh9MjvZZXRzqEqc/PmTTZt2sT69esLrHimbpGkXEoAl0UkefLkCUCJKllUhUgSAGNj42obSaIRSd49JBIJly9f5tChQ/j5+REYGIhEIsHCwoKuXbvy888/07Vr1yJTRuTk5OSUKFRfW1ubGTNmMGzYMObOncvEiRPZvn07u3btKlOqX2VBS0uLQYMGMWjQIABiYmLw8fHhwoULHDt2jHXr1imW9fDw4Nq1ayqtnCUQCBg1ahT//vsv169fJzc3l4sXL9KhQ4ci13tTzFi8eDGnT59m6dKlDBw4kHHjxvHnn3/mu0b4+PgwdOhQ3n//fXbv3o2Ojg6ffPIJJ06cYO7cuUyaNImAgIAihe9Hjx4xduxYAgMD+eijj7h9+zYjR47E0NCQJUuW5ItMjIiIoGvXrri6uuLn50fXrl3zbVMikWBlZUWnTp2KPV4SiYSMjIxqn25SFKampnTu3JkXL14QEhJCeHg4zZs3p3bt2upuWql4/fo1QUFBZGdn07x5c6ytrUt8f7t+HZKSwNQUyqOw3aVLsHu3LD2kaVP4+GNQMsClWKRSKUeOHGHmzJnExcXx3XffYWFhQc+ePckWZXPpuSyHqLtD/pCLrl270rZtWzZu3FguIomchIQEUlJSit3HpeeX2B20G6lUSlvrtkxqNQltYd4urVT6n6Dl6Vm9vDgK48GD/wSSFi1kHjbVLAgsD7q6uoX6fGnQUBRvpttoUA1SqZT58+fj4uLC1KlTC1ymMqTblItxa2nTbUJDQ9HX11eqVKQcU1NThbgClVckEQgEZGZmqrsZ5YL8JK6METwaVIdUKuXmzZvs3buXffv28eLFC0X4+fTp0+nSpQuNGjUq8e8vJyenVOkhVlZW7Nmzh48++oiPPvoINzc3jh8/Tps2bUq8rcqMlZUVo0ePZvTo0QCEh4fj6+uLjY0NPXv2LJfr3ePHjzl48CDjxo1j586dNG/evETrCwQC+vbtS9++ffnrr7+YMGECLVu2ZM6cOXmWW7t2Lc2bN+fvv/9WlGYUCoUMHDgQU1NTunbtyl9//VWo+e+1a9fw9PTE1taWgIAA2v5/zc7Q0FA8PDwIDAzM853Cw8N58eIFDRo0UAh6BXHkyBHi4+N57733iv2u8ut6SUqaVkcEAgH16tXD0tKSp0+fcuXKFaysrHBxcakyxyYzM5P79+8TExNDw4YNadiwYanSh6RSOHdO9rx7d9UOPqVSOHoUTp6UvXZ3h7FjVRcBEBYWxueff87Jkyfp168fFy5cwMHBgePHj5OZmcmtl7fIyM2grmFdmlvkvy5IJBLi4+OLrQhVFl68eMHYsWMZOXIkS5cuLXS5M0/PcPDBQQC61u/KqOajEAry91MeP4boaFk1GxVVGK7UPHgAGzdCbi64usoEtuoskIBMJCkoRVSDhuLQiCSq59y5c1y4cIEjR44Ueo+tSiWAKySSJCwsjAYNGpSo01+3bt084dCVUSS5fv06YWFhxRpYVlU0kSTVm7S0NJYtW8bevXsJCwvDwsKCYcOGMXLkSDp27FhmcSw3N7dMPgZeXl5cu3aNgQMH0rVrV/bu3cvAgQPL1KbKjIODQ7mndqxatUqRhqKtrc327dv55JNPCjXYLYrx48cTEhLCF198gaurq6K8e05ODhcuXOCrr75SCCRv0qVLF0aNGsWCBQsYNGgQNWvWzLfMpk2bqFevHrdv384TyWFhYUFsbCxdunQBICgoKM+gzcnJiXPnznH58uU80SIZGRmsWbOGhQsX8sEHHyiV+pmWloaRkZFGJP5/tLW1FVWI7t+/j7e3N05OTjg6OlbaUGWxWMzTp0958uQJlpaWeHl5lUnYCQmRDbr19OD/T0GVIBLBn3/KolQA+veHgQNVk8ojkUhYvnw5S5YswczMjEOHDvH+++8r7uuGhoakpaXhHeYNyKJIChIczp8/T0REBFOmTCl7owpBLBaTnZ3NiBEjCvzdSaVSDj44yNnQswD0bdSX9xu/X2gfRR5F0rEjFJMdWuV504PE1RU++aT6CyQAOjo6iEQidTdDQxVEfo1RZ1RDdWPZsmV06tSpyL66utNt3i4MUxRK9/7KEkkSHh5ebEWGt3F1dSU0NFRRpkcikVS6wfr69etxcHAo19BTdaIRSao3ly9f5scff8TNzQ1vb29evHjB+vXr6dSpk0oGhlKptMzbsbCwwNfXl969e/PBBx+wfv36MrfrXSQ3N5clS5awfft2Zs2axbx58xg/fjyzZ8/G2dmZXbt2laqj8OOPPyIUCjl8+LDivYCAANLS0ujdu3eB60gkEtq0aUNcXBzbtm3L93l2djaHDx9m1KhR+VJdAgICEIvFCpHk3LlzGBgYEBYWRteuXWnevDnNmzdnwIABDBs2jM2bN/Prr7/SqFEjFi9ezJw5c/j333+LvKZJpVJev37NgwcPSE5OZtOmTYSHh5f42FRXDA0Nadu2LR07diQ6OpoLFy4QHR1dqWbjpFKpom0xMTF07NiRtm3bljny5cwZ2d8uXVQ36E5Ph7VrZQKJUAjjx8N776lGIElKSmLgwIF88803zJgxgwcPHvDBBx/kOf+NjY258+IOsWmx6Gvr08mu4FS0rVu30qxZM9zc3MresEKwtbXF2tqagICAfJ9JpBJ23tupEEiGNR3GB84fFPpbfvUK5JYmnp7l1uRKwb1776ZAAqi9nKiGqk9lundVdeLj42nfvn2RfSx1iyQ1atRQOt1GqRGMWCwmIyOj1JEkaWlpJS6jKA+vvn37NqCaAZcqiYuLY//+/UyfPr3SzqKVlcoYvaNBdcg9gkaNGkX37t1Vfh6r6vwxNDTkwIEDzJ49mxkzZjBr1izEYrEKWvhuEBISQseOHVmyZAkLFixg7ty5mJubs23bNoKDg2nZsiXjxo2jdevWnDp1qkQ3Ly0tLTw9PfOU8L3+/9Phe/fuJTo6WvG+SCTi9OnTtG3blnnz5vH+++8zfPjwfNs8e/YsKSkphX5Wp04dnJ2dAfD19cXd3R0HBweioqJo0KABR48eZcaMGcTExDBjxgymTZuGh4cHjx49YtWqVYXeRx4/fsykSZOoVasWderUYdeuXZw8eZIZM2bQoEEDevTowd9//01WVpbSx6c6U6dOHTw8PHBycuLevXtcuXJFMamhTpKTk7ly5Qr37t3DyckJDw8PlVQoev5clr4hFML/B02VmYQEWL4cnjyR+Y7MmAFK2OUoRXBwMG3btuXKlSucOHGC5cuXF+ivY2RkhF+EHwCd7DrlqQwjJz4+niNHjjBlypRy7RMIBALc3d25cuVKnvdzxblsubWFyxGXEQgETGg5gR4Niv4n+Pr+V/a3BJneVY7AQPj11/+q2LxLAgmof8CloeoiEAg054+KUeZYqvuYm5iYkJ6ertQ4QinVQV69pbSRJMqUAn2bxo0bY2RkxM2bN4HKN2DfunUrWlpafPjhh+puSrlRWSsKaVANtra21K5dO4+/gypR5W9WS0uLn3/+OY9jdnU1TFYVqamp/PTTT7Ru3ZqMjAwCAgL44Ycf8qTANGnShEOHDnHlyhVq1KhBv3796N69O3FxcUrv5/nz59SvX1/xevLkyXz55Zds2bIFe3t7WrduTc+ePTE1NaVv374YGBjg7+/P4cOHsbW1zbMtqVTK7t27cXFxoekbtVVTU1OZMmUKP//8M2PHjkUgECAWi7l06RIeHh5kZ2cTERGBg4MD9vb2LF68GH9/fxITE3n+/Dl79uwpNJUpPDycUaNG0aRJE86ePcvs2bPZv38/I0aMYMaMGaSkpPDnn3+Sm5vL6NGjqV+/Pt999x2JiYlKH6PqikAgoH79+nh5eWFqasrFixe5e/cu2dnZFd6W7Oxs7t69y6VLlzA1NcXLy4v69eur7Bp0VhbAQLt2oIrq5GFh8NNPEBcn2978+bIBvSrYv38/bm5uGBoacvPmTfr27VvosimSFB4lPkIgEOBpX3DIhby/M3bsWNU0sAjc3d0VVdQAskRZbLi+gTsxd9AWavNJm09wty06XS4n590o+3v7Nvz2G4jF0KZN9TdpLQh1D7g0VG0050/Fo+7oL3nAhzKVaZUaAcvDUkrr8l8akURLS4tWrVpx69YtoHKJJLm5uWzevJmxY8dWWZd/ZahMx1yD6hEIBLRs2ZI7d+6Uy/bLQ2SbNm0ax44d48KFC3z00Ucq3XZl5eHDh/zxxx9Kqd4SiYQLFy4wfvx4LC0tFWH2t2/fpl27doWu17FjR/z8/Dh+/DiBgYH8+OOPSrVNKpUSERGRRySpVasWy5cvJyIigqVLl2JnZ4eBgQGLFi3iypUr+Pv756suI5VKOX78OG5ubuzbty/P//b69eu4urqyd+9etm7dypo1awDZDS4pKQl/f386dOigmIV+E2Nj42IrI82YMQMfHx82btxIWFgY3377LcOGDcPIyIiaNWtiaGjI+PHj8fPz4/HjxwwdOpQVK1ZQv3591q5dq9Rxqu7o6OjQtGlTPD09ycrKwtvbm9DQ0ArpCEkkEkJDQ/H29iYrK4tu3brRtGnTAv1wSsvLl/D/XRF69Sr79m7fhtWrIS1NVuL3q6/A2rrs2wVZf23kyJG4uLgQEBCAo6Njkcvfen0LiViCq4UrZkZm+T7/888/WbRoEZ988kmF9Hc6duxIVlYWd+/eJT0nnTUBa3j48iF62np87vY5raxaFbuNa9eqf9nfmzdlZaIlElmVpepc5rcoNINcDWVB3QP26oYy40Z1/2aNjY0BlPIlUWoEk5qairGxcakHPKURSUCWcnP9+nWkUmmlSrc5ffo00dHRfPrpp+puSrmiEUmqP61ataoSkSRv0q9fP+bMmcOFCxfeic7R119/zYcffoiXlxcREREFLhMaGsqiRYtwcHDAy8uLq1evsnDhQp4/f87KlSvRV6KGqEAgoH///sycOZOtW7fy8uXLYtdJSEggKyurQCGiZs2afPHFFxw+fJgjR44wefJk9PX1OX/+PKdPn+b48eMcOXKEHTt20LZtWwYOHIiurq4imkPO/PnzMTQ05O7du0yePFlxTtWsWZOFCxdy9uxZsrOzuXbtGi1atMjXDqlUypkzZ+jZsycWFha4uLjQtWtXxowZw4MHD4iPj2fAgAFMnTo1j4FtQfetRo0asXHjRsLDwxk0aBDz5s3j/PnzbNy4kUePHhV7vKo7xsbGuLm50bZtW54/f46Pj0+JopK0tbWpU6eO0obPcXFx+Pj48Pz5c9q2bYubm5uiA6RKzp+XpW64uEC9eqXfjlQqi0jZsuW/CiTz5kEB3sWlpkaNGsyaNYs7d+5w48aNIpdNz0kn8FUgYom4wLK/mzdvZuLEiUyePFkhTpY3rVq1wtDQkEGjBtFpfif8g/0x0jViTsc5ONd1Lnb9d6Hs77VrsG2bTCDp2BEmTaqe31MZNINcDWVB3QP2dxF1H3MtLS2MjIxUJ5KUxbQVSi+SDBgwgPDwcJYsWVKpjFujoqLQ1tYusENenahMwpSG8qFVq1aEh4eXSwm98hTZWrRoQUJCArGxseWy/cpCeno6p0+fZtSoUYSFheHq6sq+ffsAWSTFH3/8gYeHBw0bNmTt2rX07t2by5cv8+jRI7766ivqlWJE9/nnnyMQCFi3bl2xy8qFgTcjSeQEBAQwYMAAmjVrRo0aNahTpw6tW7emV69e9O3bl4EDB/LBBx8wadIkjI2N8fb25tKlS/nKHycnJ+Ph4VGg+ff3339PZGQkd+7coVWrvDPMYrGY3bt306pVK/r06UNiYiLTp0+nd+/e2Nvbc+3aNVq2bElISEiBA+vs7OxCq/5YWFiwfPlypFIpPXv25LPPPmP16tXFHq93BXNzc7p164aDgwO3bt3i6tWrSoW26urq0rlz52L7C6mpqVy9epVbt27h4OBAt27dMDc3V1Xz85CeDpcvy56XJYpEIoG//4Z//5UN5Lt1g2nTZJVyVM2KFSvw8PBg+PDhPH36tNDlLj6/iBgxtbRq0bhOY0B23Q4PD+fbb79l+vTpzJo1i19//bXC+gJ6enocOHkAq6FWPH/5nFOHT/Fxs4+xN7VXav0nT6p32d8rV+CPP2TnUKdOMGHCuyuQgPoHXBqqNprzR7Uo0+9XdwlgUN68VanpmrKU/wXIzMwsVYlJLy8vfvjhBxYuXIizs3O5dYJKSmZmZpld8qsClUmY0lA+tGzZEoDAwEC6deum0m2Xp0gib/fdu3exqsaufGfOnCEzM5MlS5ZQp04dpk2bxsiRI1m/fj2BgYFkZGTg5eXFrl27GDRoEIYqKLkh38/SpUuJiIjgu+++w97evsBlN27ciL29fZ4yvCC7dkyZMoXc3Fx69epF/fr1FQ9zc3O0tbXR1tZGS0sLHR2dIo2909PTi/xehQlBq1atYv78+fTp04c1a9bQrVu3POdjVlYWS5YsYcWKFVi/lesglUqLFfctLS25ePEienp6LFiwgISEhEKXfRcRCoU0aNCAevXq8fDhQ3x8fHBwcKBx48alToXJzc3l0aNHhIeHU79+fVq3bl2qCZiS4Osr87iwtQXn4gMZCiQ7WxY9Ehwsq1ozdCh4eammgk1BaGtrs2/fPvr27UujRo1YvXo1n376aZ5jJZKIuBB+AS2hFk0Mm7B9+3b8/Pzw8/MjMjISgUDA//73PxYvXlyh/YDI5EguZF+gdafWtM9uz6bxm3ge/BxnG+UOvjyKpEOH6lf2198fdu2SCSRdu8Lo0eV3DlUVNINcDWVBc/6onnPnzjFkyBB27NhRoHYgEAjUHv2lbBlgpUWS0kaSSKVS4uPjMTPLn+uqDF9//TURERFERkaydu1axGIxK1euxMPDo1TbUwVZWVlKha9XdTTpNtUfufAYGRmp8m2Xp/Gvvb09JiYmBAYG0qdPn3LZR2Xg33//xdXVlYYNGwLw999/079/f7Zu3cqCBQsYP358sZ4bpWHZsmXY29vzww8/sGfPHqZOnco333yDhYWFYpmnT59y4MABNmzYkC894sSJE4SEhHDp0iU6d+5cprZkZGSUSvzZuXMno0aNYs+ePQV+rq+vz48//sjnn39OrbecOMViMRKJpNgBuNxbxcrKiufPn5e4je8Curq6uLq6Ym9vT1BQEOfPn6d169Z5ziVliIuL4/bt29SoUQMPD48yRbcqS24u+PjInvfqVboBaVISbNgAkZGgowMffSSrQlLe1K1bl5MnT7Jo0SLmzZvH5s2bWblyJe+99x4CgYDrL65zO+Q2dwLuMGD0AMZ8OIamTZsybNgwPDw86NKlS77fRXnz5NUTNlzfQJYoC9uatsxoP4P9Rvu5cuVKoSXF3+TVK1m1F6h+hq1+fiC/lHl6wogRGoEENINcDWWjMkQ1VCd0dXUJCQnh8ePHTJ8+nZ07d+ZbpjL8ZpWNJFE63aa0kSSpqalkZWWVuEMkRyAQ8Ntvv+Hq6qrwABk1apRaSw1mZmZqRBIN1YKDBw+ipaVFL1W4Eb5FeZ4/QqGQli1bsmjRImxsbGjatCmdO3dmwIABTJs2TSk/jcpOdnY2x48fZ/DgwYr3BAIB48aN4+LFiyxcuLBcBBKQGXF+9tlnhIaG8t133/HXX3/h6OjIwoULFdfeFStWYGZmxqRJk/Ktv3z5ctzd3cskkGRkZLBo0SKio6NLfP94+PAhwcHBjBgxothlrays8l3P5TfwokQ+kUjEuXPn+Oijjzh69CgZGRklauO7Ro0aNXB3d6dly5alEr0MDQ1p2bIl7u7uFSKQAAQEQGoq1K4tqx5SUl68kFWwiYwEExOYO7diBBI5ZmZmbN68mbt37+Lg4MAHH3yAl5cXd+7c4Y+Lf+Dr50szo2ZoCbSIiori5s2brFq1ivfee6/CBZJ7cff45dovZImyaFSnEXM7zqWGfo0CSwIXhp+fLMrC2bl6lf318flPIOnRQyOQvInGk0RDWagMUQ3ViV27dvHgwQO2bdvGrl27+Ouvv/ItUxlEkkoTSSL3DCitSCJHW1ubnj174uHhgbOzM5s3b2bBggVl2mZpycrK0qTbaKgW7Nq1S2FoqWrKW2TbtGkT3t7eJCUlkZiYqPh74MAB/Pz8OHv2bKk8OSqCp0+fsmbNGoXvj5aWVr5HXFwcKSkpeUSSisbIyIivv/6aqVOnsmLFClavXs2mTZuYMWMGO3bs4Pvvv88nMFy+fJnLly9z5MgRpffzzz//sGTJEuzs7GjSpAlWVlasW7eOmJgYvvrqqxJXMjpw4AAmJiZKzT4XhLzTVND5Gx4ezs8//8yBAwdISEigYcOGzJw5k4kTJ5KZmcnGjRu5d+8eiYmJvH79mlmzZjF06FDNtRTZ8SxtepyJiUmZ0n5LikQC587JnvfoUfLKIffvy8qzZmWBpSV8/rms2oo6aNasGadPn+bUqVPMnTuX1n1ao9tZF/Pa5hxaewh/H/8KPbZvcy3qGjsCdyCRyqrsfNzmY3S0ZClZnTp14vvvv0csFqNVxD8hJwcuXZI9r05RJOfPw4EDsue9e8OgQRqB5E0qw4BLQ9VFc/6oFnnqdaNGjTh58iSzZs1i3Lhxefo/lUHYVKlIUpZIErmzfVkHYfIBl62tLa1btyYoKKhM2ysL2dnZ74Shqca4tXrz7Nkz/P392bVrV7lsv7zPn2bNmtGsgPqOjx8/pmfPnnTu3Jlz587RqFGjcmtDaYmLi+OPP/4gMzMTQ0NDHBwckEgkiMXiPI++ffsW+B3LglQq5eXLl0RHR/P69WtatGhRbGnP2rVr89NPPzFjxgx++OEHli5dipGREdOmTcu37PLly3FxcWHAgAFKtefOnTuMGzcONzc3QJZi9OzZM/r06VPq/5+/vz+dO3cudcSfvNP0trCRnp5O3759SUpKYsKECYwcOZLWrVsr2j1v3jyio6Np3749tWvXJjo6muHDh7N48WIWLVpUqrZoUA9370J8vMzXoqQBUf7+sHu3TGhxcpIZtKrbH0MgENCvXz969uzJqF9GcfXpVRaOWUgtY1nEiLo6rd5h3uwP2Q+AWz03JrSYgJbwPzHE3d2dtLQ0goKCFF5UBXH9+n9lf5s3L+9WVwxnzsDBg7Ln/frBe+9pBJK30QxyNZQFzflTflhYWFCrVq18/ajKcMwrjXFrWFgYALa2tqVaX86bs9KNGzcut7KlytC8eXM2btzI69evix1cVGU06TbVmz179mBkZMQHH3xQLttXVySSk5MTly9fziOUvG0sqm46depEUFAQkydPxtfXl06dOrFixQpqqqgWqEQi4dChQzx9+pTo6GhevHhBdHS04pGbm6tYViAQ0KZNG3r06EGPHj3o1KlToeKCtbU1mzZt4osvviA9PT1fhGFwcDDHjh3jjz/+UEogS0hIYNCgQTRt2pRTp04pIvREIpHSZWALolGjRnh7e5d6/cJEkjlz5hAREcHt27dxdnbm/v37fP/99xw4cIDg4GAGDBiQT9hZunQpCxcupGXLlrz33nulbpOGiuXsWdlfDw/lK9BIpXDkCJw6JXvt5gbjx0MZTmWVE5cZR53GdRjgPIChbf6LcKroTqtUKuXQw0OceXoGgO4O3RnedHi+31ybNm2oUaMGCxYs4MiRIwUWAXiz7G+3btWj2svJk7JzCWDgQOjfXyOQFERlGHBpqLpUhqiG6kpBVQehcvxmTUxMVOdJUhbu3btHgwYNyhzK+aYJpJOTE48fP1bbQe7Tpw8SiYTz58+rZf8VhUYkqb5IpVJ27tzJBx98gJGRUbntQ13nT7169bh06RK1a9dm4cKFamlDcTg6OuLt7c3mzZvZs2cPzZo14+TJk6XallQqJSYmRvE6JCSEoUOHsmzZMry9vUlJScHJyYkxY8awZs0aDh48yNWrV7l//z7bt2/HycmJ33//nR49emBqakqPHj346aefuHXrVoHXWQcHhwIjXDZv3oyNjQ2jR48uts3e3t60bt2ajIwMDh48mCeF8fjx43z44Yd88MEHdO3alWbNmtGpUyfS09OVOh5t2rTh0aNHSoVTFoRc4Hvz/D18+DBbtmxhzZo1REdH4+LiQtOmTfn5559p0aIF586d49ixY/kiX77++mtatGjB4cOHS9UWDRVPaCiEhcnEDU9P5dbJzYXt2/8TSAYMgEmTKpdAAnA+TNZvaW3VmrqGddUikoglYnYE7lAIJIOaDCpQIAEwMDDg4MGD+Pr6MnLkyDwCr5wnT2T+L7q6srK4VRmpFI4d+08gef992bmk6YoVjMZ4U0NZqAwD9uqIVColMDCwwOi/qnTMlRJJlM3dKYjg4GCVzOK+OeBycnIiNTVVkcpT0dja2tKkSRPOyROWqykakaT6cufOHR4+fMjYsWPLbR/qPn/q1q1L9+7dK3XVEaFQyNSpUwkJCaFp06b079+fCRMm8Pr1a6W3kZOTw6RJk7C2tmb+/PmIRCJEIhEgEyKCg4M5e/YsO3bsYOnSpXz66acMGjQINzc3mjRpwqRJk9i9ezexsbHcu3ePn376CX19fX744Qfatm3LqFGjSEpKUqot586d47333iu2Ksy2bdvo0aMHjRo14ubNm/kMaBcvXsyZM2fIzc2lfv36eHp6KkwllaF169ZIpVIWLlyokvtEdHQ0kydP5v3336dGjRr06dMHc3Nzjh49Snx8PLt27aJHjx4FrisQCOjWrRtHjhwhPj6+zG3RUP6ckY3dcXMDZYK7UlJg9Wq4cUMWxTBhgmz2v7LdPpOykrj+4joAPRv0VLxfkZ3WbFE2m25s4mrUVYQCIRNaTqBPwz5F3iu8vLz4559/OH78OBMnTkQsFuf5vLqU/ZVHIh0/Lns9eLAszUZD4WiMNzWUhao0YK9K5OTkkJGRke9aDZUjekdZr1WlRJIaNWqUWiRJSUlRSUrK2+k2AI8ePSrzdktLenp6ntD4p0+fEhERobb2lAflWcJVg3rZtWsX5ubmhQ7syopUKq0Unjb16tUjKipKrW1QBjs7O06dOsX333/PX3/9xYcffqjUeomJifTu3Zu///6byZMns2rVKrp3766IKinJzV8gENC8eXNmzZrF8ePHef36Nbt27eL06dO0bNmy2AoTUVFRPHnyhO5KuCYeOXKEbt26cf78+QIr9MTFxfHxxx9z4sQJdu7cyfr165k1axbLly8nOjo63/K5ubkEBQUpPnN1dWXBggVs374dOzs7Jk+ezP3795U8EqClpYVUKkUikZCRkcHEiRPR1dWlXbt2jB49muHDh3P27FkGDhyolO/J119/jUAgYMaMGUq3QYN6iImR+ZEIBNCzZ/HLR0fLKtiEhckG6DNngrt7+bezNPg+80UsEdOwdkMcajkAsvu8VCot0hRVVaTlpLHm6hqC44PR0dJhWrtpuNsqd7AGDBjAnj172Lt3L1OnTlVc294s+6ts1E9lRCqVGbTKI5GGDZMZtWooGs0gV0NZ0Jw/5YOenh7jx4/n999/z/dZZTjmKSkpqhNJlM3dKYiy5pbLeVMkadCgAQKBgCdPnpR5u6UhNjaWiIgI2rdvj1Qq5f79+7Rp04YpU6aopT3lhbojATSUDyKRiL///ptRo0ap5LdZFOo+f+rVq8fr16+rRHnWU6dOsXbtWmxtbfn666+LXT42NhZ3d3fu3bvH+fPn2bp1K35+foSFhTFkyBCgbCH0urq6jBkzhsDAQKytrenatSsrVqwodHkfHx8AunXrVuy2o6Ojady4cYEimkQiIT4+Pp/Z99dff42hoSHz58/n0qVLrF+/no8++og2bdpgbGyMq6sr7u7uZGRkIBAImDBhAi1btsTT05Njx47RtGlTBgwYgK+vb5HHJScnh+vXZbPtvXv3xtTUFG9vbz7//HMWLlzIvHnz+Ouvv4qNlnkTc3NzfvnlF/bt28fUqVN5/Pix0utWJ6RSKdHR0aWadElNTSUmJqbcO1enT8v+tmxZfBnZkBBYvlw2UDc3hwULZOVnKyPZomz8nvkB0NPxP/VHHnVW3veCVxmvWHF5BeGJ4RjqGDKn4xxcLUoWZTxs2DB+//13tm3bxv/+9z9AVh5XXvbX2ro8Wl7+SKUyo1+5jdKoUbKKShqKR12eOhqqB5UhqqG6IhAICgySqAwiibJeq+UeSZKbm4uOjk6p1n2TN6Ma9PT0MDc3L3BGsSK4desWAB9//DHa2tq0bNmS9PR0rly5ouhwVAc0Ikn15Ny5c8TGxpZ7qs2bf9WFvATwixcv1NqOohCJRCxYsID+/fvj5ubGnTt3aN++fbHr7dy5k4iICK5evUqXLl0AmSHsnTt3FK9LW93lTezt7bl48SKzZs1i/vz5BAcHF7jc48ePMTc3p64SdU5jYmIKLQX7+vVrxGIx5ubmed6vWbMmS5YsYdeuXXTt2pV58+Ypcl5XrlzJb7/9xvPnzzlx4gQA33zzDffv3+fSpUskJCTQtGlTQkJC8PT0pF27dgohRM7t27fp06cPpqamCqEnMTERBwcHNmzYQPP/L5nx+eeflypCavTo0fz0008cPHgQZ2dn3nvvvWKjc6oTKSkpXLlyhbt375KZmVni9TMyMggMDOTKlSulnrQpjlevZFVSAPr0KXpZHx9Yv15W4tfJSSaQlEMldZVxJfIKGbkZmBuZ5xEn5H2W8owkeZHyghWXVxCXFkctg1p82elLGtRqUKptTZgwgU8++YR9+/aRlfVf2V9lon4qIxIJ/PGH7HsIBLJULSV0Zg0aNKiAyjBgr67cv38fFxeXfO9XhmOuUpGkLJEkqhJJ3h6w29jYqE0kcXCQhakmJyezdOlSVqxYwd9//60oU1dd0Igk1Q+pVMq3335Lu3btaNOmTbntRygUIhQKC8xHrEjkIom6fEmys7NZunQpgwcPZvbs2axbt46jR48SFBREamoqL168wNPTk59//pnly5dz7Ngx6tSpo9S2r169Svv27fMZhZqZmXHq1Clu3LihGNiXFW1tbX788UcsLCz49ddfC1wmMTFRqVLvaWlpxMTEYG9vX+Dn8jTK+vXr5/vsk08+4fjx49y7d4+0tDRu3brF9u3bmTFjBj4+PtSpU4du3boRGBjIwYMHWbVqFbGxsWzfvh1DQ0NiY2PZsGEDAoGALl268OuvvyKVSvnzzz9xd3fnzp07gOx3kpmZiba2NhEREYSGhtKiRQtAZkZeGgQCAfPnzyciIoJt27YRHBxcbpWlKhPZ2dncvXsXPz8/atasSY8ePfIJYMpgYWFBjx49qFmzJn5+fty9e5ecnByVtvXcOdmg1dkZCjk9kUjg779h715ZBIC7uyzFppz8r1WCRCpRGLZ6NfBCKPiv6ycSidDS0iq3e/2TV09YeWUlSVlJWJtYM7/TfKxMignRKQYbGxtSU1O5fFkmUllYQNOmKmpwBSISwZYtcO2azMtm8uTKm6pVWRGLxQiFQk1fVUOpqAwD9upKWFgYDRs2zPd+ZfARUjbdRqn4yrIYt5aXSGJtba02kcTFxYUWLVpgamrKggULAMjKykJHR4erV68WWPKoKqIRSaofBw4c4MaNG/j4+JT7/1ZbW1vtkVV2dnbY2toyfvx49u3bp4iwqAgCAgKYPHkyjx8/pmvXrpw6dYpnz56RnZ2tWEZLSwtLS0t8fX3p3Lmz0tuWSqUEBAQwYcKEAj/X0tKibdu2Zf4Ob6Krq8vkyZNZt24dP/30E8bGxnk+NzMzIyEhodjtPHjwAICmhYxqzp49S61atQp0RRcKhfTv3z/f+0ePHmXv3r3s3r0bgNmzZ+Po6Mi4cePQ1tZm0qRJjBo1is6dO/Pzzz9z+fJlli5dyrRp09i6dSu3b9/GysqK+Ph4Zs+ejZeXFxKJhFOnTtG+fXu0tLSoV68epqam3L17lwEDBhT7PQtDX1+fwYMHs3XrVoXgXh2RSCSEh4fz6NEjateujaenZ75zpqTo6OjQrFkz6tevT0hICOfPn8fZ2Rl7e/sy+x+lpoK/v+x5YVEkmZmwdasszUYggEGDoFevymfQ+jaBsYG8zHiJka5RPg8QsVhcbqk2gbGBbL21FZFEhGNtRz5r/xmGOmV3VjUxMeHVq0S2bQulRg1HevSo/P+Dt8nNhV9/heBgWQWkjz+G/9dhNZQAVaX0a3g30Ygk5UNubi6xsbGKico3qQwVqVSeblPaSJKXL1+q3LgVZCKJOkPor1+/nqcEsL6+Pubm5nnKcFZ1tLS01B4JoEF15OTk8PXXX9OvXz+lfCPKSmU4f/T09Lh27RqNGjXC09OTFStWlLuCnZaWxsyZM+nUqRNGRkbcvn0bb29vHj58SEZGBtHR0Vy+fJndu3ezatUq7ty5UyKBBCAiIoKYmBg6duxYTt+iYD7++GPS09PZs2dPvs/MzMx4+fJlsTe/4OBgBAIBTZo0KfDzs2fP0qNHD6XD/5OTk5k2bZqiklHDhg25ffs269evz9N51tfX559//iElJYVx48bh4eHB/Pnzef78OaampkgkEry9vVm5ciV9+vRBV1eX3NxcRSdcIBDQokUL7t69q1S7CuP48eM0bdqU4OBg5s2bV6ZtVVbi4+Px8fHh2bNntGnThg4dOpRZIHkTExMTOnToQJs2bQgPD8fHx6fMlYMuXJANXOvXL9hX5OVLmf9ISIis1Ownn8iMNavC4PxcqKwSn0d9D3S18nrpqGoi620uPb/Erzd/RSQR0cKyBbM7zFaJQAIwcuRImjcfy9695zlz5iDGxgWnAGZnZ3P8+HHCw8NVsl9VkZ0tS9UKDgYdHfjsM41AUlo0IomGsiAWiyvEtPpdIzY2FqlUio2NTb7PKoMwpXLj1rS0tBIPLrKyskhMTCw097wkvH1Q1RlJArJZ1bcvzHXq1OHVq1dqapHq0dLSUnskgAbV8dtvvxEWFsZPP/1UIfurDJEkAFZWVnh7e/Pll18yf/583n///RKV2C0JZ86coVmzZmzdupVVq1YREBCQJ+VFKBRiZWWFu7s7o0ePZubMmZiZmZV4P1evXgXAzc1NZW0viPDwcPz9/RXRL3Z2dvTr10+RpvImZmZmiEQikpOTi9zmixcvMDAwKPDckJumlkQ0+vLLLxXC06JFi5g4cSKhoaH07ds337L29vbs3buXGzduMGLECJYvX86rV69wcXHh9u3beHh4KJY1MDAgKysrTyeqrCJJZGQkAwcOJDo6mrS0NN5//33q1q2Ls7Mze/fuLfV2KwtpaWlcu3aNmzdvYm9vj6enp1IpWHLEYjEPHz5UWly1sLDA09MTe3t7bt68ybVr10hLSytxu7OywNdX9rxv3/zCR2iorIJNTAyYmsIXX0BVCRgNfR1KWGIY2kJtPB3yl3/JzMxUiXeRHKlUyvHHx9l1bxdSqZTOdp2Z2nYqOlqqE2IsLS0ZOXIbvXr1IifnPO3atWDy5MlER0crouymTZuGlZUVAwcOZNGiRSrbd1nJyIC1a+HRI9DXl6VqFaIXa1CC8oyE0lD90Yhs5YO8f+fj45Ovr6juLAWxWEx6erpqI0lAVva2JMTGxgLkE0lyc3MxMTHht99+U3pbbw/Yra2tiYuLqxSDMDnVTSSpLINcDWUnKSmJJUuWMHHiRJX5VBRHZTp/5J4ax48f5/Lly7Ru3ZobN26odB83b96kT58+JCQk4O/vz+zZs8tthsLX1xdHR8cSDUBLQmBgIKNGjaJhw4Z06dKFWrVq0adPH37++WeFOezbxqdysScuLq7IbU+YMAGhUMhXX32V7zNdXV0aN26s8AYpjkuXLrFlyxZAViL0/v37/PLLL0Wax/bs2ZPk5GSSkpIICwsjMDAQPz8/rN8qjaGvr094eDjR0dGKkFE9Pb086VIlpV69ely/fp0jR46wc+dO1q5dy9y5c2nSpAmjRo1i5syZap9hKQ25ubmEhITg4+ODvr4+Xl5eODo6ljgFRiKR8OjRoxJNyAiFQhwdHfHy8kJfXx8fHx9CQkLIzc1VehsXL8oGrxYWsqo2b3L9OqxeLUvHsbWFr76CAqpWV1rOhcmiSNzquVFDL//MWVZWFgYGBirZl0Qq4e/gvzn26BgA/Rr1Y6zr2DweKKrg+XMIDRXg6OjA3bu/8Msvv3D48GEaNWpEo0aNcHd35/jx40ydOpXevXsTGhqq0v2XlrQ02bkkLxc9eza8ZSmloYTIPXU0aCgNmvOnfHBwcGD16tX8/PPPHDp0KM9n6ham5BMpKhNJ5GGyJU25kXeW3+7IP3/+nLS0NKZOnap0h1NbWzvP7JKNjQ1SqbTYDnlFUh1FEnWnS2goO1lZWXzwwQeIRCKWLFlSYftVh0gilUqLHGD179+fO3fuYGFhgbu7O56ennz//fdcvny5RIOqgnB1dWXBggVIpVK8vLxYtmxZiYVlZZBKpRw9erRMvhiFbffixYv069ePVq1acfXqVdatW8fNmzf5/vvvEQgELFq0SCFu/P7773nWb968OUKhEH+5sUMh2Nra8uOPP7J582YuX76c7/NBgwZx9OhRpc6dmJgYevbsib+/P//8808+E9vCEAgE1KxZEwcHB1q0aFHgDdvAwIBbt24hFoupW7cuUqmUoKCgMomMAoGAdu3a8d577zF27FimT5/OV199xcGDB9mwYQPr1q1jw4YNpd5+RSOVSnn+/Dne3t4kJSXRtWtXWrRogZ6eXoW3RU9PjxYtWtC1a1eSkpLw9vbm+fPnxYpOubkyw1aQeZHIJ7ikUjh2DLZvlxlstmwpiyAxNS3Xr6FSEtITCIwNBKBHg4JrymZmZqpEJMkV57Ll1hb8nvkhEAgY1XwU7zu/Xy4zhvJM53btwMxMh88++4zQ0FBmz55Nt27dFP/7H3/8kY4dOxIWFqbyNpSU5GRYtQoiI8HEBObOLdwcWIPyqHvApaFqozl/yo/Zs2ejo6OjCJiQo25hSu6xqkwKsFIiiZaWFoaGhiU2b5WrNW/n/byp6p+T906K4e0Bl3zWT50pN29THUWSyhIJoKF0iMVixowZw7Vr1zh27FiBJkrlhTrStVavXk3Dhg2LjBKpX78+ly5d4pdffqFmzZqsWrWKzp07Y25uzpdffklkZGSp9q2rq8uyZcsICwtj7NixfPvttzg6OrJ+/foyRR+8ze3bt4mOjub9999X2TYB+vTpg4eHBxcuXGD9+vU8efKETz/9lDZt2jB37lxOnTpFYmIivr6+LFy4kIEDB+ZZv06dOnTo0EFRgrcopk+fjpubG1OmTMl3jgwePJjXr19z8eLFYrczfPhwzp49S6dOnUr2ZZXAwMCA5s2b4+npyZAhQ+jevTs3b97E1dW1+JVLiEAg4NNPP2XmzJnMmzev0DLLlYlXr17h5+fH48ePcXV1xd3dnZo1a6q7WdSsWRN3d3dcXV15/Pgxfn5+Rd6Xr16FlBSoVQvklbdzc2HbNjh+XPa6d2+YOhXUoP2UCe9wb6RSKU3Nm2JtYl3gMqpIt8nIzWDdtXXcibmDtlCbKa2n0M2+W5m2WRiJiXDzpux5jzd0n5o1a/LDDz+wbds2unfvrohiatCgAXFxceUiWCvL69fw888QHS0T2ebNgwq8FVdrNINcDWVBk65VfojFYnJzc/PdX9R9zFNTUzEyMlJKqFE6BrI05q0ZGRkAGBrmNet6U9h4W2EqjLcH7PIUnsomkpSX14E6kB/zqhj+rUE2yzt9+nSOHDnC/v37S2wOWlbUEYlkaGhIeHg4nTt3LtA3Q46uri7Tp0/n8OHDvHr1ihs3bjBlyhS2bNmCg4MDo0aNypdOoiyWlpasX7+ex48f07dvX2bNmkXjxo1ZsmQJly9fLnPZ0qNHj2Jqaqry/2fr1q1xdHQkOzubGTNm0LFjRxYsWMC5c+fIzMwEZLP1Hh4efP/99wVGsvTv359z584VKwppaWmxZs0aHjx4wJUrV/K1w87OjoMHD6ruy5UCAwMDtLS08Pb25vjx48THx/Py5ctyrV62fPly6tSpw9atW8ttH2UlIyODmzdvEhAQgLW1Nd27d8fa2rpSVUITCAR52hYQEMDNmzcVfRI5EgmcOSN73rOnrMpISopsxv/mTVlZ1vHjYfDgqmHQ+ibpOelcjpBFavVs0LPQ5coaSZKclcyqK6t4/Oox+tr6zHCbQRvr8isv7+Mj+785OcnSn4qjQYMGAGozb42Ph5UrZX/r1JFFI1laqqUp1RJ1z0prqLpIpVKNyFaOZGVlAeS7v6j7mCtr2golEElKUwZY3iF5+wB5ev5nHnZG3kMphrdnpY2MjPLsozJQmTqJqkB+41F3PWsNpWPZsmVs2bKFrVu35pv1rwjUEYnUrl07QGZoOm3aNMaPH1/sDKK8XO6KFSuIiopizZo13LhxAzc3Nzp37sy///5bKrHH3t6eP/74g+DgYDp16sTq1avp3LkztWvXpm/fvqxcuVKRzlEYYrGYxMREnj17xt27d4mNjeXo0aP069dP5RUpli1bxtOnT3n27Bnbtm3DycmJHTt20KtXL0xNTZk2bVqxgmn//v1JS0srNuUGZP8jMzOzfPcAgUDABx98wOHDh9V67TE0NFTcX/r378/du3e5cOECgwYNKrd96unpMWzYMA4cOFDprrsikYiHDx9y4cIFhEIhXl5eODk5VeoBipaWFk5OTnh5eSEUCrlw4QIPHz5UXJdu3YKEBDAygs6d4cULWLYMwsNl782eDeUQpFQh+D7zJUecQ70a9XCuW0C5HmSDhIyMjHwTWcoSkxrD8svLiUqJooZeDea5z6Nx3cZlaXaRZGfDpUuy5z0Kzh7Kh1wkUUfKTUyMLILk9WuZ380XX0ARdkkaSoG6Z6U1VF3kfS/N+VM+yEWStyNJ1C2SKFv+F0DpVpalDPDb4oH89XvvvcehQ4fYuHEjzZs3x8TEhGbNmrFjxw7s7e3p2fO/2Y+3B1zyAUJlSgcpS2ejMiI/iTVKfdVDIpGwdu1aPv30UyZNmqSWNqhDJGnevDk6OjoMHz6cqVOnMmXKFK5du4arqytaWlqKh7a2tiKN0MrKCmtra8Vj7NixTJs2jePHj7N69WqGDh2Kg4MDAwYMoEWLFrRs2ZKmTZsqHaLepEkTdu/ejVgs5s6dO1y4cIELFy7w3Xff8eWXX2JqakrHjh2RSqUkJyfnebxdqcPFxYX79++zYMGC8jh8gCwd6cMPP+TDDz9EKpVy//59/v33X7799lvatGnD5MmTC13X1dUVGxsbTpw4gZeXV5H7EQqF9OrVi9OnT7N06dI8nw0ePFjhh9JengNRwRgbGyORSMjIyMDIyAhtbe08An95MXz4cNatW4e/vz9du3Yt9/0Vh1Qq5cWLF4SEhGBgYIC7uzu1a9dWd7NKhIGBAa1bt8be3p6goCAiIiJo0sSFU6dsAAHdu8OTJ7Bli2wgbm4On38u+1sVyRHncCH8AgB9GvYpdAInIyMDiURSqvLMT149YdONTWTkZmBuZM7MDjOpa1i+CkBAgMxg19wclM16k0e1VXSnPDJSVsUmLQ1sbGDWLFBy8lJDCVD3gEtD1UUukmjGN+WDPAK5IJFEncc8JSVF9SJJaSJJ5OZt2dnZeRoUHx8PoOjof/bZZ4rP+vbty6lTpwDyzFq+HbovF0nKaraoSlRlgFZZEAqFCAQCRCKRWoz4NJSe4OBgEhISGDx4sNraoK2trVIvDmXQ09PD1dWVmzdvsmPHDlq0aMF3331HamoqYrEYkUiEWCxWPE9PTycmJiZfmpy+vj7W1tZMmjSJ1atXs3HjRs6ePcuGDRuQSqVoaWkxZcoUNm/erHTb5BErbdu25csvv1SUu71w4QLXrl1DT08PCwsLatasSc2aNTE1NVU8r1mzJps2beLGjRvo6OjQp08fVR+6AhEIBDRt2pSmTZsSGRnJzJkz8fDwKNQgVSAQ0K9fP06cOMHq1auL3X7v3r3ZvXs38fHxmL8xIpVfR9UpgguFQoyNjUlJSVFELlYEAQEBABX+2ymIpKQkgoKCSE9Pp2nTptSrV69KR0zWrl2brl27EhUVxYkTz7h5Uwsrq9qIRHps2CAza23cGD75RBZJUlW5EnmFtJw06hrWLTL1JSUlBWNj4xJXIboVfYvf7/yOSCKiQa0GfNr+U4x1Sy60lASpFLy9Zc+7d1c+/enevXuArHx3RREWBuvWQWYm1K8vK/Nblc+nyoymf6qhtIhEIgQCgUYkKScqcySJsuk25SqS6OrqAuTLwZdXpLGzs+Pw4cPs37+fQ4cOcfToUYVAkq+hb81KvzmAryxUt0gSgUCgMW+tonh7e6Ovr4+7u7va2qClpVXhniRSqRRnZ2eFcWvTpk05cOBAsetlZWURExNDdHS04u+qVau4du0aCxcu5I8//gBkZdD9/Pzo379/mdNddHV16dy5s9LeIn/99Re5ubm0adNGLQaZa9aswdfXl7Fjx+Lv71/o9+/fvz9bt24lLCxMEepeGPJoQT8/P4YNG6Z4/+zZs9SoUUORPqUu5BGUb5exL09iY2MRCoVq9YLKysriwYMHvHjxggYNGtCxY8dqM1srEAiwtbUlJcUaff0Unj+PZedOI2rVMsXDQ5tRo2TeJFUViVTC2dCzAPR07Flk+d2S5GbLOR92ngMhsmtqK6tWfNTqI3S0VJv6VxBBQTJfD0NDKMlt7d69e9SuXTtfie/y4vFj2LBBFpHUsCF89hlUo7mzSoe6B1waqi6ac6d8kR/bt8cB6k6RK0kkSbkat74ZSfImpv9fQy8mJgaBQMCIESPYu3cvGRkZisoIb3euCxqs6+joaCJJyhl1DHQ1lB1vb286depU5qoFZaEiBbb4+HhWr16Nq6sru3fvLvHMkr6+Pg4ODnTq1ImhQ4cyY8YMWVWIpk3zLGdkZMSZM2eoUaMG//vf/1T5FYolJSUFoVBIrVq1KnS/coyNjdm1axe3bt3ihx9+KHQ5uXiiTMSB/LvIZxzknD17lu7du6vcd6Wk1KhRo8STA2Vl2bJl9O7dmyFDhnDnzp0K3bdYLObJkyd4e3uTm5uLp6cnLi4u1a4jGRoKoaFa1KpVC2tra6RSCQ0a3MTN7QkCQdW+392KvsWrjFcY6xrjblu0mlASkUQilbA/ZL9CIPF08OTjNh9XiEAC/5X97dKlZFWG7t27R/PmzSskAurePfjlF5lA0qQJzJihEUjKG7FYrIkE0FAqNCJJ+VJYoIS6j3tJIknK1bhVPlB5+wC1b98eQ0NDvOWxk2/QvXt3jIyMmDJlSp73Cxqsa2trVyqRpLpFkoCmDHBVJDc3Fz8/v2I9Icqbijh30tPTGTZsGDY2Nnz11Vc0adKEkydPlroyzYsXL9i+fTvDhg0jMjKSZs2a5fn8yZMnbNq0ia+++gozMzNVfAWlSU5OBpSr7V5euLm5sWjRIn744QdFWsjb3Lhxgzp16mBvb1/s9uQC+puiVkpKCgEBAfTu3VslbS4LZfHiKi06Ojrs378fZ2dnBg4cWCEGrlKplNjYWHx8fIiKisLNzY327dtXaJpRRfJm8aCaNXVYutScKVMcefEiCh8fH2JjY6tkVTepVMqZUJkRsqeDJ7paukUur6xIkivOZeutrXiHyfpsQ1yGMKLpiCKjVFRJZCQ8eiSrNlRSW6B79+6VS9nut7l2DTZvBpEIWrSATz+teiWjqyLqHnBpqLpoBLbyRS6SvB0ooe7fbEmMW8s1ksTW1hahUMjp06fzvK+rq0uTJk0KLMn26tUrsrOz8fX1zSPKFBZJUpkG8BkZGdUukkQjklQ9bty4QVpaGt27d1drOyoiCkkkEuHj40OtWrUIDw9n//799O3bt1QX4AULFlCvXj2mTJlCZGQkixcvzlfJ5IcffsDS0pKZM2eq6isojTzyTp0iCcDXX3+Nm5sbY8eOLbC62M2bN2nbtq1SM7cF5az6+voiEono1auX6hpdSmrWrElqamqFi/HGxsZ89dVXvHjxgsTExHLdl1yUunPnDg0bNqRbt27UrcYlOI4dA/khFQhgwQLZrL+ZmRkeHh44Ojpy584dAgICKlwgKysPXj4gMjkSXS1dPO2LVhNyc3NJS0srNnUvPSedNVfXcDvmNtpCbSa3nkwvx14V6k0jjyJp0wZKEkiXkZHBkydPyl0k8fWF33+XlSbu0AGmTgU1B8G9M6h7wKWh6qI5d8qXwgIl1C1OlUu6TWkiSfT19WncuDFnz54tcHsFdUBsbGw4deoUV65cwcPDg5iYGH7//XeePXuWb7Cuq6urcM+tDOjr61eqksSqQCOSVD1Onz5NjRo1aNOmcMO+iqAizp2aNWty9OhRUlJSmDdvXplm3Z2dZWUyV65cydWrV1m0aFGBM+mGhoYVnsaUm5tLWFgYAoFA7bP7fn5+REREkJiYWOA1XCqV8uTJE6UGmIcPHwbIUy3l7Nmz2NraFulncv/+fbZu3UpCQkLJv0AJMDAwwNDQMJ+xb0UgFypevnxZLtvPycnh3r17+Pn5YWJigpeXF/b29lXamLUopFI4flz2kLN6taw0qxyhUIiDgwNeXl6YmJjg5+fHvXv38nXyKitnnsqiSLrU74KRbtHXidevX2NkZFTkxM7LjJcsv7yc0NehGOoYMrPDTNrZVKxPUHIy/L/FlNJlf+Wkp6eXunqPMkilcPIk/P237LWnJ0ycKIt40VAxqLtShoaqi0YkKV/euXSbks6quLm58eDBA8WBepOiBI4ePXrg7+9PfHw8HTt25JNPPuGnn37K11m0tLRUmMBWBuzs7IiMjFR3M1SKRiSpWmRkZLB582ZGjx6t9ot/RXkGubu7s2vXLvbu3cvChQtLvZ2JEyfywQcf8PXXX+crvStn3LhxPH78uNTpPKVFLhJLpVK1RZJkZWUxd+5cevTogbOzM/fu3cPS0jLfcmvXriUhIYFp06YVmbKwc+dOpk6dyrRp0+jUqZPifTMzMyIjI5kwYUK+/0N2djZt27aladOmfPzxx7i6unLmzBmVfL/Cop7q1KnDq1evVLKPkiCv9hMbG6vS7UokEsLCwjh//jzp6el069aN5s2bF3ifri5kZ8vK+x479t97X30lMwEtCF1dXZo3b063bt1IT0/n/PnzhIeHV0jqU2l5nvSchy8fIhQI6dGgeDXh1atX1KlTp8jtLfdfTlxaHLUMavFFpy9wquOkyiYrha8viMXg6AhKZPDlwczMjAYNGhSaGlgWpFL45x84ckT2esAAGDFC+ao7GlRDbm6u2r2rNFRN1D1Yr+7If5eVTSQpN+PWkkaSPH/+HKDAAceLFy+KdBt3dXUlICAAAwMDRCIRtra2hIaG4uPjo1jG2tqamJiYErWpPLGzsyMiIkLdzVApGuPWqsXWrVtJTEzkyy+/VHdT0NfXJycnp0LOn6FDh7Jy5UqWLVvGli1bSrWN4OBgzp07x+DBgwuN1vD09MTGxoa//vqrLM0tMY8fPwZkNxt1iCRBQUG0b9+eDRs2sHr1as6ePUu9evUKXLZhw4b89ttv7Nmzhx07dhS4zN69e5k4cSIfffQRGzZsyBO98O233/Lnn3/y77//0qZNmzzmpUKhkKdPnzJmzBjCw8NxdXWlT58+zJo1i8ePHxMTE0NaWlqJ/STEYjEODg4FlnRWl0hia2sLoFLhPSEhAV9fX8LCwmjTpg0dO3ZUurNQVUlMhJUr4fbt/95r2lS5AbeJiQkdO3akTZs2hIaG4uvrW+7RS6Xl9FNZWnN7m/bUNqhdzNJFiyTB8cGsClhFSnYK9WrUY0HnBVibVEx1mDfJzQU/P9nzkkaRyOncuTOXL19WXaOQpdXs3PlfGtDw4TBwoEYgqWhEIhG5ubnVLs1dQ8Wg7sF6dUcoFKKtrV0pPUnUbtz6ZvRBQSUu69WrR3R0dJHbsLW15fLly1y4cIGlS5diamrKrFmzFB1ga2vrYrdRkdjZ2fHq1SvS09PV3RSVoYkkqTpkZ2ezcuVKxowZg4ODg7qbg56eHgKBoMJS4ubMmcP06dOZPn16oaXECyMzM5Nhw4bh6OjItm3bCk050NLSYuzYsezduzffhb88uX//viKdryJFEolEwurVq2nbti1SqZS//vqLevXqsWrVKhYuXFjogHHUqFF8+OGHfPLJJ4wbN46rV6/y6NEjli5dSqtWrRg1ahTjxo3jt99+Q1hAbPr48eO5ffs2RkZGdOjQgV9++QWpVIqOjg59+/blwYMH2Nvbc+rUKdauXcvmzZtp3Lgx1tbWmJiYYGRkxOrVq4ud+c/OziYsLIxHjx4RGRnJDz/8kO//WrduXRITEytcLDYyMqJOnTo8e/aszNtKT0/n2rVrXL9+nfr169O9e3cs3swzqaaEhcGPP8qMP9+kX7+SbcfCwoLu3btjZ2fH9evXuXbtWqW6z8enx3MnViYm9nIs3stHJBKRmJhYoEhyOeIyG69vJFuUTROzJnzR6QtM9U1V3WSlCAiA9HSoUwdatizdNjp16kRgYGCh0YElRSSSRSVdviwTRSZMADV7pL+zZGVlIRQKq3UUnIbyQ93eGO8Cenp6VdqTRGkpp6TGrW927MaNG5fvcyMjI6U6GbVr18bT05PExERq167NvXv3OHnyJP3798fa2rrACjnqon79+gBERETQpEkTNbdGNWhEkqrDzp07iY6OZsGCBepuCiArAWtgYEBmZmaFDOwFAgG//PILERERDB06lM2bNzN+/Hil1l26dCkPHz7k6dOnxXp+jBs3juXLl/P3338zceJEFbS8aKKjo1m5ciW9e/fmyJEjFeZJEhUVxYQJE7hw4QIzZ84kLi6OkSNHAjJjUbFYzJ07dzh+/HiBotLGjRtp0qQJmzdvZteuXYDsuj9w4ED+97//8f777xcokMhxcnIiICCABQsWMGvWLLy9vfn999/p1q0be/fuJSoqinr16jFz5kyGDBlCaGgoKSkppKamcuXKFebOnYu3tzc7duwosBLRpUuXmDJlCo8ePcLKygqQmePu3LmTyZMnK5YzNDRET0+P169fV3hFo8aNG/Po0aNSr5+bm8vjx48JDw+nXr169OjRo8TlsasqAQGwa5dsUFuvnmygffcuODlBw4Yl355QKKRhw4bY2try4MEDfHx8aNCgAY0aNVJ7uP+50HNIpVKamTfDpoZNscsnJiaip6eXpxqfVCrl+OPjHH8sM23paNuRca7j0BKqpzMrkcC5c7LnPXqU3uejc+fOiMViPvnkE9q1a4ejoyOOjo40aNCgSG8psVjM06dPCQoKIigoiJCQEIYOHUNs7CAePABtbZg8GVq1Kl27NJSdzMxM9PX1q62PkobyRd0RDe8Curq6lS7dpiTVbZRuZUkjSR4+fAjITPgKMuCTSqVFdpDfRktLC6FQiLu7O0uXLqVfv36Ym5sTExODVCqtFBdJOzs7oPqJJPIKFBoqLyKRiJ9++onBgwdXqnPPwMBAZeePWCzm2LFj1KxZk86dOxc4MNHW1mbfvn1Mnz6dCRMmcO7cOTZt2lTkBTEhIYFffvmF+fPn4+joWGw7mjZtyogRI5gyZQo6OjqMGTOmTN+rKMRiMWPHjkVbW5s1a9Zw5MgRlQtO6enpxMbGEhcXp3hERUWxceNGjIyMOHr0KOvXr8fPz48dO3YwcOBAatWqxY4dO/jwww9JSEhQ+Ge8ib6+PvPmzWPOnDmcO3eO7OxsevbsWaLQaD09PdasWYOXlxcTJ07E1taWrKwsBAIB0dHRipSfevXq5Un/GT16NP369WPChAm0aNGCuXPn0rt3b5o2bUpKSgrz58/nt99+o2PHjvz111/8/fffdOjQAYAVK1YwadIkxUyHQCDAzMyM+Pj4ChdJXFxcuP1mnoiSSKVSIiMjuX//PsbGxnTp0qXYKibVBYkEDh0CuV98q1YwZAgsXix73b9/2bavp6dHy5Ytsbe3Jzg4GG9vb1xcXLC1tVVLPyQlO4UrkVcA6NOwj1LrxMXFYWZmpmivWCJm171diu30d+rPQKeBau1X3b0L8fEy35g3LItKjLOzMx9++CHXrl3j4MGDivuRQCDAxsZGIZo4Ojqip6dHcHCwQhR5896lq1sLY+Pv0dOTlfadNk1WFUmD+sjMzNSk2mgoNSKRSHP+lDO6urpcvXqV77//npycHL777rtKIZIom25TIpGkJJEk4eHh6Orq4lVIHGJJhQ0dHR3EYjELFizgvffe4+LFiwQGBuLk5FQpBBKQpf8IhUKFF0t1QEtLSxNJUgU4d+4coaGh7N27V91NyYM8kqSs3Lx5kw8//JCgoCAAWrVqxR9//EGLFi3yLWtoaMiOHTvo2bMnU6dOJSAggL1799K2bdsCt71ixQoEAgFffPGF0u3ZtWsXBgYGjB07llevXjFjxozSfbFiWLp0Kb6+vnh7eytu5qoUSXbv3s3YsWPzvKelpYW5uTkDBw7k66+/ZsyYMTx9+pTTp0/j6flfWVEbG9mMdXH/X6FQSO/evcvUzgEDBnD37l1+//13GjduTJcuXRTRH4XRr18/7t69y4wZM1i4cCHz5s3DxsYGsVhMWloaGzduZOrUqQiFQkW0440bN2jfvj27du1i/PjxinuLlZUVISEhuLi4VOj9pkmTJuzevbtE98vXr18TFBREdnY2rq6uWFlZVZp7ZHmTmQnbtkFwsOx1//4yr4iDB2X+Fg0aQOPGqtmXqakpnTp1Ijo6mpCQEMLDw2nevHmeSk0VwYXwC4gkIhrUakDD2sWHyEilUmJjY2natCkAWaIsfrv5G/cT7iMUCBndfDRd6ncp72YX08b/RK5u3WSiRGkRCoVs374dkKUPxsTEEBoamucRFBTEoUOHyMrKomnTprRo0YKxY8fy6NEjtmzZQv36rvTufRKJxApDQ5gxAypBRus7j0Yk0VAWxGKxJpKknLGwsODQoUP4+vqSmJhIly5d1H7cyy3dJi0tDYlEolQEyIsXL7CxsSl02ZKKJPJZvT59+uDq6sqAAQPIzc3l888/V3ob5Y2Ojg42NjbVyrxVk25TNZAPVCuDF8mb6Ovrq0Qk+fbbb0lPT+fq1atoaWkxadIk2rZtyzfffMPXX39dYE7ymDFjcHNzY9SoUbi7u7N27VqmT5+eZ5mYmBg2btzIvHnziqz08Dba2tr8/vvv1K1bl5kzZ/Ly5UsWL16s1DXt/Pnz+Pj4MHjwYFq3bl3oOn5+fixevJhFixbh6enJ06dPAVSabtOqVSv09PTo3Lkza9euxdLSktq1ayMUChXVxTIyMrh48WI+QUoeql5R3iw2Njb873//K9E61tbW/PPPP2RmZnLp0iXOnDlDSkoKixYtUhijvkm7du3o27cvEydOZP78+YwdO5YVK1ZgZmZGZmZmiWYgVIGJiQmZmZlKnVeZmZncv3+fmJgYGjVqRMOGDd+pfOv4eNi0CWJiQEdHVoq1bVtIS/vP/LN/f9Waa8qjESwtLXn69ClXrlzBysoKFxeXChm8ZYmy8H3mC0Dvhr2VOk9SU1PJysrCzMyMpKwkNlzfQGRyJLpaunzc5mOaWzQv51YXT2iozE9GW1tWVldVCIVCbGxssLGxoWvXrvk+l/dLs7OzmTt3Lr/++ivvv/8RjRptJCVFj5o1YdYsKKLmgIYKJCsrSyOSaCg1mvLR5Y+/vz8ikQhTU1MaNWrEP//8Q//+/dUmkkgkEtLS0sonkkQqlZKenq6UAiPPFy8MfX39ErnEyw+oWCzm8OHD7Nu3j+joaKZNm6b0NiqC6lbhRiOSVA3kv8nU1NQSDfbLGwMDA+Lj48u8HV1dXRo3boybmxsgiyz58ccfWbp0Kd7e3ly6dKnA9Ro2bMiyZcvo3bs327ZtyyeSrFixAj09PebMmVPiNgkEAlauXImZmRnz58/n5cuXrF+/vtCbbm5uLv/73/9Yvnw5hoaG/PjjjzRr1oyJEycyZswYLC0tSU1N5c6dO9y8eZNVq1bRpUsXhTBgbGyMQCBQiZGnHBcXF5YvX86sWbOIi4ujWbNmis/mzp1LVFQUjx49wr6AUiByb4uKNLAtLQYGBvTq1YtevYo3tTx48CC+vr6cO3eO1atXIxQKWbFiBebm5sTGxlaoSKLMpITcO+HJkydYWVnh5eX1zg0cHj6E336DjAwwNYXp0+H/LcLw9paVALazk1W1KQ+0tLRo3LgxdnZ23L9/H29v7woRqi4+v0hmbiYWxha0sMgfVVcQsbGxmJmZEZsRy4brG0jMTMREz4TP239OfdP65dbWkiCPIunYESrw56a4vg4dOpSgoCCWLv2DxMQJpKQIqFsXZs+GunUrrj0aiiYzM7PaV+fSUH6oO+3jXeDN3+fo0aP5888/6d+/v9rEKbmBd7l4koDyhieRkZGKcOyCqFOnjsK3RBmEQiFCoRCRSISDg0OlMad8G11d3Wrl4aERSaoGb/4+KxOq8iSpUaMGYWFhitd6enosXrwYW1tbpkyZQkpKSr7Bq1QqZcOGDcyZMwcPD4//Y++8o6K6vjb8zNB7UUQEBUFFRFTEhg3E3kvsNXZjN/aW5JfEJBq7xh57L7FrjKIoNuyCClgQlCIgIL3P/f6Yj4kobWBoZp61WMrMveecGWbuPec9e7+bQ4cOZXs+MTGRHTt2MHHiRAwNDQs9tjlz5mBsbMz48eOJiopiz549n0W2BAUFMWjQIO7evcuyZcuYPn06ly5dYufOnSxYsIC5c+diZWVFQEAAgiCgpaUl88vIuplUrlwZNzc3du3axciRIws93k+ZMmUKp0+f5uuvv8bb2xsjIyPZmO3t7XMVu7NEki/pegdSAb9Tp0506tQJS0tLpk2bhrm5Ob169SIwMJBatWrJ3WZCQgKnT5/G1NSUmjVr5hjFkhORkZG5mksKgiBL9dDQ0KB58+YlnupR2ggCeHjA4cNSL5Lq1aVeEVn2K0lJcPmy9P9duhR/iVYtLS2cnJxkKU9Z36EqVaooPOUpQ5KBe4DUuL6jTcGiSEAaPZdmkMb+G/tJyUihsm5lpjSdQkXtsrH6f/dO6kciEkH79iXf/7x58wgLC+Po0XtcueJAYqI0cmTaNKkAp6TsoEy3UVIUlCJJyTJo0CC2bdsmtyepIslaIylcJFFVVUVLS6tAi7D09HQePHhA586dcz3G2NiYqKiognYPlA9/DD8/P0aPHl3aw1AYKioqJV76Uon8lGWRRBHpNtbW1hw4cIC9e/dm89DIMql9+/atLMc+i+nTp7N27VpmzJjBsmXLPrsZHjp0iLi4OMaNG1fk8Y0ZMwZjY2MGDRpEt27dGDNmDImJiSQmJhIdHc2qVaswMDDA09NTZhDauXNnOnfuTHR0NIcOHcLPzw9HR0caNWpE7dq1c7x5jxgxguHDh/P69WuFpVaJxWJ27tyJg4MDkydPZt++fQD8/vvvODs7s3r1ambNmvXZeeUpkgSkURnPnj3j1atXdOzYMc/KFllMnTqV4OBgZsyYwfr161m6dCn29vZ8+PABkUgk+1FRUcHNzU1WQePTBeu9e/cYPHiw7PdevXqxdetWKuaxLS2RSNi1axe9e/f+7LnY2Fh8fHxISEgoVdPQ0iQ9Hfbvh5tSr1GaNoVhw6SpNllcuQIpKdJFbmFLyBYGY2NjWrduzdu3b/Hx8ZH5lSjSPPdOyB0+pHzAUNOQphZNC3ROUlISN0Nu8jr2NSKRiFoVavFN42/QVtPO/+QSIquiTb16UBpVql+8eEGLFqO5eNGB1FSwspJ6kJRQUTElcqAUSZQUBaVIUrLY2dlRv379z6rdlCRxcXFoa2sXOJJFrk9HQc1b7969S0JCQq6mrSCNJJFXJFFVVS3TC/bY2FjCwsLKVHWRoqKMJCkflGWRJC0trch10efPn09gYCDDhg3jxYsX/PDDD4hEomwVpT4WSTIyMti0aRMLFy7k559/zrHNzZs306lTpxxTSQpDnz59OH/+PL179+bi/8/01dXV0dHRoWPHjmzcuFEWpfExxsbGBU4b7NOnDxMnTmT37t18//33Chk3SKvDbNiwgcGDB5Oamsrvv/9O06ZNmTZtGt999x2DBg36LDLwzp07gGKNZIuDK1eu8Ntvv+Hl5UVsbCwg9R7566+/8kwJzeK3336jdu3ahISEkJiYyJQpUwgPD0cQBNlPYmIiR48eZfv27dSrV48+ffpQo0YNWdWMli1bYmlpSY0aNRg2bBgzZ87EwcGBXbt25ZoCdPnyZV6+fMnOnTtlj6WmpuLr60twcDDW1tY0bdq01MvPlgYxMbBpEwQGSiMO+vaFtm2zR4qkpEhTbaBkokg+Jev6ZGZmxvPnz/H09MTCwgI7O7sil2EWBIELLy8A0Na6Lari/KdygiCw7eY2vJK9MNUzpZlFM4bVH1agc0uKuDi4fVv6/yJ6PReaV690UVPrgZER1K4tTd36j1TNLldkZGSQnp6uFEmUFJqizkuVyI+TkxNJSUml1r885X9BTpFEX1+/QIuwZ8+eIRKJaJDH1o2ZmRnJyclER0cXOES4rC/YfX19AZQiiZISp6yKJOrq6ojFYpKTk4u0mFZXV5dVNpk/fz4vXrxg+/btmJmZoaKi8pkP0OvXr0lLS8PV1TXH9h4+fMidO3c4ceJEoceUE25ubrx7947U1FR0dHQUvoDV0dGhf//+7Nq1i8WLFys0ZHHQoEGIxWImT55MzZo1ZWWOV69ezc2bN+nXr5/s2JCQEKZNm8bgwYPzvM6XNhKJhLFjx6KlpcXs2bNxdnZGXV2dwYMH06hRI44dO0aLfOqLisViRo0aBSBLbxk/fvxnkRvLli3j4sWLbNmyhfXr1/P+/XvZc1nfz6tXr7J3717at2/PyJEj6dixI40bN8bR0ZGGDRvi6OiInZ0dR44c4X//+x8ODg40b94ciURCQEAA/v7+VKxYkTZt2ijUwLc88eqVVCCJi5Pu7o8dm3Mp1mvXIDFRGo3g5FTy48xCTU0Ne3t7WcngS5cuYWtri7W1daG/v97h3rxLeIeWmhatLT83IP2U9Mx0/nz4JxdeXsDIyIgetj3oUrNLmYs+unwZMjKkVYgKUI1d4Vy6lExs7CC0tQ1wdIQxY6TmsUrKHikpKYjF4hxN25UoKQjKSJKSx8TEpNRFEnl85YolkuTt27eYmZnluUDIEhJ8fX3znaRmUdYX7H5+fohEImwVVWOwDKChoUFGRobyYlLGyVqEyVOmuyQQiUSyCjdFjTgQiUTMmzdPthsfGBjIiRMncqwolSVY1q5dW/ZYZGQknp6eeHp6cubMGczNzenatWuRxpQTWlpaxbq79fXXX7N9+3YmTpzIjBkzFHq9GTBgAN27d2f79u0sX76c/fv3o6enx/Pnz2XHCILA2LFj0dbWZt26dQrruzjIKo1948YNmjdvLnv83r179OvXjzZt2rB+/foCp1yZmpry+PFjmQCSlJREcnIyKSkp6Onp0bFjRzp16gRIv4sBAQG8evVK9u+HDx9QU1OjQoUKnD9/nr179+Lu7s6tW7f4888/s0VK9u3bl19//ZWIiAh8fHwQi8U0adIEExMTBb5D5Ytr1+DgQcjMBAsLqf9IThlLaWn/mn927gyllP6cDR0dHZo2bUpERARPnjwhMDAQBwcHTOXMKREEgXMvzgHgYumCpmreaWNxqXFsuLsB3zBfRIKISc0n4VzVudCvo7hITf23ClEB/JUViiDAhQuwfXsKIKJZMwnjxpWNz42SnMlKtSlrQp+S8kHWuqYgabdKFIexsTFhYWGltqaUp/wvFFMkSXBwcL7GdLVq1UIsFvP06dMCiyRl3ZPk4sWL1KpVC23tspPfW1Q+jgRQuoiXXVRVVdHU1CxzkSSgOF+SLPr27Uu1atXo0aMH1atXJyUl5bMKOn5+fujp6clSRDZu3CirbGNlZUXr1q2ZMGFCuRT+WrZsyU8//cTatWtlKUNHjhxRWNqLtrY2kydPxtTUlP79+2NtbY2/v7/s+e3bt3P+/HnOnDlT5o1CN23ahIODA87O2ReFlSpV4tKlS8yYMYPx48fz4MED1q5dm++upIqKChYWFvzzzz/ZvHGyqFKlCq6urri4uODq6kr9+vXzjLRp1qwZQ4cOlV1jnzx5go+PD05OTlhbW/PkyROeP3+OnZ0dlpaWpWZ2VtpkZEjFkawiVo0awfDhuadBXL8O8fFQoQI0aVJy4ywIlSpVwtXVlcDAQO7fv4+RkRF169Yt8P3VP8qfwA+BqKmo0dY695RmgLD4MNbdWUdUUhQZyRlMaDChTAokIP2bJSVBpUpQv2CFehSCIMCRI9LULGnlgwuMG9dJKZCUcZR+JEqKQnJyMioqKv/JdNXSxMDAgICAACIjIzEzMyvx/stMJEl+ud6ampo0aNCAixcvFngXryxHkrx9+5ZDhw6xfPny0h6KQhGJRLIKJUqRpGyjq6tLYmJiaQ/jMxQtkgA0adKEO3fusGfPHvT19T+LCPH19aV27dqyXaYsLxB3d3fc3NwUOpaSRiQSsWjRImbMmEHdunW5f/8+giAovJ+NGzfSsmVLrK2tZZEkQUFBzJgxg5EjRxZLFI4iCQ4O5tSpU6xfvz7H3UY1NTXWr19PgwYNmDRpEk+ePOHo0aNUrlw5z3arVauGv78/Li4uLFy4EE1NTVmp66tXr+Lh4cGhQ4fIzMzEzMxMJphkVcsBaYWRkSNHcuHCBWxsbJgyZQojR46kcePG1K9fH39/fzw8PLC0tMTJyek/HVIeFydNr3n1Suor0quX1K8itw3kjAxpVABIo0jKYsq5WCzG2toaCwsL/Pz88PDwwMrKCltb23z/1llRJC2rtURfI/fJnv97fzbd20RSehLGmsa01GtJa/v8U3NKA4nkX/+Y9u1LLoIjIwN27YL/t1eiefMQzp8/TmLiTyUzACWFJjk5WRkFoKTQZH1+lJFIJYu+vj4pKSm8e/euVESSYo0k0dPTy3enOi4uDh8fH/r3759ve23atOHUqVMF7r8sG7euXr0aPT09xowZU9pDUTjFschVonjEYnGxLJaLiqLKAH9KtWrVWLhwYY7P+fn5ZUu16dWrF0ZGRvzzzz/lXiTJ4vvvv+ft27e4u7srXMB89uwZV65c4cCBA7x8+ZKzZ89y5swZ/ve//2FoaMiqVasU2l9xsG3bNrS1tXOM+PiYMWPGYG9vz1dffUW9evVYt24d/fv3z3XypKOjw5s3bxg0aBDtP6lR2qVLF0B6H7xx4wYeHh54eHhw5MgRVFVVWb9+PZUqVWL06NGoqKiwdetWLl++zKxZs/juu+/48ccfqVWrFgYGBri4uMi14/ElEhgIGzfChw+gpSX1iKhbN+9zbt6UHm9oCM5lM2hChrq6OvXq1ZP5lbi7u1O7dm2srKxy/PwFxATg/94fsUhMB5vcc1Juvr3Jnsd7kAgSbIxt6FShEx8iPpTZz9P9+xAVBXp6Jfc3S02FzZvh6VOpKPP119CggSNr15qwefNm1q5dWzIDUVIoUlJSlJEkSgqNMhKpdNDR0ZGJJKWBvMatcun1+vr6+UaSODk58e7du3zTbUC6eJKnfGRZjST58OEDW7Zs4ZtvvinzlR4KQ5anhBIlhaE0RLaAgIBsu0yampq4uLhw9uzZEh1HcfHXX3+xYsUKli9fjouLi8Lb37hxI6ampvTp04eaNWsSFRVF9+7dSU5O5uDBgwotZaoIJBLJZ4+dPHmSXr16FeiG6OzszMOHD3FxcWHgwIH07t2b0NDQHI99/Pgxx44do0qVKjn2C9J7ZefOnVm6dCleXl5ER0czYsQIxo4dS8+ePXF2dsbHx4cxY8awf/9+vL292bhxIxoaGhw9ehQbG5syu6AtKW7ehN9/lwoeZmawYEH+AklmJvz9t/T/HTuWH9NNfX19nJ2dadCgAa9evcLDw4PIyMjPjjv/4jwAzlWdMdb6PNVNEARO+p1k16NdSAQJjc0bM63JNN69eUeNGjWK/XUUhiw/EIA2bbKXcC4uEhJg5UqpQKKuDpMnS0tIa2hoMG7cOHbt2lUmU1eV/ItykaukKChFttIhaz1ZWiJJXFycXHMruUSS/CJJpkyZwsuXLwGomJOb2idoaGh8ESLJ6dOnSUhIYMqUKaU9lGJBGUlSPhAEoUyGDmppaZW4m/XYsWPZunUra9asAcDLy4tTp04xaNCgEh1HcXH27Fnq1q3LtGnTFN52fHw8u3btYuzYsairq9O9e3dWrVqFt7c3T548yWaAWhaYOHEiNWvWxM/PL9vjBgYGuYoYOWFqasqRI0c4duwYt2/fpk6dOmzfvv2z6CxPT08ePHiAhoZGrkLKp+jr67N582aOHDnCjh07OHnyJCYmJiQmJnLnzh0CAgJo0qQJdnZ2nDlzhsaNG3Pv3r0Cj/1LIjMTDh8WsWuXNB2ifn2YN0/qVZEfXl7/RiS0alX8Y1UkIpEIMzMz2rRpg4WFBXfu3OHOnTuyFMrguGC8w70RiUR0tPm8Pm6GJIPtD7fL0nE61+zMaMfRRLyLQCwWl0poc0Hw94e3b6ViRS7FyBRKVBQsWyaNUtLRgW+/hY+qxzN+/HgSEhLYu3dv8Q9GSaFJTExULnKVFBqlyFY6ZM2nykskidzGrTntbgCkp6ezfv162e/5eZKA1ARPnvQZFRUV0tLSCnx8SREeHo6enl6ZnYQUFS0tLWJjY0t7GErKKfr6+iQkJCCRSErMePKnn34iLS2N6dOnk5qayvbt23FycmLOnDkl0n9xo6WlhYqKSrGIYvv27SMxMVHmFaWtrc306dMV3o8i2LlzJxs3bsTMzIyWLVty7tw5mvy/U2eVKlUKLGJ8TJ8+fXB1deXbb79l9OjRHDx4kC1btiCRSPD09GT79u00bdqUGjVq8PLlS8zNzQv8d+jbty8gddZ//vw5AQEBmJub07ZtWzQ1NalRowb379/nq6++omXLlty8eZOGDRvK/RrKK/HxcPq0DaqqIsRi6N4dunbN3X/kYyQSOC8NtKBDh5KJSCgOVFRUqFmzJlWrVsXX15crV65gbW3NtcRrADiZOWGqm70iTkJaAhvvbuRl9EvEIjFD6w2lRbUWCILAy5cvsbGxKZMCOvxbhahFC6loUZyEhsKaNRATI2BgkMno0YloaiYREJBMamoqNjY2VK1alZ49e/LHH38wYcKEMvu+/ZfJzMwkMTHxPx9tp6TwJCcnl7mI2P8CGRkZqKmplapIkp/v3McozLg1OjoagNatW+Pm5ka7du3ybU/enW91dfUyuVivXr068fHx+Pv7f1Hlf7MoLk8JJfLz5s0bWXlbINsud2pqapmc0GUt6OPj40vspiQSiVi6dCkAc+fORUNDg4cPH5bLajY5IRaLi8WkNyMjg3Xr1tGjR48CpUyWJt7e3kycOJHRo0ezbNkyunXrhpubG3/99RcdOnTAzMyM+/fvF6ptY2Njdu7cycCBAxk3bhzW1tay71rdunWZP3++zMA1MjKSSgUJc0D6fX379i2+vr5oa2vTsmVLDA0Nsx1jYWHB1atXadGiBYMHD+b+/fvoFPfqsQzw9i2sXy8mNFSXmjVh7Fj5qpzcvw8REdKFdjFkoJU4mpqaODo6YmVlxbUH1zj9/DSGRoZ0qtEp23ERiRGs81pHRGIEWmpaTGg0gdoVpX5MkZGRpKSklNnvcnCwNOVFJIICTBmLxKtXsH49fPiQyqFDa0hO/pXlyz9kO8bExIRRo0bRtWtXjh8/jr29PTo6OrKy7lkmzc2aNSuzwvF/gYSEBFRUVJSRAEoKjTKSpHRIT09HTU2NkJCQUum/1IxbsxzZp06dyldffVWg9jQ1NUlKSiqwWFJWvTG6du2KgYEBe/fu5aefvjxXdGW6TemSmJjIX3/9xc6dO7ly5Uqe5qwFSXMraUQikczPqLAiiSAIeHh4YGFhQc2aNQvc79KlSzE1NcXc3Bw7O7tC9V3WOHfuHJs2bWLEiBEKb/uPP/7A19eXHTt2KLxtRRIXF0ffvn2pVasW69atQ0tLi0uXLtGvXz+6devG7t27Cx1J8jGdOnXi6dOn7N69m2rVqtGiRYtsZY+rV6/OixcvCiSSREdH4+PjQ0pKCvb29nlGoGhqarJv3z4aNmzIt99+y+bNm4v0Oso6d+9Kq4ykpoKBQSpz5kioVq3gZWkEAc5Js0xo1y730sDlESMjIz5U+ICRkREGqQa8fvwanbo6GBsb8zL6JRvubiAxLZEK2hWY0mQKZnrSiFZBEHjx4gXVq1cvs+LwxYvSf52coDhvXd7esGULpKeDrm4kycn/w96+Os7OfXFycqJGjRqoqKhw4sQJNm3aJNuMS0pKwtnZmfT0dJKTk3n+/Dne3t6kpqYqRZJSJMtXoCxuCikpHyhFktIhOTkZVVVVwsPDS6X/Yk+3yS2SJEskkcdjxNzcnMTExAIvnsrqYl1TU5N+/fqxd+9efvzxxy/uwq2lpUV6ejoZGRlldrL1pSGRSLh+/To7d+7kyJEjJCQk4Orqyo4dO3B1dUUlh7qWZTnvvCCmz7kRHh7OmDFjOHPmDCCNVps5cybdunXLN31HJBIxc+bMQvVbFrl48SJ9+vShS5cubNiwQaFth4SEsGjRIiZMmCBLWSmLCILAmDFjCA8P5969e7KJjra2NidOnGD06NEMHjyYr776ioSEBLlvip+ip6fHpEmTcnzOxsaGgIAAIiIichVKkpOTefbsGWFhYdSoUYMaNWoU6Dpau3ZtVq1axYQJExg5ciTNmjUr9Gsoq0gkcPz4vykX9vZQpcoLzMys5WrnwQNpKoWWVsn4WpQk0cnR3A6+jY6ODtPaTkMSJeHmzZtEaUZxM+kmiMDK0IpJTSZlKwkcGRlJbGxsmf0ux8T8W3q3Q+6FeorMzZuwZ4/0s1a3LnTrJuLOnbp4e3vz9OlTtm3bhp6eHnXq1KFu3bpcu3aN+/fvs2nTJu7cucM///zD2LFj6dGjB3369MHe3p6dO3cW34CV5Iu85otKlHxM1npGKZKUPMnJyWhra5cb41aFRZJkpWNkiSUFISsENDAwkPoFiKvV0tIiLS2NzMzMzxaJ/fr1o3379rI8+pJm2LBhbNu2jRs3btCyZctSGUNxoaamhoqKCsnJyQovNaokO2lpaaxatYotW7YQEBCAtbU1s2fPZvjw4VhZWZX28AqNnp5eoZTjN2/e0KhRIwAOHz6MRCJh7dq19OzZk6lTp8qMWb9E/vnnH4KDgxkxYgQqKipcvXqVnj170rZtWw4dOoSagk0Xpk+fjo6ODr/88otC21U0f/zxh8xg9dOoIjU1NXbu3ElMTAxHjx4FICwsrNiuW2pqatSsWZNnz55hYmKSTSDPzMzk5cuXvHjxgsqVK+Pm5oa2trbcfWRFYn1pJCTAtm2QlT3YuTN07izh778L7lMG0iiS/9dPadcOCvEWl2n+efUPEkGCbUVbapnUQqgo4J3qzckHJ6WRDlbOTG86HS31fyf8giDw7NkzatWqpfDrhKJwd5cKF7VqgaWl4tsXBKn49tdf0t+bNYPhw0FFxRwvLy8yMzMJDAzk2bNnsp9z587x4MED7ty5w8iRI7l//z6bN29m6dKlfP/991SuXJkrV64ovQxKmbi4OLl8BZQo+ZiUlBRUVFTK7LXxSyUzM5O0tDQMDAwICQkplWITpRZJEhQUBIClHHe7evXqIRaLuXfvXoFEEg0NDUQiESkpKZ/laB89epSjR4+WmkjSsmVLqlWrxt69e784kUQkEslSnZQiSfHh4+PDsGHDePr0KcOGDWPnzp20bNnyi4hM0tfX58WLF3Kf988///D+/XtCQkJkUTIDBgxg8ODB5a76R2ZmJjdu3EAsFlOhQgUqVKiAkZFRrjfqxYsXc+fOHdatW8eECROYOXMmLVq04NixY2goOJ/g3LlzHD16lP3793/mkVGWiImJkUW79OnTJ8djxGIxy5cv5/z582RmZhIaGkqtWrWKbUzW1tYEBAQQGhqKubk5giAQFhbG06dPUVNTw9nZmQoVKsjdbkpKCj/99BNdunQB4OrVq0RGRhIZGYm+vj5DhgxR9EspMYKCYNMmiI6WVjUZMQIaNZKmQ8jL/fv/RpG4uSl+rKVJXGoc199cB6BLzS6kZaax4+EOHoQ9wKSiCc1Nm1MtsRrXr17H3t4eMzMzRCIRISEhpKamUr169RIfc2BgIO7u7mRkZMh2bN3c3KhXr57smMREuCb1oaXj54V6iowgwNGjcOmS9PcOHaBPn+wGwCoqKtjY2GBjY0P37t0BuHfvHk2bNmXFihXMnTsXJycntmzZwu+//87Ro0dp1qyZXHNcJcVDXFxcsV7TlXzZJCcno6mp+UXMrcsTycnJiEQiHBwcSEhI4OnTp9StW7dEx1DqkSQhISE0bty4QO3p6upSvXp1/P39C3S8SCSSpdzkZmQXHBxcoMo6ikYsFjN06FA2btzImjVrFL6IKW3KaqrTl0BmZiYrVqxg8eLF1KpVizt37uDo6Fjaw1Io+vr6pKSkkJaWJle0ma+vL1paWuzbtw8nJyccHR1JT0/H29tbYbt5x48fZ8uWLTg4ONCwYUMcHR2pWbOmwirxpKSksGvXLpYvXy4rkf4xFSpUYPv27fTo0UP2mCAI+Pr6MnToUPz8/JgwYQKurq6cPHkSTU1NhYwLICoqij179rB06VLatWvHwIEDFdZ2cbBixQrS09P54Ycf8jzO1taW8ePHs2HDhiL7kuSHiooKtWvXlpmxPnv2jPj4eOzs7KhWrVqhJ2InT54kJCSEkJAQzp49m+05sVjMwIEDc0y7A+ln7tmzZ/j4+MjuTWVlQnjjBuzfLy3vW6kSfPMNVKlSuLa+9CiSSwGXSM9Mx8rQisq6lVl+czlBH4JQEaswtN5QmldtjiAIvHnzBm9vb16/fk2dOnXw8/Ojdu3auX4+ipN58+Zx6NAhVFRUZGllGhoa3LhxQzYh9vCQ+s9YWGQvv6sIMjOl/jZeXtLfv/qq4Ok8jRo1YsaMGfzwww/07t1bthA3MDBg9OjRih2okkKRlpZGSkqKcsNOSaFR+pGUDlnve4sWLVBXV+fKlSslLpLIG0ki1ypAX1+f+Pj4HI0js0Lie/fuLVclFFVVVSQSSYGPz22xnvWis0KsS4OhQ4cSExPDuSwHuS8IZYWb4uHVq1e4uLgwb948pk2bxt27d784gQSkaXiampq5iqy50a5dOxwdHfn+++9xc3PDyMiI6tWrExkZyaZNm4o8rqSkJCZNmsTLly85dOgQgwYNonbt2hgYGNCyZUumTJlSYBH3UwRBYNWqVVhaWjJx4kQcHR25efMmT58+5dq1a5w4cYI///wTR0dHRo0alS1HMyQkhPj4ePr374+XlxcXLlzgzJkzhUrXyIkXL14waNAgqlSpwpw5c2jVqhXbt28vMwvpnIiMjGT16tVMnToVU1PTfI///vvvMTIyIr0w4QlyUqlSJdLS0vD09MTQ0JC2bdtiaWlZpPezffv2bN++nb/++gtPT0/8/f2Jjo5mzpw5VK1aVbYAFgSBBw8e8NNPP9GvXz9q166Njo4OTk5OfP311wwfPpxFixZlazsoKAh3d3cyM+VLbSkKGRmwdy/s3i39f/36sGBB4QUSkEaRhIVJxZEvLYokKT2Jq4FXAXAwdeBXz18J+hCEjroOM5rNoHnV5oB088jS0pK2bdtiaGiIp6cnaWlpBa64pGgCAgIYOXIkGRkZpKSkEBkZSfXq1enatSthYWGkpkpTbQA6dSpYeeeCkpoKGzZIBRKxGEaOlN/v5Mcff6RKlSqMHTtWrrmpkpIhLi4OTU1NuTZblCj5GKVIUjpkve9aWlo4Oztz+fLlEu1fIpGQkJBQvNVtBEEgMTERXV3dbM+pq6tjZ2eHr6+vXBNDsVgs140otwo3FSpUID4+nkOHDpWa67idnR1OTk7s27eP3r17l8oYigtlJIliEQSBLVu2MHPmTCpVqsTVq1dp1apVaQ+rWNHX1yc2Nlau1IPOnTvTuXNnMjMzef78Offv3+f58+cMGzaswFVu8mL16tW8f/+e69evY21tTVRUFA8fPuTBgwc8fPiQvXv3EhMTw969e+VuWxAEFi5cSIMGDbhx4wY1atTI8bju3btTt25dxo0bx8mTJxGJRLIyz3Z2dojFYjoo2Nlw//79HDx4kEmTJvH9999jYmKi0PaLg+PHj5OYmMiECRMKdHylSpV4/fp1se44SiQSXr9+jZ+fnyzS0sbGRiG5zsbGxowcOfKzx1++fCn77GdkZDBlyhQ2bdqEkZER9evXp0OHDsycORMHBwfs7e3ZsmULs2bNwtTUlKFDh7JkyRLWr19PWloalpaWTJo0idGjR2er2qNoYmKk6TWBgdJFcY8eUg+SoiyQJZJ/o0jatv3yokiuvL5CSoZ0Y+Lvl3+TnpmOmZ4ZkxpPwkTn8++rmpoaNjY2BAYGoqury5UrV7C1taV69eoKi4orCEFBQXTt2lX2u56eHmfOnKFZs2ZMnDiRyZOPk5gIJibSqjaKIj5eWuI3MBDU1GDCBKlR68fs27eP77//HhsbGxo0aCD7qVmzpizqRVtbm61bt9K2bVu2bt3K+PHjP+vrw4cP3Llzh9u3b6Oqqsq0adP+E2W6ywJK01YlRSUlJUUpkpQCH7/vbdq0Yc2aNUgkkhK7PyUmJiIIgnzXD0EO0tLSBEAIDQ3N8fk//vhDAASJRFLgNuvUqSNMnz69wMc/efJEePTo0WePd+zYUQAEQNiyZUuB21M0/fr1E9zc3Eqt/+IiICBAuHnzZmkP44sgNDRU6NSpkwAI48aNE+Li4kp7SCVCbt/d0iIyMlLQ19cXpk6dmusxs2bNEqpUqSLXNe1jBg4cKNjb2+d7/p9//ikAsvdn9erVgoaGhpCRkVGofvMjPj5esLW1FerVqyckJSUVSx+KJjAwUNDU1BQWLFhQ2kMRBEEQ3r17J1y6dEm4dOmSEB4eLgiCINy5c0e4e/dusfbr4OAgfPPNN0JcXJzQuXNnQUVFRdi8eXOen7FZs2YJgGBgYCDo6OgI//vf/4QbN24II0aMENTV1QUtLS1h9erVhf6c54WfnyDMnCkI48YJwvTpgvDkSe7HpqWlCSdOnBDS0tLybffu3X/bLCcf4QKTkp4izPh7hjDu1DjZz+pbq4WktLxf6N27d2Wfv/DwcNnn8927dyUxbCEpKUkAhB07dnz23KxZswQbG1th7lzp3+3aNcX1Gx4uCAsXStudMUMQXr36/BgfHx9BU1NTaNu2rdCjRw+hWrVqsjmjhYWFcOvWrWzHjx49WtDX1xeCgoIEHx8fYevWrcKoUaOEOnXqCCKRSAAEIyMjQVNTU7C0tBTOnj2ruBekJFcePnwoPMnrIqJEST7cvHlTeP36dWkP4z/Ho0ePZN/dq1evCoDw4MGDEus/JCREAIT09PQCnyOXfKOmpoampmau5q2HDh2iVatWckWSqKiokJGRUeDjc0v7aNCgARYWFkyaNImJEydy48aNArepSIKCgr5IYy9lJIlikEgk9O7dm4cPH3L27Fk2b978n8mtLUoZ4OJg7dq1SCSSz1IRPqZNmzaEhoYWynQWYMiQITx9+hRvb+88j7t8+TLm5ubY2toCUi8WW1vbYvMU0NXV5ciRIzx//rzUIu/kxdLSklmzZrFixQqZUXhpEB8fz+3bt7l//z5WVla0adNGltrg4OBAeHg4ERERxdZ/QEAAlStXxsXFhRs3bnD+/HnGjRuX53136dKlfPvttwwdOpSXL1/y3Xff0bx5c3bu3Mnbt28ZM2YM06dPZ+TIkQpLq8yqLrJqlXSXv2pVWLhQMR4UH0eRtGsnNW39krj8+jKJaYmy39tUb8OUplPQUsv9hUZERBAeHi7L8a5UqRJt2rTBysqK+/fvc/v2bRISEop13JGRkQA5RguamZkREmJOdLSAgQE4Oyumz8BAWLYMIiOhQgWYOxesP6kgnZiYSP/+/alRowanTp3i5MmTBAUFERUVxeXLl6lWrRouLi78+eefsnN+//13tLW1qV69Og4ODowfP5779+/TunVrduzYgZ+fH1FRUTx58gRbW1u6du1K//79C+SBJAgCBw4cIDg4WDFvwn8IZSSJkqKiTLcpHT5+35s2bYqmpiZXrlwpsf7j4uLQ0tKSRQ0WBLljXPIyb01NTZXbcTqv9nIit8W6o6MjwcHBLFq0iNq1a7Nu3Tq5xqEo3rx5Q7Vq1Uql7+JEKZIohgMHDuDl5cWhQ4dkVSv+K2SJJEIOnkaFoah+ChoaGgiCkOfNslWrVqioqBT6Qt6xY0cqVKjAqlWrSEtLy/EYX19f9u/fz8KFC2WmrL6+vtjZ2RWqz4Li4ODAunXr2LJlCwcPHizWvhTF3LlzMTY2Zu7cuSXed3p6Ok+ePMHDwwMtLS3atm2LjY1NtlBRTU1N7Ozs8Pb2Lja/DwcHB3755ReZ0Nq+fft8zxGLxaxYsYL169d/VjqzUqVKrF27lj179nDw4EFcXFyKbHabkgJbt8KxY1KxpFkz6eK1YsUiNSvjwYMv14skJjmGE34nZL8PchjEwLoDEYtyn65lZmby+PFj6tSpk83YWSwWY2NjQ9u2bdHS0uLKlSs8efKk2Hx6LCwsMDMzy/F6aWZWhZQUF9LT02nXDuSYp+aKtzesWCEV4apVg3nzICe7okmTJhEUFMThw4ez+ToZGxvTpk0brly5wqhRoxgzZgwTJ04kLS0NIyMjjh8/zpIlS7h8+TKxsbE8evSIjRs3MmLECGxtbRGJRNjY2PD333+zf/9+rl69ip2dHRs2bMjz+3/69GkGDx5M7dq1Wbp0aa73BiXZEQSB+Ph4pUiipEhkVbdRUrJ8LJJoaGjQokWLEvUlkde0FQohkuS1G5ybX0hepKeny5W/nVsfDRo0AKQ7sgMGDODs2bMlbjT64MED3r17JxvLl4SWlpaspJ+SwpGUlMS8efPo06cPLi4upT2cEkdXV5fMzMwiiW1paWmcPXuWESNGYGxsTLNmzYiJiSlUW0OHDiUxMZG//vor12P09PRo1KgRHh4ehepDTU2N+fPns3v3buzs7Dhw4AASiQSJRML9+/f55Zdf+Oqrr6hatSqjRo0CpDeSR48elYjr9+jRoxk8eDBjx44tF7uaurq6/PLLLxw6dIibN2+WSJ+CIBAYGMilS5eIjY3FxcWF+vXr51rBrHr16qipqRXa8Dc/hg8fTmpqKmpqajRv3lxh7Q4dOpTr168TGhpKo0aNuH37dqHaCQ+H336TmqqqqMCgQfD111KfCEXwJUeRhMaHMu/SPNnvk5pMwtXKNd/z/P39UVdXx8rKKsfnNTQ0qF+/Pi4uLsTGxnLp0iUCAwMVJlhnIRaL6dWrF8ePH/+s7cTEmoApgpBA69ZF78vTU2rSmpYmjU6aORNyWjvv2rWLXbt2sXHjxlyFZ3V1dTZu3MiWLVvYtm0bbm5uvHv3jmbNmjFv3jzatGmDSCTK9f0SiUQMGjQIPz8/BgwYwKRJk2jRogWPHz/+7FhBEPjhhx9o3rw5Y8aMYeHChTg4OPDPP//k2HZ6errSQPb/SU5OJjMz8z8TfatE8WSVJVdGkpQ8n3rBtGnThmvXrsmVTVIUChOFptBIksJEG0RHR8tlGKelpUVaWtpnKn2tWrXo1q0bEyZMwNHRkYSEBNyzLNRLiN9//53q1avTrVu3Eu23JFBTU0NFRUVZ4aYILF++nIiICJYtW1baQykVVFRU0NXVlTvlJj09nQsXLjBq1ChMTU3p1q0bd+/eZeLEibx48YIOHTrw4cMHucdjaWmJq6sru3fvzvO4rJ3Gwi4oZs6cibe3N/b29gwePBgVFRVMTExo1KgRv/76KzVr1uTAgQOyRfehQ4eIi4srkXK8ycnJvHnzplxVChg+fDhOTk7MmDFD4Yu8T3n//j1Xr17lxYsXNGjQgObNm+d7kxWJRDg6OhIQEEBUVJTCx2RkZARA69atFW541qhRI+7evYu1tTUuLi7s2LFDrvMfPoRffpFGeRgawqxZ4Oqq2AomX2pFm6cRT/nV81fZ760tW1PPtF6+50VFRREQEICjo2O+qc76+vo0b96cBg0a8OLFC65evcr79++LPPaP6d27N4GBgTx69Ej2mCDAs2fSNOQaNUIoyiauIMDp09JKSYIgTduZNIkc2/T19WXixImyKk/5MXbsWK5evUpAQIDMhH/+/Pk4Ojqiq6uLnp4eDRo0oF+/fixYsIAdO3Zw48YN2bzIyMiILVu24OnpSXx8PE5OTvTq1YtZs2axbt06Tp8+zaZNm3j48CFLlixh9erVPHz4EDMzMzp27Ejv3r354Ycf+Prrr3FxccHS0hJNTU2cnJzkrgz3JRIXF4eurm6JGhEr+bJITk5GRUVFIebqSgpORkYGaWlpn4kk8fHxPHjwoETGUJhIErkDHvMSSdTV1eUOG4yKipJLJNHQ0EAkEpGcnJytwo5IJGLv3r0YGhoSGRlJzZo1OX78eDaX9eIkMDCQI0eOsHr1arnyncoLIpFIFsWjVPHlJyQkhKVLlzJt2jRsbGxKezilRlYk2qch/5+SkZGBh4cHhw8f5q+//iIqKoqaNWsyefJkBgwYgL29PSKRiAEDBuDm5kbHjh3x9PSUe7E/YsQIRo0axdu3b6latWqOx7Rp04bffvsNPz+/QqfA1K1bl1OnTvH06VPOnTtHcnIyLi4uODs7fzbmP/74g44dO+ZaDUdRpKenM2DAAB4+fIi7uzsWFhbF2p+iEIvF/P7777i5uXHkyBH69++v8D6SkpJ4+vQp4eHh1KpVCxsbG7n8YfT19bGzs+P+/fu0adNGoROyrEVt586dFdbmx1SuXJnLly8zefJkRo0axdOnT1m+fHme50gkcOoUnD8v/b1mTRg3Lued/aIgkcDZs9L/t2//ZUSRCIKAR6AHh54ekol+SUlJmESasHnzZkxMTOjTp0+O56anp3P//n3s7OwKvEMmEokwMzOjUqVKvHr1itu3b2Nqaoq9vb1CSoy7urpiaGjI8ePHZeXs/fzgwwd9IB0zM1/AoVBtZ2bCvn2QZTnXpYu0UlJu2tCIESOwtLRk/fr1Be7D2dmZ+/fv07dvX4YOHUqlSpXo2LEjkydPJiYmhhcvXvDixQtu374ti74zMjJi8ODBjBw5koYNG9KyZUsePnzI6tWruXjxIidPnuTNmzey+bGrqyuurq6ANH3uypUrHDp0iPnz53P79m2srKyoXr06LVq0wMzMjAULFjB27FgOHDhQpsu0FzdKPxIlRSUrmuG//D0qDVJSUhCLxdnmu40bN0ZHR4crV67QpEmTYh9DiYgkeaXbqKmpyRVpkJyczIcPHzAzMyvwOSKRSBax8mkZYgMDA0xNTQkKCqJ79+4cPHgQQRBK5MuwatUqDAwMcizZ+KWg9CUpPAsWLEBHR4eFCxcqvO2bN2/i5eXFjBkzFN62PCQkJHz2nfyUvK4fmZmZeHp6cujQIY4dO0ZkZCTW1taMGzeO/v37U79+/c++yw0aNGDnzp307NkTf39/HBzkm3x/9dVXTJo0ib179zJ//vwcj2nRogWampocP368yD4h9vb22OfhXHn37l3u3bvHqVOnitRPfkgkEkaNGsWFCxc4c+YMTZs2Ldb+FE2bNm3o2rUr8+fPp1evXgqLhMnIyODFixe8evWKKlWq0K5du0LnLltbWxMREYG3tzdOCqx1mpXDm7XIKg7U1dXZvHkz1atXZ8GCBYwbNy5Xv7GEBNi2Df6/ajVt28JXX0lTbRTNx1Ekbdoovv2SJlOSyaGnh7gaeFX2mP9zf65uvMreV9Ky42KxGB8fH+rUqZPtXEEQePz4MXp6elh/6lRaAFRUVKhVqxZVq1bF19eXy5cvY2Njk60cbmFQU1OjSZMm3L17V/bY33+Dmpo6Ghr3iIkpXBphaips2QJPnkhFkcGDyTdtJyEhAUdHR7nL85qZmeHh4UFgYOBnvkMfk5SUhL+/P4cPH2bXrl388ccfODg4MGrUKIYMGcKcOXOYM2cOIL3mvnv3jqCgoM++SyKRiIEDB+YaPVi5cmX69+9PixYtmDJlilyv5UtCKZIoKSpKP5LSIet9/3gOr6amRqNGjXj48GGJjKHU023U1NSyeVbkt6AOCQkBwNzcXK4x5LVYt7KyIjAwkE6dOhEaGsqTJ0/karswREVFsW3bNiZNmiT3zbg8oRRJCse9e/fYvXs3P/74IwYGBgpt+927d/Tq1Ytvv/2WY8eOKbRtedizZw/6+vq0a9eOQ4cOkZqamuNxBgYGn6XGpKens2nTJlmlkPPnz/P1119z9+5dXr58yS+//EKDBg1yFTuzwvcKE+Gkp6dHnz592LVrV66pGzo6OgwaNIjNmzcXe+7kH3/8gaWlZbGa+gqCwLfffsu+ffvYs2cPHTp0KLa+ipOlS5cSGBjIxo0bi9yWIAi8ffsWd3d3IiMjadGiBQ0bNizSZCor7SYiIoK3b98WeYxZZImM9evXV1ibOSESiZgxYwb6+vrs27cvx2OCgmDJEqlAoq4OY8ZA//7FI5B87EXyJUSRJKUnse7OOq4GXkUkEmGhL43kUhPUIAh8fHyIj4/HxMSErVu3fnZ+cHAwkZGRBUqzyQstLS0aNmxIixYtiIyMxN3dneDg4EKnsgmCwIMHD2TCYGCgNJJELAYLi2eEhYXJ3WZcnNSg9ckTqbfNN9/kL5AADBs2jOPHjxeqqpqamho1a9bMM7VDW1sbR0dHfv31V968ecPZs2extbVlzpw5mJub06dPH86cOUNGRgZisZgqVarg7Owsq/4TFxfH/v376dOnD/Xr1+fQoUM5vu/9+vVj+vTpfPvtt9y6dUvu1/Kl8OHDB4XPoZT8t1BWtikdcnvfa9eujZ+fX4mMoUSMWytUqCAr8/YpKioqMq+QK1euoK2tzenTp3NtK6udrPKJBSW3MsAANjY2PHr0iFatWqGlpcWFCxfkarswbNy4EYlEwuTJk4u9r9Ikr/ddSc4IgsCMGTOoW7cuY8aMUWjbEomEr7/+GrFYTIcOHZg4caLC88sLQlhYGFOnTsXNzY20tDQGDhyIhYUFs2fP5vnz59mONTY2JjExkeTkZCQSCfv378fOzo6JEyfi4uLC7du3ef36NcuWLaNRo0YFmvxniS6GhoaFGv+IESPw9/fPtvP5KZMmTeLNmzecyVqlFQNRUVEcPHiQCRMmFFvpX5BWWFqzZg1//PEHAwYMKLZ+iht7e3tGjRrFjz/+WChPmixiYmLw9PTk2bNn1KlTh1atWsl8P4qKpqYmjo6OeHt7K6z86t69e7l161aJpHVqamry1VdfsW/fvs8WbzduSEuvRkdDpUrSyiKNGxffWO7fh3fvvgwvkojECH67/hu+kb6oq6gz3mk8GZIMBASqZVSDDGlknY6ODqmpqZiYmGQ7Pz4+Hm9vbxwdHRW2K2pkZESrVq2oU6cOT58+xdPTs1Cm2E+fPuX9+/e0+f9Qn7//lj7etClYWGjLXTkpPByWLpUKcrq68O23UFB9cNiwYWRkZNCpU6fP7kWKRlVVlS5dunDkyBFCQ0NZvnw5AQEBdO/enapVqzJ37lz8/Pz48OEDu3fvpkePHpiYmDBkyBBCQ0MxNzdn4MCBtGvXDt+ssKyPWLZsGU2bNqVHjx5s2bKlxMwOywrJyckkJibKlZ6vRMmnKEWS0iG3993W1pbnz5+XiDl1ZGSk3NcPuUWSWrVq5ejan5aWxt27d2Vhz1m72j169GDatGk5XtCz3hR5FwR5VdEZNGgQjx494tGjR7i6unI+K0m6mIiJiWHdunWMGDFCbrGnvKGMJJGfo0ePcv36dVauXKnwRc3atWu5cOECu3btYufOnaSnpzN16lSF9pEfgiAwadIk1NXVOXToENeuXePZs2cMGzaM7du3Y2tri6urK/v37yclJQU1NTUMDAy4ePEiDRo0YMiQIdjb2/P48WP27t1L06ZN5d4VjY2NBQoXSQLS1A1zc3N27dqV6zFOTk40a9aMP/74o1B95IdEImHx4sUIgsDo0aOLpY8s7t69i62tLd98802x9lMS/Pjjj6SkpLB69Wq5z01JSeHBgwfcuHEDExMT2rZtS9WqVRWenlm5cmWsrKzw8vJSSHWwypUr06xZMwWMrGAMHTqUV69e4eXlBUB6OuzeLf3JyIB69WD+fJAzIFQuPo0iKc/R0r6Rvvzq+SvhCeEYaRkxp8UcMoVM3iW84/G9x2xfvB2AKVOm8O7dOz58+JAtzS89PZ07d+5gZWWVr7eTvIhEIqpWrUrbtm0xMTHhxo0bPHz4UK7NEQ8PD9TU1HB2diYsTGrmC9Cxo3RDLLdNtpwICJAKJO/fS8tHz50L8mQWWVhYcOXKFSIiImjQoAFr1qwpkcl4xYoVmTp1Ko8ePeLBgwf069ePbdu2YWdnR8WKFRkxYgTR0dEsXbqUoKAgbt++zblz5zh37hxBQUHUq1ePuXPnZhNW1dTU+Ouvv+jYsSPjx4+nXr16nD59utjNq8sKUVFRGBgYKA03lRQJpUhSOnxa2SaL2rVrk5ycrNBo29zw9/fH1tZWrnPkFklq166do8q9YcMGnj9/LnuhL168kD23du1aZs2aRb9+/Vi8eDFJSUkAsou7vJPSvBbrXbp0oUaNGqxevRo3Nzdu3bqVZ716eXj37h379u2TpRulp6fTv39/0tPTmTdvXj5nl3+0tLRkfzsl+ZOWlsacOXPo2rUr7du3V2jbjx49Yu7cucyYMYOOHTtiZmbGunXrOHDgACdOnFBoX3lx9OhRjh8/zh9//CELIbazs2PlypWEhISwf/9+RCIRQ4YMwdzcnKlTp3Lp0iXOnj1LhQoVuHnzJidPnpTbS+RjYmNj0dPTK3T0hYqKCsOGDePgwYO5pgmBNJrk0qVLCg8NTE1NZdiwYWzcuJEVK1Z8tmusaCIiIhS+uCotzMzMGDx4cJ7pUp+SmZnJixcvcHd3JzMzEzc3N+zs7Io1MqNOnTpoa2tz//79creocXFxoUqVKuzbt4+ICGl53xs3pL4QPXvCxInS6I7i5EuIIhEEgcuvL7PWay1J6UlYGVoxv+V8LPQtOPv8LAEBAdw5eIfRI6QiqaenJ4cPHwakVYey2rh//z7a2tqfeZQoElVVVezs7HBzcyMjIwN3d3devHhRoLnUlStXaNasGdra2mRVtW3QAMzMpJHIBa345O0NK1dCYiJYWkoFksLsQ2WV4h09ejTTp0/Hzc2NgIAA+RsqJI6Ojqxdu5bQ0FAOHz7M+vXrCQ4O5vr160yfPp1q1arJju3cuTNPnjzh+++/Z+3atdjZ2fHs2TPZ85UqVWLv3r3cu3cPMzMzevTowbhx40rstZQmUVFRVKxYsbSHoaScoxRJSofcvGBq164NUCIpN76+vrL+CorcIomdnR2vX7/+bGch6+Y5ePBgkpOTuXr1KitWrCAjI4P69euzZs0aLl68yMqVK2nbti0pKSmy6BJ5y3nlJZKIxWKmTp3K0aNHqVChAsnJyQq5Ib5+/ZoWLVowdOhQzM3NmTJlCmPHjsXDw4Njx45hZWVV5D7KOrq6uiQmJpbITsyXQJYxsSAICnvP3r17x/z583F1dcXOzo5ff/23ZOTgwYPp0aMHEyZMIDo6WiH95cX79++ZPHkyffr0oW/fvp89r6mpyaBBg7hy5Qr+/v6MHj2aw4cPExgYSNeuXbl8+TLOzs5FHseHDx8KnWqTxfDhw4mOjubs2bMEBQVx/vz5zxaz/fr1w8TEhA0bNgDw559/YmlpSdWqVbGxsaFOnTo0aNCA3r17s3z5cm7dupWn6AIQEBBAx44dOXbsGIcPHy6RlL3w8HBMTU2LvZ+SYujQoQQGBnLz5s08jxMEgbCwMC5fvkxISAhNmzalcePGCqnokR8ikYhGjRqRkJCQ4yZDWUZFRYVBgwaxd+9Tfvopk+Bg0NODadOk1UWK2xf9S4giyZBksMd7D4eeHEIiSGhm0YxZzWdhoGnAw3cPCY0PxfuBN+1rtKddu3Y8efKEtWvXEh8fj4qKiiyiwNfXl4SEhAKnIhYVbW1tGjduTNOmTQkODubKlSuEhYXlKvRJJBKuXr2Kq6sr0dFw+7b08axCTAUVSa5dgw0bpFFLdevCzJlFq5Sko6PDunXruHz5MoGBgdSrV49NmzaVqGCpoaFBv379mDBhQp4+fJqamixatIhnz55hZGREp06dZFV0snBycuLSpUvMnz+fAwcOKGwjsCwTFRUl24hRoqQwSCQSEhMT8y0woETx5CZOVatWDQ0NjRwzVBRJSkoKr1+/lr/4giAnEolE0NHREby9vbM9vm7dOkEsFguCIAju7u4CIDx+/FgQBEG4deuW8Oeffwrx8fHC7du3BbFYLHTs2FEwMDAQACEhIUGuMcTExAjnzp3L9fm4uDhBX19fGDVqlAAIR48elfNVZufDhw+CpaWlYGNjI9y4cUNYuHChYGJiIgDCli1bitR2eUIikQinT58WYmNjS3so5YZz584JIpFI+OGHH4rUzvPnz4Vx48YJGhoagp6enjB79mwhIiLis+NCQ0MFQ0NDYejQoUXqryAMGTJEMDIyEsLCwuQ6LyUlRThx4oSQmpqqkHFMmTJFqFu3bpHbady4saCjoyMAApDj61qwYIGgr68vjB8/XgCEQYMGCd99950wb948YcaMGcI333wjuLq6ClpaWgIgaGhoCC1bthTmzp0rnDp1Snj//r0gCIKQmpoqLFmyRNDU1BSqVq0qXLt2rcjjLyh169YVpkyZUmL9FTeZmZlC1apVhQkTJuR6TGxsrHD9+nXh3LlzwuvXrwWJRFKCI/yXuLg44cyZM0JwcHCp9F8YMjIE4fffAwTYJHTuHCQsXSoIMTHF01daWppw4sQJIS0tTfaYl5cgjBsnCDNmCEJycvH0W5zEpcQJS68vFcadGieMPz1e+OflP7LPn0QiEX70+FEYcWSEQC1k157u3bsLgiD93NapU0do2bKlEBwcLJw5c0aIi4srldchkUiE169fC+fOnRNu3LiR4zzg8ePHAiBcvnxZOHhQ+ndbufLf51euXCloa2vn0YcgnDghPW/cOEHYtUv6+VMkcXFxwrhx4wRAaN++vRBTXB9mBRASEiJUq1ZNqFu3rhAdHf3Z8x4eHgIg+Pj4lMLoSo6sOUNKSkppD0VJOSY2NlY4ffp0qd3//8ucPXs212utg4OD8M033xRr/48fPxZ0dXXl/tvLLZIIgiA4OTkJhw8fzvbYrl27BEBISUkRtm3bJgBCenp6jucPGTJENhkohE4ju2Dm1r4gCML06dMFY2NjQU9PT/juu+/k7uNjvvnmG0FXV1cIDAzMNoZPhaL/Ah4eHsLbt29Lexjlih9//FEAhNOnT8t97t27d4W+ffsKIpFIMDU1FX799dd8J3W7d+8WAOHkyZOFHHH+nDlzRgCEXbt2Fep8d3d3ITQ0VCFjGTZsmNCiRYsit3PhwgVh9OjRgp2dnWBvb5/jMUFBQYJYLBbU1NSEzZs359pWWlqacOfOHWHVqlVC3759BTMzM9n1ztbWVqhRo4agoqIizJo1S4iPjy/y2OXBxMRE+Omnn0q0z+Jm3rx5gpGR0WfCW2pqqvD48WPh1KlTgo+PT7bFd2kRFhYmnD59WoiMjCyV/t+9eyd8//33wsOHD/M9NiZGEJYtE4SxYyWCoeEhoWXL1QpftH7MpyJJZqYgLF4sXTDnsS9SZnnz4Y0w9+JcYdypccK089MEn/Dsi9kHoQ+EcafGCe1XtBdQk14fxowZIwDCP//8IwiCIEyYMEHo1auXcPr0abkF6eIgLS1N8PHxEU6dOiU8fvw423fujz/+EFRVVYXw8CRh0iTp3+3Zs3/PzZonJuegdmVkCMLOnf8KJKdOSUWT4uLvv/8W9PX1hZEjRxZfJwrA19dXMDY2Flq1aiUkJSVley4uLk4QiUTCn3/+WUqjKxlCQ0MFd3f30h6GknLO27dvhatXr5b2MP5zpKen5ylydunSRejZs2exjuHQoUNCo0aN5D5P7nQbkKbcfBoynFWWKzY2lpiYGPT09HLN8V66dCnTp09n+fLl/Pzzz3L3r66ujlgsztNMbPLkyURHR8tc4AvL9evX2bhxI7/88guWlpayxzU0NIrko1Be0dfXL1Q5vf8yCxcupEePHgwdOpRNmzZx7969PNMwBEHgn3/+oW3btjRu3JhHjx6xadMmAgMDmTdvXr6pJUOHDqVbt26MGzeOO3fuKPjVwP379xk1ahSdOnVi2LBhhWpDntz0/FBVVVWI03+HDh1Yu3Ytb968YeDAgTkeU61aNfbu3cv169fzzAVXU1OjcePGTJ8+nSNHjhASEkJAQAB79+7Fzc0NR0dHHjx4wO+//16ioZ+ZmZm8f//+i0q3AWjWrBkxMTG8e/cOkIbVBgQEcOnSJZKSknB1daVu3bplwvSvcuXKODg44OXlVaSqPIXlwIED/O9//8PR0ZHGjRuzdetWmc/Wx/j5wc8/w8uXoKUlYsiQeB48WEBysmKq9BQELy9pdRMdHfj/Yinlhvuh91l2YxkxyTGY6poyv+V86laqK3teEATOvjgLgFt1N0iXmp5u2bKFli1bMnDgQFxcXHj06BGDBg3CwcGhTHgJqampUbduXVxdXUlKSuLSpUsEBAQgkUhQV1cnMzMTT09V0tOlXiIfp4BnpUt8mg6anAzr1sHNm9JSwcOGQffuxZvK1bFjR1auXMmOHTtKpApiYalduzZnzpzh3r17DBkyJFtqjZ6eHnXq1MmzMtuXgDLVRokiiIuLQ78oeXtKCkVKSgpisVhW2OVTFLkeyA1fX1/5U20ohCcJ5FzXOEskiYuLIyYmJs8yO+bm5qxatYqZM2eycOFCufsXiUR5VrgBaSngrC9DYUWS1NRUxo4dS7NmzZg4cWKh2vjSUIok8iMWi9m9ezcNGzZk8uTJNG7cGF1dXRwdHRkzZgwbN27Ey8uLhIQEDh48iJOTEx07diQ2NpbDhw/j5+fHuHHjClzqUSQSsXXrViwtLWnRogW//fabwnKWjx49SqtWrbCysmLnzp2FzotX5EXRxMRErooJeXH27FkSExNzFUlAWkGrSZMmcrUrEomoXr06Q4YMYcOGDRw+fJh69eoVdbhy8/79ewRB+OIqcT179gx9fX0sLCyIiIjAw8OD169fy6oSFbbyUXFhaWlJrVq1uHXrlsJKAxeUp0+foqOjQ/v27UlNTWX8+PFUqVKFcePGcffuXSQSgfPnYfVqiI8HCwtYuBDc3IxISkrinyw3zmImI+NfL5JOncqPF4kgCJz2P82W+1tIy0zDvpI981rOw1Q3uzDpHe7N29i3aKhqMKXrFCQSCS4uLohEIvbs2cOIESOws7Nj6tSppKSkZNukKQvo6enRrFkznJyceP36NR4eHlStWhVBUOfMGelnulOn7EJH1kL342t/VJS0lLSvL2hoSI2AW7YsmdcwatQo2rVrx9ixY8v0vMbZ2ZnDhw9z6tQpJk+enM1LxcXFhb1793L16tVSHGHx8v79e6VIoqTIxMXFlbm5wH+BLD+S3NYLJSGS+Pn5yW3aCoUUSfKLJImNjS2ykWJ+FKQcbdWqVTE0NCQgIKBQf4BffvmFV69esXXr1kJXzvjSUIokhcPAwIDLly8THx/P7du3WbNmDU5OTty/f5+pU6fKFnKDBg2iYsWKXLp0ibt379KvX79CffYqV67M9evXmTNnDgsWLKB9+/afmb/JgyAI/Pzzz/Tr14+ePXvi4eFRpGiEChUqEBsbq5CSqIoUSQ4ePEijRo2oUaOGQtora4SFhQF8cZEkWSXf7969y927d7G0tKRNmzZl+nXWrFmTatWqcfPmzRItrT5kyBCcnZ25cuUKPj4+GBsbk5qayqlTp2jSxBVz81/54YeHxMfH07w5zJ6dybZtv9C/f3+aNWtGixYtSmScN29KS7/q64Ora4l0WWRSM1LZfH8zZ55L1Z121u2Y3GQy2mpY67Z2AAEAAElEQVTZzYE/jiJpY9UGHXWdbBNIKysrlixZQp8+fahfvz7Dhw8vuRchJ6amprRp0wZLS0vS0tIYMGAj4eEJmJpKq9p8zKciSVCQtFpSaCgYGMDs2VCSAbpZGwrR0dHMnTu35DouBN26dWPz5s1s2rSJJUuWyB5funQpTZs2pVOnTpw9e7YUR1g8pKenExsbqxRJlBQZZSRJ6ZBfRaEKFSrw/v37Yh1DYSNJClXzsHbt2vj7+yORSGSVabJ2uZOTk0ukxFJBRRI9PT28vLw4ceIEo0ePLnD7L1++5LfffmP27NnUrVs3/xP+I+jr65OcnEx6enqZCF0vb2hpadG0aVOaNm0qeyw1NRUfHx+8vb1p0KABDRs2VEhfampqLFmyhPbt2zN06FDq16/Ptm3b6N27t1ztJCcnM3r0aA4cOMBPP/3EwoULi1xZQUtLCy0tLaKjo4u8kDUxMSE+Pp7U1FQ0NDQK3U5cXBznzp0rVApgeWHt2rUYGxsXa/nQkiY9PR0zMzNat26NpqYm7dq1K9LnoCSpU6cOaWlp3Lx5k+bNm5dIaUJXV1dcXV2JjY3l/PnznDp1ikOHDjFp0jKePGnO/ftB3L/vxZ07kwkOVmX7dmk52vnz5/PDDz+UyHU/PR2y1ntdukAuUbplivdJ79lwdwMhcSGoilUZUm8Izas2z/HYp5FPCfoQhLqKOu2s2332fHJyMjdv3qRSpUqFmtiVNGKxGBsbG4yMTFm8+BamphnY2gaQmVkVsfjfz4uZmRmqqqr/L865snUrpKWBuTlMmQJGRiU/disrK5YuXcrkyZPp378/bcpwXtfo0aMJCwtj8eLFVK5cmTFjxqCrq8uZM2fo168fvXr14unTp9SqVau0h6owoqOj0dHRUZZtVVIk0tPTSU5OVookpUBu5X+zqFixItHR0QiCUCxV2zIzM/H39y+5SJIaNWqQlpbGmzdvZI9llVG8ceMGKSkpBU4NKCxaWlp5epKAVCRJT0+nQYMGuLu7y9X+jBkzqFy5cqHSgb5kNDQ00NDQUEaTKBANDQ0aNWrEqFGjFCaQfIyrqyve3t64urrSp08fxo8fT2JiYoHODQsLo02bNpw4cYIjR46waNEihV3EFBVilxWGvmnTpiK1c+rUKVJSUujfv3+Rx1QW8fLyYseOHfz8889fxERBEASCgoK4dOkSFStWJCEhgfr165cbgQSkO9kNGjTA2NiY69evk5SUVGJ9GxgYMHDgQPbt20+rVotYsUKMgYE1Awe2xcdnKLt2jUdDQ4PIyEguXbrEkiVLSkwY9/QU8eGDdNHcqlWJdFkknkc95xfPXwiJC0FfQ5+ZzWfmKpBkpeMAuFq5oqeRPfw7MTGR69evY2xsTP369Uuk1K+iePhQl1evIklODsbCIhR3d3eCgoJk6SG6urq0b9+ebdtesmGDVCCpUwfmzCkdgSSLb775hlatWjFmzJgC3xtLi4ULFzJx4kTGjx/P6dPSz5GamhoxMTFUrVqVKlWqlPIIFYvSj0SJIoiLi5OtX5SULAWJJMnMzCQ2NrZY+n/z5g0ZGRmFihAvlEiirq6OjY1NtpQbS0tLHB0d8ff3JyUlpdg/iPl5knh5ebF161aCgoJo2bIljx8/LnDbZ8+e5cyZM6xcuVIm/hSV+Pj4fEWd8oIy5ab8YWxszNGjR9myZQt79uzBxMSETp06sXz5ch49eoREIpEd+/79e/7880+6dOmCpaUlb9++xdPTk759+yp0TIoSSVxcXJg5cybTp0/n559/zpavLQ9HjhyhefPmVK1atchjKmtIJBImT55MgwYN8jScLS9ERUVx9epVnj9/jqamJosXLy4VjxdFkCWUmJqa4unpWaIeJampsGMHGBtPIjY2EXjMwoVgZ6dLw4YNWbFiBc+ePcPNza3ExpSeLubCBakw0LUr5OL/Xma4FnSNVbdWkZiWiKWhJQtaLcDayDrX459FPiPwQyBqKmq0t2mf7bn4+HiuX7+OqakpDRo0KFcCSXo6/PMP/2/af4nWrVtQr149nj9/ztWrV4mKikIiASur2Xh725OYmEjLljB5cun7zYjFYv78809CQ0NZtGhR6Q4mH0QiEWvXrqVXr14MGDCAW7dusWLFCm7evMmuXbtK1Ai8JFCKJEoUgTLVpvRISUnJVyQBis2XxNfXFxsbm0Jt8hRKJAGpL8mn5q21atUiICAAVVXVYv8w5pduc/HiRUC64KtYsSIhISEFajclJYVp06bRrl07+vTpU+Rxpqens2zZMkxNTdHT08PR0ZHRo0eza9eubAvT8oRSJCmfiEQixo4dy9OnT/nxxx8B+O6773B0dMTU1JQBAwbg5uaGqakp48aNIykpiRUrVvD48WOcnJwUPp6KFSsSExNTZFNZkUjE77//zs8//8zixYuZNWuW3EJJQkICFy5c4KuvvirSWMoqy5cv5969e6xfv75c+yslJydz7949bt26RZUqVXBzc+PZs2eoqamV6xQikUiEg4MDVatW5fr16yVyfQ0Lg19/lVaQMTWthIPDcx49moCn5z906NABBwcHRo0aVezj+JQnTyoQHw8VK0LznIMxygSZkkz2++xnn/c+JIKExuaNmd18NkZauYdECIIg8ytxsXRBX+PfeVJsbCw3btygatWqODg4lCuBBODWLfjwASpWVCE+/h9EIpHsO2pmZsa1a7dZuDCI+PgmiEQidHXdGToUysrlqGbNmvz888+sWbOG8+fPl/Zw8kRFRYV9+/bRuHFjunbtyuLFi5k5cyatykPYlRxkZGQQExOjFEmUFBmlSFJ6FCSSBIpPJPHz8yt02mqRRJJPzVutra15/fo1hw4d4vDhw4VtukDkJ5JERERk+z02NrZAO3Tr168nKCiItWvXFnmS4uXlRaNGjZg/fz4TJkxg7dq1NGrUiIcPHzJy5EhGjx6tkNKlJY2+vn6OJSOVlA+qV6/OrFmz+Pvvv4mJicHDw4MJEybw9u1b1NTU2LhxI2FhYXh4eDBlyhQqVqxYLOPQ1tZGQ0ODmJiYIrclEolYuHAhCxYsYOXKlQQFBcl1/vnz50lNTZXbr6WsIwgCv/zyC3PnzmXevHklZrqpaDIyMvDz88Pd3R2RSETbtm2pVasWKioq3Llzhzp16uRaXq68IBKJqFOnDtWrV+f69evF6vZ+965UIAkLkxpmfvst/PqrG3fv3qFjx45ERUVRp04ddHR0im0MOZGcDA8eSD2KuncvOwvoT0lIS2D17dVcDbyKSCSit11vRjuORk0l750qv/d+BMQEoKaiRgebDrLHo6KiuHHjBtbW1tSpU6fcCSSZmfD339L/Ozm9Jyjolew5FRUVzMxs8fHpgL+/NtHRkYwcmcnz52uKtcRvYZg+fTqtWrWiS5cuNGzYkPXr1/Pw4cMipcElJydz8eJFZs+ejaurKydOnFDIWDU1NTl58iQWFhbY2try008/KaTdskRMTAwaGhoKi+hW8t9FKZKUHvl5kmSJJMuXL/8s+EIRFNa0FQpp3ApS89Y///wz22PVq1fn7du3JWLqqaWlRXp6OhkZGajmEI/7sUiSVfkiJCQEW1vbPNv18PCgQ4cORTZLO3ToEEOHDqVBgwbcvXv3M6+J/fv3M3z4cOLj49m3b1+5ypPLiiQpLpMdJSWHhoYGLi4uuLi4lPgkSyQSyVJuFCXEREdHY2VlJXe5zL/++gtHR0eqV6+ukHEUJ/Hx8Tg7O9O7d28WL16cqzggCAJz5sxh+fLlMsPd8oYgCISGhvL06VM0NDRo3ry5rLz8mzdv+Pbbbzl27BgLFiwo5ZEqDltbWzQ0NLh16xb16tWjWrVqCms7PR2OHIGsaqG2tjBmjLSCjI1NZ1asWEHDhg1xcXGhc+fOJS6SuLuLSE1VwdQU5KyyXWKExIXwx90/iEqKQkNVgzENx1DPNP9Ur4+jSFpVa4WBprQi4Js3b/D29qZu3bpYWVkV59CLDS8vaSlffX2wt1dh585IEhIS0NXV5d07WLcO3r9Xw8rKhEGD1HjzxoSYmEE8efIEe3v7MjOPUFFRwd3dnb///ptt27Yxffp0MjMzEYlEWFlZUadOHezs7KhTpw5169alUaNG2cZ+7tw5pk2bRqdOnahWrRqXLl3i2rVrpKSkYGZmhpmZGQMGDODChQu4KqBkk6GhIXfv3iUzM7PYfQBLg6y5QVn5fCgpnwiCoBRJSomMjAzS09PzjCQxMzNj2LBhHDlyBHNzc1atWqXQMfj5+RU6yq7QIklOkSSVKlVCEAQ+fPiAiYlJYZsuEOrq6ojFYlJSUnLMwRSLxTRt2pTmzZvTt29f1q9fT3BwcL4iycuXL+nUqVORxrZt2zbGjRvH0KFD2b59e44izuDBg9HT06Nfv3706NGDv/76q8QnpIVFT0+P9PT0fPPMlCjJjwoVKhAaGprv97IgZGZm8tdffzF8+HC5JlUpKSmcOXOmzJeAzOLWrVs8ffoUX19fzp49y549e7C3t892TGZmJhMmTGDbtm2sXbuWKVOmlNJoC8+HDx/w8fEhMTERe3t7LCwsZH/X1atXs3DhQgwMDDhw4AADBgwo5dEqFisrK3R0dLh79y7x8fEKiS6IiIAtW+DtW+nvnTtDjx7w/wXqEIvFfPvtt4B0YhMQEFCilT4SE+HyZelr7N5dglhc9sJIHoQ9YOejnaRmpFJRuyKTmkyiil7BjDJfRL/gZfRLVMWqdKzREUEQePbsGUFBQTRt2rTY50zFhUQCWdkp7duDnp7Uj+XVq1doadVn40ZISgITE2kFG1NTQ6ytXRkwYADGxsbExMTg4OCAoaFh6b2Ij1BVVaVbt25069aNuLg4nj17hq+vr+zfY8eOsWLFCgRBoHfv3mzfvh1DQ0MiIiL4+uuvqVy5MsePHyc6OhoXFxeWLFlChw4dsLe3Jz09na5du9KzZ088PT0V4qNUnjbY5CUqKuqLM6JVUvKkpKSQkZGBnp5e/gcrUSjJycmIxeI8I31VVFTYvXs3Dx8+LBYbilKJJLG1teX9+/cyzw9AtsMXFRVV7Dd8kUiEtra2bLfiU8zNzbl79y4rV66UpeXk50uSmZnJ69evsbGxKfS4Vq1axbfffsukSZNYu3atrERyTnTv3p3z58/To0cPBg0axIkTJ/I8vqygoqKCjo4OcXFxSpFESZGoVKkSPj4+Cok+u379OhEREQX2FckqYX7p0iUSEhIU4kFUEty6dQtjY2MuXLjAiBEjcHJyYsmSJUyfPh0VFRXS0tIYOnQof/31F7t27WL48OGlPWS5SElJwdfXl5CQEKytrXF2ds4mNL9584YZM2YwduxYli9f/sXuDpmYmNCqVSu8vLxISEjAyckpR8G9INy9C3v3QkoK6OrCqFHwia6WjTlz5vD69Wt27NiR7fHU1FSePn3K48ePefToEbGxsfz4448KiXa5cEE6vgoVknF0LHJzCkUiSDjlf4rzL6RqQO2KtRnnNA4d9YJvbGRVtGlZrSW6qrrcuXOH+Ph4WrduXa7NNu/dkwpwOjrg4gKJiVLB+8yZSEJCpKk41tYwcSJkrVEqVKiAuro6GzZsYO3atVy/fh0LCwtq165dpiIi9PX1adasGc2aNcv2eFJSEmfPnmXs2LE4OTlx9OhR/ve//wFSPzwTExMkEsln31d1dXWOHTuGq6srnTp14tatW3JHPf5XSE9PJyoqigYNGpT2UJSUc+Li4tDV1S3XfmzllcTERLS1tQu0ySMSiQpdeCE33r9/T1RUVKE3Ygu9IjcwMKBKlSrZ8ocqVaoEQHh4eGGblYu8DETNzc0JCQlBEAS0tLSoUKECwcHBubYlCAKTJ08mPT39sxtiQdm8eTPffvst8+fPZ926dQUSPNq0acPBgwc5ffo0y5YtK1S/pYGBgYHSvFVJkdHR0UFPT08h14xjx45hYWFBkwLE6f/www/o6OjQpk0bvv/+e2xtbYucYldS3Lx5E2dnZxo1asT9+/eZPHkys2fPxs3NjadPn9KzZ09OnjzJ0aNHy5VAkpmZyYsXL3B3dyc9PZ02bdpQp06dzxYaZ8+eRUVFhWXLln2xAkkWenp6tG7dmoyMDK5duya3F1R6OuzbB9u2SQWImjVh8eK8BZL9+/ezatUqVq5ciY6ODitWrGD48OHUq1cPXV1dnJycGD16NOfPn+eff/7BycmJK1euFOl1xsXB5cvS/zdt+q5MeVUkpSfxx50/ZAJJO+t2TGs2TS6B5EXUC55HPUdFrEJz0+Zcu3aNjIyMci+QCAKcOyf9f7t2oKEBRkbG6OsP4vhxIzIzoWFDqefNp5u4/fr14/LlyxgZGdGmTRvS0tJwd3fn5cuXZd7UXltbm379+vHgwQMMDQ1p3LgxJ0+eZMuWLZiamiIWi3MVNPX19Zk1axZhYWFMnjy5hEdefggPD0dPT6/cRFgrKbvExsZ+8XOFskpcXBwGBgYFOrY4RBJfX1/Mzc0L/fcvUthC7dq1s4kkWbtJ8pomFpb8RJLk5GQ+fPgASEsUv379Ote21q5dy6ZNm9i2bRuNGzeWeyzBwcHMnj2bcePG8csvv8gVGt21a1cWLFjAwoUL8fDwkLvv0kBZ4UaJoqhcuTLv3r0rUhtJSUns3buXgQMH5itOZmRksHnzZpo1a4ahoSHBwcGMGTOmXOQ9SyQSvLy8cHZ2BqTmfcuXL+fKlSu8efOGunXr4unpydmzZ+nVq1fpDraACILAu3fvuHLlCsHBwTRp0oQmTZrkOjk+e/YsrVq1KjPh+cWNuro6zs7OVK5cmatXrxIUFFSgiUR4OPz2G1y7BiIRdOkiXazm9bY9evSIMWPGULFiRXbv3o2joyPfffcdL168oHnz5qxbt46bN28SFxfH8+fP8fb2pn79+rRv356VK1cWeoLz999SQcfKCiwty859JTQ+lF89f+VJxBPUVNQY3XA0/ez7IRYVfOokCAIn/U8iIGCrZYvPHR8qV66Ms7NzuTcbfvhQav6rpQVt2kBGBuzeDdraA/nw4QMdOsC4cZBTkGDPnj1RUVHh2LFj6OjoyL73b9++5fLly7x7907hE2ZFY21tzY0bN5g2bRoLFy7M95p7584d2rVrx5AhQ2jSpEmZLzdcmoSFhWFmZlbaw1DyBRAfH68USUqJuLi4Aqc5FYdI4ufnR+3atQt9fqHTbeBzXxItLS1MTEx48+ZNUZotMPr6+rmm0FhYWADSFBsjIyNsbW3x9/fPtS1fX18cHR0LXfJw2rRp6OjoFDoa5H//+x+3bt1i4MCBPHz4sMzfHPT09AgNDS3tYSj5AjAzM+PGjRtkZmYWOhxyz549xMbGMmnSpHyPdXd35927d5w6dapQgmhp4uvrS2xsLM0/qY3q4uKCt7c3v//+O927dy83rysuLo4nT54QGxtL7dq1sbS0zFPkSkpKwt3dnZ9//rkER1n6iMVi6tSpQ8WKFXnw4AHv37+nXr16uaao3bkjTa9JTZXu4I8aBflVSI6NjaV3794kJyeTkpJCkyZNOHnyJF26dMl1V7xixYr8/fffLFiwgJkzZ6Kjo8P48ePlem0xMf8ayXbvLiGPvYwS5WP/kQraFfim0TdUNagqdzv+Uf74R/oTGxNLFVEVmjRpIou6Lc8IApw9K/2/m5v093XrwM8PDA0NyMzcw1dftc31fGNjY9q3b8/hw4dlERUmJia4uLgQFBTEw4cPMTAwoG7dumV6gaOpqcmKFSvyPObZs2csWrSI48ePU6dOHY4fP07Pnj3LhTBfGmRmZhIeHk7NmjVLeyhKvgDi4uKU3jalRFxcHObm5gU6NjU1VeHplkXxIwEFRJJ8at5atWrVEhVJEhIScgzNzPqjZKXY5CeS6Ojo5FlSOC9OnTrFX3/9xZo1awocVvQpqqqqHDhwALFYzMiRI8v8DkpWGeCyHharpOxjYGCAmppaoUueSiQSVq9eTa9evQpUHWL37t3Url2bRo0aFaq/0uTmzZuIxeIcRRA9PT1+/PHHciGQpKWl4ePjw9WrV9HT06Nt27ZUr1493yiggwcPkpKSQteuXUtopGWLSpUq4erqSmpqKlevXv2sfHZ6ulQc+fNPqUBSqxYsWpS/QALw7t079PT0WLRoEa9fv+bs2bP06NEjXx8UVVVVli1bRrVq1Xib5QorB+fOSSMQatWCImz4KAyJIOGE3wk239tMakYqtSvWZkGrBYUSSARB4NCjQ4SFhVFXvy7d23X/IgQSAB8fCA6WptjUrw+//y4VSDQ0oGvX14SEHMh3fjBixAhZ5FsWYrGY6tWr07ZtW/T09Lh69So+Pj6kpaUV90tSOIGBgXz99dc4ODjw8OFDdu3ahbe3N7169VIKJHnw/v171NXVCz2fVqIkC4lEoowkKSUkEgkJCQkFfu+TkpIU7nPp6+tbpEiSIokkdnZ2n9U0TkpKKrEcQm1tbcRiMQkJCZ89Z2ZmhkgkkkWa2NraEhERIUu/+RQdHR0SExPl6v/UqVNMmjSJMWPG0LlzZ/r16yf3a/gYU1NTNm7cyIULFzh+/HiR2ipudHR0cn3vlSiRB5FIROXKlQkLCyvU+RcvXsTPz4/p06fne2x8fDzHjx+XuwJOWSGrLGx59TGQSCS8fv1aZpbr4uKCg4NDgdIOHj58yOTJkxk2bFiRbnrlHU1NTZydnbG0tOTGjRs8efKEjIwM3r2DX38FT09pek23bjBjRt7pNR9ja2uLt7c3P/30U6HMJNPS0uROH3n/Hq5fl/6/Rw9K3YskN/8RXXX5v28ZGRmcvHWSW/63MNQ3ZGrnqWXKlLQofBxFUq2aNIIkNFT6WZs9G9q0MSEpKYnAwMA82+nfvz+dOnVi3Lhxnwl+6urqODg44OLiQnx8PO7u7rx+/bpcbMyEh4czdepUatWqxd9//82aNWvw9/dn+PDhSvPIAvDu3TsqV65cLu/RSsoWCQkJiMVitLW1S3so/zni4+Pleu+TkpIU/nfy8/Mr3UiSwMDAbBEYb968oWpV+XdcCoNIJMrVG0NNTY1KlSplE0mAXKNJdHR05Frwb968mZ49e3L58mU6derE1q1bFXJB79GjB127dmX69OlyizYliUgkQk9PT+lLokQhZPmSFCaCas2aNTRs2JCWLVvme+yxY8dITk5myJAhhRlmqXPr1i2ZH0l5IzIyEg8PD169ekXDhg1p1qxZgXcYIiMj6dWrF3Xq1GHz5s3FPNKyj0gkombNmri4uBATE8OGDfdZtCiJkBBpes20adC9+7/lfUuCtLQ0ucuRnj4tLSFrby81lS1NPvUfGeU4Sm7/kSwiIiK4fPky5wPOU8WsCj3r98RQy1Dxgy4lfH0hS/948QLi46FqVZg3T/qvk5OTzOR30aJFRERE5NiOSCRi69atJCYm5ipy6+vr4+zsjKOjI69evcLDw4PIyMjieWFF5MOHDyxcuBBra2t2797NDz/8wKtXr5g8eXK5958pKQRBUPqRKFEYWZ4YSsGt5ImLi0NfX7/A772iRZKkpCSCgoJKL5KkSpUq6Orq8vz5c9ljenp6cjvwF4W8DEQtLCxkIkmtWrWA3EUSW1tbYmJiePbsWb59Hj9+nIkTJzJlyhSePXvG7t27C5xzlR8ikYi1a9cSERFR5vPuleatShRFxYoVycjIyDXSKzf8/Pw4f/4806ZNK9CF+MCBA7i6uiqkZGlJEx0djZ+f32d+JGWdxMREvLy8uHPnDtWqVcPNzU2uXcL09HT69+9PSkoKx48fV5Yd/wgNDT0CAlpy+7YdISGR6OgEM2dOKiVdqMnd3Z24uDi5IiXCwsDLS/r/Hj2KaWAF5EHYA367/hsRiRFU0K7AbOfZ1DEoQI7SJ6SmpvLgwQPu3r1LRsUMBAMBHU0dOtXoVAyjLj0+yo4BpOk2s2eDkZH098qVK+Pn58fo0aNZs2YNlpaWzJ07N0cR3MLCgtWrV7N7925Onz6dY39Z0YZubm5Uq1aNO3fucOfOnTKzkZSUlMTSpUuxtrZm1apVTJkyhYCAABYsWKCsziInMTExSCQSKlSoUNpDUfIFkLVQV1LyyPPeC4JAcnKyQkWS58+fo6enVyTBtUgiiUgk+sy8tXr16nlWkVE0eUUzmJubyzxJdHR0sLCwyCbofEyXLl2oUKECO3bsyLO/a9euMWjQIPr27cvq1auLRZ20trZm/vz5rFix4rN0prKEUiRRoijEYrHcKTepqanMnj0bU1NTBgwYUKBzHj9+jKurayFHWXiCgoL4888/i3RtzLoW1KtXT1HDKlbS09N59uwZV65cQUNDg3bt2lGjRo0ClUb/mJkzZ3L9+nWOHj1aYlGK5YGwMGl6zc2b0ojKMWMq069fCHfvXuLly5dkZmYW+xhiY2MZP3487dq1o0WLFgwePLjA5545I03bqF9fWtWmNMjNf2Ttz2vR19dHX18fe3t7OnXqxPjx4zl58mSO3hhZ5asvXbokK1/9IOEBIkS0qd4GPY2CufuXB54+hZcv//29Y0f45hupF8nHmJubs3z5coKCgpg0aRLLli3j6dOnObY5YsQIunbtyrhx44iOjs61b7FYTI0aNWjbti3q6upcuXKFZ8+ekZ6eroiXJjeCILBz505q1KjBokWLGDhwIK9eveK3337D2Ni4VMZU3nn37p2sjLISJUVFKZKUHvJ4waSmpiIIgkI3wbJMW4uyTi/yVejTMsBWVla8/PgOWswYGBjkKZJ8XP3GyMgo12PV1dUZMWIEa9asYd68eTmm3nh7e9OjRw9atGjB7t27i/UiPnfuXKpVq8bkyZPLrImrUiRRokjkKQX84cMHOnXqxMWLF9myZUuBwvwTExMJDw/H2tq6qEPNl8zMTK5du8bcuXOpW7cuVlZWjBkzhl69epGamlqoNrMm3bGxsYocqsIRBIE3b97g7u5OdHQ0LVu2pEGDBnKnYgDs2LGDdevWsXbtWlq1alUMoy2f3L4Nv/wi9YHQ14fp0+GrrzRwdm5K48aNZWVUg4ODi+3+cf78eerWrcv+/fvZsGEDly9fxsTEpEDnvn0L9+5J/19aUSSf+o80qtCI8Q3Go6uuy6NHj2jWrBmLFy+mbdu2aGlp4enpSa9evahcuTITJkzA09MTiURCcHCw7L1u0qQJTZs25Xncc97GvkVDVYMONh1K5wUWA3FxsHbtv78PHw59+uTtJWNsbMySJUvQ1dXl1KlTOR4jEonYvHkzKSkpTJs2Ld9xaGpq0qBBA1q2bEl0dDTu7u68efOmROdKgYGBdOzYkZEjR+Lq6oqfnx8bNmxQpokUEWWqjRJFohRJSo/Y2Fi5TFsBhUaSFLX8LxSxBDBIzVsfPnwo+71169ZMmTKF6OjoElHS9fX1SU5OJj09/bNyiJ8KKGpqannuOCxZsgQDAwN+/fVX9u7dy/Dhw2VCQGRkJKdPn8ba2prjx48XasIvD5qamqxbt44uXbpw+PDhAu+UlyR5vfdKlMhLpUqVePDgAQkJCXkakyYnJ9OqVStCQkK4dOlSgbxIAJmJYEmIJCNGjGDfvn1UqlSJLl268P3332NmZkbbtm1ZuHAhy5cvl7vNypUrAxRYSCoNoqOj8fHxITU1FQcHB6pUqVJoFd/Ly4sJEyYwduxYJkyYoOCRlk9SU+HgQbh5U/q7nZ20vO/H85BKlSphYmLC27dvefr0KQEBAbLywYogOjqaGTNmsHv3bjp06MCWLVvkNnrN8iVv3BgsLBQyLLkIjQ9l492NRCRGoKaiRgNRA6a1n8YC7QWMHz+e58+fM2jQIGbPnp3tvCdPnrBv3z7279/P9evXWbZsGSoqKtjZ2VG1alVEIhGCIHDKXyoGtK3etlCmr2WRkBD48cd/fx8xAgqa+aehoUHHjh05deoUCxYsyPEYc3Nz1q5dy/Dhw+nbty89e/bMt11DQ0NatGhBaGgoT58+5fXr1zg4OBTr3FMikbBx40bmzp2LsbEx58+fp1OnLyudqrRISEggKSmpwGKrEiV5kZ6eTnJyslIkKQXS0tJISUmRWyRRdCSJk5NTkdooskhSu3ZtDhw4IPtdW1sbiURSYoq+uro6GhoaxMXFfZbDGBYWJltYQP4iiaamJt999x3Dhw9nzpw57Nu3T1a+yMTEhNatW7N27doS+8J17tyZXr168e2339KlSxf09MpWyK6GhgYaGhrEx8crQ0uVFBk1NTUqVqzIu3fvqFGjRq7HvX37VrZYKahAAhAQEABIUwKLk7t377Jv3z7WrVvHxIkTs0Wc/fLLL8yaNYvOnTvTtm1budo1MDBAU1Oz0FWAipPk5GSePXtGWFgYNWvWxMbGJt/SsXkRFhZGnz59cHJyYt26dUrTNaSL1K1bpWk2IpHUmLVz55zNWUUiEdWqVaNKlSq8evUKLy8v9PX1qVWrFpUqVSr0+3nixAm++eYbkpOT2b59O19//bXcbT1/Lk3ZEItLJ4rkQdgDdj7aSWpGKsZaxrjqujKw80AaNmyIo6Mja9asISEhIcdy4vb29kyfPp3OnTsTHBzMy5cvmThxYrbP+oOwB4TEhaCpqkk763Yl+MqKjydPYMuWf3+3sSm4QJJFjx49GDFihKxySU4MHTqUI0eOMH78eFq2bFkgXwqRSIS5uTmmpqa8evWKmzdvYmZmRp06dRTuXxQVFUWfPn24du0a33zzDb/99ptyAaZAwsLCMDExUW66KVEIcXFxsnWKkpIlPj4eTU3NAhtWZ81rTU1NFTYGPz+/IhdpKHK+iJ2dHf7+/rL856tXr1KvXr0SNV3KLe0jODgYi4+2qfITSbKwsrLi8OHDBAUFERUVxevXr7lz5w6HDx/O9eZeXKxevZoPHz5Qq1YtFi5cWKKmuAVBX1+/zIf/Kyk/mJmZ5SsC1KxZEzMzMx49eiRX2wEBAWhqahb7d3jBggXUqVOHb7755rOUvBkzZtCmTRtGjBjxWcnL/MgyLyxLkSSZmZn4+/vj7u4OQNu2bbG1tS2SQJKRkUH//v0BaTWi//oERxDg6lWp/0hYmDRq5NtvoWvX/KvXqKqqYmtrS4cOHTA1NeXBgwdcvXqVkJAQuTcyfvnlF3r37k3jxo159uwZI0eOlFsgEYR/o0hatYJKleQ6vUh86j9iW9GWgRYD+br311hZWXHmzBnWrl1LcHAw+/btyza5EgSBkJAQPDw8ePjwIZUrV2bZsmW8efMm22ddIkg4/VxqPtrepj066uXbtFMQ4PJlWL9eGsWUxddfy99W165dEYvFuZqzQva0m++++06u9rM+61nis7u7e7a5aVGJi4ujU6dO+Pr6cuXKFTZs2KAUSBRMXgKaEiXyoky1KT3kfe+zNjFtbGwU0n9mZibPnz8vUvlfUEAkibW1NZmZmQQFBWFtbU2FChVK3KciN5EkPT09m4pVUJGkLGFpacn9+/f5448/WL16NU+fPuX48eNlZmfV2NiYqKioYt+dV/LfoHLlynh7e5OSkpJrpQyRSES7du34559/WLZsWYHbDggIoHr16gXyEvL09MTBwQFDQ8MCtw9w6dIlLl26xIkTJ1BRUfnsebFYzPTp0+nZsye3b9+mc+fOcrVfEBGpJBAEQRbirq6ujrOzs8KE8e+++45bt25x9erV/3xuemIi7NkDWRmtdetKF6jyBhWqqalRq1YtrK2tefPmDU+fPsXX1xcrKyuqVq0qE6IkEglXr14lKSkJVVVV2Y+/vz8LFy7ku+++44cffij0/cfbGwICQF1dKvKUFIlpifz58E+eRkiNQ9tZt6O5UXNat2qNrq4uf//9NwYGBoA0YivLgDY1NZW3b98SGBiIRCKhRo0aWFpaoqKiIjOa+5j7ofcJiw9DW02bttXlixQra0gkcOgQeHhkf7xp08KJWxUqVKBly5acOnWKsWPH5nqcmZkZixcvZu7cuUyaNIk6deSrMqSlpYWTkxNRUVH4+PgQFBRE3bp1MTMzK/TnNikpie7du/PixQs8PDxo0KBBodpRkjspKSnExMTQuHHj0h6Kki+EqKgoZZR7KVEYkcTY2Fh2Hy4qWffsoqbXF1kkUVNTo2bNmvj6+mJtbY2DgwPLly8vUQVPX1+foKCgzx43NDTMVlK0PIokIE1pWrduHe3bt6dnz56sXr2aGTNmlPawAOnEJygoCEEQyoxwo6T8oqmpiaGhIeHh4Xn6HLRv3549e/YQHh5e4PC8gICAAl0wHz58iIuLC7t372bo0KEFHrsgCMyfP59mzZrRI5c8AolEwk8//UTDhg3p2LFjgdsG6UQ9ODi4yEZURSU2NhYfHx8SEhKws7OjWrVqCvvuX7hwgV9//ZVff/2VFi1aKKTN8sqLF/DnnxATAyoq8NVX4OaWt0lmfqiqqmJtbY2VlRWhoaEEBgbi6+tLlSpVsLS0JDU1lfbt2+e4+/7VV1/x/fffF/pvLZH8G0XSti0oaC6UL29i37Dp3iaikqJQU1FjWL1hNLVoyuzZswkICOD27dvZriGCIBAVFUVQUBChoaEYGRlRu3ZtqlSpkk1gFYlESCSSf1/fJ1EkWmrlt1R1UpI0tevZM+nnzclJarQrEhVN3OrRoweLFi0iMTExz9K4kydPZuPGjcycOZPz588Xqq8KFSrg4uLCmzdv8Pb2JiAgAAcHB7kn4ampqXz11Vfcv3+fixcvKgWSYiI8PBxDQ0O5yogrUZIbWdfxnNImlRQ/cXFxcnmVvXr1SqF+gb6+vtSsWbNIUc2ggHQbkC7is8oAZ5WnXL58eTaBojjJiiT5dFfHyMgoW0h7eRVJsujRowczZ85kzpw53L59u7SHA0jf49TUVJnpjhIlRaUgpYDbtZPm+meleRSE169fF+giPHfuXARBkDvs79ixY9y7d4/ffvst14Xk3r17uXfvHqtXr5a7OtZvv/1GeHg48+fPl+s8RZGamsqjR4/w9PTEyMiItm3bYmlpqTCBJDQ0lGHDhtGpUyfmzJmjkDbLIxKJtDzuihVSgaRSJZg3TyosKEqHFovFWFhY0LJlS1xdXdHQ0ODOnTv4+flx5coVxo4di1gsRkNDgy1btuDn58fhw4eLVNHNy0uaLqStDR1KqODLzbc3WXp9KVFJUVTUrsjcFnNpatEUgKlTp2JmZsbUqVNJTk4mISGB58+fc/nyZe7cuYOGhgaurq60bNkSCwuLbK9dEITPvNfuhNwhPCEcHXUd3Kq7lcwLLAbev4dly6QCibo6TJgAWVWPmzaFoqSM9+jRg5SUFC5duoREIuHOnTs5pn1paGjw+++/8/fff/P3338Xuj+RSISlpSVt27bFyMgIT09PHj16VOAKYxkZGQwZMoQrV65w8uRJnJ2dCz0WJXmjrGqjRJEkJSWRmpqKkZFRaQ/lP4cgCHIHShgYGPD69WsSExOzPS6RSHKsNpsfvr6+CtlQVIhIYmdnJysDbGdnh4qKCj/99BN169ZVRPP5oqenR0ZGBikpKdke/1IiST7m119/pVGjRgwcOLBMvBZVVVWMjIyIiooq7aEo+UKoUqUKkZGReU5kzczMqFu3LhcvXixQm4IgFCiS5OLFi7I25b1+bdmyBRcXF1xcXHJ8PiEhgfnz59OvXz+5y9m+fPmSpUuXMmfOHGrWrCnXuUVFIpHw8uVLLl26RGpqKm3atMHe3l6h5noZGRkMHjwYNTW1Yi+vXpaJiYGVK+H0aakfhLMzLFwI1aoVX596enrUrVuXjh07UqtWLdTU1OjWrRsHDhyge/fuGBkZYWtrW6S/SUYGZFV/7dxZKpQUJxmSDPZ672XXo11kSDJwMHVgYeuFVDWoCkhD+//55x9GjBiBjY0NBw8e5PLly4SEhKCmpkbHjh2pW7dujmbpcXFxDB48GH9/f+rXrw9ApiSTM8/PANDRpiOaquVzN/zly3+9bwwNYc4c6b/e3lKBrkuXorVfs2ZN7OzsmDVrlqxc8uHDh3M8tlevXri4uDBz5kwyMjKK1K+amhr29va4urqSmprKpUuXePXqVbZIoE+RSCSMHj2akydPcuTIEbmNtpUUnNTUVCIjI5UiiRKF8f79e4yMjHJMe1ZSvCQnJ5OZmSlXsZEpU6bw4cMHtm3bRmRkJL///jv29vZoaGigp6eXp5dVTvj5+RXZjwQUKJJkRZJoaGjQqFEjgEKZwxUGFRUVdHV1PzMQ/TSSJCIiQm6PgbKGmpoaa9asISgoiJtZdSBLmQoVKihFEiUKQ1dXF0NDQ4KDg/M8rn379ly8eLFA15jw8HCSk5PzFEkkEoksgsHKykquC7xEIsHLy4v27dvneszSpUuJioqSy0cFpAJP1q53SUeRhIeHc/nyZd68eUPjxo1p2rRpnmHyhWXZsmV4enpy4MCB/2z5x0ePpCVWX7wADQ1pad+vv4aSij5XUVGhatWqNGvWjIYNG7Jnzx5at26NhoYGly9f5unTp4SHhxdqwXr1KkRHSxfcbdoofuwfE50cze83fsczyBORSETP2j2Z1HgS2mraZGRkcPToUb799luSkpJo2LAh9erVY/fu3cycORM3NzdcXFzw9vbOse2HDx/i5OTE2bNnOXToECNHjgTgdvBtIhMj0dPQw9XKtXhfYDHh5QWrVkFCAlhawvz5ULWqNKoJih5FksXQoUN5+fIlIpEIW1tbDh06lONxIpGIlStX4uvry9atW4veMdJ7S9OmTWncuDFBQUFcuXKF8PDwz47Luubu2bOHPXv20L17d4X0ryRngoODMTIyQlf3yyiXraT0iYqKKtECIkr+JS4uDh0dHbkEKisrK4YMGcLixYuxsLBg0aJFNGjQgDVr1lCrVi2OHDki1xh8fX0VIpIU2ZME/k23yfKl6NatG15eXoD04le1alVFdJMnWSk3HztjfyySSCQSvL296dmzZ7GPpbhp1KgRlStX5syZM7nuWpckFSpUwMfHp7SHoeQLolq1arLIj5zSOSIiIkhNTSUkJITnz59ja2ubZ3tZ4Xp5TcL279/Po0ePMDY2xsHBQa7x+vv7ExcXR7NmzXJ8PigoiOXLlzNz5ky5c2RPnDjB+fPnOXHiBNrFvQX//8THx/PkyRNiYmKws7PD0tKy2KI7wsPD+eWXX5gxYwatW7culj7KMunpcPTovwaZlpYwZkzJVn75GEEQmDhxIl5eXmzfvh1DQ0MiIiKIjIzE29ub5ORkjIyMqFixIhUrVsTQ0DDPqKKUFDh3Tvr/bt2gOKt7+kb6svXBVhLTEtFW02ZEvRGkvk1ly5Yt2NnZ8eHDB1JSUjAwMMDZ2Znk5GQmT56MRCLBxcWFJUuWsHDhQr7//ns2bdpEZGSk7MfPz4/ffvsNe3t7zp8/LytTniHJ4OyLswB0qtEJDdXyVY1JEKRRPll/I0dHGDlSKtQFBoKPT9G9SD5mwYIFjBgxAjMzM1auXMnixYtJSEjI8drcsGFDRowYwXfffcegQYMUtslVqVIlXF1dCQwM5P79+xgZGWWLHFq0aBF//PEHW7duZeDAgQrpU0nOCILAmzdvFFbVQokSkIokWfYPSkqWwnqSLl68mODgYLp06cKIESOoWLEiIE3F3rRpE5mZmQUSXgRBwM/Pr+yk29SuXZuYmBgiIyMBsi3cPT09FdFFvujr639WHtfQ0JCUlBRSUlJ4/fo1CQkJsvDYwhAQEMBff/1FdHR0UYdbJMRiMV27duVM1hZPKWNsbExiYiLJycmlPRQlXwjm5uYkJiZmiw6Li4tj165ddOrUiSpVqrBlyxa6d+9OpQKsJrNKgb99+zbH51NSUli0aBG9e/dGQ0NDbpHk9u3biESiXJ35582bh6GhodyRIImJiUyfPp2uXbvmagarSNLT03ny5AkeHh7o6OjQrl27AlcEKiw///wzampqLFiwoNj6KKuEhUnTG7IEkg4dpCkOpSWQAOzcuZPTp0+zdetWTExMUFNTw9zcnAYNGtC+fXvatWtHtWrVSEpK4sGDB5w7d46LFy9y584d/P39ZVFbWRFely5JoxNMTaG4vHglEgknnp7gN4/fCIkMQRwvpoWkBUF3g3j27Bl+fn6EhYXRrl07bt68yYULF2jUqBGtWrXi7t27mJubc/r0aR4/fszs2bM5ffp0ttc8ePBgli5dyrhx47h586ZMIAGp70lUUhT6Gvq0tixfIl9qKmzZ8q9A0qkTjB8vFUhAmvYFha9okxvm5uaIxWL69u1LSkpKnnOZJUuWkJyczJIlSxQ3AKTzKGtra9q1a4eOjg4eHh48efKEtLQ0tm3bRocOHRgzZoxC+1TyObGxsSQmJlKlSpXSHoqSL4Tk5GSSkpKUlW1KicKKJDVq1MDd3Z2ZM2fKBBKAbt26ERUVVWAvzoiICGJiYvLdPC0ICokk0dXVxcLCAj8/PypVqpRtofDPP//IyukVJ/r6+oSGhmZ7LMuw58OHD7J0oMIqS15eXri6upKSksKYMWMUFv5ZWHr27Mmff/7JwYMHS32nQ01NDQMDA6KiomSLUSVKioKqqirm5ua8efOGBw8esGHDBs6cOUNqaiqtW7dm/fr19O3bN9uFNC80NTUxNTXNsQoWwIYNGwgODmb//v20aNGiUCJJnTp1crwx3Lhxg4MHD7Jjxw65w4l/+eUXWcpLcVaPEgSBoKAgfH19MTAwwMXFpdirk4WEhHD58mU2b97Mjz/++J+a0AgCXL8uLbGani4t6TtyJNjbl+64AgMDmTZtGl9//XWuUZfa2tpYWlrKnOtTU1OJjY2V/bx9+5bExETEYjGCoMuePbURBHU6dUokJESEmpraZz9Zu0NZwoogCAiCQGZmJunp6Z/9pKSkkJSURGJiItHx0ZwNOUtAUgBqqmo0rtyYfnb9UEGF/v37k5KSQvXq1fnrr7/o1q0bz549y5bKV61aNW7evMmyZctYunQpFSpUYPr06bRt2xYTExPZj66u7mffwQxJBudeSBWGzjU7o66irvC/SXERHQ0bNsDbt6CqCkOGQPPm/z4fGAhPnoBYXHzlmq2srGjcuDFHjhzJdR5TpUoV5s6dy48//oi6ujrz589XaFqGuro69erVw8rKiidPnuDu7s5vv/3G2LFjefDgAQ0bNvzsHIlE8p/1TVI0b968wdzcvMhVKJQoySIqKgoDAwOF+qYpKThxcXGYm5srrL3GjRtjYmLCsGHDcHFxwdHRkb59++YqrPr5+VG1alWF3CcUdlXK8iVp3bo1mpqaeHh4sGPHDv75558SKQ+bFUny8c0r6w18/fq1bOfH399frrJEWWRNzJycnPj7779LveRt165dGTZsGMOGDUNHR6fUc2azfEmUIokSRSEIAr6+vgwbNgw7Ozt+/vlnBgwYUOj0PUtLSwIDAz97PCYmhp9//pmxY8eS9v9lHOQVSby8vHJMtREEgenTp+Pk5MTw4cPlavP58+f8/vvvLFiwoFhDkd+/f4+Pjw+ZmZk0aNCAypUrK/zalmWce+3aNdlPQEAAAM7OzkydOlWh/ZVlkpJg7164f1/6u52d1H+kmDWpfBEEgVGjRmFkZMTq1asLfJ6GhgaVKlXKFtGVmZlJcnIyBw5koqYmplKlZCwsIggKSskmduTmb/Jp2VdVVdVsooqmpiba2tqIDcRcjr5MqlEqNpVsGFxvMC2rtSQ+Pp42bdoQERHBrVu3SE9Pp06dOpiYmJCcnMy8efOyta+trc0PP/zA119/zaxZs1i9ejX37t1j7dq1efoYeQZ5EpMcg6GmIa2qyWfGXJq8egUbN0J8vFSg++Yb+PQSU1xRJJ/Sr18/vvvuu1xTbkBacSwtLY3ly5ezY8cOfv31V4YNG6ZQoUJfXx9nZ2fevXvHkydPWL9+PT/88ANVqlQhIiKCiIgIwsPDiYiIICUlBU9PT5o0aaKw/v+LZGZmEhwcTNOmTUt7KEq+IKKiogq8gaZEsWRVo1HkJpuKigrHjh1jz549PHz4kN27d/PixQvWrVuX4/GK8iMBBYoktWvXllW4AWnKTXp6Ort27eLBgwc4OTkpqqsc0dbWRiwWZ/vjODg4oKmpya1bt5gxYwampqZ4eHjQoRD1B5s1a4aBgQFaWloEBwfz5MkTuRdSikQsFrN9+3YSExPp168fZ8+eVbj7uiAIXL58GTc3t3wXTRUrVpRF6yhRUhTev3/PDz/8wKZNm9i4cSMHDhygT58+RV64W1pa5hhJsnLlSlJTU/n+++85cuQIampq1KpVq8DtRkdH4+Pjw6RJkz577tmzZ9y7d4+zZ8/KPaHfvXs3qqqqzJ07V67zCkpiYiJPnz4lMjKSWrVqYW1trXAn+N27d3Pu3Dk8PT0JDQ1FJBJRv359unXrRuvWrWnZsiWminCDLCe8egV//glRUdId+t69oX17xZX2LQrbtm3jypUrXLx4EQMDgyK1paKiQmqqLo8eSRfh48frYWf3+UpbIpGQkZFBZmYmIK1ylHXPUVVVRUVFBVVV1Ry/O17BXuz13ku6kI6pninjG43HytAKQRDo27cvL1684Nq1azIPoA0bNvDq1St69eqV6+LWysqKo0eP4u7uztSpU3FycmLcuHH8/PPPn026UzNSZV4kXWt1RU2lfOxa3rwpFekyM8HCAiZNgk+DuF6//jeKpKgVbfKjb9++zJkzh7NnzzJgwIAcj1FXV+enn35izJgxzJkzh6+//po//viD1atX0/zj8JccSE1NlZn252fGLRKJMDMzo1KlSkgkEoYMGcKrV6+Ijo7GxsYGZ2dnTE1N2bZtG999912RyhMrkZb9VVdX/09FESopfqKiohS2SFYiHwkJCYjFYoX757Vq1YpWrVohkUjQ19fP09tPUX4koOBIkpMnT2Z7zMXFBUtLS1auXMm+ffsU1VWOiEQi9PT0suVCqaur07hxY27dusW3336Lq6srHlnJ33KiqqpK+/btCQgIQEdHh/Pnz5eqSJI1pgMHDtCzZ0969OjBxYsX850wyMPZs2fp3r07J06cyNfw1tjYmPj4eFJTU9HQKF/GdUrKBqmpqaxbt46ff/4ZQRD47bffaNmyJTExMQqJbLC0tOTBgwfZHouPj2f9+vVMmDCBypUr4+Pjg52dnVxhmkuWLEFLSytHz5B79+4hEolo2bKl3ON1c3NjyZIl3L9/v1Dn50ZGRgbPnz8nICAAc3Nz2rZti2YxlFAJCwtjxIgR1K9fn6FDh9K6dWtatGhR7iuMFQaJBP7+W7o7L5FAxYowdizI6eFbbISGhjJ79mxGjhxJu3btFNLmmTPS0r+1a0t/ckIsFqOu/m+KSlZZe01NzVy/gxmSDI4+O8qV11cAsDOxY0zDMeiqS6MQkpOTcXd3Z/Hixdk8yMaOHVvgsbdt25ZHjx6xceNGvvvuOw4dOsSBAwfo1KmT7JjLry8TnxpPRe2KtKhaTGYrCkQigWPHpB4xAA0bSqsn5XS7zrIIadas+P1xqlevTqNGjThy5EiuIkkWlpaWHDp0iMmTJzNt2jRatGjBoEGDaNOmDeHh4Tn+fPjwAYAWLVpw/fr1Ao1JRUWFjh07kpKSgq+vL/Xq1cPGxoaaNWuiqqpKtWrVGDBgALdu3cLZ2bmob8F/ljdv3mBpaVmqUdlKvixSU1OJj49XVrYpJbLW4MX1nX7z5g2JiYnUqVMn12N8fX3p3bu3QvpTWKzip5EkIPWqmDFjBgcPHsxWire4yKpw8zHOzs7cunULAFdXV+7evSurdCEvnTp14tGjR1hbW3Pv3r0ij1cRqKurc+zYMRo1akSXLl1kIeyK4Pnz5wAFMmTNqmWtLAWsRF4EQeDIkSPY2dkxb948WYnIWbNmYWVlxfv370lKSipyP5aWlrx9+xaJRCJ7bOvWrSQmJjJjxgwAfHx85BI/X716xbp165g3b16OERH37t3D1ta2UKGHrq6u2NjYsGXLFrnPzQlBEHj79i2XLl0iKiqKFi1a4OjoWCwCCUjTHAH27t3L0qVL6dq1639SIImJkZZWPXlSulBt0gQWLy47AgnA5MmT0dTUZMWKFQppLzQU/v+2S+/eiouU+ZDygZW3VsoEki41uzC16VSZQALSqNKuXbt+tmkjL2pqavwfe+cdV2X5/vH3YQsIKA6WgKAognsjDgRn7pWjcqT51dKszMqZuS1zlGU5Kleu3FoqiHsrKktkiGyQDbI5z++P58dJEpRxBuB5v16+PJzznOe+zr7v676uz2f27NkcOHCA1NRU2fsZICs/i7OhZwEY0mwImhryrcCSN1lZ8OOP/yZIBg2CDz4oOUGizCqSIkaPHs3p06dfmr+VRpHg7rZt2zh//jzTp09n06ZNXLhwgeTkZKysrBg4cCBffvklv/32G05OThVaNOnp6dG2bVu6detGYmIiXl5eREZGMnLkSJycnFi6dGm5z6lGJCsri8TERKW4X6p5c0hKSqJ27drFku9qlEdaWppC9ewCAgIAcHqFgJs8K0nkliRxdHTk6dOnPH/+vNj1/fv3RyqVKiWpUFKSpEuXLkRHRxMZGUmvXr0oKCjg6tWrpZ4jOTm51KRA0WNJSEjgwYMHco29Mujr63PixAl0dXX57rvv5HbeIhcfHR0dMjMz+fDDDxk0aBAbNmwgICBAJrJXRJEuiRo1ZcXX1xdXV1fGjBmDk5MTvr6+/Pjjj9SvXx+AWrVq0aBBg1JdacqDjY0NeXl5xMXFAeKOw7p165gwYQJWVlZIpdJytdGFhYXRt29fLCws+PTTT0s85s6dOxVuNdTQ0GDatGkcOHCg0o5aycnJXL58mYCAAJydnXF1dZUJWyuKIv2XimhA1RTu3oVvvoHHj8UF6aRJov6IgvJSFeKvv/7iyJEj/Pjjj3J7Txw7JorTtm0rv2TQ46THrLi0gtDkUPS09JjZcSZDmw9FQ/LyNGbatGn4+Phwt0j4pYIUFhaycOFCWrZsWczp5GzoWbLys7CobUFHy5IdraoKCQmwejX4+4v2yx98AIMHl564KtIi6dIF/v9rWOGMHTsWiUSCi4uLbBL8OjQ1NXn//feJjo4mLy+PhIQEfH198fT0ZM+ePXz//fd88cUXdOjQgfDwcNq2bVvh+OrUqYOrqytOTk4EBARw9epVvv76a86cOSPbhFNTPiIjI2nQoIHCkvRq3kySkpLUVSQqJCMjQ+FJEkNDw1KTq5mZmURERMit3UpuSZKGDRtibGwsqz4oomnTppiYmHDz5k15DVUqJSVJzp49S+3atTE0NKRZs2YyXZLScHFxoVGjRixdupTExMRit1laWtKyZUvi4+MJDg5+KSGkSoyMjJg1axa//fbbS3FXlKKF2bVr1+jQoQN//PEHYWFhfPLJJzg5ObFz585ix6uTJGrKy6pVqwgJCeHcuXOcOHGixC82a2trIiIiXkrKlZeixXqRLsmePXuIiYlh3rx5gNhykJmZ+coyviL8/PxwdXVFQ0ODCxculNh/mZ+fz/379+nQoUOFY540aRKFhYXs3r27QvfPzs7m7t27XLt2jQYNGuDu7o6VlZVSypuLvod+/fVXWRvFm0JODvz+u2ivmpUlJgoWLoSuXauG/kgRGRkZfPTRRwwdOpSRI0fK5ZxhYXD/vvg4X9OlWSYEQcAzzJP119eTnpuOpZElC3osoLVZ61Lv079/fywtLSvtQvfLL79w+/ZttmzZImv/Sc9N5+jDo2TnZDOs+bASkzRVhcBA0WI6Ph7q1BHtpV+Vsw0LE5MpyqwiAfE7/tatWwiCQIcOHdi+fXuZv++LdGtKIjo6mgEDBtC0aVM+++yzSsUokUiwsrLC3d1dtrhfvHgx3377baXO+yYiCAIRERFYW1urOhQ1NQy1aKtqqaj9b3nOb2xsXOoc9vHjx5iYmBQTkq8Mcvt1l0gkMoebYgNoaNCxY0du3bolr6FKxcjIiOzsbNmE/MaNG/zyyy+sWLGCOnXqIJFIXqlLkpOTw+PHj2natClr1qyhadOmL9kKDxgwABC/5H19fRX6eMrLjBkzkEgk/Pzzz3I5X2xsLADr1q0jKCgIe3t7goKCMDExYd68eS/plJiampKWlvbGLYjUVBxTU1MaNmz4Sh0EMzMzCgoKKp2AezFJIpVKWbt2LUOHDpUlZoracF5Xpnnjxg169OhBw4YNuXLlSqkCUv7+/uTk5PD06VPOnj1LSEiIzD2nLOTm5nL//n0sLCz4/fffy3w/EHfAHz9+jJeXF4Ig0Lt3b5o3b65Um8UpU6Ywe/Zs5s2bR/v27bl//77SxlYlYWGwbJnYbiKRiIvNefMUr+1QEQ4fPkx8fDwbNmyQS+JMEODIEfGyiwuYm1fufNn52fxy9xcO+h9EKkjpbNWZL7p9QQODVz+ZWlpaTJkyhb1791Z4MyMuLo758+czderUYlpfP3v9zJ8H/uTvP//G3lBxrlOVQRDg/HnYtElM0tnZwfz58Lo1aZEWSdeuyqsiKcLJyYnbt2/zzjvvMHXqVN59991KJcYzMjJ46623kEgknDp16rWira9CKpUSEhLCxYsXOXjwICdPnuTKlStoa2szZswYLl68KBMfVvN6EhMTKSgowMzMTNWhqKlB5Ofnk5aWphYCVhH5+flkZ2crNEliZmZGdHQ0devWfakoA/51tpHXRqBct0BKSpIAdOjQAR8fH3kOVSK6urro6urKqkm+//57nJycmDlzpuwYFxcXbt++XUyXoIinT58iCAKrVq0iIiKC1NTUl3ZwXxRuU0bipzyYmpoyefJkfvjhB3Jycip0jqysLI4fP87UqVM5d+4cgOwNn5OTww8//EBUVBRr1qx5SV+gVq1aGBgYVLo1QM2bg5mZmaz9pTQ0NDSwsrIq0ZmmPBgbG2NiYkJISAifffYZQUFBxZxjisp+c3NzSz3HuXPn8PDwwMnJCW9v71c6sxgaGuLg4MAPP/xAv379aNq0KbVq1cLGxgY3Nzfef/99VqxYwd69e7lx4wYJCQmkpKSwZ88e3n77berXr0///v2RSCSvFTQsQhAEYmJiOH/+PDExMXTt2pUOHTrIXWm8LBgaGrJx40Zu3bpFREQEmzdvVnoMykQqFReZ334LiYlgagqffSZWU8jZNEhu7N27lx49erxSKb48BASIrUVaWqLuRWWITItkxeUV+MT6oKmhyVjnsUxuMxldrbIJg0+ZMoXMzEwOHDhQofHnz5+PtrY2q1evll132/82S39bioGBAZm3M5k7d26Fzq1ICgpgzx7Yv198T3bpAp9++nqLaVVVkbyIvr4+v/76K9999x179uwp0bK9LOTn5zN69GiePHnC6dOnsbCwqFRcq1atomnTpvTq1Yvx48fzzTffcOzYMby9vbl79y55eXmy79zKVjy+CURERNCoUSO5WjirUZOcnIyBgQG1atVSdShvJOnp6ejq6ipUD8b8/3deUlJSCAkJeel2edr/ghzdbUAUb719+/ZL19va2hITE0NBQYHCdzKLWm5MTU0JDw+nc+fOxWwtJRJJqZaCfn5+gKi2Xq9ePdq1a0dwcHCxY7p160bt2rXJyMjg448/xsXFpVLl9PLmk08+4eeff2bXrl3lUvM/ePAgu3fv5ty5c2RnZ9OsWTNmzpzJRx99xAcffEBubi5eXl6v/VErarl5k2w91VQcMzMzEhMTyc/Pf6WjjI2NDZcuXXrtca/DxsaGb775BqlUyvr164s5ExS5MpWWYDx06BDjx4/Hw8ODQ4cOvTbx0KRJE4KCgsjPzycyMpInT54QFhYm++fr68uxY8dKrJDp0KEDn3/+OUOHDqVly5ZlyoqnpaXh5+dHRkYGjo6OWFtbVwnXgBYtWvD8+fNKaQJUdRITYccO0eIXRHHW8eOhKs/V4uPj8fT0lFvlYZF7CkCvXi/bypYVQRC4EnGFQ48OUSAtoG6tujJ73/Jga2tLnz592LJlC5MmTSr3ZyEwMJC+ffvK+tujo6MZ8PEAdMx1+OTdT2jYrSHTp0+nefPmjBgxgkaNGqn885aRAb/8AsHBYhXTyJHg4VG2Fq8Xq0hUXa1uZWUFUKEdYUEQmDFjBl5eXvzzzz84OztXOp6srCwaNGjAxYsXsbS0fKkqpah95MGDBzx58gRnZ+dK22jXVPLz84mJiaFnz56qDkVNDSMxMVGtR6JCFN1qAxSrPivJ9fHRo0d07txZbuPJNWPh6Oj4kk4FIBNFjIuLk/34yYOYmBjMzc2LTUxe1CUp6kd9kbS0tBJ/vLKzs5k/fz5du3bF2tqa1NRU4uPjXyqP19HRwcvLi3Xr1rF//35u375dpZIkTZo0YdiwYaxbt47333+/TJl6qVTK22+/jZOTE3PnzmXcuHGyTFxmZibe3t6sWbOmTOcyNTWt9I6/mjeHOnXqIAgCiYmJsgxxSRgZGVG7dm2io6MrtevdqlUrEhISOHDgwEtfsEVJkhcrSQoLCwkKCuLEiRPMnz+ft99+m99//71cmXJtbW3s7Oyws7PD3d39pdvT09NlCZSMjAzc3d2xtLQs8/lzc3N59OgRERER2NnZ0alTp0olkipKTk4Ox48fR19fn0EvlBHcu3ePgoICuf5wVRUEAW7dgr17RR0SPT0xOVIdHuqBAwfQ1NSUmxbJjRsQHQ36+hWvRMgtyOV88nmy/bLR0NCgZcOWTG4zGQMdgwqd7/PPP6dPnz589913fP755+W6r5OTU7EK2M+Xfk5SrSRGeYzinfbvYOtuy+XLl/nkk0/45JNP0NXVZd26dXz44YcVirWyREfD5s2QlCS+D6dNg7LmB6pCFcmLJCQkoKur+8oJtyAIxMbGvlQlsmLFCrZv384ff/xR4vdtRTAxMSE3N7dUxwSJRIKNjQ0WFhY8fvyYS5cuYW1tTfPmzWW/K2pEoqOjMTIyUvhiSs2bR1JSktyqItWUH2UkSV40AihprMDAQCZNmiS38eRa69a8eXOCg4MpKCgodn1RYiQ6OlpuY6WlpWFpacnAgQOLlTe+mCRJSEh4ScAnNTW1xCTJ119/TXh4ONu3b0cikfDhhx+SkZHBN99889KxHTt2lOmRVMXdgrlz5xIUFMTJoq2h16ChoUGtWrV47733+P7772nRogUTJ07k4MGDHDlyhLy8PN56661S73/kyBHmzJkDiEmSlJSUl94DatT8F0EQ+Pnnn7GzsyuT0Ja1tXWlE3BbtmwhLCysxAx00WTW09OTTz/9lB49emBsbIyTkxNffvklH374Ibt375Z7KaGRkRGtW7dm+PDhvPfee2VOkEilUkJDQ/Hy8iI7Oxs3NzecnJyUmiARBIF79+7x0UcfYWFhwdtvv82wYcM4f/687JibN2+ip6dHq1atlBaXMsjKgu3bxQqSnBywt4fFi6tHggTEVpv+/fvLZectP190tAEYMAAMKpDTiM2IZe31tQRlBSGRSBjuOJwPO35Y4QQJgIeHB19++SVfffUVly5dKtd9nZ2dCQgIkGlNNB3cFB1dHe79fY+Gug2RSCTs2rWL+Ph4jh8/Tm5uLh999JFK2i0ePIA1a8QESf368OWXZU+QQNWqIgFRT0QikeDt7V3i7VeuXKFr165YWlrSrVs3jh07hlQqZefOnSxatIhvvvmG9957T27x1KlTh/T09BLbtF9EW1sbJycn3NzcyM7OxsvLi9DQ0Nfe703i6dOnasFWNXKnoKCA1NRUtWirClFGksTCwoIBAwbQvXv3l24rKCggODhYbva/IOckSePGjQF48uRJseuLJv1RUVFyG6uoJP6ff/4pZsFWp04dUlNTKSwspFGjRi8tqlJSUkos4dyyZQvTp0/H0dGRvXv3snfvXn766acS7Svz8vJkNnX/1eWoCri4uNCrVy8mTJjA3r17X3msIAgyDRNNTU2ZyN3OnTsZM2YM7733Hg4ODjRt2rTE+y5fvpwRI0bg6ekJiD3Furq6pKSkyP+BqalRHDp0CE9PTzZt2lSmhb2VlRUZGRmVem/p6+uXajkokUgwNTVl586dHDt2DHNzc5YsWcL58+dJSUlh06ZNVaaHOj4+Hm9vb8LDw+nQoQNdunTB0NBQqTHcu3ePDh060L59e/766y8++OAD/Pz8cHNzY8yYMbLvXh8fH9q0aaOS6hZFERwsirPevi3uvg8dCnPnijok1YGwsDBu3LjBuHHj5HI+Ly9ITRVbbNzcyn//29G3WXVlFbEZsehr6PNxp4/p36S/XNpXli1bhqurK2+//fZr9Y9exNnZmZycHMLCwnia+pQ44hg4YCCxF2KL6Zw1aNBA9v5etWqVUltuBAH+/ht++glyc6F5c/jqq/IJ5oaGVq0qEoDJkyfTqVMn3N3d+d///ifb+AoKCmL48OF0796dgoICtmzZgoaGBsOGDcPR0ZGpU6cyZcoUFi5cKNd4TExMEASBtLS0Mh1vaGhIly5daN++PeHh4Xh7e5OQkCDXmKojKSkpZGRkyLWiXI0aEN9benp6aj0SFVFYWEhqaqpSRHMTEhJwcHB46fqwsDAkEoksFyEP5Drj19LSomnTpjx69KjY9Qb/v62UlZUlt7FenIicOXNGdtnQ0BBtbW1SU1Np2bLlSw40ycnJJb6InTp14vr168yfP58ZM2Ywbtw4JkyYUOyY0NBQhg4dWixLVRUrSQCOHz/O0KFDmTBhAlOnTn3puZdKpZw8eZJu3boxe/ZsZs2axYcffkhSUhLz5s2TLSSbNWvGxo0bXzq/VCrl3XffZdGiRQAMGzYMEF+XevXqqa2A1bySzMxMPv30U4YOHfrKKqUX0dbWxsbGpkSxJnnh6+tLUlISoaGh7N+/n88//xw3N7cqkwzNzMzkxo0b3L17F1tbW9zc3ORmdVZWBEHg119/lTl+nDx5ksjISFavXo2TkxP79u1DX19ftlAJDAwsk61ydaCwEI4ehXXrIDlZ3LWfN09cXFaR/FmZ+PPPP9HX12fIkCGVPldmprhQBxg2DMqTCyuQFrDXdy/b7m0jtyAXB1MHxpiNwcH05QlQRdHS0mLfvn0AjB8/vsxVjkVaFn5+fhwLEstkBrcbzEDXgURERBQ7dtWqVRgZGSm11SYvT6xkOnpU/LtXL5g9u/xVPEUVQN26VY0qEhDF+by9vdm8eTO7d+/G2dmZyZMny1qg9uzZw61bt5g+fTqXL1/m6tWrtGjRghEjRrBlyxa5J6qKvv9TU1PLdb+GDRvi5uaGra0td+7c4caNG2RmZso1tupESEgINjY2NSphrqZqkJSUhKmpqcp1od5UUlNT0dbWlq33FYUgCDx+/LjEJMmjR49wcHAopkNaWeQ+rSvJ4ebs2bOAfBMKRR8EbW1tmQtL0fW1a9cmKSmpXEmSMWPGcOfOHXbs2MGQIUP46aefXjrm9OnTnD59muHDhzNjxgygalaSANSuXZtdu3axY8cO9u7dS6dOnfD39yc/P5/du3fTunVrBg8ejEQi4ezZs2zYsAFdXV3q1q3LmjVrCAkJYdq0aYSEhDB9+nR2795drIz46tWr7NmzRzYpfHGhWyTeqkZNaSxfvpzExEQ2bNhQrvvZ29sTFxdXYVvP12Fubl4l7ePy8/Px8/PD29ubWrVq4e7ujr29vdIrW54/f857773H9OnTef/997l27RpvvfVWMUFuU1NTJk2axMmTJ8nLy+PRo0dyVRtXFQkJYkvD33+LO/jdusHChSDHTQulIAgCe/bsYdiwYXKZ0Jw+LbYbNWokCtaWlcSsRNZeXcvF8IsADGw6kNmdZqOvKX8nJjMzM/bt28fFixdZsmRJme7TsGFD6tWrx0Xfi/gn+KMh0WCww2CCgoKKbZRERkayfft25s6dWymb2fKQlARr1/5byTRhAowbV34XpUePIChIdCMqY65aaWhoaDBz5kz8/PxwdHTk1KlTrF69mkePHjF+/Phi330uLi4cOXKEffv2KWQBXtRiWdZKkhfR0NDA3t4ed3d3atWqhbe3N35+fuTn58s7zCrN8+fPiYuLw96+atpmq6neFCVJ1KiGItFcRSep4uPjycjIKDFJIm9nG1BAkqR58+YvVZJMnToVQNaiIg+KXggPDw9u3bol+/F6/vw5q1evxs/Pj5YtWxIbG1tswV5au837779PZGQksbGx7Nq1q8TkR1JSElKplIcPH8psbqtqJQmIz9HkyZNljkMdO3akSZMmvPvuu1hbW3Pp0iWuXr1Knz59XrqvpaUlv/76K/7+/nTs2JF3330XNzc3AgICyMzMZNeuXZiamvLuu+8CFBMnMzU1JTk5Wd2Hq6ZEwsPDWbduHR999FG5Rbb09fUxNzcntMhGpIYjCAJPnz7F09OTtLQ0evbsSevWrVUiBhgYGEinTp04cuQIe/bsYfPmzaXGMWzYMFJTU/nzzz95/vx5tU6SCAJcuSK21zx9KgqTTp8O770nCmRWNx4+fEhgYCDjx4+v9LmePYMLF8TLo0aVzUUF4EHcA1ZcWsHT1KcY6Bgwq/MshjYfioZEcUm/nj17snLlSlauXFkmvS6JRIKdvR0X48Ukjqu1K/UN6hMdHc22bdtwdnZmzJgxvPvuuxgaGiqtiuTRI1ixAiIjoXZt0d63R4/yn0cQ/q0i6dED6tSRb5zywtbWljNnzpCQkMDcuXNLbZdUFIIgsHr1aqytrUucmJcVXV1dWrduTY8ePUhLS8PT05OnT5++MZbBISEhWFhYqMSOXk3NprCwkOTkZHWSRIUoK0n1+PFjgFIrSeSpRwJKqiQpUh+fP3++3MYp2kXo2rUrhYWFMhV6fX194uLiKCgowM7ODvjX2hdKryTR0NDAysrqlVmwGTNmsHLlSvT09Dhz5gyGhobV4kPp5OTErVu3+N///kfv3r25f/8+p06dKlH45r80a9aMQ4cOce7cOWJiYmjdujX169dn69ateHh4MHnyZPT09IqV/BsaGqKlpVXu0lQ1bwZ6eno0btyYzZs3s2XLlnJPEps0aUJEREQxF5qaSGJiIhcvXuTx48e0adMGFxcXlToCDB06FKlUyu3bt1+7wG7bti2NGjVizZo1ANU2SZKZKVqq7toltjc0ayaKs7Zrp+rIKs7x48cxNjamb9++lT7X0aNiC5KTk6iH8ToKpYX8FfAXP93+iaz8LBrXaczCHgtxblB5m9ay8PnnnzN48GDeffdd9u7d+8pE/uPHj7nz9A76Vvpoa2rzloNYanH+/Hm+//57evbsybNnzwgODmbp0qUKryIRBFH7ZeNGeP4cbGxgwQIoQS6sTPj5ia422tqi2K6akjl8+DB///03mzZtkssC39jYGBcXF1q3bs3jx4+5ePFija+8zc3NJTIykiZNmqg6FDU1kNTUVLS0tJSuy6ZGRCqVKi1JVbSuLGkdr4hKErlaAIM4GX706BGCIMgSDkVCOiU5xVQUExMTdHV1ZRokfn5+9OrVC4lEQrNmzcjPz+eff/4BxHLYIkpLkpSFhg0b8sUXX/DFF18glUrJzs6uNiJB+vr6fP/99xW+v4eHBw8fPmTLli0UFhYyfPhwQkND6d+/P82aNSMlJUUmxlUkgJmYmFglWxfUqBYzMzN8fHz4/PPPmTFjBidOnGD79u3F/M9fhYmJCXXq1CE8PJxmzZopOFrlk5WVhb+/P/Hx8Tg4OGBvby/XHsuKkpyczNy5c8v0IySRSBgyZAibN29GT0+vRAHsqo6vL+zcCenpYhvDsGHQp0/ZqyWqKlKpFH19/Uq3JYSHw5074vMxYsTrj0/NSWXr3a2EJIuaQu527oxwHIGWhtynIaWioaHBH3/8weTJk5kwYQJr165l1apV9O//skjsipUrMOxgiKOjI262bpjomQDQpk0b2rRpo7SYQXQP2r1btFkG0UHp3XfLp//yIi9WkfTuDWo31pLJyMjg448/ZtCgQXLR7ylCIpFgYWFBw4YNCQ0N5fr16zRs2BAnJ6caWWnx5MkT6tatW6Urr9VUX9R6JKolLS0NDQ0NpWziFW3IP3v2rNiaQRAEhbR2y72SxMHBgdTUVOLj42XXmZmZ0b9/f7kqjmtoaGBjY0NUVBSOjo7FqkV69+5NQEAA9+/fB5AtMLKzs8nOzpbLwl1DQ0PhAjVVDT09PebMmcNnn32GnZ0dffr04caNG0gkEtq3b8/y5ctlfbb169eXqblnZGRw4MABtS2wGhkGBgb89NNPnDp1irt379KyZUuOFikQloEmTZoQFhYms+esCRQUFPDo0SPOnz+PpqYm7u7uchehqgwaGhrler6HDh0KiNVoVeUxlIXcXHFB+uOPYoLE3Fy0VO3bt/onSEBMMla2yk8Q4K+/xMtdu8LrzCoCnwWy/NJyQpJD0NPSY3qH6YxxGqPUBEkRderU4ejRo1y9ehUjIyMGDhxY4twkICWAuo3rYqBrQL8m/ZQeZxEpKfDtt2KCREMDxoyByZMrniAB8PER23X09KCf6h5alWfp0qUkJyfzww8/KGQBpqmpiYODA+7u7mhqanL+/HkePXpUo+ZKhYWFPHnyRF1FokZhJCQkUL9+fVWH8caizCRVUZLkxRwDQFxcHOnp6ZVqiSwJuSdJDAwMsLGxKdZyY25uTmxsrLyHwtbWlidPntCyZUsePnwou97NzQ1/f3/ZLnORqGDRxLCqiq1WRzp27Mjdu3eZO3cuS5YsoUuXLjx8+BAzMzOSk5PJzc3l8uXLvP3227i5ub3kCqDmzWbgwIH4+vri6urK8OHDmTJlChkZGa+9X4MGDdDT0ytWJVZdEQSBqKgovLy8SEhIoFu3brRr167KValpamqWK0nSs2dPjIyMqlWrTWioqD1y+bL4t4eH2NJgba3auOSJsbEx2dnZlRKO9PWFx4/FhfqrNtilgpSTj0+y8eZGMnIzsDKyYkGPBbQzV32/kouLCxcuXMDExOQlAWSpIEXDUYOU5BT62PfBUEc1ZdwhIaL+yNOnomvNxx+Du3vlknVSKRw/Ll728Ci/G86bgq+vLxs2bGDRokXl1s4qL7Vq1aJdu3Z069aNhIQEvLy8iIqKqhF6JREREejp6akXsWoUQm5uLsnJyWWuRFYjf5QpmltUjfZfEe3AwEBsbGzkXomnkG2cdu3acePGDdzc3ACYNWsWU6ZMkfs4jRs35tatW4wdO5Zjx44hlUrR0NCgcePGpKSk4OTkhEQike1iFi2+VNnXXxPR09Nj5cqVDB8+nEmTJtGhQwfGjBlDv3792Lp1qywxcuXKFWxsbIiIiKBRo0YqjlpNVaF+/focPnyY33//ndmzZ3Po0CEaNGhA7dq1i/0zMjIq9relpSU5OTnY2NhU2zLLlJQU/Pz8yMrKokWLFq/VRVIlGhoa5RJj1tHRYceOHdWi1aagAE6ehH/+Eask6tQRd+trYDdXsUlGvQp4vkqlcPiweNndvXTBz4zcDHb47CDgmSjY7mrtyljnsWhrVh37Tx8fH1JTU18SL78eeR09Uz3S7qfRzbyb0uMSBDFR9+ef4vNtZQUzZsjHovf2bYiNFQWIPTwqf76aQH5+Pn/99RfDhw+XiVEfO3YMTU1NPvnkE6XFUadOHbp3705UVBT+/v48efIEZ2dn6lRVVd3XIAgCoaGhNGvWrMr+rqmp3sTFxWFsbFzlNpXeFARBICkpSe4VHKVRVHDRsGHDYtffuHGDtm3byn08hSRJPDw8+Ouvv/jqq68AxYn22dnZsXfvXhwdHcnMzCQ8PFwm1tqkSRO0tbVZt24dPf5f+r3In14t7qMYOnbsyL1791i5ciVnz57l2rVrmJmZsXHjxmILrOTkZEJCQmRJNDVqipyYevXqxb59+0hLSyM9PZ2MjAwyMjJ49uwZYWFhZGRkyK7Pzs5my5YtDB06FFNTU9zc3Bg8eHC1mFDm5OQQGBhIdHQ09vb2NG3atJiNblXE1NSUnTt30qFDB956660yTXpHjhyphMgqR0wM7Nghth8AdOkCY8dCTZpzxcXFERQURJs2bWSVlKmpqRVKkly9Ki6yDQygf/+SjwlKDGLbvW2k56ajranNhJYT6NqoayUegWI4d+4cBgYGdOnSRXZdfmE+Jx6fENtygyHscRjt27dXWkwFBbBv37/VTB06iE5K8jC0KiyEEyfEy/361az3eEXJy8tj7NixHDlyhB9++IGPPvoIgO7du5OXl8fDhw/pVB5v60oikUho1KgR5ubmBAcHc/XqVSwtLXF0dFS6s09liY2NpbCwEEtLS1WHoqaGEhcXh7m5uarDeGNJT09HKpUqTW8oKioK4KWNdk9PT0aPHi338RTit+fh4cGVK1fIyspSxOllDBo0iIyMDIKDgwFearkJDAzE3d1dNhFUJ0kUj66uLkuXLuX69eusWbOG9u3bk5mZSU5ODuvWrUNXV5cVK1bQu3dvrl69qupw1VQxGjduzFdffcXq1av56aef2LVrF0ePHsXLy4tbt27JEgvp6ekkJCRQr149Ro0axa1bt5g4cSJz5sxR9UN4JYWFhQQHB+Pl5UVBQQG9e/fG0dGxyidIAPbv34+dnR2DBw9m4MCBHD16tEytUVUVQYBz5/61UzUwEK19J0+uGYvHuLg4fvrpJ9zc3LC0tKRXr17UqVOHSZMmAS+Xq5aF3Nx/WzXeeuvl50kqSDkRdIL1N9aTnpuOeW1z5nefXyUTJCC2AuTn5/PHH3/IWhu8w71JyU6hsXljCBfbLpRFWhqsWycmSIoEcadOlU+CBOD6ddG2uXZtUO9RiLzzzjucOnUKZ2dntm7dKnsfdOvWjbp163K86A2vZLS0tHB0dKR3794UFBTg5eVFcHBwtdHhEgSBkJAQ7O3tX2pnU6NGHhQUFJCQkKButVEhSUlJ1K1bV2mf8cjISJnwdRFZWVlcvXoVDwWURirkUTVt2hQzMzOuXLmiiNPLaNGiBe7u7hw6dIh69erx4MED2W1FuiShoaGy69RJEuVSu3Zt9PT0SExMRFtbm0GDBpGbmyuzHnZ1da1RAmVqlEudOnUYOHAgpqamDBkyBF1dXT7++GNVh1UigiAQGxuLt7c3UVFRdO7cmY4dO1YrJwNHR0fOnTvH4cOHiYiIYPjw4ZiamtK5c2dmzpzJjh07ePDgQaW0LpRFUhJ8/z0cOiTu3LdsCV9/Xb2tfV9kyZIlWFpaMnv2bHR1dfn111+5f/8+27dvp1+/fri5uVWo5dHTUxSzrVcPevYsfltqTirrr6/n5OOTCIJAN+tufOX6FRa1LUo+WRXgu+++Y9KkSXzwwQe8/fbbxDyL4e/gvwEY3XI0drZ2SkuShIWJCbuwMLEVZtYssdpDXl0KRS1lIFr+yivxUp1JT0/n4MGDfP/996xdu5aHDx9y9+5dQExS9O/fn2NFNkAqQl9fn44dO9K5c2eioqLw9vYmNja2yuuVJCcnk5GRUS3aLdVUT549e0atWrUUbr+upnSUqUcCcOHCBRwdHYu5812+fBlzc3OFiEMrZPtSIpHQp08fzp07R9++fRUxhIyiyY25uXkxUVBLS0vS09PJz8+X2REX7XqqkyTKQSKRyER7zc3NcXBwoGnTpvj5+dGkSRNCQkJYs2YNCxYsUHWoaqop2traZGVlIZFI2LRpE+2q4Co3PT0dPz8/0tLScHR0rNYaKhKJhOHDhzN8+HBCQkI4c+YMN2/e5MKFC2zZsgVBEDAxMSEwMLBK7u4Igribvn8/5OSIC8XRo8HVtWY41xSRkZGBrq4u4eHhMjV4gNatWzN58uQKnTM9Hc6cES8PHw4vFj/5J/jz2/3fyMjNQFdLlwktJ9DZqnNlHoJS0NfX55dffsHDw4Np06bRZlQbXN5zoa19WzpbdcbZ2bmYc56iuHoV9u4VExnm5jBzJrzwssmFy5dFpxwTE/j/DuQ3npAQ0Y66Y8eOtG/fHisrK7Zt20aHDh04ffo0x44do2PHjiqOUqRevXr06tWLp0+fcv/+fYyNjXF2dq6yGnshISHY2tpW2mpcjZrSKFpbVNf5VHWnSI+kSOZC0aSkpPDXX3/xzTffFLv+3Llz9OnTRyHvA4XVx3h4eHDu3DlFnV5G7969AfHDUmQ5W4S9vT2ampo8f/4c+NfVRhFOO2pKxszMjPj4eJkeyciRI9m3bx+bNm0CYOHChQQEBKgyRDXVmICAAD755BM6dOjAuHHjVB1OMYr62S9evIiRkREeHh7Y2trWmB/0Jk2a8OGHH7Jz504OHz5M+/btkUgkTJw4sdjCvKqQkQFbtsAff4gJEnt7WLQIunevWQkSgPHjx5OdnV2surKynDolttvY2kKRREehtJDDgYfZdHPTv+413RdUiwTJi4wePZqLNy+i0USD48eOk3Q1ifXfr+fmzZsKdWQrLBTFWXfuFBMkbdqIdtPy/vjk5cHp0+Llt96qnH1wTaKoVbtp06ZoamoyZcoU9u7dyw8//MCQIUNwd3fn1KlTKo7yXyQSCba2tnh4eGBkZMTFixd5+PAheXl5qg6tGBkZGSQkJCht8aTmzUMqlRIfH18lN2PeFDIzM8nPz1eaY+yePXsoLCzkvffeK3b9uXPnFNJqAwpMkri7u+Pr6/tS4kLe1KtXj5YtWwJi6dWL9OzZk6CgIFnLTbdu3dDS0uL8+fMKjUnNv9StWxcQSy8BPv30U6RSKd7e3rRu3RqAyZMnV8m2m9TUVHVCrQqTmZnJqFGjMDExwcrKqlhrnSqRSqWEhYXh6elJVlYWvXr1wtnZuUbuqBUUFLB69WratGlDeno6ly5dYsOGDVWuB/3hQ1i6FO7fB01NsRJi7lyoqa6U7du3x8HBgT179sjlfPHxcOmSeHnkSDGplJydzLrr6zgTIpaX9LLtxZeuX9LQsOErzlR1uZ99n8FDBuPW2o0fFv3AV199Rf/+/TlcZOUjZzIyYP16uHBB/HvIEPjf/0AR2pwXLvzbJtVN+WY9VZbg4GBMTU1lYt+TJ08mMzOT2bNn88EHH3D48OEq2RKpra2Ns7MzvXr1IisrC09PT8LCwsrlPqZIQkNDsbS0VDuOqFEYycnJSCQS2RpDjfJJSkqiTp06MgdZRSIIAtu2bWPQoEHFEmPx8fH4+fnh7u6ukHEVNpOtX78+rVq1wsvLS1FDyOj5/83R/03I9OrVC39/f9lugaGhIZ07d1YnSZSIRCLBzMyMuLg4QHxffPrpp/zwww+88847ANy6dYu//vpLlWGWyIoVK7C1tWXevHkVEjlUozgEQWD69OlERERw6NAhmjdvTmRkJNnZ2SqNKyEhgQsXLvDkyRPat29Ply5dqkW/rCAI+Pv7s2LFCjp06EC9evWYNm0aly9fLnXi/eDBA7p06cKCBQv4+OOPuX//Pq6urkqO/NXk5Ii79Js3i4tSCwv46ivRlaWK5XHkikQiYfz48Rw+fFgun4kjR0Qr2latwMEBHsQ9YNnFZYQmh6Knpcf0DtMZ13JclbL3LQ8xGTFcj7qOhoYGWz/dyqPAR4SHh/P7778rxJ0vPFzUHwkOFpMiM2eKFR6KqGjKyRGtrQEGDxaThGpEgoODadq0qexvW1tb5s+fz4YNG9i8ebNSJv+VoXbt2nTp0oX27dvz5MkTLly4oPCNydeRnZ1NZGSkQvQB1KgpIjY2loYNG9aYytzqiDL1SO7du8eDBw+YOnVqseu9vLxo3bp1hZz6yoJCp4l9+vTB09NTkUMAYjIE4MmTJ8Wub9CgAampqcWqFNq2bcujR48UHpOafynSJSkSGvvss88wMDAgICBAZt3166+/qjLEEnn//fcRBIFvv/2Wpk2bsmXLlipZ8fImsm3bNvbu3cu2bdto3rw5RkZGmJmZERQUpJJ4MjMzuXnzJrdv38bGxgY3N7eXfNyrGlKplOvXrzNv3jyaNWuGs7Mzq1evxt7envfffx9PT0969OiBvb09ixcvJjg4mMjISL7//ns6d+5MmzZtyMnJkTlZVbVdw+BgWLZM1HuQSKBvX5g/HyqgV1otGTduHBkZGZVuF3j8GHx8xOdwyLACDvgf4KfbP5GVn4WtiS2Lei6inXnV0wIqD0cCjyAIAu3M22FXx45mzZoVU8+XJ5cvw7ffivogDRuKSbv/L6pUCJ6e8Pw5mJmBEp1sqwX/TZIALF++nI8//rhaLb4aNmyIm5sbNjY23L59m5s3b8qMCpRNUFAQZmZmVVYrRU31RxAEtfVvFUCZSZJt27ZhYWFBv379il3v6elJnz59FDauwpMk586dU7gKd49XqJDVq1cPXV1dmR2xtbU1kZGRCo1HTXHq169Pbm6uTDjXyMiI+fPns3PnTpmw7/nz52UialWF5s2b89lnnwHQrFkzZsyYQdu2bZWitaOmdOLi4pg7dy5Tpkxh7NixsusdHR2JjIxUqi1tfn4+/v7+XLhwAT09PTw8PKq05WFeXh7//PMP//vf/7C0tMTFxYXff/+dnj17curUKZ49e8b+/ftZs2YNoaGhXLp0CQ8PDzZu3IiDgwPW1tbMnz8fCwsL/vzzT+7evUunKrbyys+HgwdFK9XERDA1hU8/FdtEamDHU6k4ODjQrl07Dh06VOFzCIL4XAK06ZzOrrC1eIWJ1aEedh583u1z6ukrZgdHWQQnBfMw/iEaEg2GNR+msHHy82HXLti9W9Qfad1aTJAosqX++XPR5hrEKpIq+rWkMkpKklRXNDQ0sLe3x8PDAz09PS5cuIC/v79S3cYyMjKIjIxUSPWVGjVFpKenk5ubS/2a2i9bDcjKyiInJ0cp7U5ZWVns3buXyZMno/WCYrwgCDLRVkWh0J9MV1dXEhISZO0uiqJ+/fo0bNiQWbNmvXRbmzZtCAsLk5UgNmrUiLS0NHX7hBLR1NSkQYMGxfQ9Zs6cibm5OVFRUbLrtm7dqorwXsnChQtp1KgRJiYm3L59GxMTE/r27cugQYPUFUkqYu7cuejo6LB27dpi1xsaGtKoUSOlvC6CIPD06VO8vLxISUmhe/futG7dGt0q7Kv566+/Ur9+fQYMGMDZs2cZP348ly9fJjY2lq1btzJw4ED0XhBE0NDQoHv37mzdupW4uDgOHjzInj17SEhI4MiRI4wdO7bKPd6wMLF6xNNTXOC7uMDixWKLyJtIenp6pUTVbt6EiAhIK4zngdFynqY+RV9bnw87fchop9FoaSjEIE9pCILA4UBRc8TV2lVheirJyWL1yJUrYkXOsGEwYwYouvjq3Dmx3cbK6l+xXTUiqampJCYm1pgkSRG6urq0bt2a7t27k5KSgpeXFxEREUqxDA4MDMTa2lrtIKlGocTFxdGgQYMq3w5Xk0lKSsLExKRY0kJRHDp0iPT0dKZMmVLs+sePH/Ps2TO6KVBoS6FJklq1auHq6qqUnfe4uDiZY8qLdOzYEV9fX5moY6P/r7VWV5MoFzMzs2JJEj09PZYsWYKXlxdt2rQBYPv27SrXlPgvBgYGrF+/npMnT/Lo0SMuXbrEwYMHCQgIoGXLlsyePVv9XlIi3t7e7Nmzh7Vr15ZY5tesWTPi4+NJSUlRWAzJyclcvHiRx48f06pVK7p164axsbHCxpMXq1evxsXFhQcPHhAaGsq6detwdXUt00SjVq1ajBo1ivHjx1fJMur8fDh8GNauFUVGTUxg1iyYOFExQpjVgdDQUEJCQhgwYECF7p+bC4f+KiQ4KZj0RvuQ6qRhX9eeRT0X0aphKzlHqxoexD8gLCUMHU0dBjkMUsgYjx6J+iNPn4KBgfi+HDBA8Y5KGRlQJAk3dGjNc3CqLC8629REjI2N6datG61atZLNXYoE9BVBcnIyCQkJNGvWTGFjqFED/1r/qlEdymq1efbsGUuXLsXd3f0lt6xz587RvXt3hbZ6K7z4UllWwKXRtm1bAgMDSU1NJT8/n0GDxImQemGrXMzMzEhPTy+WBJk0aRIODg4ym8rk5GS5uTHIkxEjRjBq1Cjeffdd3N3dsbS0JCAggBUrVrBz504aN27MmDFjuHLlilJ2a95U8vLymDlzJq6urkycOLHEY2rVqoWdnR0BAQFyfy2ys7O5e/cu165dw9zcnN69e2NhYVEtetfDwsJ48uQJM2bMoFWrVtUi5rJSJIJ55oxYPdKlCyxZAs7Oqo5MtZw5cwYtLS3c3NwqdP8Dx1O4GHSfFEkIlq0eMaDpAD7r+hl1a9UMNwGpIOVI4BFAbB0y1pNvolMQxPfkhg2QmSlq4SxYAE5Och2mVE6fFq1/bW3h/w0A1bxATU+SgCjgbGFhgbu7O2ZmZly7do27d+/KfTNKEAQCAwOxs7MrVo2oRo28ycrKIj09vcprvtV0EhMTFZ4kycnJYejQoWRmZpbYaaBI698iFJ4k6dOnD97e3ioTvDQwMEAqlaKpqUleXh6pqakA2NjYqCSeNxUdHR1MTU2LVZNoaWmxbNkyBEFgxIgRDBkyhA0bNlQZG7siJBIJBw4c4NixYyQmJuLi4sLo0aPp168fkZGRbNy4kYcPH9K9e3c6dOjAH3/8QU5OjqrDrnGsW7eO4OBgfvrpp1dqfjRt2pS0tLSXLMErSkFBAUFBQTKnLnd3d5o1a1atSj09PT3R1NSUOYHVBAoK4NgxWLMGYmPByEh0CZk8Gaqga6fS+eeff+jWrVuFKn/O+d/mu10Pycx7jnOvR8zp9hHDmg9DU6P6vOdfx7XIa8RlxmGgY0C/Jv1ef4dykJMDv/wiVjcVtX198YWoj6MMkpLg4kXx8vDh6iqSkggODqZBgwZVsjJO3mhqatKsWTOZTaaXlxdBQUEUFhbK5fwJCQmkpaXV6ISTmqpBXFwcpqam6OjoqDqUN5acnByeP3+uUD0SqVTKpEmT8PHx4fjx4zRu3LjY7QUFBXh7eytUjwSUkCRp27YtWlpa3L59W9FDlUrXrl2JiYkhNTWVAQMG0LdvX1q0aKGyeN5UXrQCLmLUqFEMGzaMkSNHMm/ePPz9/dm5c6eKIiwdiUTCkCFDuH//Pnv37uXRo0e0adOGadOm0adPHwICAvjnn38wMzNj0qRJWFtbs2jRImJiYlQdeo3gyZMnLFu2jDlz5tDyNdui2traODg4VLqaRBAEoqOjOX/+PHFxcbi4uNC+ffsq5+LyKnJzc/ntt99YtWoVnTp1qhZtQWUhMhJWrhR3y6VS6NgRvv5asS4h1Ync3FzOnz9P//79y3W/nIIcdvjsYOVWP/LyJNjbww9TpuDUQEnlD0oirzCPE0EnAHir6Vvoaclv9zs2FlatEh2BNDVhwgR47z3ligYfPw6FheDoCM2bK2/c6kRNEm0tK7Vq1aJ9+/a4uLgQFxeHl5cX0dHRlf6dDAgIwMHBAe03SRlbjUqIjY3FTJFq12peS1JSEkZGRgpNVC1atIgDBw6we/duOnfu/NLtt27dQkdHRybXoCgUniTR0NDA3d1dKVbApfHWW29x//59Hj9+TI8ePbh27ZraylUFmJmZkZiYWExtXUNDgyNHjjB+/HhcXFwYN24cX375ZZUV1tXQ0GDcuHEEBASwdetWrl69SosWLZg2bRrNmzfn1KlTBAUFMW7cODZu3IiNjQ3jxo3j+vXr6lacSvDxxx9Tt25dvv766zId37hxY3Jzc4mOjq7QeKmpqVy9ehVfX1+aN29Ojx49lKLiLS9SU1NZs2YNjRs3ZsqUKbRs2bJKCiOXl8JCOHlSTJBER4OhIUyfDlOninoPakSuXr3K8+fPy5UkeZLyhGUXl+Hl85iEIHtsTWzY+JkrJrVqRmLtRbzCvEjNScVU35SetvKrrrp3T0yQxMWJujhz50KPHsqt5IiJEQV3QawiUVMyb2KSpIi6devSo0cPmjdvjq+vL1evXpVVWZeX6Oho8vPzX9rpVaNG3uTl5ZGUlKTWI1ExitYj2bFjBytXrmTt2rWMHDmyxGM8PT1xd3dXuJOkUgzhiqyAVUXPnj0JCQkhISGB7t27k5mZKdPBUKM8DAwMqF27NvHx8aUes3btWjIyMli2bJkSIys/2traTJ06leDgYNatW8eJEydwcHBg9uzZGBkZsXHjRqKioli3bh137tzBxcWFzp078+eff6qTJeXk2LFjnDhxgo0bN5ZZNV9TU5PmzZsTGBhYrvatnJwc7t+/z5UrV6hbty7u7u5YW1tXGw2PZ8+e8emnn9KoUSMWL17MwIEDCQgI4Pjx4zgpSwxBQURFiQvQEyfE6pF27cTqkXbtVB1Z1SA2NpbVq1fz3Xff8f3332NmZkbrMpTWCILAPyH/sPbqWp49TyTuVg9aNWzNqD422NvVPM/Y53nP+SfkHwCGNhsqF4ceqVRsrfnlF1Hw1sFB1B/5j86cUjhyRGzxad8e1F3FpRMcHEyTJk1UHYbKkEgkWFtb4+7uTt26dbly5Qr3798nNze3zOeQSqUEBgbSvHnzatV+qqZ6Eh8fj5GREfrqflqVkpSURL169RRybk9PT6ZPn87//vc/Pvvss1KPU7T1bxFKmQF5eHhw/fp1MjIylDHcS+jp6VGvXj10dXVp1aoVenp6XLp0SSWxvOmYm5sX0yX5L1ZWVixYsICNGzeWauUaGhrK2rVrcXV1ZdiwYRw8eJC8vDxFhfxK9PT0+PjjjwkLC2PJkiXs3LkTe3t7vvrqKwoLC5k9ezZBQUGcOnWKunXrMn78eBYtWqSSWKsjz58/Z/bs2QwYMIARI0aU677W1tZoamoSHh7+2mOlUikhISF4eXmRl5eHm5sbLVq0qHblwzNmzGD79u3Mnj2bp0+fsm3bNhwdHVUdVqWQSsW2mpUrxTYbAwOYNg0++ABq11Z1dFWHI0eO8NVXX7F8+XLOnTvHhAkTXpvcS81JZcONDRwJPIJUkGKW2Rfbwj6YGhrX2CqE08GnySnIwcrIik6WnSp9vowM2LhRFGkF6NMHPvlE1MhRNqGh8PAhaGiIjjZqSiY5OZmUlJQ3tpLkRbS1tWnRogVubm7k5eXh6elJSEhImTYXwsPD0dTUlLlGqlGjSOLi4tStNiomLy+P9PR0hVSSPHr0iFGjRuHh4cEPP/xQ6vwlIyODGzduKFy0FZSUJGncuDE2NjYqTUy4u7sTExNDfHw8nTt35vLlyyqL5U3GzMyM+Pj4VwqGffrpp1hbW7N48eJi16empuLq6kqTJk34+uuvqVevHjExMYwZMwYbGxuWL18uN7HO8mJoaMj8+fN58uQJc+bMYdOmTbRt25aQkBA0NDQYOHAg//zzD9999x0rVqxg+fLlKomzurF8+XISEhJe+YVZGhKJBEdHRx4/flxqe50gCMTFxXH+/HkiIyPp1KkTnTp1wqAa9m6kp6dz8uRJFi9ezIoVK2rEZCI2FlavFgVaCwtFzZGvv4YOHdRilP+lyFUiKSmJ3Nxcvvvuu1ce/zD+Id9c/IZHiY/Q0dRhvNN7SANGoKWhTZ8+UI26y8pMUlYSF8IvADDCcUSlK8SKnJUePQJdXTF5N2qUmKRQNoIgVrMAdOsGavOH0nkTnG3Ki4GBgez3LzIyUqbFVVrla35+PkFBQTg6OlabSks11ZfCwkLi4+PVrTYqJikpCUNDQ3R1deV6XkEQmDFjBg0bNmT//v1oaZVe4Xnx4kVsbW2xtbWVawwlobSfclW33AwcOBB/f398fHxo1aoVQUFBKovlTcbY2BgdHR0SExNLPUZPT49p06Zx6tQpmUuMIAhMnz4dPz8/Dhw4wLNnzzh69Ci3bt3C39+fIUOGsGLFCqytrZk2bRr+/v7KekjFqFOnDitWrCAwMBA9PT26d++Or6+v7PbPPvuM5cuXs2jRIr799luVxFhd8Pf357vvvuOrr77C3t6+QucwMzPDwMCA0NDQl25LT0/n+vXr+Pj4YG9vT8+ePalfv35lw1YZx48fJzc3lzFjxqg6lEojlYo788uXw9OnolvNlCkwY4ZqduirA0UlyK+z98wvzGef3z4239rM87znNDJuxMIeC8kP68azZxKMjKCffM1eqgzHg45TIC2geb3mtKhfOfH2y5fh228hJUVMSHz5pZi8UxX+/hASIgrEDhqkujiqA0VJkje53aY06tevT8+ePbG3t8fHx4cbN26UWAUeGhqKoaFhjUjGq6n6JCYmoqOj80a4UVVlFKVHcvToUS5cuMCGDRte+xorq9UGlJgk8fDwUKl4a6NGjWQWwKampqSkpKgsljcZiURSosvNfxkyZAhZWVky29UdO3Zw4MABtm7dyujRo4vt9Ldo0YJffvmFyMhIFi1axKlTp2jVqpXsvqrA2tqaS5cuYWZmRs+ePbl165bstgULFrBo0SLmzZvHpk2bVBZjVUYQBGbOnImdnR1ffPFFhc8jkUho0aIFISEhsl7rvLw8fH19uXjxIrVr18bd3Z3GjRsrXABK0ezfvx8XF5dqX/ocFycuPg8fFm1+W7aEJUugc2d19cirKPpOfP78eanHxGbEsurKKryfeAPgYefBl65fYihpyKlT4jFDh4Ke/MxeqgxR6VHcjBYVTStTRZKfDzt3wu7d4vuzTRv46iuwsJBjsOVEEEQtEoDevUXRWDWlExwcjJmZGbXV/XoloqGhQePGjXF3d8fQ0JALFy7g6+sra2vOzc0lJCSEFi1aqKtI1CiF2NhYzM3N1e83FaOIJElWVhZz586lf//+DBgw4LXHe3p6KqXVBqDyimVlpHfv3owZM4aYmBgsVDSbaNeuHaampsTGxpKcnIwgCOoPnAowNzfn7t27tGrVqtTn39HRkSZNmnDw4EGaNWvG7NmzmTZtGqNHjy71vPXq1WP+/PnMnTuXAQMG8N577/Hw4UOFqjC/igYNGuDt7c1bb72Fu7s7x48fx83NDYClS5eSk5PDxx9/jK6uLtOnT1dJjFWVnTt3cunSJTw9PStd1mdqaoqpqSlBQUHUrl2bR48eYWJiQq9evWrMJDklJYUzZ868tsWiKiOVwtmzojBrQYG4UH/7bejaVZ0cKQtFlSRZWVkv3SYIApcjLnPA/wD5hfnU1q3N5DaTZda+f52ErCywsgIXF6WGrRQEQeBQwCEEQaCDRQdsTCqmaJqUJIqzPn0qvieHDoX+/VX//rx1SxQ2rlWr5lYByZM32dmmPOjo6NCyZUtsbGzw8/PDy8uL5s2bk5GRQf369VU2t1LzZlHUFt2+fXtVh/JGk5+fT1pamtxFW+fMmUNsbCynT59+7bHR0dE8evRItpZSNEpLktSpU4f27dvj6enJe++9p6xhizFixAiOHz9OcHAwubm5ZGdnq1WSVYCpqSlSqZSUlJRSbVUlEgkzZ85k7ty5WFpakpWVxeeff05aWhqCIGDyiq0yHR0ddu7cScuWLZk2bRp//fWXypJhJiYmnD17luHDhzNgwAAOHjzI4MGDkUgkrFmzhpycHP73v/8hkUiYNm2aOmmHmKmeO3cu48ePx93dXS7nNDMz48GDB9SqVYu2bdvSsGHDGvVcHz16lIKCAkaNGqXqUCpEVBT88QdERIh/OzvDO+9AnTqqjas6UVRJ8t8kyfO85+x6uAufWB8AnBo4ManNJIx0xZLW+Hi4cEE8VlV6Goom4FkAgc8C0dLQYrhjxRRpfX1hxw4xmWRgINpOt6hcx45cKCiA48fFy/36qa2wy0JwcDCtWrVSdRjVBiMjI7p27Up8fDwPHz4kOzu7TM5ZatTIg5SUFKRSqTopp2JSUlKoVasWtWrVkts59+/fz9atW9m6dSvNmjV77fGenp506NCBOkqaHCp1OtSnTx+Vttw0bNiQxMRE2c50cnKyymJ5k9HQ0MDc3JyoqKhXHjdr1ixatmzJvn37AFi9ejUODg7MmjXrtWNYWlqybds2jhw5wo4dO+QSd0UxMDDgxIkTDBw4kBEjRvDnn38CYiJo48aNTJ8+nenTp+Pg4MCaNWte24pU0/nqq6/Iz89n3bp1lT7X8+fPZbo1derUwdDQsMYlSED8oenRo4fKqvQqStECb8UKMUGirw+TJ8NHH6kTJK8iLCyMAwcOEB0dLbuuKOH/YrvN46THLLu0DJ9YHzQ1NBntNJpZnWbJEiQAhw6JVTytWkE1N0IqEakg5VDAIQB6N+5NPf3y7YJJpXD0KPz4o5ggsbWFhQurRoIE4MoVSEwEY2OQU065RiMIgrqSpAJIJBIaNmyIgYEBderUwd/fn1u3br2yvU+NGnkQFRWFubl5tW+Jru7Ex8fLVbcvLCyMDz74gLfffpv333+/TPfx9PRUmh4JKDlJUqRLUppatry5efMm3377LQkJCbLrbGxs6NRJtP1T65KoDmtra6Kiol7pcqOlpcUvv/zCkydPAFGXJCEhgebNm5dpjBEjRjB16lRmz57N48eP5RJ3RdHV1eXAgQOMHz+eCRMm8OuvvwLixOPnn3/mwoULdO3ala+//horKyuGDx/OqVOnSnVlqalcu3aNrVu3snLlykoJwuXn5xMQEIC3tzc6Ojq4u7vTtWtX0tPTiy0sawKJiYl4enry9ttvqzqUcvHkiSjMeuqUuBBt1w6WLoUuXVTfvlDV2bp1K2+//TZWVlY0bdqUadOm8ffffwNiJYlUkHI86DjfX/+elOwUGho25EvXL/Gw8yiWIHz06F/L2JEjVfVoFMvViKvEZMRgoGPAgKav73d+kfR0WL8e/v+pxc0NPv+86jj/5ObCyZPi5UGDQEdHtfFUBxITE0lLS1MnSSpAdHQ0GRkZdO3aFXd3d3R0dPD29iYgIOCNm6uoUQ6FhYVERUVhbW2t6lDeaARBIDY2Vm5Czc+ePWPcuHHUq1ePX375pUwbl4IgKFWPBJScJHFxcSEtLY2AgACljPfbb78xb948unbtKkvMvPXWWxgbG2Nra6tOkqiQunXroqOj89qqic6dO7+k19GzZ88yj7N+/XosLS0ZP368THRMVWhpafHbb7/x4YcfMn36dJm7jUQioWfPnuzcuZOYmBg2btzIkydPGDRoEDY2NuzatUulcSuLgoICZsyYQceOHSus0SIIAhEREXh5eZGUlISrqytt2rRBT08PbW1tnJ2d8fPzIz8/X87Rq47Dhw8jCAIjq8kqNy9PrF5Ys0a0+K1dG6ZPF/+phevLRtFOyvz58+nXrx83btzgyy+/BCA1L5Xvrn3HqcenEAQBl0YuLOi+AGvj4pNMqRQOHhQv9+wJNdGkIrcgl+NBYi/KIIdB6GuXvb02OFhM4j1+/K+979ix8ApnQqXj5QUZGVC/vmj7+6Zz4cIFmbtcaSQlJQG80mFPzcvk5+fj5+eHs7Mz2tra6Onp0aZNG1xdXUlKSsLT05OIiAilbYKqeTOIi4tDR0en1NZ8NcohPT2dvLy8SleShISEMHPmTKytrQkICGDfvn0YGxuX6b7+/v6kp6fTtWvXSsVQHpT6c6+rq0uPHj04d+4cTk5OCh/P0tISEEt6Hj9+TLNmzTA2NqZRo0YsWbKEtm3bKjwGNSUjkUiwtrYmIiJC9jqVxqpVq8jLyyMzMxMrKys6d+5c5nEMDQ3Zu3cvXbt2Zd68eWzYsKGSkVcODQ0NNm3ahLGxMfPmzSMtLY1ly5bJsqh16tThww8/ZObMmdy7d49vvvmG6dOn07t379c+T9WdTZs24efnx+3bt9HU1Cz3/ZOTk/H19SU3N5eWLVtiYWHxUnba0tKSiIgIAgICakRP9YMHD1iyZAl9+/alQYMGqg7ntTx+DLt2QVFxX+fOojirWkehfPTo0YN69epRUFDAjz/+CIg7M4dvHOZ8wXlyk3PR09Lj3dbv0sGiZF/a69dFLRh9fRg8WJnRK48zoWdIz02ngUEDetj0KNN9BAHOnRPdYqRS0bVm+vSql0TKzBRtskEUkK3AV2aNwd/fny+++IJTp06ho6PDwoUL6dq1K1OmTOHtt98uJtDdrFkzJk6cyJw5c+jYsSPt2rVTYeTVh4CAAIyMjF6ah5iYmODq6kpMTAz+/v48efKEli1bqhe1auTC06dPsba2rnEt0tWN2NhYGjZsWKG5OYidG19++SVbt26lfv36LFiwgBkzZpRLZ+bcuXP07Nmz0mYO5UHpDV4eHh6cO3dOKWO9uGi4cuWK7HKjRo2wtbWtMc4W1ZVGjRrx7NkzsrOzX3mciYkJ27dvZ//+/axbtw5tbe1yjdOhQwc2bNjAxo0b2b59e2VClgsSiYTly5ezdu1aVqxYwccff/zS7otEIqF9+/bs3LkTAwMDlixZoqJolUNkZCSLFy/mo48+KvekNTs7m7t373Lt2jXMzMxkCaWSflQlEgmtWrUiMjKy2leSnT9/nh49emBpacnvv/+u6nBeSU4O7N0L69aJCZI6dWDWLJgyRZ0gqQhaWloMHz6cQ4dEx5bs/GxORJ3gHvfILczFro4di3suLjVBkp39r2XsW2/VzNcgNSeVs6FnAdHyV0vj9XtCWVnw88/w119igqRzZ/jyy6qXIAH45x/xc9WoEXQo+WWu8URHRzN16lRatWpFYGAg+/fvJy0tjQMHDmBsbMwHH3yAmZlZsd9PiUTCli1baNmyJcOGDSvWjq2mZJKTk4mMjCzVkVAikWBpaUnv3r0xMzPj2rVr3L1797VzOzVqXkVWVhaJiYk0atRI1aG88cTFxVW41ebhw4c0b96cffv2sX79esLDw1m4cGG5hXjPnTun1FYbUEGSpE+fPly8eFEprQ8NGzYExN3jF5MkDRs2JD09vUSrRDXKo1atWjRo0ICIIksLBTJz5kymT5/OjBkzir0XVMnnn3/Ozz//zA8//MChQ4dKPMbY2JjFixfz22+/4efnp+QIFcOOHTv43//+x9ChQ+nUqRONGjXCzs4OIyMjli1bVubzFBYWEhQUhJeXF4Ig4O7uTrNmzdB6TT28oaEhTZs25cGDB0il0so+HJWwf/9++vfvT5cuXbhw4YLsu64q4u8PX38NFy+Kf3fvDkuWiA42aiqOh4cHYWFhnLt3jmWXlnEz6iYSiYRBDoP4vNvnmOqXPgE5dUps02jYEHr1Ul7MyuTYo2PkF+bTpG4T2pi1ee3xERGigPCDB2JLzTvviCLCSty0KjPJyeDtLV4ePvzN0/BJT09n4cKFNG3alKNHj7J+/XoCAwMZM2YMenp6jB49mr///pvHjx8jCAL37t0rdn89PT0OHz5Mbm4uo0ePrlHtl/JGKpXy4MEDmjZtiqGh4SuP1dLSolmzZri7uyMIAl5eXgQFBb1Se06NmtKIjIykQYMGcnVTUVN+srKySE9Pr9A8Mzk5mWHDhmFhYUFgYCAff/xxhV7PvLw8Ll68qFTRVlBBksTZ2RkDAwNu3Lih8LGKKkns7OyKLYx1dHQwNTV9411EqgJFLTeK7mOVSCT88MMPuLi4MGLECJ4+farQ8crK//73PwYMGMD8+fNLTRxOnz4dOzs7vvjiCyVHJ38KCwuZOnUq586do6CggFatWjFp0iQ2btzIpUuXMCqDKIUgCMTExODl5UVsbCxdu3alQ4cO5fribdKkCYWFhYSFhVXm4aiEDRs2MHbsWN5++21OnDjx2omrqnj+HH7/HTZtgpQUqFcPPvlEXHyq5zyv5sSJE7z77rucP3++xO/G3NxcVq5eiaW7JQejDpKUlUQ9/XrM6zaPwc0GoyEp/ac9Pl7UsgAYM6ZqaWzIi8i0SK5HXQdgVItRryzVFgS4fFnUyElMBFNTmDdPTOZV1eTDyZOiM5SDQ9Vx2VEG+fn5bN68mSZNmrBu3TrmzJlDaGgos2fPRqcE1dqDBw+Sn5/P2rVrX7rNysqKv/76i2vXrvHdd98pI/xqSVhYGFKplCZNmpT5PrVq1aJDhw507dqV2NhYzp8/T0xMjFqvRE2ZKdKXUwu2qp7Y2FhMTU1L/I59FYWFhYwfP5709HSOHDlSKffF69evU7t2bZyVvLum9OmRhoaGzOWmR4+y9QhXFGdnZ2rXrk1sbCwhISHFyoXMzMyIjY3Fzs5OoTGoeTVmZmY8ePCApKQk6tUrnzVjedHW1ubQoUN06tSJIUOGcPXq1SqxwFyzZg2tW7fm119/5aOPPnrpdh0dHVatWsXo0aM5f/48vXv3VkGU8iE9PR1BEFizZg2jRo0q9/3T0tLw9fUlMzMTR0fHCveqampq0rp1a27cuIGFhYXMPrUqI5VK+fLLL/n222+ZN28eq1atqrKWeD4+YntNerq40OzdW9RNqIq78lWRK1eusHv3bnbv3k3z5s2ZNm0atra2aGtro6Ojw87DO/Ez9mPYu8PQ0NDApZELbzu/jZ6W3mvPfeCA2ErSsmXNrOYRBIFDAWIbUkfLjjSu07jUY/PyYM8eKNqzadVKrB6pyl8HsbFw7Zp4+U2qIklISKB79+48fvyY0aNH8/3332NlZVXq8VFRUSxfvpzZs2fjWIq3dZMmTdDQ0Khwn31NJysri0ePHtGlS5cKPUempqb07NmTiIgIHj58SFhYGC1btiyzUKOaN5ekpCQKCgrk5qaipuLExcVhbm5e7vstWrSIc+fOcebMGWxtbSsVQ5GrjbK1aVQyw+7Tp49SdEmMjIyYMmUKISEhAFy9elV2m7m5OUlJSSp3PHnT0dDQwMrKSiktNwD16tXj+PHjhIWF8d5771WJMtCWLVsyadIkvvnmG9LT00s8ZuTIkXTu3JkFCxZU692YtLQ0gHJPknJzc3nw4AGXLl2iTp06uLu7Y2NjU6kvzHr16mFhYYGvr2+Fz6FM1q1bx3fffceGDRtYs2ZNlUyQpKfDr7/Cli3iZTMz0TJ1zBh1gqQ8WFtbo6Wlhbe3N61bt+aLL75g5MiRDBkyhP7T+7M3ai+d+3XG2sya6R2mM7HNxDIlSPz8xH+amjB6tBIeiArwf+bPo8RHaGloMaz5sFKPi4+HVavEBIlEAiNGwMyZVTtBAnDsmFj90rYtvEl7PFpaWtjZ2SGRSDh9+jSLFy/mypUrpf4eLliwAAMDAxYvXlzqOTdt2oSOjg4ffPCBosKu1vj6+mJhYVGpDSyJRIKNjQ3u7u7UqVOHS5cu8eDBA3Jzc+UYqZqaxtOnT7GysqqS85w3iby8PJKSksqdrDp8+DCrVq1i1apVctEROXfunNJbbUBFSRIPDw9u375NamqqwseaNWuWbCFV1HKTmJjI6NGj0dbWJj4+XuExqHk11tbWxMTEKK0v2NnZmb1793L8+PEqYQ0M8M0335CRkSGzBf4vEomEJUuWcOPGDS5duqTk6ORHeZMkUqmU0NBQPD09ycnJwc3NDScnp3KL95aGk5MTSUlJxMbGyuV8iiIyMpKlS5cye/ZsPv74Y1WH8xKCIO5uf/013L0LGhowYAAsXAj29qqOrvrRqFEjCgoKaNasGfv27SMjI4Pw2HBWnlvJ+NXjmfDeBEb3Gs3inotpZ142oeOCArGKBMDdXdQjqWlIBSmHAkR9p96Ne1NPv+TF3d27sHIlxMSIttOffgr9+lX9qozQULFKSyIRK7PeJOrWrcvff/9NeHg4X3zxBRcuXKB79+40a9aM06dPv3S8vr4+ycnJJd4GkJGRwU8//cT06dMxMTFRcPTVj9jYWJKSkuTmRKmtrY2TkxNubm7k5OTg6elJaGhotdUFU6M48vPziY2NxcbGRtWhvPHEx8djZGRUrmrrgIAAJk6cyOjRo/n8888rHUNKSgq3b99WumgrqChJYmVlRdOmTblw4YLCx7K3t2fo/88mihaXz58/5/Tp0/zxxx9Kq2BQUzrGxsYYGhoSHR2ttDEHDx7MwYMHOXr0KCNGjFC5CruVlRVz5sxh3bp1xMTElHhM//79adWqFatXr1ZydPKjPEmS+Ph4vL29efr0KR07dqRz585yb4/S1dXFyckJX19fCgoK5HpuefLZZ59Ru3Ztli5dqupQXiIhATZsgD/+EHVIrKzgq69g2DCQUy7rjaOoDzsyMhKAx2mP+eHhD4Rnh2NS24TJHSfzceePMdEzKfM5vb3F6onatWHgQEVErXquRlwlNiMWAx0DBjQd8NLtRYmiX38VnWEcHMREnoODCoItJ4Iguu4AuLpCBaqfawTW1tYsWrSIkJAQzp8/j5mZGVOnTiUnJ6fYcT/++CPvvPMOEyZM4I8//njpPFu3buX58+fMmTNHSZFXHwoKCvD19cXJyUnudpuGhoZ07tyZjh078vTpU7y9vdWblWqKER0dTe3atcukUadGscTGxpar1SYtLY1hw4Zha2vLjh075NIec+HCBZo1a/aS/bgyUFkdkzKtgCdMmADAvXv3SE5Olk1Ab968SVxcXJVouXjTsbGxUXrCavjw4Zw4cYLz588zcOBAMjIylDr+f/niiy+oVasWX3/9dYm3SyQSvvjiC/755x/u37+v1NjkRVmSJBkZGdy4cYO7d+/SuHFjevXqVczOW95YW1tTq1YtHj16pLAxKsPZs2c5ePAg69atq1K93IWFog3pN9/Ao0diQmTECJg/H9Raa2UnPDyc9957j+vXr8uuK7I8DA0PZa/vXjbf2kxGbgaWRpbM7z4fdzv3ck0+0tNFsU8QdSxqonBuTkEOx4OOAzDIYRD62sV3vlJSRAvqItHa/v1FIeEq9JF6Jffvi5UkOjowaJCqo1E9GhoauLm5sX37duLj49m+fXux2zU1NdmxYwdTp05l0qRJrFy5kqNHj3L48GEOHTrE+vXrmTBhwit1Td5UHj16hL6+vkJFMxs0aECvXr1o3Lgxd+/e5caNGyqfg6mpGqgFW6sGhYWFJCQklKnVJiEhgV9++YXevXuTkJDAkSNH5LapqQrr3yJUliTp06cPnp6eShnLzc1Ndvn8+fNIJBIGDx5MeHg46enpPHv2TClxqCkdS0tL0tLSlP4j2bdvX86ePcu9e/fw8PAgOTmZ0NBQnJycSi3TVRQmJiYsWrSI7du3ExAQUOIxY8aMwdbWtkS1/urAq5Ik+fn5+Pn5ceHCBfT19fHw8MDOzk7hPakSiYTWrVsTHh4ui6+qkJuby6xZs+jZsyfjxo1TdTgywsPFdoUjRyA/HxwdRVvffv1EvQs1r0cQBLZt20bLli3ZtWsXEyZMIDMzExBbC/TM9Pgt9DcuhoveyR52Hnzl+hWWRuXfTTl2TKycsLEBFxe5Powqw5mQM6TnptPAoAE9bIqLwvv6wrJlEBYmao58+KGYLKou7e6FhXD4sHi5Tx9Qd4f8S9OmTRk3bhyrV69+SedCQ0ODX375hdmzZ7NgwQKGDx/OyJEjGT16NAkJCXIpBa9ppKWlER4eTqtWrRQukqihoYGdnR0eHh7o6+tz4cIF/Pz81JbMbzDp6emkpaWppGpATXGePXuGrq5uqRU98fHx/Pzzz/Tu3Rtzc3M+/PBDTE1NOXnyZLncsF6Hp6enSvRIQIVJkl69ehEaGqqU6gFTU1Patm0LIEvMdOrUCRDFXIOCghQeg5pXo6Ojg7m5uUran1xdXfH29iY0NJRevXoxZMgQAgIC+Oijj5QuLjZjxgyMjY3Zu3fvS7cJgoCWlhaff/45+/fvr5b2tWlpaWhra6On96/IpCAIhIeH4+npSVpaGj179qRVq1blthurDEZGRtjZ2fHgwYMqJYz7+++/ExoayubNm5Wu6l0SOTliu8Lq1RAVBQYGohvIxx9D/fqqjq564ePjw7Rp03B1deXu3bvExcUxf/58pIKUf0L+Qae3DnEZcZjomfBJ108Y7TQabc3y9y89fQpFmuVvv131dTcqQkp2CufCxMrUEY4j0NIQjfsKC8UWlR9/FFvBbGxgwQLRxaY6cfmy2NZWuzb07avqaKoeCxYsIDo6usS2GolEwsaNG0lOTiYxMZHk5GRSU1NJS0uTm95GTUEQBB48eICdnZ1SWx10dHRo1aoVPXv2JC0tDU9PT8LDw6vUb7Ea5RAZGYm5ublS539qRARB4MmTJxw6dIjly5dz+/ZtGjRoUGzuGRUVxQ8//ICbmxsWFhbMmjULbW1tfvnlF+Li4jh79iyurq5yi+np06c8efKEXr16ye2c5UFlSRIjIyM6d+6stGoSd3d3AFmLT6v/nyXdvHmTpKQk9ZdxFcDa2prIyEiVCHm1a9eOS5cukZiYSFRUFEeOHCEyMpINGzYoNQ4dHR2ys7Nfai+5e/cuGhoabNy4kcmTJ2Nqasp3332n1NjkQVxcHKamprIv3cTERC5cuEBwcDBt2rTBxcVFZX2oDg4O5OXlERoaqpLxS+LUqVN07969SkzmHz4UhVm9vER9hM6dYelS6NKlZi68FU3r1q3p2bMnfn5+2NrasnLlSn7Y9gMf7f2I3Xd3k56RTqv6rVjcczHN6zWv0BiCAPv3i/936lRzRXSPBx0nvzCfJnWb0MasDQBJSfDdd3D2rHhM794wbx4o2Gle7uTk/NsqNXgw6L3exOiNw9HRkdGjR7Ns2TJ27dpFXFzcS8fUqVMHU1NT6tSpg7GxcbFEvRqRkJAQ8vLyaNasmUrGNzIywsXFhTZt2hAcHMyFCxdITExUSSxqlI9UKiUyMlLdaqMCfv/9d+rVq4ednR2jR4/m22+/JTk5mQ8++IAJEyawbNkyunTpQqNGjfjss8/Q1dXl119/JT4+njNnzjB16tRKuWCVhqenJ507d6Z27dpyP3dZUGmxqbKsgOHfJElYWBienp6MGTMGEPvB8/PzSUlJUUocakqnfv36aGhoqEzEq0WLFvj4+HD37l2GDRvGhx9+yIoVK0qccFUGQRBKdXaKj48nJyfnJU/xBw8eADBnzhwuX77Mxx9/zI4dO6qd4NnNmzfp2LEjWVlZ3L59m5s3b2JlZSUr11NltYSWlhbt2rXj0aNHSnHeeh15eXl4e3vTr18/lcaRng5bt8LmzaKug6kpzJ4NU6aIO9tqKoampia7d+8mKyuLqVOn0mlEJ8zGmrHn7z088nuE3iM9fnr/Jwx0DCo8xp07/+pYjBghx+CrEJFpkVyPEvVcRrUYhUQi4cEDWL5cbK+pVQv+9z+xikZLS8XBVoAzZyAjQ3QjkuMGXY1jxYoVNGzYkPfeew9zc3Nat27N3LlzOXv2rMqF2asDqampBAUF0a5dOzRV2DMpkUgwNzend+/eWFlZcePGDW7fvk1WVpbKYlKjHOLj49HQ0KC+uixV6Rw8eJBGjRpx8uRJYmNjCQ0NpW7dugwcOBA/Pz9WrVqFhYUFu3fvJiEhgX/++Yf3338fU1NThcalKuvfIlSaJPHw8MDT01MplQPdu3eXXd61axe5ubl4eXmxePFibt26RVRUlMJjUPNqJBIJ1tbWKnUcatiwoayXbvHixWhra7No0SK5nT8jI4OhQ4dSr149Jk+eTHBwcLHbw8PDAV6yPnv27BlGRkZ06NCBn3/+mZkzZ6Ktrc2PP/4ot9gUTWFhIT4+PgwdOpTz58+jpaWFu7s7TZs2Vemk7EXq1q1L06ZNuXv3rsrdbq5fv05mZiZ9VVRfLwhw5YqoNXLnjqjf0Lev+HcVKGypEVhZWbH5180ceXqEL/d/SQ+3HjyPfM699fd4t9e7laqqys391w1lwACoU0dOQVchBEHgUMAhBEGgo2VHGtVuzMGD8NNPkJUFtraie83/d9tWO1JToWgfafhwtd7Pq2jSpAl37twhPj6ePXv20LZtW/7880/69etHp06d1AL9r6CgoIC7d+/StGlT6tatq+pwADGJ3LRpUzw8PNDS0uL8+fMEBgaq/HdZjeIoEmytCq3FbxqBgYF4eHjw1ltvYWZmRnx8PJaWlixZsoQHDx6QlZXF4cOHmTBhgtIs06VSKV5eXioTbQUVJ0k6d+5Mbm4uDx8+VPhYBgYGvPvuuwDs27cPECeoHh4eXLt2jadPnyo8BjWvp1GjRrJqClVTt25dli5dyvbt2+XiJhMREYGrqysXLlzgs88+48yZMzRv3pzx48fj7+8PlJ4kSUhIwMLCgoEDB3L58mWMjY1l1oaqaE8qL4IgcOPGDdasWUPDhg3p1q0bbdu2rZIlzw4ODujo6MheE1Vx5swZ6tevT5s2bZQ+dnw8fP897NolLjatrUXXmpEjQc6OkG80fgl+3K19FztXOwL8A5jYZSLLBy5Hki3hgw8+qNS5z5z5t/JHhRsxCuVh/EMeJT5CS0OL7vWG8+23UNTB6+EBn39e/dprXuTECVEY2d4eyvM14Ovry+bNm/nzzz85e/Ysd+/elQnV1/TW4gYNGjB+/Hh+//13oqKiOHPmDH5+fhw7dkzVoVVZ/P390dHRwaEKemHr6enRtm1bunXrRmJiIl5eXkRGRtb49/GbRk5ODvHx8TJnNzXKIzs7m/DwcBwdHQFxvh4bG1smVxtF8uDBA3Jzc2UaoqpApcWn2tra9OrVi3PnzillIfDee++xa9cu8vLyADFT3apVK8LCwigoKCAjI0NlfU9qRAwMDDA1NSUqKkqu6sgVZfr06fz000/MmTMHb2/vCme4b968ydChQ6lVqxbXrl3D2dmZpUuXsmPHDlavXo2zszMjRozAyMgIExOTlzK1CQkJNGjQgB49evDNN98QEBDAxIkT+eWXX/D29pa1k1VFUlJS8PX1JTExkZ07d3Lq1CkMDCreQqBoJBIJ7du3x9vbmwYNGpTLI16enD17lj59+ijc3edFCgpEDYdTp8TLOjowdKio51BdnECqAzkFORwKOMTlp5cBaGHdglMrTtFzc08GzBvA2LfHvtRyVx6Skv7V4hg1SrRnrmkUSAs4FHAIALuckfz8vSnZ2aJ7zaRJ0Lq1auOrLDEx/wrujhpVdt2fK1eu0L9/f7KyskpcSGpra1O3bl1MTU1l/5ubm7NkyRKFT4oFQaCgoIC8vDzy8/PJz88v9XJ+fj7W1taVsuiVSCT07duXHj168P333zOipvacVYLY2FiioqJwc3Or0jv4derUwdXVlejoaPz9/Xny5AktW7akTk0skXsDiYqKwtTUtErPDWsqQUFBCIIgS5JkZmaWqI2obM6dO4ebmxvaKpzAqLxD18PDg1OnTinFis3NzQ1LS0uio6MB0X5MU1OTLl26EB4eTmxsrDpJUgWwtrYmODgYe3t7pf9op6enk5mZiYWFBSBOKL/99lsGDRpU4bKvffv2MWnSJNq3b8+RI0dkXzx6enrMnDmTqVOnsmvXLlauXElYWBitS5jdFyVJunbtira2NhcvXmTmzJk4ODjw+++/V8kkSXZ2NoGBgcTExGBvb8+OHTvIysqqFj+C+vr6tG7dmvv371OnTh2lV7w8e/aMe/fuMXv2bKWNGRYmVo7ExIh/OznB+PHVeye+qrBu3Tp0dHSYNWsWwUnB/H7/dxKzEpFIJLg3dsfe2p6Tc09y584devbsWakECcChQ2IFQrNm1bfV5HV4P/EmLj2RuFvdKXzWA00NsLODqVPF6pnqzuHDYstbu3bi4yoL165dY8CAAXTs2JGTJ08ilUpJSkoiOTmZpKSkly4nJSVx7do1jh07xvTp0+WSJImKimLr1q38+eefpKSkFEuAVKRVwtnZmf79+9O/f39cXV3RrUAp2yeffMLw4cO5deuWSnclqxrZ2dncv3+f1q1bo6+vr+pwXotEIsHKygozMzNCQkK4evUqFhYWODo6UqtWLVWHp6aCCILA06dPq2Ql05tAYGAggCxJEhsbS4MGDdBSsYiXp6cngwcPVmkMKk+S9OnThy+++IKcnByFL0Q0NTUZOXIk27dv56OPPpIpKLu5uXHmzBnatm2r/pBWAczNzXn48CEpKSlK649NS0tj06ZNfP/99+Tn57Nnzx6GDh0KwMCBA2nfvj3Lly8vV5JEEAS++eYbvv76a9555x22bt1a4ntcR0eH999/n4kTJ3Lw4MESRasSEhKwt7dHX1+fjh07cunSJT788EMmTpzI8uXL2bx5s8pcYf5LYWEhoaGhPH78GDMzM3r37o2+vj43btyoksmc0rCysiI+Pp579+7RtWtXpSbsPD09EQRBKYJVWVlw5IhoMyoIohjrmDHQsaPatUYeSKVSvv32W+o3rI+FuwXnws4hCAKm+qZMajMJB1MHCgsLqV27NtevX6dnz56VGu/xY7h3T3ztxoypma9hRm4GB2978+BUP8ylXdA01KJvXxg2rGbodgQFga+vWL01fHjZ7nP9+nX69+9Pu3btOHnypCwZXbt27VKTbtnZ2TRr1ozhw4dXqppXKpXi6enJzz//zIkTJ9DT02PcuHE0btwYHR0dtLW10dbWLtdlLS0t/P39+eeff9izZw/fffcdBgYGbNq0iSlTppQrvsGDB2Nvb8/69ev5888/K/w4axKCIODj40ODBg0qVa2jCrS0tGjevDnW1tb4+/vj5eWFg4MD9vb2VUbfTE3ZSUlJIScnR7Y5qUa5BAYGYmZmJqvKio2NrfRGTWXJycnh8uXLbNq0SaVxqDxJ0rx5c+rWrcvVq1eVsoBydXVl06ZNzJ49W/Zl2qtXL77++mvS0tKUkqxR82q0tLSwsrIiIiJC4UmStLQ0Nm7cyPr168nJyWH69OlERUUxfPhwVq1axbx585BIJCxcuJDhw4dz+fLlYiLApSEIAp9++ikbNmxg+fLlzJ8//7WLbC0tLcaNG1fibfr6+jLHlR49evDbb78hCALvvvsuCxcu5NChQ+WeOMqboj5Gf39/tLW16dq1azHl68aNGxMQEKDCCMtPq1atuHDhAmFhYdgr0T/1zJkztGrVSqGtPoIAt27BwYOiewaAi4tY2l8Nin2qDQ8ePCA+O56EugmcDjqNlpYW3ay7McZpDHpa4m+NpqYmnTp14saNG5UaSyoVLX8BevaEarb2KTMbj17m+l539KiDnX1DpkyBli1VHZV8EIR/BXd79oTXVTwLgoCnpycjR46kTZs25Wpn3LBhA7GxsaxZs6bY9dHR0QwePBhra2s6duxIp06d6NChw0utDYmJifz+++9s2bKF0NBQWrZsyQ8//MCECRPkkrR3cnJizJgxCILAw4cPWb9+PVOnTkVPT4/x48e/8r6CIJCeni77169fP3755RfWrl2r1j1AdHp8/vw5HTt2VHUoFaZo0ygpKQlfX1+ePn2Kk5OTyp3y1JSPiIgIrKys1AkuFREYGCirIsnOziYtLU3leiRXrlzB1NRUZXbkMoQqwMSJE4Uvv/xSKWNFR0cLgHDgwAHZdYWFhUKdOnWE3bt3C0+ePFFKHGpeTVJSknDy5EkhPz9fYWN4eXkJJiYmgp6envDxxx8LMTExgiCI74eFCxcKgDBx4kQhJydHKCwsFFq2bCn07du3TOdetWqVAAibN2+WS6yzZs0SHBwcBEEQhL///lsAhKCgIEEQBKFPnz5Cjx495DJORUlLSxOuXLkinD59WggPDxekUulLx2zbtk3Q0NAQ4uLiVBBhxUlMTBROnDghpKamKmU8qVQqmJubC3PnzlXYGLGxgrBunSB88IH4b8kSQfj/t5MaOVIoLRQmLp8o8BYCgxDG/TZOeBD3oMRjFy5cKDRo0KDEz05Z8fYWX885cwQhM7PCp1EZeXl5wtGjR4W8vLxSbheEH7YnCo79LgrN+10UPl/8TEhOVnKQCubWLfE1nD1bENLTSz8uMTFRWL9+veDk5CQAQo8ePYSMjIwyj5OQkCDUrl1bmDVr1ku3bdq0SdDW1hY8PDwEY2NjARAAoUmTJsK4ceOEdevWCe+8846gq6sr6OjoCO+8845w5cqVSr13y0JhYaEwadIkQVNTUzh69Gipx4WEhAjdu3eXxf3iv1fd700hNTVVOHHihJCUlKTqUOSGVCoVwsPDhdOnTwtXrlwR0tLSVB2SmjKQn58vnDx5UkiuaV/k1QgnJydh5syZgiAIQlhYmHDp0iUVRyQIX3zxhTBp0iRVhyFUCSm+Pn36cK7I507BWFhYYGdnx5UrV2TXaWho0LNnTy5fvkxsbKxS4lDzaurUqUOtWrUU+nrExMSQmprKxYsX2bBhg2zXXkNDg2XLlrFnzx727duHu7s7SUlJLFy4kLNnz3Lr1q1Xnnfbtm189dVXLFmyhJkzZ8ol1g4dOvD48WPS0tLo1q0bGhoaXLx4EYCJEydy6dIlwsLC5DJWecjNzeXBgwdcvHgRExMTPDw8sLGxKXEXZ+jQoUgkEo4ePar0OCuDqakpTZo04e7du0qxkfTz8yM2NpZ+/frJ/dz5+XDsGHzzjVjSr60ttigsXAjqTkP5Ep8Zz5orazgbcRYrays0n2nSLr0drRq2KvH4du3akZCQQEyRKEw5ycgQX1sQxXZrWjVQQgKsXi2w53g0AtDLI4dVi+vVKGvjggKx9Q2gXz+x9e2/3L17l3HjxmFhYcG8efNo0aIFZ86cwdvbG0NDwzKPlZCQQH5+Prt372bFihVkFJWTAadPn6ZHjx6cO3eO5ORkgoKC2L17NwMHDiQ8PJwFCxZw7do1li1bRnR0NLt27aJbt24K373X0NBg69atDB8+nDFjxrw0bxQEgS1bttC6dWuioqL4/fff+eeff7h27Rp+fn5ERUXJ2mjfVAoKCrhz5w5NmjSpMna/8kAikWBjY4OHhwfGxsZcvHiRBw8eyIwa1FRNYmNjqVWrltJsZdUUp6CggODgYFklSVxcnMrMCl7k3LlzSmk3fx1VIkni7u6Oj48PSUlJShnP1dWVq0Wy8f/P7NmzOX78OPHx8eTn5yslDjWlI5FIsLa2llniKoIhQ4agp6fHpUuXSrx9/PjxXLhwgZCQEDp16kTz5s1p1qwZy5YtK/WcR48eZfr06XzwwQecOHGCrl27smfPnkr/ULdv3x4AHx8fateuXey5GT58OLVr12bnzp2VGqM8SKVSQkND8fLyIjs7Gzc3N5ycnF6pQl2vXj3c3Nw4dOiQ0uKUFw4ODrIeeUVz9uxZ9PT0cHV1let5/f3h66/h9GkoLARnZ/HvAQNAxfpcNQpBEPB+4s2yS8sIfhZMXGQcYx3G0qawDb53fUu939OnT9HT0ytRk6gsHDki6ss0agQ9elQ0+qrJnTuwYgU8eJzEc+JpPfgSy2e2rxH6Iy9y4YLoTGRiIloY/xdBEBgwYAC3b99m5cqVREVFceDAAfr27VtuFywnJydCQ0N55513+Oabb7C1tWXVqlU8e/aMCxcuMGDAAEBMTDg4ODBhwgQ2btzItWvXyMzMJCQkhM8//5x6SlZ21tLSYs+ePbi7uzNs2LBi38nbtm1jxowZTJgwgQcPHjBx4kT69etH165dcXJywtLSUqmxVkUCAgLQ1tausfp72traODs74+bmRnZ2Np6enoSFhSGVSlUdmpoSCA8Px9raWt0epSKePHlCXl4ejo6O5Ofn8+zZM5W32iQmJnL//v0qoWFYJZIkZmZmODk5cf78eaWM5+joiI+PD7m5ubLr3NzcGDZsGDExMURFRSklDjWvxsbGhrS0NJKTkxVyfiMjI9566y327dtX6jFdunTh1q1bGBsb061bN9q2bcvJkyfx8fF56djMzEzGjRvH8OHDcXR05P79++jq6vLOO++gq6tbqR/p5s2bo6+vz507dwCoVasW2dnZgNiXO2bMGP744w+lTAQSEhLw9vYmPDyc9u3b06VLlzLvYI4aNQpvb28SExMVHKV80dDQoH379kRGRhIXF6fQsU6dOkXPnj3lpo2Umgq//gqbNkFiorgA+9//4KOP1M418iYlO4UNNzawz28fyWnJ+Hr7IngLTB80nY4dOso+vyVx7do1OnbsiI6OTrnHDQv71y52/PiaY9eclwe7d8PWrZCVLSXV4Dbt3j7FWHdnTPVrgIXNC2RlidbbAEOGiPbb/yU2NpZnz57x3Xff8dlnn1XaotHCwoJNmzYRGhrK2LFjWbJkCTY2NuTk5MiSJCWhqamp0kWNjo4OBw4cICsri5s3b8quf/DgAU5OTvzyyy9qp8ISiIuLIzIykvbt2yvVWl4VGBoa0qVLF9q3b8+TJ0/w9vYmISFB1WGpeYHk5GTS0tKwsbFRdShvLC862yQkJGBoaFiuikRFcP78eZydnWnYsKFK44AqkiQB0QpYWS0327Zto1evXi9ZyX3yySdcu3aNe/fuKSUONa9GW1sbW1tbQkJCFDbG2LFjuXv3LsHBwaUeY21tzZUrV+jdu7csobJixYoSjy2aXC5btowpU6Zw4cIFvv76a4BKVSFoamrStm1b7t69CxRPkgBMmjSJ8PBwLl++XOExXkdmZiY3btzgzp072Nra4ubmVu4vsWHDhiEIAseK+gKqEQYGBrRq1QofHx9ycnIUMsbFixfx9vbmvffeq/S5pFLw8oIlS+DuXXHh7OEBS5eKtrDqjRv5IQgC1yOv8/WFr7n15BZXLl7hwMIDPNn3hE1rN9GkSRPat2/Po0ePeP78eYn3v3r1Ki4uLuUeWyqFIsMOF5ey28VWdaKjYeVK0XVJIgHLdg+wG3CM+qbaDGhS+gK+uvL332KixMICunYt+Zj/WjXKCysrKzZv3kxISAjvvvsuw4YNk/sYiuJF69fY2Fh1tUgp5OTk4OPjQ6tWrcos7FsTaNiwIW5ubtja2nLnzh1u3rxJZmamqsNSA4SEhGBra/vKCmQ1iiUwMBAjIyPMzc2JjY2tMq025XESVSRVJknSp08fPD09lTJWrVq1SpwANG3alMzMTKRSqbo0r4pgZ2dHfHy8wn7UBg4ciKGhIYsWLXrlGIaGhhw5coR58+YB8Ndff72U9DAwMEBXV5egoCCSk5OZOHEiOTk5/PbbbwwaNIiWlbRf6NChQ7FKkqysLNlt3bp1w97ent9//71SY5REfn4+/v7+eHt7U6tWLdzd3bG3t6/QTlTDhg3p0aNHtWy5AXExUb9+fXx8fBAEQa7nlkqlfPrpp3Tq1ImxY8dW6lzh4eIC88AByMkRF84LFsDo0aA275IvGbkZbLmzhc3XNvOP5z/s37KfZ389Y83MNTwNf8qsWbMAsWVOKpXy8OHDl84RERFBTExMhZIkV65ARATUqgUjRlT64agcQYCLFyWsXAmxsWBsDFNnZpJi8zsSDYHhjsPR1dJ9/YmqEUlJUFRIO3Jk6ZVAgYGBaGtrK8xpy9raml9++YUjR45U+fL3ok2CF5MkMTExahvREhD+3+63fv361c7uVx5oaGhgb2+Pu7s7enp6eHt74+/vr26tVyGZmZnEx8cr1TVQzcvcuXOHFi1aIAgC8fHxKm+1EQShyuiRQBVKkvTo0YOoqChCQ0MVPlbjxo25efNmsXabIrp27UpmZqa65aaKoK+vj4WFhcLeF/r6+mzatInjx4/TsmXLV1YzaWhosGbNGn777Te0tbXZvn17sdslEkmx/uyYmBi+//57oqOj+e677yoda/v27QkJCSElJQV9ff1ilSQSiYSJEydy8OBBuZWUCoLA06dP8fLyIjU1lR49etC6deuXKrDKy6hRo/D09CQlJUUucSoTiURC69atyczM5PHjx3I9986dO7l37x7r16+vcCl0Vhbs3QurV0NkJOjrwzvvwLx5NdcOVpX4xPqw9OJS7sfd51HAIx4ff0z9x/XxPunNZ599VmzH1snJCR0dHVk12Itcu3YNEH9/ykNm5r9Cn0OHliz0WZ14/hz++ceW/fslFBSIujmLFsEjjpJTkIONiQ1drcr3HFUHjh4VRVubNQMnp9KPCwwMpGnTpmipRYRk1XzqJMnrefz4MZmZmbRu3brKJ78Uia6uLq1bt6ZHjx6kpqbi5eXF06dP5b7hoeb1hIaGYmFhUezzq0a5xMfHc+zYMUaPHk1iYiJaWloqF9ANDQ0lNjaW7t27qzSOIqpMksTAwAAXFxelVJN8+OGH+Pr6MmjQoGKK7gAjR47k5s2bJU5k1aiGJk2aEBkZWWJSSx5MnjwZX19fGjduTN++fZkyZcorF/CTJk3Cx8eH2bNnv3RbvXr1yMjIwMjIiPDwcHbt2sXo0aPl4vXdq1cvdHR02Lhx40uVJADTp09HX1+fKVOmVPpHPykpiYsXL/L48WNatWqFi4sLxsbGlTpnEV27dqWgoEChbVSKRFtbm06dOhEcHCw396XMzEzmz5/PmDFjKlRNIAhw86bYWnPxovh3ly6ii0337urWGnmTmZfJtnvb2HJnCxm5GVgaWXJg1gE2f7IZDYkGbdq0YebMmcWcanR0dGjZsiX79+9n586dnDt3Dj8/P5KTk7l69SpNmzYtt2jr0aNiYszKCnr2lPODVDLBwbBihQZPnhijpQVjxoi6OanSSK5EiG50Y5zG1LhF3pMncOuW+BkdNerVn9XAwMBq0wajaIo2CYq0mwRBIDY2Vp0k+Q+xsbEEBwfTuXNndVvD/2NsbIyLiwutWrXi8ePHXLx4UWnGEWpEV8TIyEiaNGmi6lDeaLZu3YqWlhaTJ08mNjYWMzMzlf++enp64uLiUmVaAqtMkgSUZwXcr18/zpw5w61bt3Bzcyu2896kSROePXtGTk6OOrtcRTA2NqZu3bo8efJEYWPY29vj5eXF1q1b+euvv2jRogWHDx8u9XgnJydsbW1fur5+/fokJSVha2vLkydPZDoE8qBRo0Z8+umnrFmzhsjIyGKVJAANGjTg999/59SpU2zevLlCY2RlZXH79m2uX7+OhYUFvXv3xsLCQq5fnEVxq1ocqjIYGxvTrl077t27R3p6eqXPt3btWpKTk1mzZk257xsfDxs2wI4dkJ4OZmbw6acweXL1ryyoivjE+vD1ha+5HX0bDYkGA5sOZH73+djVs2PmzJmEhoayYsUK9u/fj729PfPmzZNNwN9++238/PyYOHEiffv2pWXLlpiamrJ58+ZyJ8fCw8VWG4CxY6uvWKtUCidOwLp1osiwiUkuc+dKEYXtBQ74H0AQBDpYdKBJ3Zo1qRYEOHhQvNy1K1hbv/p4dZLkX/7bbpOUlER+fn6V6KmvKqSnp3Pv3j3atWuHkZGRqsOpUkgkkmJznOvXr3Pnzp2XNp/UyJ8nT55Qt25duW28qSk/+fn5bNmyhXfeeQcTExO19W8pVKlpVZEuiaJEEV+kZ8+eXLp0iejoaN56661iGiRt2rQhLy+P+Ph4hcehpmw0adKEJ0+eUFBQoLAxJBIJU6dOJSAggE6dOjFy5EhGjRpVLjeTevXqkZiYSOPGjQkPD6dfv374+PjI7b20YMEC6taty8OHD3nnnXdeun3gwIHMmjWLuXPn4utbut3ofykoKODRo0ecP38eTU1N3N3dcXBwQFMBHptF1VvVOUkCojOEnZ0dt27dqpTFc2RkJN999x2ffPJJiYm30sjNhcOHRSHWR49AWxuGDRPbE+RQuKTmP/y3esSitgVfun7J0OZD0dL4t/1BX1+fefPmERYWxrx58/j5559p3Lgx33zzDTNmzCAlJYWsrCzCwsK4evUqBw8e5Mcff2TJkiVljkUQRLFWQYDOnaFpU0U8YsWTnCwmR06eLKp+Ehg9+rEsWXA/7j6Pkx6jranNCMcaILjyH+7ehdBQ0clm6NBXH5uamkpcXJw6SfL/7N+/H11dXZkzRlHVlrqSRCQvL49bt25hb2+vfk5egaamJg4ODri7uyORSDh//jyPHj1S6FzzTaagoIAnT56oq0hUzLFjx4iOjubDDz/k2bNnCIKgdDv3/5KTk4OXl5c6SVIaHTt2pH79+hw/flwp47Vu3Zr9+/dz584djhQ1diOKYJ4/f56AgAClxKHm9dSvXx89PT0iIyMVPpalpSVHjx5l3759XLp0CScnJ64W+Wu+hheTJE+ePKFv374AnD17Vi6xGRoacu7cOe7evcvkyZNLPGbt2rU0bdqUcePGvVRt8l8EQSAqKgovLy8SEhLo1q0b7dq1U2ifaJFAbk2waGzevDm1a9fmzp07FRZ7/uqrr6hduzZfffVVmY4XBLhzBxYvhjNnoLAQWrWCr7+GAQNALVcgf/5bPTKg6QAW9FiAjUnp1oXGxsYsXbqUsLAwpk2bxsqVK3FwcGDHjh3o6OjQuHFjXFxcGDVqFB9++CGNGzcuczxXr4qVJHp6otBndcTHB5Ytg5AQ8XFMnQrvvSegrS1+jgqkBRwKEAWe+9j1qXGWv/n5YpIToF8/0Zq7NMLDw1m3bh0gf2eb6khISAjr1q3jiy++kDmsqZMk/yKVSrlz5w61a9eWS6vvm0CtWrVo3749Li4uJCQk4OXlRVRUlLqiXM5ERkZSq1atcreWqpEvP/74I927d6d169ZERETQqFEjlduCHzt2jAYNGtChQweVxvEiVSpJIpFImDJlCjt27FDamD169KBPnz4sWrSIwsJCQEyeeHl5kZ6eXqkdYjXyQyKR0KRJE0JDQ5XyoyWRSHj77bcJCAjA2dkZDw+PMtnWvpgkefr0KQ0aNKBdu3acPn1abrG1aNGC1q1bl3q7np4ef/75J6GhoXz++eelHpeamsqVK1fw9/enRYsWdO/enTp16sgtzpIQBIGjR49WCS92eSCRSGjXrh05OTkVSqqmpKSwZ88eFi5cWKZy6JgYWL8etm4VWxPq1YMPPxT/qXgToEZSWvXIsObDilWPvIr69euzbt06goKC6NWrF++//z7t27fnwoULFYrp+fN/F9eDB4vuL9WJ/HzYswe2bBH1VGxtxeqnjh2LH+cV5kViViLGesb0b9JfJbEqkvPnRVcbExMoaePs7t27LFq0iFatWtG4cWPWrl3L2LFjcXZ2VnqsVY05c+ZgZmbGF198IbuuSB9K1e4MVYGAgABycnJo166dyjUGqht169ale/futGjRAj8/P65cuUJqaqqqw6oRCIJAaGgo9vb26velCtm2bRsXL15kzpw55OXlERsbi/Xrej2VwI4dO5gyZUqVem9UqSQJwMSJEzl//jwRERFKG3PatGkEBgbKfmRNTU3R0NBQu9xUMSwtLZFKpXITyywL9erV48yZM7z11luMGDGCX3/99ZXH169fn2fPnlGvXj1ycnKIi4tj3LhxHDp0SO5uKK/C2dmZdevWsXnzZk6cOFHstpycHHx8fLhy5Qr16tXD3d2dRo0aKeWL6ccff2TPnj388ssvNcahoUjINSIiotyVTkVtWK9KeoFo43vwoLjzHhQkttYMGSJWj7RqVdHI1byKilSPvIpatWrRu3dvHBwcePDgAaNGjapQwvfYMTFRYmEBbm4VCkVlxMSI1tSXLol/9+snOi/9N8GXnpvO6WAxsTzCcUSNs/zNyICivPnw4fBfw7Dly5fToUMHNm/eTOvWrTl48CCJiYn8+eefb7z45qlTpzh16hTff/89+vr6sutjYmKoV68eOjo6KoxO9URERBAREaEWaq0EEomERo0a4eHhQb169bhy5Qo+Pj5KkQKoycTGxiKVSrG0tFR1KG8s58+fZ8aMGcyYMYPhw4cTFRWFiYmJyiu7nz59ire3NxMnTlRpHP+lyiVJLCws6Nu3L3/88YfSxnz27BkSiURWtgmiLsmdO3eUmqxR82o0NDSws7MjJCREqSWQenp67N+/nxkzZjB9+nSWLl1a6vhDhgxBT09P1r517949PvroIywtLZk3b57SYgaYMWMGgwcPZsqUKcTGxlJYWEhwcDBeXl7k5+fj5uaGo6Oj0pIVly5d4tNPP2XOnDmMHz9eKWMqC0NDQzp06MCDBw/KZW1cJOhZWulpkWvNokXg6SmKXLZtK+qQvPWWmCxR8zJxcXGcOXOGtWvX8s4779CyZUtatWrFyZMnX3vf53nPK109UkR4eDgbNmygR48emJubM336dMzMzFi/fj0+Pj7lTkxGRPybYBg3DhQgGaQQBEGMe+VKMVFiZARz5sCIESU/hmOPj5FTkIOtiS2dLTsrPV5Fc/y4mPi0sRE1ZV5k165dLFq0iMWLF5OQkMCuXbsYNWqUyiexVYHc3FzmzJmDu7s7I0YU16hR2/+KlYkPHz6kQ4cOVcYdojqjpaWFo6Mjbm5u5Ofn4+XlRXBwsKzqXE3ZEQSB4OBg7O3tVd7W8aYSFBTEyJEj6d27N5s2bUIikRAREVElqkj++OMP+vXrVyXEY1+kSm7lTpkyhblz57JgwQKlfJjatGmDIAh4eXnRv39/2XW//fYbHh4epKWlqVWYqwg2NjYEBQWRnJyMqanyetQ1NTX54YcfsLCwYMGCBcTExLB58+aXEgxWVlasXr2ajz76CGdnZ6ZPn46Pjw+rVq1i/PjxXLhwgV69eiklZolEwvbt22nVqhULFy5k1KhR6Onp0blzZ6ULNEVFRTF69GhcXV1Zu3atUsdWFg0aNKB58+bcunWLnj17yqwpX0ViYiJAia9HVJQozlnklNyggehi4uQk17DlRkxMDCdOnMDb25s2bdowbtw4maiisrh37x4LFy7k77//BsTkVcuWLXF1dSUkJITBgwfz1ltvsWHDhhKF43xifdjju4eM3Aw0JBr0a9KPQQ6DypwcEQQBf39/jhw5wpEjR/Dx8UFHR4c+ffrw66+/MmTIkAr3Yr8o1tqxIzg4VOg0Suf5c9i1S9QgAfH9+yrnpfjceO5E3UEikdRIy9+YGLh8Wbw8enRxy19vb2/ef/99pkyZwtdff13jHntFEASBwMBAzp07x5EjRwgPD+fYsWMvPTdxcXGkp6fj6+tLy5YtVRSt6sjJyeHWrVs4OjrSoEEDVYdTozAwMKBTp048e/YMPz8/nj59irOzMw0bNlR/RstIUlISmZmZVWJB/iaSlJTEoEGDMDc3Z//+/WhpaZGWlkZmZqbKk8tSqZTffvuN77//XqVxlIREqIKqRHl5eVhZWbF//37clFBPLAgC7dq1w8rKStaacP36dVxcXDh+/Di2trZv5I9uVcXf35/MzEw6/3cLTkn89ttvTJs2jQkTJvDbb7+9lMiTSqX06NGD6OhosrKyMDExYebMmWzevBlDQ0Pu3LmjtEx6eno6ly5dIiUlhd27d5OXl8fkyZMZOXKk0naacnNz6dGjBzExMdy9e7dGT+AEQeDevXs8f/6cbt26vdYdaPv27UybNo28vDxZwi0rS9xpvnBBXBDr6IhVIx4eVUuUVRAE/Pz8OH78OMeOHeP27dtoamrSrl07/Pz8yM7Oplu3bowfP54xY8YoNDEXGBjI4sWLOXToEA4ODsyfP5/u3btja2sr+6wV6eF88sknREdH07FjR1xcXHBxcaF1h9Z4J3pzO/o2ABa1LZjUZtJrW2vS0tJ48OABDx484P79+1y+fJng4GAMDQ156623GD58OAMGDJCL/ea1a/DHH2JrxjffvFros6oQHAzbt0NKilgxMmIEuLsXTwy8SF5eHlN/n4puQ126WndlStspyg1YwQgCbNoEAQHQrh1Mn/7vbQEBAbi4uNCxY0dOnz79RrdKREdH4+XlhaenJ56ensTGxqKjo4OrqyvTpk1j7NixL93nzJkzzJw5k7CwMEaPHs2SJUtwqqoZZTlTWFjI1atXMTQ0pG3btuqFuwIRBIGnT58SGBiIsbExzs7OanvlMnDjxg2MjIxo0aKFqkN5I/D39yc/P1/m1tq3b1/8/f25efMmdnZ2APj6+pKfn0+7du1UGuv58+cZO3YsUVFRVa9dUqiifPrpp8KECROUNt62bdsEiUQiBAQECIIgCFKpVHB2dhZmzpwpnD59WigoKFBaLP/H3lmGR3VubfieuADBEogQd0ETNIQAwWlxKQ41qPdUocXbQkvltFBaoMjBtbgUQggWNAlxdycQd5n9/dgfaSmWhElmEua+rlxkZrasCbP3vO/zrvUsJU+npKREOHbsmFBQUCC3GHbv3i1IJBLhgw8+EKRS6SOvR0RECBoaGsLcuXOFCRMmCGpqagIgAMK2bdsaPL7y8nIhKChIOHbsmBASEiLk5eUJO3bsEAYNGiQAQsuWLYXXXntN8PPze2z8suS7774T1NTUhJs3bzboeRSFqqoqwdfXVwgICHjm33b16tVC27ZtBUEQBKlUEK5eFYSPPhKEN94QfzZuFIScnMaIum6kpqYKzs7OAiC0aNFCmDRpkrBjxw7h/v37giAIQmFhobBz505h5MiRgqqqqqCmpiYMGzZM+Omnn4Tw8HCZfebi4+OF2bNnCyoqKoKZmZmwZcsWobKy8qn7FBcXC+vXrxdeeeUVwczMTKAjAkMRWrzSQrD+wFp47YfXhBu3bjx0HKlUKsTHxwt//vmnsHTpUmHMmDGCubl5zTWtoaEhdOvWTXjjjTeEkydPCmVlZTJ5f3/H/Pfn4q+/ZHroBqGqShCOHhWEN98UY/7yS0FITHz2fhfjLwpD1w4V3j7xtpBXmtfwgTYyISHi3+OttwTh7t2/n8/IyBDMzMwEZ2dnIS+v+b3vZ5GXlyccPXpUePfddwUHBwcBECQSidC9e3fh008/Fc6ePSsUFxc/8zgVFRXCH3/8IZibmwsSiUSYOnVqzZiuuSKVSoWAgADB19dXOU5tRMrLy4Xg4GDh2LFjQlBQkFBeXi7vkBSW/Px84dixY0Jpaam8Q3khOHDggKClpSWMHDlSkEqlwpw5cwQNDQ3hypUrNdtUVVUJJ0+eFO7duyfHSEWmTZsmfPTRR/IO47EorEgSEhIiaGlpCbm5uY1yvpKSEsHW1lZwdHQUCgsLBUEQhFGjRgleXl7CuXPnhLS0tEaJQ0ntCAgIEAICAuQaw/r16wVAWLly5WNfX7lypaCqqioEBAQIWVlZwvfffy84OTkJ//nPfxospurqaiEuLk44efKk4Ofn91ghKT4+Xli6dKlgamoqAIKdnZ3w7bffCunp6Q0S0+bNmwWJRCIkJyc3yPEVkZKSEuH06dNCXFzcU7dbuHCh0LZtWyEkJF9YvfpvcWTpUkGIiGicWOtKfn6+0KVLF6FTp07C6dOnnykI3L17V1i/fr3g5eUlaGpqCoDQqVMn4dVXXxX2799fr8FlWlqa8NZbbwnq6upChw4dhLVr19ZZmCgqLxL+8P9DmL53uuD1s5fQe2FvoevAroK6uroACDo6OsKAAQOE/v37C61ataoRRPT19QUvLy/h448/Fnbs2CEEBwcLFRUVdX4PdWHPHvFzsWSJIDxDA5I7WVmCsGrV35/lLVsEoTZj45KKEuHD0x8KQ9cOFU5Gnmz4QBuZqirxun7jDUE4ePDv54uKigRXV1fB0NBQSEpKklt8jUl5eblw8eJFYfHixUKfPn0EVVVVARAsLCyEN954Q9i/f7+QnZ39XMffsGGD0KlTJ0EikQirV6+WYfSKRVxcnHD69GmhpKRE3qG8kBQUFAh+fn7CyZMnhbi4OKG6ulreISkcijBef1H4/vvva0TmiRMnCqtXrxYAYefOnQ9tl5qaKpw7d67BF0mfRU5OjqClpSWEhobKNY4noZDlNg/o1asXc+fOZf78+Y1yvoiICFxcXPjll1+YP38+rVu35tNPP2XSpEnk5OTQp0+fRolDybMpKCjg4sWLDBkypFbeDw3F119/zZdffsm6det4++23H3qtoqICV1dX1NXVuXHjRoMbpN69e5fQ0FCkUikuLi4PGRE/DqlUio+PD1u3buXQoUOoqKhw6NAhRowYIdO4CgoK6NixI4sXL2bhwoUyPbYik5OTg5+fH7169XqiD8Xt2xEMGPATenqjGTlyJDo6aoweDYMGKVZpzQMqKysZNWoUN2/e5OrVq3VOZy8pKeHSpUucPXuWv/76i/DwcKysrFi9ejUTJkygqqqKioqKJ/6Ul5dz8OBB1q5di7a2Np999hnvvPNOnUvHAjIC2BOyh4LyAiQSCcOth9d4j5SVlREQEICfnx/Xrl1DXV2drl270qVLF7p06YKhoWGjprMnJ4uGp4IAH34I9vaNduo6IQhw7Rrs3Qvl5aCtDdOnP9ra90kcCDvA2dizFGQUsG3uNrQ1tRs24EbG11f0lGnRQuxS9aAxy3vvvceWLVu4fPky3bp1k2uMDUlMTAwnTpzg3LlzXLp0ieLiYtq2bcvgwYPx8vLCy8urJg1cVpSVldGxY0dmzJjBunXrZHpsRSA7O5sbN27Qt29f2rZtK+9wXlgEQSArK4vQ0FBUVFRwcXGpt/dUc6OsrIxz587h6empNJ9uYPbv38+UKVP4/PPP8fb25v79+yQkJLB48WJWrFjx0LbXrl2jXbt22MrZ3Oy3337jf//7H9evX5drHE9EziLNU/n9998FNze3Rj3n4MGDhaFDhwpSqVSwsLAQ5syZI5SUlAhHjx5VKvUKxrVr14SwsDC5xiCVSoUPP/xQAIRdu3Y98vrNmzcFFRUV4dtvv22wGAoLC4Xr168LJ06cEGJjY+u1kpGTkyO8/PLLgpqamrB3716Zxzh9+nTBzs5O7qp1Y5OYmCicPHlSyM/Pf+j5qipB8PERhA8+EISXX84QVFX/ELp2XStkZytumoBUKhXmzp0rqKurCz4+PjI5ZkhIiDBy5MiaLI3a/LRo0UJYsmRJvcoS8krzhN9u/Sa8cewN4Y1jbwhLLywVEnITZPJeGoLqakH45pu/S68UlaIiQfj997+zR9asEYT/r7yqFekF6cL84/OF1468Jvyy55cGz8xpbIqLBeHDD8W/zYULfz9fWFgotGzZUli8eLHcYmsMAgICBHV1dUFLS0sYMmSI8O233wr+/v4Nvuru5+cnAMLFixcb9DzyID8/Xzh58qSQWJs6NiWNQnV1tRATEyOcOHFCuH79ulBUVCTvkOROWFiYcO3aNXmH0ewJDg4WdHR0hFdeeUWQSqWCra2tAAhTpkx5ZNytSHNaV1dXYcOGDfIO44kodCZJfn4+hoaG3Lhxo9GMU3/99Vc++OADsrOzWbduHatWrSIjI4OwsDCFUN2U/M29e/e4efMmQ4cObbQ2to9DKpXy6quvsnPnTo4cOcKoUaMeev2jjz5i/fr1BAcHY2NjI7PzVlZWEh0dTUJCAiYmJjg4OKCpqVnv41VVVTFv3jx27tzJb7/9xpv/dBV8Ts6dO8fQoUO5ffs2PXr0kNlxmwKRkZEkJSXRv39/dHR0CA+H/fshI0N83cQEOnTw5a23vJg7dy4bN25UOOO96upqlixZwjfffMPOnTuZPn26TI9/6dIloqOj0dDQeOaPqakprevoWioIAn4pfhwMP0hJZQkqEhVG2oxkhM2IOrf1bUwuXoTdu0FLS2z7rIhmrZGRsHUr5OWBigqMGQNDh4q/1wZBEPj5xs9EZEfgrO+MaZYpI0eObFbGpYcOwdmzYGgIS5b8/bfZtGkT8+fPJyEhodl2fSgrK8PV1RU1NTX8/PzQeZBC0wh8+OGH7Nu3j5SUlGeaaDclSkpKuHz5MmZmZtgramrZC0x5eTkRERGkpqZiYWGBra1ts7qf1ZbKykrOnTtHz549G72j4otEbm4ubm5u6Orqcu3aNXR0dDA3N6djx45cuHABbe2HszKjo6O5f/++3KsjgoOD6d27N5mZmQprfqy4o0NAT0+PiRMnsmXLFn766adGOef48eN5//332b17N3PmzGHp0qXs3buXUaNGERERgY2NjcJNYF5U2rVrh66uLklJSVhZWcktDhUVFTZt2kReXh4TJ07k7Nmz9O/fv+b1FStWcPjwYUaPHs3YsWNxdXWlR48eWFhY1OuzJAgCKSkphIeH06JFC/r37y+TFtVqamps27aN1q1bM3/+fHJycvj8889l8nmvrq4GeCEHCnZ2dlRUVHDy5C3S0voSESH+DVq0ECeU7u6gouKJltYWZs+ejYGBAV9//bWcoxYRBIFTp07x+eefExoayqpVq2QukAB4eHjg4eEh8+MC3Cu5x87gnURkRwBg1tqMWV1mYdLKpEHOJysKCuDwYfH3sWMVTyCpqoKjR8XJP0CHDvDqq1DXrs93Mu8QkR2BmooaEx0mcjPrpuyDlSPZ2XD+vPj7xIkPi0e///47I0eObLYCCcAPP/xAWFgYM2fO5NKlS7i6usp8wiSVSklMTCQsLIzQ0NCH/l2wYEGzEkjKysrw8/PD0NAQOzs7eYej5DFoamrStWtXzM3NCQ0N5fz58zg6OtKpU6cXav6QnJyMrq4u7dq1k3cozZbq6mqmT59OTk4OZ8+erRGhjxw5goWFxSMCiSAIJCcnK0SXoS1btjBp0iSFFUhAwUUSgHnz5jFx4kS+/fbbRmkNZGhoyJgxY/jtt99YsGABlpaWrFmzhldffZWgoCBycnKUF7yCIJFIsLa2JiwsDAsLi0Zrq/s41NTU2LNnD6NGjWL06NH4+vrW1Jfr6upy8OBBVqxYwe7du/nuu+8AaNOmDd27d68RTWojnOTk5BASEkJ5eTmdO3eWuT+CiooKP//8M+3atWPRokXk5uby7bffPvc5Dh8+jJWV1QvZSru8XEJ0tAv79mVTXp6NkVEHvLxUGTXqb18CgFmzZnHv3j0++ugj9PX1+eCDD+QWM4gt+z777DMuXbqEp6cn169fl1vb7fogFaRcSLjAkcgjVFRXoK6qzst2L+Nl6YWKRH73itpy8CCUloqiw4AB8o7mYTIyxNa+KSni4/79YdIksT1xXaioruBA+AEAhloNpb1O81tt/PNPqK4GR0f4p4XP7du3CQgIYPny5fILrhFwc3NjyJAhnDhxgh07dgBgbm6Om5sbrq6uuLm50aNHj1oPlPPz87l27dpDQkhYWBglJSUAtGrVCmdnZ3r27Mm8efOYN6/5tJGurKzk+vXrtGnTBhcXlxdqwt0Uad26Nf369SMjI4PQ0FASEhJwcXF5IfxjpFIpcXFxODs7Kz+nDciyZcv466+/OH369EOeTl27dn3s9vfv36eiouKZnoUNTXl5OTt37uTQoUNyjeNZKLxI4uHhgZ6eHsePH2fChAmNcs4FCxYwZMgQNm/eTGxsLCCqdSYmJiQlJSlFEgXC0NCQ8PBw0tPTMTGR78qwlpYWR44cYfDgwQwbNowrV67UlGd1796dI0eOAKLBqr+/P/7+/ty+fZtdu3bx7bffAqJw8vnnn/Ppp58+dOzS0lLCw8PJyMjAxsYGa2vrBlsdk0gkLF26lDZt2vD++++Tk5PDhg0b6n2+6upqjhw5wqxZs16oL0upVDSyPHwYCgsltG2rT4sWiQwYcJvRo10f+/f8z3/+Q3Z2Nh9++CHt27dnxowZMo0pMzOTO3fuUFpa+sSfsrIyoqOjOXXqFJ07d+b06dMMGzasSf3fpRemsz1oOwm5CQDYtrNlZpeZGOgayDmy2hEZCTdugEQimp/KUf99CEEQS4AOHoTKStDVhdmzoUuX+h3vr9i/uF9ynzbabRhhMwKkso1X3sTEQECA+P84aZL47wM2bNhAp06dZG6UrWgMHTqUoUOHIggC8fHx3Lp1i9u3b3Pr1i1WrFhBcXExqqqq/PHHH8yZM+eZx5swYQLnz59HR0cHJycnnJycmDJlCk5OTjg7O2NsbNyk7lW1pbq6mhs3bqClpUW3bt2a5XtsjkgkEoyMjOjQoQOxsbE1WUCOjo6PrPI3J9LT05FIJBgaGso7lGbL4cOH+eqrr1i1ahVDhw6t1T7Jycl06tRJ7tl1x48fp3Xr1g2WQSwrFF4kUVFRYd68eWzevLnRRJJBgwZhY2PDuXPnAJgzZw4aGhqYmZlx+fJlXFxcXsiyAUVERUUFKysrYmNjFWJw1LJlS06dOoWHhwdDhgzh6tWrj4g3BgYGjBgx4qHB8fHjx5kyZQplZWWY/SNfvaqqiri4OGJiYjA0NGTw4MGP/WKVSqUyz6R57733aNOmDXPnziUvL48dO3bU+Uv9/v37zJ49m7t37zJ16lSZxqfIxMTAvn1/r7R36ACTJ0uwt+/EtWup3L59Gzc3t8f+n33zzTekpqbyxhtv8Morr8jsy6y4uJju3buT8cAM5f/R0NBAW1u75kdHRwc9PT127NjBtGnT5JqhVVeqpFWciT3DqZhTVEur0VLTYqLjRNxN3eV+b6gtVVWiDwmIGSR1LV9pKAoKYPt2CAkRHzs6wpw5UN9Kv/sl9/kr7i8AJjlOQkNVg0pppWyCVQAEAQ6ISTL07w9GRn+/lp+fz+7du/n888/lPlhtLCQSCVZWVlhZWdV8F1RXVxMVFcXq1at58803cXR0pGfPnk89zv3795k7dy5//PFHk7o3PQ9SqZRbt24hCAKurq4vzPtuTqiqqmJnZ4epqSnh4eGcP3++wRe85IUgCMTGxmJlZdVkvnebGhEREcyaNYuJEyfy2Wef1WqfyspK0tPTH7IDkBebN29m3rx5Cv/5aBJ32tmzZ+Pt7U1qamqjnE9FRYVJkyZx6dIl3nzzTXx8fJBKpejp6dGiRQvS09MbJQ4ltcPU1JSSkhLu3bsn71AAaN++PWfPnkUikTBkyJCnxlVZWcmSJUsYN24cLi4uBAYGMmXKFARBIC0tDR8fHzIzM+nbty89evR4rEixd+9edHV1mThxIn/++SdlZWUyey8zZ87kzz//5MSJE5ibm/PNN9+Ql5dXq31v3LhB9+7duXbtGidPnnwhDFtzcmDTJvj+e1Eg0dYWV5CXLAFnZ7Esq1evXpSUlBAYGMjjfLMlEgleXl6UlpYilcpuaX3t2rXcu3eP27dvk52dTVFREVVVVZSXl5OXl0dGRgbx8fGEhoZy9epVZsyY0aQG44l5iXx96WuORx2nWlpN5w6dWT5wOf3N+iv8F/E/OXsWsrKgVSvRs0YRCA2FFStEgURNDSZPhvfeq79AAnAg/ACV1ZXYtbeju2F32QWrIFy/DklJounuSy89/NquXbsoLy/n1VdflU9wCoKqqiqOjo5s2rSJ7t27M2HCBO7evfvUfSoqKtDT02tS96bnQRAEAgMDKS0tpXfv3nI1qVfy/Ghra9OjRw/69u1LZmYm58+fJy0t7bFjgaZKdnY2paWlzdprSZ7k5+czduxYzMzM2Lp1a63HN+np6bRo0UImHobPQ0pKCufPn2fWrFlyjaM2NIm7rYmJCYMHD2b79u0sWrSoUc7Zp08fvvnmG/r168eGDRvw8/PD3d0dU1NTkpOTH1rtVyJf1NTUsLS0JCoqivbt2yvEhMjExIRz587h7u5Ov3792LRp02PTyt555x02b97MkiVLWLRoEWpqauTl5RESEkJxcfEjZl+CIPDmm29SVVXFF198gZWVFREREaipqREfH8+ECRPQ09NjwoQJTJs2DU9Pz5pViqqqKgoKCsjLyyMvL4/8/PzH/l5UVISRkRF2dnbY2tri4eFBWFgY33//PStWrGDVqlXMnz+fDz74AGNj40fekyAI/PLLL3zyySe4urqyb98+OnXq1LB/cDlTXi5Obv/6SyxDkEjE1eOXX4aWLR/eVkNDgz59+nD58mVCQ0OfWrMrq4FTXl4e3333Ha+//nqzE6sqqis4FnUM73hvBEGgpWZLpjpPpYdhD4W4F9SF7Gw4dUr8ffLkhz1r5EFlpVha4+srPjYygtdeg8dc9nUiIjuCwIxAVCQqTHWe2uT+n55FWZnoRQIwcqQoeD1AEAR+//13Xn75ZYz+mV7yAqOpqcnBgwfp3r07U6ZMwdvb+4mr65WVlY3iT6cICIJAaGgoubm5uLu7KzOYmxFt27bFw8OD5ORkQkJCSEhIwNnZuc6d2xQNQRCIjo7GwsJCKeg1EP/5z3/IzMzk9u3btGjRotb7JScnK4RwtX37dry8vORukVAbmswneN68eSxcuJCFCxc2yoDqgUGhqqoq7dq1w8fHB3d3d0xMTAgLC6OwsJCW/579KJEbVlZWJCQkcPfuXbkbEj3AxsaGixcv8uqrrzJgwADmzZvHd99995CnTVRUFJMnT2bJkiWUl5cTGhpKamoqlpaW9O7d+5FB0ebNm9m0aRP6+vps376d2bNnk5eXh6WlJQEBAURERLB79252797Nli1baN++PVpaWjXix5PQ1dVFT0+P1q1bo6ury6lTpx4qyzAwMMDDw4Pz589z4sQJ1q9fz3//+1/Gjx/PW2+9hYeHBxKJhLy8PF599VX+/PNPPvroI1atWtWsB3aCALduiS0+HyTY2NrClClia98noaWlRd++fbl8+TIaGhqPdCn4pygmC3788UdKS0v54osvZHI8RSHqXhTbg7Zzr0TM1upl0ovJTpNpoVH7gYOiIAiwZ48oTNjbg6urfONJSRHNWR/cBgYPhnHj4Hkv52ppNfvC9gEw0GIgRi2bn1Bw6pRYnmRgIP7d/sn169cJCQlhzZo18glOQTE2Nmb//v0MGjSIlStXsmzZsiduu3PnTjQ0NJg2bRoODg6NF2QjEx0dTVpaGv3790dLS0ve4SiRMRKJBDMzM4yMjIiJieHKlSuYmJjg4OCAZl1dsBWEu3fvUlhY2KRM3psS165dY8uWLaxfvx4bG5ta71dYWEheXp7c/1+kUilbtmyp8WFUdCRCE8nxKi8vx9jYmEOHDjGgkaz+bWxs8PLyIjAwEEdHR7Zs2QLArVu3akzDlCgOsbGxpKSk4OnpqVArk1KplE2bNvHZZ5+hrq7Ojz/+yIwZM5BIJHh4eGBhYcHixYuJiopCX18fJycndHV1HzlORUUF7du3Z/To0WzevJkNGzawatUq7t69i6enJxcuXKjZVhAEbt68yfHjx1FVVa0RQFq3bv3I73p6eo8VMgoLC4mJiSE6OprIyEi2bdtGWloa7777Lu+//z5Hjx5l/fr1REVF4eTkxMyZM9m4cSP3799n27ZtjB07tiH/rHInIUH0HIiLEx+3aye2+OzW7WGDxqeRn5/P1atXcXBwwMLCoub5HTt2MGvWLMrKyp57sJSdnY2lpSXz589vNhOz0spSDkUc4nLSZQDaaLdhRucZOBs4yzmy+hMQABs2iOUsS5aIPjbyQBDA21s0HK6uFrMg5sx5uDPL8+Ad782BsAO01GzJioEr0FH/O12msrKSU6dOMXLkyCYrrt69C8uWiX+7t9+Gzp0ffn3OnDlcunSJ2NjYF6ZkpC6sXLmSpUuX4u3tzaBBgx55/fbt22zYsIGDBw+Sl5dH165dWbVqFcOHD5dDtA1HQkICERERuLu7K3SLTCWyo7i4mNDQUO7du4ednR2WlpZN6h4hCAK+vr6YmppiZWUl73CaHdXV1TWeTTdv3qyTl01YWBilpaW4ynn1xdfXl0mTJpGWltYkMgKbTCaJpqYmM2bMYMuWLY0mkkydOpVvvvkGIyOjh7wgzMzMCAgIwMHBoUndwJo7FhYWxMfHk5qaqlDlHSoqKrz55puMGTOGDz/8kFmzZrFt2zZ+++03LCwsGDp0KMnJyfTs2RN9ff0nHkddXR03Nzdu376NiooKH3zwAa+//jp//PEH1tbWD20rkUjo1avXc6nGLVu2pHv37nTvLvoFfP755/z4449888037Nixg5UrVxISEsLly5dZv349X3zxBV27duXcuXMPtSJrbty7J04gb98WH2tqwvDhMGRI3VfZ9fT06NWrF9euXUNDQ6OmfEmWmSSrV69GIpHU2txL0QnKDGJ3yG7yyvIA8DT3ZJzDOLTUmu5Ka1mZaPQL4mdJXgLJ/fuwbRtER4uPu3SBmTMfLRmrLwXlBRyPOg7AOPtxDwkkzYUDB0SBxMkJ/t3xPDc3l3379rFkyRLl2OEJLFq0CF9fX6ZPn86dO3ceyQx1dXXF1dWVdevWcfr0ab7//ntmzJhBTEwMbdq0kVPUsiU1NZWwsDD69u2rFEheIHR1denVqxfZ2dmEhISQmJiIs7MzHTp0UKiFvyeRmppKZWUl5ubm8g6lWbJp0yYCAgLw8/Ork0AilUpJSUmpGcvLky1btjBjxowmIZBAEzFufcDcuXM5cOAABQUFjXK+ZcuWMWbMGFJTU0lMTKx5Xl9fH4lE8kyDMSWNi6qqKvb29kRGRsrU8FJWdOzYkT179nD69GmKi4vZs2cPQ4cOJTY2Fk9Pz6cKJCBOnNeuXUtCQgI//vgjIH6pvv/++4waNarB49fS0mLRokXExMQwevRoFixYwMSJExk0aBAHDx4kNzeXGzduNFuBpKRELKtZulQUSCQS6NtXNLQcObL+ZQjt2rXDzc2NwMDAR+4pzyOSZGRkMGPGDH788Uc++eQT2rdvX+9jKQJ5ZXn8fvt31t9aT15ZHga6Bnzc92NecXmlSQskAMeOieVa+vqiSNLYCILYrnrFClEg0dCAGTNgwQLZCSQAf0b8SVlVGeatzenbqa/sDqwghIVBcLDYsnny5EczyrZv305VVRXz5s2TT4BNAFVVVXbt2oVUKmXmzJlP/C7X1NRk7NixHDhwgPLyclauXNnIkTYMWVlZ3LlzBzc3N9q2bSvvcJTIAX19fTw9PbGysiIgIIDr169TWFgo77CeSnV1NZGRkdjb2ze7bj2KwL1791i0aBFz586lT58+ddr37t27qKioPHOO0dDk5+dz8ODBJvX916REki5duuDo6Mi+B0tuDcyDL+u+ffuSkZFRM2GRSCQ1Bq5KFIsH/b//KWopEhUVFRgbG/PFF1/QoUMH3nnnHe7fv1/rVUVHR0fee+89vvrqK1Ie9JdtZAwNDdm6dSt79uzh2LFj+P6/q2PLli2b5ZdjVRX4+MCXX4rmrFVV4OAgPp49G2Ths9ahQwe6du3KzZs3uX///nNlklRWVvLTTz9hZ2fHX3/9xR9//NGkvUikgpQLCRdYemFpjdnncOvhLBmwBJt2ta/JVVRSUsTPF8C0ac/v+VFXCgvFMp9t28SMFisrWLxYNB6W5eJlfG4811KuATRLs9bqati/X/x90CDo2PHh16VSKRs2bGDcuHEK45ulqHTs2JFdu3bh7e3N6tWrn7qtoaEhixYtYu3atUQ/SIFqoty/f59bt27RtWtX5WfkBUdFRQULCwu8vLzQ1dXF19eXkJAQKioq5B3aY0lMTERVVVWhsribA9XV1Zw/f56pU6ciCMIz74ePIzk5+aEGEPJi3759ODk54fLvFEsFpsmU2zzg1VdfZfPmzbz++uuNcj5tbW1OnjzJjRs3HvqAmZqa4uPjQ3l5eZM1WGqOSCQSHB0dCQwMpFOnTgpT1y6VSklKSiIyMhI9PT0GDBhAq1atGDlyZJ0NgJcuXcquXbv4+OOPZSIY5ufnExwcTEVFxWN/KisrkUgkSCQSVFRUaq6DwsJCdHV1Wbx4MZcvX37uOBQNQYA7d8QuFQ8SPAwNRd8RJyfZTiBB7IhUVVXF9evXa8SmuookFy9e5O233yY8PJwFCxawcuXKJr0amVqQys7gnSTkJgBg2caSGZ1nYNzqOdurKAiCALt2if+6uoKjY+OePygIduwQhRJVVbFV7bBhYiaELJEKUvaE7AGgb6e+WLSxeMYeTQ9fX8jMFDNvHpfYd+zYMSIiIti4cWOjx9YU8fLyYtGiRSxevJj+/ftjY2NDeHg4YWFhNf+mpqZSUlJS0878l19+Yd26dfIOvV5kZ2dz48YNnJ2dm0TXByWNg4aGBp07d8bc3JzQ0FDOnz+Pvb095ubmcp/0PqCyspLo6Gi6deumMDE1dXJzc1m9ejW7du0iLS0Na2trtm3bhoGBQZ2OU15eTlZWlkJ4aG7evLnJtb1vciLJK6+8wn/+8x/CwsIa7T+9devWDBs27KHndHV1adOmDampqUqDIgWjQ4cOtGjRgri4OOzt7eUdDtnZ2YSGhlJdXU23bt0eqi+tTzuuVq1asWbNGmbNmsWbb775WHO7uvDxxx/zxx9/1Hk/TU1N2rZt2yxXvBITxdanMTHi45YtYcwY6NdP9hPIf2Jubo6KigoBAQH06NGDoqKix5r4/pu0tDQ+/fRTdu/eTe/evbl9+7ZC1J/Wl4rqCk5En+Bc3DmkghQtNS3GOYxjgNmAZjUIu3xZNADW0oJJkxrvvGVlYtbD1aviYyMjmDcPGmoR8FLSJZLzk9FR12G8w/iGOYkcKSyE46LVCmPHPtq6WRAEVq5ciaenJ+7u7o0eX1Nl2bJlXLp0iQEDBtQIxg+6gTk5OdG3b190dXVrfoYMGSLniOvHg3aenTt3VogWnUoUj1atWtGnTx8yMzMJCwur8SuRdwkFQFxcHC1atGiWY0F5kJKSwvDhw0lNTWXGjBnMnDmTXr161Wvsk5KSQtu2bWs1jmxIQkNDCQ4OZurUqXKNo640OZGkdevWjB8/nq1bt/L999/LNRZTU1Pi4uKwtLRsVgP3ps6DbJJr165hYWEht0yf4uJiwsLCyM7OlrlT+YwZM9iwYQPvvvsud+7cea6MmTVr1mBubs7PP/9MdnY2np6efPXVV3Tv3h0NDY2HshoEQUAqlSIIAmpqas3uc3//Phw5Ajdvio/V1UVD1mHDxIlsY2Bqakp2djaffvop7777LqtWrXqiEFteXs5PP/3EV199hY6ODlu2bGH27NlN2hQyPDucXcG7atr6djfszhTnKbTWai3fwGRMQYFoAAzixFoWZVu1ISYGtm4VP+sSifj5fvnlhivzKSgv4EjkEQDG2I+hpaYMTU4UhKNHobRUFJn6PsZq5dSpUwQEBHD+/PnGD64Jo6amxqFDh9izZw+dOnXCyckJS0tL1NSa3ND1iaSlpREYGEj37t0xMmp+7bCVyA6JRIKhoSEGBgbEx8dz8+bNp3ZEbAzKysqIjY2lb9++zW48KA/CwsIYPnw4qqqq3Lx5Ezs7u3ofSxAEkpOT69QquKHYunUrEyZMoHVjDXRkRJNpAfxPfHx8mDp1KmlpaXItp6iqquKvv/6ib9++zcZVvTlx48YNtLW16fzvHowNTGVlJTExMcTHx2NiYoK9vT1aDTDDvnPnDj169OD777/nww8/fO7jlZaW8r///Y/vvvuO8vJyUlNTX5gvvdJSOH0azp8XPUckEujdW8wekdelffv2beLj49mxYwcff/zxI129Tpw4wQcffEBiYiLvvfceS5YsaXJfQP+ksLyQ/WH7uZkmKlRttNswzWUanTs07vXbWGzdCtevg6kpLFzYsBlKIH6ujx6Fc+fE8p527cTWvra2DXverYFbuZ56HbPWZnzu/jkqkie/0abYAjg5Gb75RvybfvIJ/KvRGIIg0KdPH9TU1Lh8+fILc09V8mySk5MJDg7G1dWVjv82sVGi5BmUlZURERFBWloalpaW2NraNrqAGBwcTGlp6XN1UlQicvXqVUaPHo2pqSmnT59+btE0NzcXPz8/hg0bJldhuaKiAhMTE/bt28fAgQPlFkd9aJJyvKenJ7q6upw4cYJx48bJLQ41NTWMjY1JTk5WiiQKiIODAxcvXsTKyqpRVHZBEEhJSSE8PBxdXV3c3d0bdNLatWtXFixYwNKlS3nllVeee5Clra3N/PnzsbCwYPjw4URHRz+Xit0UqK4WSx6OH4eiIvE5Ozux9EHe/mOurq60bdsWiUTCd999R3R0NK+//jrR0dF8+OGHnDp1isGDB3Ps2DEcG9vMQoYIgoBfih8Hww9SUlmCRCJhkMUgXrZ7ucl3rXkSERGiQCKRwPTpDS+QpKbC5s2Qni4+7tdP7L7S0NlRMfdjuJ56HYlEwjSXaU8VSJoigiC2bhYEcHN7VCAB8Pb25saNG5w5c0YpkCipISEhgfDwcHr16qUQJRNKmh5aWlp069YNCwsLQkJC8Pb2xtHRsdFMOouLi0lKSnpkAUdJ3Tl69ChTp06ld+/eHDlyBD09vec+ZnJyMsbGxnLPvDtx4gQtWrRokp+TJimSqKioMHfuXLZs2SJXkQTE1Phr167h7OzcLDt7NGVatWqFsbExkZGR9OjRo0HPlZOTQ0hICOXl5bi4uGBkZNQoX1IrVqxg3759fPbZZ/zvf/+TyTH79OmDiooKly9fbrYiiSCIrToPHYKsLPG5jh1hwgRwcZG9KWt9sbS0pEWLFkgkEnbu3MmBAwfw9fXF2NiYP//8k7FjxzbpiVdWURY7g3cSfV/sStFJrxMzO8/ErLWZnCNrOCoqYOdO8feBA8HcvOHOJZWKHZmOHRMFwZYtYeZM6NKl4c75gGppNbtDdgPQ37Q/5q3NG/6kjczt2xAbK7ZMnjDh0dcFQWDFihW4ubkxdOjQxg9QiUISExNDTEwMffr0adLG2koUg9atW+Pu7k5aWhphYWEkJCTg4uLS4J+tiIgITExMaNWqVYOep7mza9cuZs2axfjx49mxY4dMMs+rqqpITU2tc7vghmDLli3MnTu3SZaBN0mRBGDOnDl89dVXpKeny7WOs02bNmhpaZGenq5sfaWA2Nvbc/78eaytrWWizP6b0tJSwsPDycjIwNraGmtr60ZVbdu2bcuqVat4/fXXef3115/LFDAkJISwsDBMTEywsrLiypUrvPbaazKMVjGIjRU71sTFiY9bthS7evTv3/Ar+vXBwMCAwYMHo6KiwsmTJ/nyyy/55JNP0NbWlndo9aZKWsWZ2DOcjjlNlbQKDVUNXrZ7mcGWg5tdtsG/OXEC7t0Ty7jGjGm482RniyU9Dz7nXbqIAkkdm2nVm/MJ50kvTKeFRgvG2o9tnJM2IuXlosgKMHz448vyLl68yJUrVzh+/HiTFjOVyAZBEIiKiiIhIYG+ffs26fJIJYqFRCLBxMSEjh07Ehsbi5+fH4aGhjg6OjbIWCEvL4/MzEwGDx4s82O/SFRWVvLxxx8zYcIE9uzZI7PF9vT0dLS0tORe5ZCens7Zs2dZv369XOOoL01WJDE1NWXgwIHs2LGDzz77TG5xSCQSLC0tiY2NxcTERDkQUjB0dHSwsLAgPDxcpopqdXU1sbGxxMTE0LFjRwYPHiy3Seu8efPYtGkTc+fOxd/fv96q/qJFizhx4kTN47q2JlZ00tNFU9agIPGxujp4eYkTnMYyZa0vbdq0wcvLCx0dHUxMTBrE46axiLkfw87gnWQWZQLgbODMNJdptNNpJ+fIGp7UVNETBGDatIb53AkCXLkCBw6IE3ktLZgyBfr0abwMqdzSXE5Ei/eSCY4T0NWQr7N+Q3D2LOTmit4uT0oSWb16Nd26dWPU43oCK3mhEAShpm1xv379lKvvShoENTU17O3tMTU1JTw8nPPnz2NjY4O1tbVMs90jIiIwNzdv0os1isCJEyfIzMzkiy++kNn/jyAICtNUZPv27QwaNKjJdu1q0kt28+bNY8uWLTSm9+zhw4cZN24cubm5Nc916tSJsrIysrOzGy0OJbXH1taWnJwc7t2799zHEgSB9PR0fHx8yMjIoE+fPri6usr1i0JFRYVdu3aRlZXFm2++We/roWfPnujo6BAcHMzZs2dlVr4jb3Jz4X//gxUrRIFERQU8POCrr8SuIk1Fb2jVqhXu7u6kp6cTHBzcqPc9WVBcUcyOoB187/c9mUWZtNJsxes9Xuednu+8EAKJVAo7doj/du8ODeEnXVAAv/4qlvOUl4umrEuWiB1XGnOsdCD8AOVV5Vi1taKPifzTfWXN/fvw11/i7xMnPr4zUHFxMefPn+e1116T+0BViXwRBIHg4GDS09Nxd3dXCiRKGhwdHR1cXV3p06cPGRkZ+Pj4kJ6eLpNxQ3Z2Njk5Odg2tOv3C8DGjRvp1asXXWRYA5udnU1ZWZnchQlBENiyZQvz5s2TaxzPQ5PNJAEYM2YMCxYs4OrVq89VZlBbAgICmDRpEoIgMGXKFM6ePQuIyq2FhQWxsbEYGBg0eBxK6oaGhgbW1taEhYXh4eFR7wFrfn4+oaGhFBYW4uDggKmpqcIMfq2trdm0aRNTp05l4MCBvPHGG3U+xuDBg1myZAklJSUMGTKkAaJsXIqL4cwZ8PERO3uAODkdOxY6dJBraPWmRYsWuLu74+fnR0BAAN26dVP4Ok9BELiWeo1D4YcoqhDdcfub9We8w3h01HXkHF3dyM3NZdasWURERNC5c2e6dOlS82Nubv7U+8GFC5CYCNraMHWqbOMSBPD3h927xc+9mpr4Offyanx/nfDscPzT/WvMWhXlHilLDh6EykrR5Llbt8dvc+XKFaqqqpTp6C84UqmUwMBAcnNzcXd3R0enad3zlDRt2rVrx4ABA2o6KSUkJODs7Fzv8nNBEAgPD8fGxgYNDQ0ZR/tikZiYyF9//cUff/wh0+PGxsZiYWEhd5/MK1eucP/+fcY0ZF1xA9OkRRItLS2mT5/Oli1bGkUk0dPTQyqVMmzYMM6cOcONGzdq2l49EEny8/MbxPtCyfNhZWVFQkICGRkZdfawKS8vJzIykpSUFCwsLOjZs6dCtqecMmUKFy5c4P3336d37951bn3s5uZGy5YtOX/+fJNu51ZZKQojZ85ASYn4nI0NjB8PlpbyjU0W6Ojo1Aglt2/fxtXVVWGFktSCVHaH7CYuRzTGMGppxPTO07Fu+5g2IApOYmIiI0eOJCsri2nTphEeHs7atWu5f/8+IJrn7d27l2HDhj2yb06O2H4XRINPWX5FFBaK4khAgPi4UyeYNw/kYdVVJa1iT8geAAZZDMKklUnjB9HAREWJf2uJROwQ9CQNyMfHByMjI4VbbY2IiKC8vBxnZ2e5dz1o7kilUm7fvk1RURHu7u5NukxSSdNFIpFgZmaGkZER0dHRXLp0CVNTU+zt7dHU1KzTsTIyMigtLcWyOQym5Mwff/xBy5YtmTJlisyOmZ+fT05OToM3q6gNW7ZsYfr06XX+jCkSEqGp5Wz/izt37uDu7k5GRkajeChMmDCB4OBgqqqq6NevHzsftCkAgoKCqKqqUogPp5JHSUhIID4+noEDB9ZqUimVSklISCAyMpL27dvj5OREixYtGiHS+lNaWkrv3r0pLy/n9u3bdY73pZdeoqSkhPPnzzdQhA2HVArXromdPPLyxOeMjUVxxMlJcTrWyIqKigr8/PzQ1NTE1dVVoYS7sqoyjkcdxyfBB6kgRVNNk5dsX2KQxSBUVZpeFzB/f39GjRqFjo4Op0+frun69KD8Ljg4mOXLl1NZWcnt27cfyp4QBLEEJiREbBH78cey+ywGBIgCSWGhWEY2ciSMGCFmksiDUzGnOBp5FD0tPVYMXFHnFs6VlZWcOnWKkSNHKtTn+QFSKXz9tegt4+kJr7zy5G3d3Nywt7dnx44djRbfs9ixYwdz586luroaXV1d3Nzc6NOnD71796ZPnz7KVrQy5MG9oLy8nL59+ypX3ZUoDEVFRYSFhXH//n3s7OywsLCo9ZjYx8cHa2trzBuyLdsLQGVlJWZmZowbN45ff/1VZsf19/dHTU1NpuU79aGwsJCOHTvi5+cn91ieB8VcfqwDXbt2xdbWlv379zfK+T766CNiY2MxNzdn//79ZGZm1rxmZWVFeno6paWljRKLkrphZmaGIAgkJyc/c9usrCwuXLhAUlISbm5u9OrVS+EFEgBtbW32799PamoqCxcurPP+Xl5eXLlyhd9//53i4uIGiFD2CII4WVyxArZvFwWStm1h7lz48ktwdm5+AgmIZWT9+vVDEASuXLlCyYO0GTkiCAL+6f4svbAU73hvpIKU7obdWe65nCFWQ5qkQHLy5Ek8PDwwMzPj+vXrD7XFlkgkGBsbM2LECJYvX05AQAAXL158aH9/f1EgUVWFGTNk81ksKoJNm2DDBlEgMTaGhQvFLk3yEkjuldzjVMwpACY5TqqzQNIUuHhRFEh0dODll5+8XW5uLgEBAQwaNKjxgnsG69evZ9asWcyePZuLFy+yZMkS2rRpw9atWxkzZgwGBgZ07969JjNKSf0pKSnh8uXLCIJAv379lAKJEoWiRYsW9OrVC1dXVxITE7lw4QJZWVnP3O/B2FneXhfNgZMnT5KRkVGv0vgnUVJSQnp6OtbW8s/U3bdvH/b29k1aIIFmkEkCsG7dOvbs2cPVq1cb5Xx9+vShtLSUmJgYPv30U5YuXVrz2s2bN9HRDHSvzAABAABJREFU0cHZ2blRYlFSN9LS0ggNDWXw4MGPTTUuLCwkLCyMnJwc7O3tMTc3V9hShqfx5Zdfsm7dOrKysuqU6pabm8trr73GkSNHaNmyJQsWLOCrr76Se23j4xAECA8XyxiSksTndHXF1fQBAx5vptgckUqlhISEkJGRQc+ePWnbtq1c4rhbfJe9oXsJuxsGgL6uPq84v4KTgZNc4pEFt27donfv3ri7u3P69Omn+gkIgkDnzp0xNzfn+PHjgFjutXSpaKg6erQoYjwvd+6IxqwPskeGD4dRo+Qnjjzg15u/EpwVjH17ez7o/UG9vEgUOZOksBAWL4bSUrEz0YABT972yJEjjBs3joSEBLmvuAqCwOrVq1m0aBEffvghP/zww78yncSFAz8/PxYsWMDEiRNlXiP/IpGTk8ONGzcwNjbG2dm5SY4flLw4SKVSEhMTiYyMpG3btjg7Oz92QbCqqgpvb29cXFwwNjaWQ6TNixEjRpCbm8v169dldszQ0FBKS0txc3OT2THrS9++fZk+fTpvv/22vEN5LprF3XvatGn4+/sTGRnZKOf76KOPCAoKwtnZmd9//52Kioqa16ytrUlMTKSysrJRYlFSN4yMjNDU1CQhIeGh5ysrKwkNDcXX1xdtbW28vLywtLRssgOcqVOnkp+fX2MuXFvatGnDoUOHiI+PZ968eaxevZpLly41UJT1JzYWfvgBfvlFFEg0NcVJ6Ndfi2aVCja/alBUVFTo0qULtra2+Pn5kZKS0qjnr6yu5HjUcZb7LifsbhhqKmqMth3N0gFLm7RAAqLXVPfu3bl+/Tpbt259amcAiUTCf/7zH06cOFHzXfTnn6JA0rGjWAbzPBQXw5Yt8Ntv4oTd0BA+/xzGjJG/QBKUGURwVjCqKqq84vJKszRr/fNPUSAxNYX+/Z++rY+PDxYWFgohkHz++ecsWrSIZcuWPSKQwN9+Ba+88gqrV69m8+bNXL58WU4RN21SUlLw8/PDzs6Ozp07N9nxg5IXBxUVFSwtLRk8eDDa2tpcuHCB0NDQR+Yw8fHxaGtr19nTT8mjPDBslWUWSWVlJYmJiQqRRRIREUFAQADTpk2TdyjPTbO4g7dt25Zx48axZcuWRjnfuHHjMDc3p7q6mszMTA4ePPhQLK1btyYxMbFRYlFSNyQSCY6OjkRHR1NRUYEgCCQmJuLt7U1+fj4DBgygS5cuTT491tnZGUdHR/bt21ev/c3MzPjhhx8wNDTk5MmTMo6u/qSkwNq1sGYNxMSIk0MvL1EceeklsXPIi4qlpSU9e/YkODiY8PDwRmkRHHY3jOUXl3Mi+gRV0ioc9R1Z6rmUl+xeQl216StV7du358qVK8yfP5933nmHKVOmkJ+f/8Ttp02bRseOHfnpp5+IjoYHc80ZM0BVVSAoKIiFCxfy3nvvPSSuP4vgYFi2DG7cEMt1hg+HL74AM7PnfIMyoKK6gn1h4n1miOUQOrboKOeIZE98PPj5ib+/8oqYwfM0fHx8FKLU5r333uO7777jp59+YunSpc8Ur9544w169erFRx991EgRNg8edPwIDg6mZ8+eSlNLJU0OTU1NunTpwoABA8jPz8fb25vExEQEQaCiooKYmBgcHR2bpQDe2GzevFnmhq0JCQm0bt2aNm3ayOyY9WXLli2MHz9eIWJ5XppFuQ3AuXPnmDlzJikpKY2Spvvjjz/y+eefY2VlRfv27R9aecnMzOTOnTsMGTJEIcsUlICfnx8aGhoUFhZSVVWFs7MzHTt2bNJfAO+99x6lpaXMmjWLfv368dVXX7FmzRru3r2Ldj3Vg9dee42rV68SEREh42jrRmamaMjq7y8+VlEBd3extKYZ3IdlSmFhIdevX0dPT4/u3bs3SAeL3NJc9oftJyBDbKnSWqs1k50m092we5O+hp7GoUOHmDdvHvr6+uzfv5/u3bs/drtvvvmGFStW8fbbmRQV6WJtnUFJyUb27t1bk9JcVFTEqFGj2Ldv3xO/r6qqqjhxwoejRzWRSnuhpaVFx44wZw5YWDTgG60jRyKPcDrmNG2127LMcxmaavV3slfEchupFL75RhRo+/WDWbOevn1WVhYdO3Zk165dcl1Je9DJ7bvvvuOTTz6p1T7l5eV07tyZTp064e3t3cARNg+qqqoICAigoKCAXr16NUoDASVKGhJBEMjMzCQ0NBR1dXV0dXWprKykb9++8g6tydMQhq3V1dWcO3eOrl270rGjfBcpKisrMTExYdeuXXh5eck1FlnQLDJJAAYNGoSmpianT59ulPO9+uqraGpqIpVKuXLlClFRUTWvdejQAXV1dVJTUxslFiV1o6SkBEEQSEtLw8DAgEGDBmFoaNjkJ3d5eXn88ccfeHh4YGVlRWRkJEVFRc91TYwcOZLIyEji4+NlGGntuX8f/vc/cRXd319cRe/VC5Yvh+nTlQLJ42jZsiUeHh5UVFRw5coVmRpJV0urORd3jqW+SwnICEBFooKXpRfLBy6nh1GPJn8NPY0JEyYQEBCAnp4effr04bfffntsts78+fMRhGHs33+RI0e28+mnVvzwww+4ublx6tQpMjMzOXToECdOnGDatGkPpTULgsDNmzd5//336dBhMOPGBbJtWxQ7d+4gJOQH3Nz+wtS0ujHf9lPJLMrkbJxY0jfFecpzCSSKyqVLokCiowPjxj17+wsXLgAwcODABo7s6QQGBgLi57a2/PTTT8TFxfHf//63gaJqXpSWlnLlyhUqKirw8PBQCiRKmgUSiQRDQ0MGDRqEvr4+6enpCIKgEObwTZ2GMGxNTU1FXV2dDh06yOyY9eXUqVNoaWkpRCalLGg2Iomqqipz5sxptJIbPT095s6dS0ZGBlpaWmzbtq3mNYlEgrW1NXFxcY2S8q6kdlRVVREREYGPjw86OjqYmJiQn5/fbOqGV69eTYsWLejbty9eXl6cOiV2mnhgIlkfvLy8UFdXrzlWY5GXB3v3ikaJfn6iSWuXLuLjefPAwKBRw2lyaGpq0rdvX/T09Lh06RJ5D3oiPwexObF8dekrDoYfpLyqHKu2Vnzh8QWTnJpnJ5PHYWVlhZ+fH2+88QZvvfUWixYtemSbsrK2ODh8SEZGOp07h3Ho0E6ysrLYvn07I0aMQF1dndGjR3PgwAGOHDnCjBkziIyMZPny5djZ2dGr1wD+9z8BY+PVjB8/j//8ZzoLF6pRWLiNl14ajpmZGV988YXcu5AIgsCekD1US6txNnCmS4em7WL/OAoLRWNoEL1fajMH9vHxwcHBAUNDw4YN7hncuXMHPT09LGqZdnT//n1WrlzJe++9pzSerwW5ublcvHgRPT09ZYtfJc0SFRUV8vPz6dSpE9ra2vj4+BAREUFVVZW8Q2uybNy4kZ49e8qs64sgCMTGxmJtba0Qi1Rbtmxh7ty5zWZe1WzKbUA0w7G1tSU5OblRUo5iYmKws7NDQ0ODdu3akZycXFNe8yD9qVu3bgqh7r3ICIJAamoq4eHhaGtr4+LiQps2baioqMDHxwdnZ2dMTEzkHaZMWLNmDZ9//jnbtm1jyJAhXL16FRMTE3r16lXvYw4cOBBtbe1GEUoKCuDMGXH19sECu709jB2rWCUGTYUHX6BRUVF07969XqZrBeUFHAo/xPVU0YVdV0OXiY4T6WPSRyG+lBuKS5cusX37dhwcHHB2dsbFxaUm40wqlWJsbMyECRNYt25dzT6CIPrlxMYKODlV8d576k9t+Xv48GEmT55MVVUVLVu2ZNCgt9HSepNWrUxRUVFh8GBxcq6h8f/tlf392bJlC7/99pvcyzmup15na+BW1FXVWea5jPY67Z/7mIpWbrN9O1y9Cp06waJFz/YiAdG8ffjw4Q99LuTBpEmTyM7OxtfXt1bb//TTT3z22WekpaWhr6/fsME1cdLT0wkICMDe3h4rK6tmfR9U8uKSmppa0w1SXV2d3NxcQkJCKC0txdHRERMTE+Vnvw4kJSVhYWHBpk2bePXVV2VyTEWyd8jIyMDMzIyYmBjMFMEwTQbI2RNftpibm+Ph4cGOHTtqXYP7PNjY2DB69GiOHz9Oeno6Pj4+DBkyBBAzWywtLYmNjVWKJHLknzd1JycnjI2Na27qGhoaODs7ExoaWlMi1dR5//33OX36NLNmzUJVVZXevXszYsQI1NTU6NatW63U3aqqKq5du8apU6c4deoUwcHB2NvbN2jchYXw11/g6/u3OGJlBS+/LIokSuqHRCLBxsaGFi1aEBAQQGFhIba2trUa2FRLq7mQeIHjUccpqyoDoL9Zf8bZj0NXQ7ehQ5c7ubm5bN68+aHnHrRINDY2JjMzk0mTJj30+uXLEBcHWloSZs16ukACogn42bNnSUu7T0XFS9y4IZar6OvD7NlgY/P3thKJBFdXV7S1tfntt99k8h7rS1FFEQfCDgAw2na0TAQSRSM+XhRIoHZmrSAOguPi4hQi1TgwMJCXatlzWhAENm7cyPjx45UCyVMQBIHo6GhiY2Pp0aOH3LOFlChpKB50fHR2dq4ZG7dp04b+/fuTlpZGWFgYCQkJNYuOSp7N77//TosWLZg6darMjhkbG4ulpaXcBRKAHTt2MGDAgGYjkEAzKrd5wLx589iyZUujlbl8++23tG7dGoDg4OCHXjM3Nyc3N5fc3NxGiUXJ35SVlREQEMDVq1fR19dn8ODBj1W9jY2NadWqFeHh4XKKVLZoaGjg4+NDUlIS69evx8DAgG+//RZXV1cMDQ2ZNWsWu3fv5t69e4/d/9dff0VfXx8PDw82b95M165d2bt3L9euXWuQeIuKxNaaixbBuXOiQGJpCR98AJ98ohRIZIWhoSHu7u4kJSUREBBAdfXTfS0isiNYeWklB8IOUFZVhnlrcxb2X8iMzjNeCIEEYMyYMXz11VcALFy4kMOHD/Phhx/SsWNHgoKCcHV1xd3dvWb73Fw4dEj8fezY2vvldOgwkPDwiTUCycCBYlnZPwWSf/Lzzz9jaGjIxIkT6/vWnptD4YcoqijCqKURQyyHyC2OhkIqhT17xN/79hUF29pw4cIFJBIJAwYMaLjgakF+fj5xcXF069atVttfuXKFyMhImdbJNzeqq6sJCAggKSkJd3d3pUCipFkTHh5Oq1atMDY2fuh5iUSCiYkJgwcPRl9fn6tXrxIQEEBZWZmcIm0a5Obm8uuvvzJ//nx0dWUzhsrNzSUvL0/ureZBFJC3bNnCvHnz5B2KTGlWmSQgrsy99dZbXL9+nT59+jT4+RwcHDh+/Dj9+/enuLj4odc0NDQwMzMjNjYWNze3Bo9FiTiQiYuLIzo6mg4dOjBo0CB0dHSeuL1EIqFz5874+vpiamrabBRxU1NT3njjDd544w0qKyvx8/PjzJkznD59mh07diCRSFi9ejWffvrpQ/tpa2uTn5+Po6Mjvr6+DbaqWFwsiiI+PlBeLj5nbi628XVy4pkr8Erqjp6eHh4eHty8eZOrV6/i6ur6yLVxv+Q+B8MP1nStaanZknH24+jbqe8LmVa7aNEi0tLS+O677zhy5AhffvnlY7cTBNi1C8rKxLIwT89nH7ukBA4c+Lu1bLt2YucaW9sn73P//n127NjBl19+KTcPhOj70filiEHP7DITVRX5r2DJmitXIDlZbCk+fnzt9/Px8aFr1660a9eu4YKrBUFBQQC1Fkk2bNiAtbW13M1mFZWSkhJu374NgIeHB1paL4YHk5IXk5ycHFJSUvD09Hzi976amhoODg6YmZkRFhbG+fPnsbW1VZisBkXjl19+oaqqSqbt1WNjYzEzM1MIP6Rr166RlZXF2LFj5R2KTGl2Iom2tjbTp09n8+bNjSKSALi7u5OYmIjBY9wkraysOH/+PMXFxTJTD5U8iiAIZGRkEBYWhrq6Or1796Z9+9qlgLdo0QIbGxuCgoLw8PBoNoZDD1BXV2fAgAEMGDCAVatWkZ6ezsyZMzl9+vQjIsm8efMwMTFh2rRpuLm5cejQIXr06CGzWEpKwNsbzp8XJ5Qg1vu//DK4uCjFkYZGS0uLfv36ERISgq+vL926dcPQ0JDK6kr+ivuLM7FnqKyuREWigqe5Jy/ZvYSO+pNFxuaORCJh7dq1ZGRkMHnyZC5cuPBYf5+bNyEkBNTUxDKZZ91CAgNh927Rg0cigUGDRO8RzWc0h9m4cSOA3Fb8q6RV7AzeCYCHmQeWbSzlEkdDUlQEhw+Lv9fWrBXE7yAfHx+ZplLXF83//yDFxMTg4uLy1G3v37/PwYMHWbly5QsphD6LjIwMAgMDMTIywsXFRTkBVNKskUqlBAUF1ZTpPgsdHR3c3Ny4d+8eoaGhJCYm4uzsTMeOHZX3k/+noKCA//73v7zxxhsys18oLi4mMzOTwYMHy+R4z8vmzZuZPn062tra8g5FpjQ7kQTEiZ6npyf//e9/a3WRy4In1WDp6OhgaGhIXFwcnTt3bpRYXjQKCgoICQmhoKCgRtmu683Z2tqa1NRU4uPjsba2bqBI5U9lZSXXr18nKyuL/Pz8x24zdOhQ/P39GTVqFO7u7iQnJz93RklJiZg14u0NDzrSmpiImSNduijFkcZEVVWVrl270r59e/z9/SnVK8W/zJ/cMrEs0LadLVOdp2LcyvgZR3oxUFVVZffu3Xh5eTFq1Cj8/Pyw/Ue6R0EB7Nsn/j5qFDwtC7+wUOza9P+L0nToIIoqtS3n2L9/P6NGjZKbb8SZ2DNkFWXRSrMV4xxq0Q+3CXL4sHi/MjGBulTNxMTEkJaWphB+JL169WLo0KEsWrSIl19+GTW1Jw/1duzYgVQqZfbs2Y0YoeJTXV1NWFgYKSkpdO3a9ZGyAyVKmiPx8fFIpdI6j4Pbt2/PgAEDSEpK4s6dO7Rq1QoXFxdatWrVQJE2HdavX09JSYlMvTLj4uIwMjJ6aqZ8Y1FUVMS+ffu4dOmSvEOROc1ryfz/6d69O5aWlhw8eFDeoQDiBDw5OZmKigp5h9KsqKioIDg4uKYNn5eXF+bm5vVSr1VVVencuTORkZGUPpjFNyNSUlJYsmQJZmZmTJgwgZYtW7J27donbl9UVERqaioDBgygbdu29T5vUREcOQILF8Lx46JAYmQEb74JX34JXbsqBRJ5od5anQi9CHZE7CAsIQxdVV1e7/E6/+nzH6VA8i+0tbU5fvw4+vr6DBs2jMzMzJrX9u4Vy8dMTGDYsMfvLwhw4wYsXSoKJCoqMGKE6D1SW4EExKzFy5cvU/6gRq0RySrK4nTMaQCmOE9plhlGiYl1N2t9gI+PD6qqqvTv379BYqsrq1evJioqim3btj1xmweGrePGjXtsJuyLSlFREZcvXyY3NxdPT0+lQKLkhaCkpITIyEi6dOlSr4wpiUSCubk5Xl5e6OnpcfHiRYKDg1/ouU9xcTE//PAD8+bNk9l9pLy8nOTkZIVZ0D1w4ADW1ta1Lu9sSjRLkUQikfDqq6+yZcsWeYcCQOvWrWnTpg0JCQnyDqVZIJVKiY+Px9vbm5KSEjw9PR9y4K4v+vr6GBkZPWLA29T59NNPMTc356effmLMmDEEBgZy7dq1J9YOZmZmMnLkSMzMzNi/f3+9viwLCkQTy0WL4PRpsbTGyAhefx2WLIHu3ZXiiLwoqyrjz4g/WX5xObF5sZgYm+Bl5kX/qv50qO6gTJF9Am3btuXMmTOUl5czcuRISkpKCAwEf39xMj17NjzuUsnNhV9/hS1b/hZTFi4UzV3rest6++23uXv3bqMvAAiCwK6QXVRJq3AycKKHoexK8BQFqVQsgRIE6N0b6jr+PHz4MP369aNlbetzGphu3boxdepUli1b9kTh/+rVq0RERPDmm282cnSKS0pKCr6+vrRv357+/fsry6SVvDCEhIRgZGRU61L1J6Guro6zszOenp6UlJTg7e1dk6HyorFhwwby8vL47LPPZHbMxMRE2rZti56ensyO+Txs2bKFV199tVmOHZtluQ3A9OnT+eSTT4iOjn4oNVpe2NjY4O/vj7W1tbKm9Tm4e/cuoaGhCIJAjx49ZN5e2cnJifPnz5ORkdFs3Ovj4uIwNjYmLCzsmQN4QRCYPn06VVVVnDx5ss6pkvn5cPYsXLz4dyvfTp3EMgRl1oh8EQSBm2k3ORRxiPwysdTKpYMLk50mY6BrQGZmJoGBgWRnZ9O5c+enpui/aJSXl3PixAm2bdvG3bt3ycvLIz4+k927RU+OYcPA1PThfQRBNAA9eFAUCdXUxOtg2LDHiym1wd7eHi8vL9atW8f06dOf813VnhtpN4i6F4W6qjrTXKY1y8HQ1auQlARaWjBhQt32zcjIwNvbW+6tmf/NypUrsbGxYffu3bz66quPvL5x40asra3xrI3TcDOnqqqK4OBgsrKycHNzk/nYQokSRSYjI4P79+/L1OOiZcuW9O7dm6ysrIf8Sl6UrLWysjLWrFnDzJkzZdaBprq6mvj4eJl6BT4PUVFR3Lp1iyNHjsg7lAah2Y6C27Vrx5gxY9i6dSurVq2Sdzjo6+ujpaVFSkqKQrRramoUFRURFhbGvXv3sLe3x8LCokEMVjU1NXFyciIkJAR9ff1mMVGcOnUqf/75J5mZmc8USU6fPo2Pjw/Hjx/HxMSk1ufIzYUzZ8RJYVWV+Jy5uTgpVBqyyp+U/BT2hu4lNicWAH1dfSY7TaZzh799kjp27Iinpyf+/v5cvHgRV1dXhVmpkBdVVVV89tlnbNu2jZycHHr16sW6deuYMmUKx461oaAAOnYUP+f/JDsbduyAqCjxsYWFmGkiC931nXfeYezYsdy+fRtXV9fnP+AzKKooYn/YfgBesn2J9jrPt8qoiBQX/23W+vLLUNcy+r1796KmpsakSZNkH9xzkJqaCjzeMy0nJ4f9+/ezYsWKZmdWXlfy8/O5desW2traeHp6NjvzQSVKnkZVVRUhISE4OTnVmD7Lkg4dOqCvr09CQgK3bt2iffv2ODk5NZpnpLzYvHkzd+/eZdGiRTI7ZnJyMlpaWnLzJfs3W7duZcyYMXLv6NZQSARBEOQdRENx5swZ5s2bR3JyskJMdpOTk4mOjmbw4MHNciWuIaisrCQ6Opr4+HhMTU2xt7dvkJv4PxEEgStXrtCmTRucnZ0b9FyNQWlpKQYGBnzyyScsWbLkidtVV1fTrVs32rRpg6+vb60+o/fvi+U0fn5QXS0+Z2UlThodHZXiiLwpLC/kePRxLiVdQhAENFQ1GGkzEi9LL9RVH1/rIQgCUVFRxMbG4ujoiIWFxQt7v8rKysLGxobCwkLWrVvH22+/DUBYGPzyi/j5/uSTv31FpFLRoPjIETGTSl1dLKsZNKhu/hZPo7q6GisrKzw9PZ/qNyEr/nfnf/il+GHU0ogvPb5s0Ja/lZWVnDp1ipEjRz53+WRd2LkTLl8GY2PRK6mu/1fdu3fHwsKCQ4cONUyA9WTcuHHExMQQEhLyyDX8888/88knn5CamvrCrOz+G0EQSEhIIDw8HBsbG2xtbV/Ye52SF5fQ0FDy8vLo169fg3/+y8vLiYyMJDk5GUtLS2xtbRv1Xt9YVFRUYG1tjYeHBzt37pTJMQVB4Pz589jZ2dGpUyeZHPN5qKqqolOnTmzbto1hTzJka+LIXzloQIYMGYKWlhZ79+5lxowZ8g4HExMTIiIiyMzMbDalHA2FIAgkJycTERFBy5Yt8fDwaLRVbYlEQpcuXbh48SKdOnVq8qvp2trajBs3jl27drFo0aInCoY7d+4kJCSE69evP/OLMiMD/vpLNKN8UGZqayuKI3Z2SnFE3lRJq/BN9OVE9AlKK0U/AlcjVyY6TqSNdpun7iuRSLC3t6/pfnPv3j26du2KhoZGY4SuUHTo0IHg4GDmzJnDO++8Q3R0NEuXrmLnTtG0dNCgvwWSjAzYvh3i48XHdnYwcybIesFHVVWVt956iyVLlrBmzZoGXVGKvh+NX4ofADO7zGxQgUReJCaKGXBQd7NWgLCwMAIDA1m8eLHMY3seEhISOHr0KL///vtj7+ebN29+oQ1bKyoqCAwMJC8vj969ez+3D4MSJU2R/Px8EhISGDBgQKMIhJqamnTp0gVzc3NCQ0M5f/48Dg4OmJqaNiuBcvv27aSmpso0iyQjI4Pq6mqFMZLeu3cv2traeHl5yTuUBqNZiySqqqp8+eWXrFixgqlTp8o9m0RFRQUrKytiY2OVIslTuH//PiEhIVRWVtK5c2cMDQ0b/ebZqlUrrKysCAoKon///k3+5r1gwQJ2797N22+/XTNoftDi8MqVK1y5coVTp04xceJEevXq9cTjJCaKZTV37oieCwAODqI4YmPTKG9FyVMQBIGQuyEcCDvA3eK7AHTS68Rkp8nYtqubN1P79u3x9PQkMDAQX19fXF1dn6vTUVPF3NwcHx8ffvnlFxYuXMj+/ar07v0Zjo4dGDNGzKD66y84eVIsNdPSgokTwd29YcTCgoICbt68WbMi11AiSZW0ip3B4gqYh5kHlm0sG+Q88kQqFbNIBAF69arfPWzXrl20adOGkSNHyj7A52DdunW0bt36sQtEGRkZhISE8OWXX8ohMvmTk5PD7du3adWqFZ6eng2enaqk6VNRUdHsFgoEQeDOnTtYWVk1eqtePT09+vbtS0ZGBmFhYSQkJODi4tIsyjaqqqpYtWoVEyZMwNHRUWbHjY2NxcrKSiHKI6uqqli+fDmLFy9u1j6bzVokAZg1axbffPMNO3fuZM6cOfIOBzMzM6KiosjJyXkhJxxPo6SkhPDwcDIzM7G1tcXKykquF5+trS1paWkkJiZiYWEhtzhkQZ8+ffjjjz+YO3cuBQUF5Ofn4+fnR35+PmpqavTo0YPXXnuNTz/99JF9BUH0Vjh9GiIj/36+SxexjWkT/9M0G9IK0jgQfoCI7AgAWmm2Yqz9WPp06oOKpH5fqpqamvTq1Yv4+Hj8/PywsbHBxsZGIb6kGxMVFRU++OAD7O1fYtasII4cOUqHDiWkpLzF3r0apKSI2zk7w4wZ0ObpyTr15s6dO0yaNImsrCz279/foO1mz8SeIasoi1aarRjnMK7BziNPLlyAlBTQ0YH62IlIpVJ27drF5MmTFWqiXVRUxObNm3nzzTfR0Xm0VfOlS5cA8PDwaOzQ5IpUKiUmJoaYmBgcHBywtLRs8gsgShoePz8/Bg0aRM+ePXn99deZOHFis/CtSUxMpKKiQm7NLSQSCUZGRnTo0IG4uDiuXbtGx44dcXR0fOx9q6mwe/du4uPj+fPPP2V2zPv371NYWPhYfyl5sGPHDgBmzpwp50galmbtSfKAHTt2sHTpUqKiohSi9i0sLIyioqKnrti/SFRVVREbG0tsbCxGRkY4ODgozBdQVlYWt2/fZvDgwWhpack7nOdmzZo1/Pjjj3Tt2hV3d3fc3d1xc3N77BeSIIgZI2fOiBkkIKai9+wpdugwMmrU0JU8gcLyQo5FHeNy8mUEQUBNRQ0vSy9G2IxAS012n9nc3FwCAwORSCR07dqVNg2lBCgoFRWwciVkZkq5d+8Ex47tok2bSQwcOJBOndoxZYp4bTTEnEsQBDZu3Mj777+Po6Mj+/fvx7quPWrrQFZRFisurqBKWsXrPV7H1ajhDWKhcT1J8vJg6VKx89D06VAfveDixYt4enpy+fJl3N3dZR5jfVm/fj3vvvsuCQkJmP677RJiK2lvb2+iHjgLvwDk5uZy584dBEGo8d5SouRZFBUV0bVrV1q2bEnbtm3x8fGhdevWzJo1i2XLljXZz1FZWRnnz5/H1dVVYTo5lZaWEh4eTkZGBtbW1lhbW8u9AqCuSKVSnJ2dsbKy4vjx4zI77o0bN2jRogVOTk4yO2Z9qaiowM7OjpUrVyqElUVD8kKIJNXV1Tg5OfHRRx/x+uuvyzscSktL8fb2ZuDAgc3e3flpCIJAWloa4eHhaGpq4uLiopDZNbdu3UIikTRKJwlFoLoabt4USwgyMsTn1NWhXz8YOhSaQTZks6BKWsWFhAucjDlZ4zvS3bA7ExwnNFgHkurqamJiYoiNjcXc3Bx7e/smN4ipL4cOie2tq6qgbVuIj8/mwoULFBRcYPFiW7788r0GyXwrLCzkjTfeYO/evSxYsIAff/yxQQVbQRD46fpPRN2LwsnAiXd7vttoq+2NKZJs3Aj+/mBpCZ9+Wj9x6/XXX8fb25u4uDiFya6SSqU4Ojri7OzMwYMHH7uNs7Mzffv2ZePGjY0cXeNTVVVFZGQkiYmJWFtbY2trqzD/V0oUnwULFrB9+3aCgoKwtrYmNjaWP/74g99//x0HBwfOnTvXJMfxt2/fRhAE3Nzc5B3KI+Tk5BASEkJ5eTlOTk4YGRk1mYyvo0ePMnbsWK5evUrfvn1lcszCwkJ8fX3x8vJSiAXkjRs38tNPPxEaGtqsS23gBRFJQDSY+fTTT4mJiVGItNiAgABUVFTo2rWrvEORC3l5eYSEhFBcXIyTkxMmJiYKexMsLS3Fx8cHNze3Zm1yV14udqk5exZycsTntLRg4EDRoLKRS1aVPAFBEAjOCuZg+MGHfEemOE3Bpl3jGMMUFBRw584dysvL6dq1q8K0o2soEhPFLJLYWNGItV07USiZOLGC/fsXs2bNGnr37s3GjRtl0hFLEAQyMjIIDAzkww8/JDMzk02bNjFlypTnfzPP4HrqdbYGbkVdVZ1lnssateVvY4kkoaGwdq2YGffFF1CHbuc1lJWV0bFjR959911Wrlwp+yDryV9//cXw4cO5dOnSY8ux7t27h76+Pjt37mT69OlyiLDxuHv3LkFBQWhqatK1a9dG911Q0rQ5ffo0I0eO5LfffmP+/PkPvXb79m0GDhxInz59OH78uELMK2rL3bt3uXXrFoMGDVKISffjEASBlJQUwsPD0dXVxcXFhdatW8s7rKciCAJ9+vRBQ0OjpqRRFty5cwepVEr37t1ldsz6Ul5ejo2NDWvWrGmU8Yi8eWFEEqlUSufOnXnrrbd466235B1OjTL4omWTlJWVERERQVpaWk37r6awEh0fH098fDwDBw5sdsppQYFYm3/xIhQXi8+1bAleXjBgACjod+gLSVpBGvvD9hN5TzSHeeAX0dukd719R+rLP9tnGhsb4+Tk1OyM7UBs5btggdjJqW1b0ah48GB4+WV4MC6+evUqr776KnFxcXzyyScsXry41oPP7OxsQkNDCQsLe+jfvLw8ALp27cr+/fuxaQRn5MLyQpb6LqW4opjxDuMZZt24bf0aQySprIRly+DePfEeVx8vEoCDBw8yadIkIiIisLe3l2mM9UUQBDw8PCgpKeH27duPXXg4fPgw48ePJzk5WSHaSDYEFRUVhIWFkZaW9sK3MVdSP3JycnB2dqZz586cPn36sZ8fX19fhg8fzqhRo9i3b1+TGMtWV1dz4cIFLC0tsbRUfDPuqqoqoqOjiY+Px9jYGAcHB4UtfX9Qfnny5EmZGXkXFRVx4cIFPD09admypUyO+Tz8+uuv/P777wQFBb0QGXkvjEgCcOjQId577z1iY2MVQj29c+cOVVVVL0QZR3V1NfHx8URHR6Ovr4+TkxO6urryDqvWCILApUuXMDAwwMHBQd7hyISsLDh3Dq5dE0sIQFwl9/ISS2sUwL5Hyf/zON+RIVZDGG49XKa+I/WhpKSEoKAg8vPzcXFxaVKpsc/i7l1YuFDMsNLQEIWR116Dx3mnlZeX8+233/L1119jYmLCb7/9xtChQwFx8n/v3j3i4uIeEUOys7MB0NDQwN7eHicnJ5ydnWv+tbCwaLTByB8Bf3Ar7Rad9Dqx0H1ho7f8bQyR5OhROHVKNNddtkzMlqsPY8eOJS0tjVu3bsk0vudh//79TJkyhbNnzzJkyJDHbvPtt9+yevVqcnNzGzm6hkcQBNLT0wkJCUFPT48uXbo0aQNIJfIhNzeXadOmcf36dUJDQ5/acvXYsWOMHz+e2bNn88cffyj8d19ERAR3797Fw8ND4WP9J8XFxYSFhZGdnY2trS2WlpYKt2A5YsQI0tLSCAoKktnf9tatW6irqytE1UFpaSlWVlasW7eO8ePHyzucRkHxZU8ZMm7cOFauXFljgCdv7OzsOH/+PHl5eQqfRlZfBEEgMzOTsLAwVFVV6dmzZ5NMzZdIJHTp0oUrV65gYmKiEIpufRAEiIsTS2qCgv5+3sJC9Bvp2lVMQVeiGDzwHTkRfYKyqjIAehj1YLzD+EYtg3gaOjo69O7dm7S0NIKDg0lNTaVz584KIUTXl6oqUUDcswdu3xaviddfFzNKnjQu09TUZMmSJUydOpX58+czbNgwrKysyM3NJedB/Rpia3pbW1ucnJx4++23a8QQeZvUBWcFcytN9F+a2XlmowskjUFmpui1BDBlSv0Fkvv373Pq1Cm+//572QX3nJSWlvLJJ5/w0ksvPVEgATHLQlFXYp+H0tJSgoODycnJwcXFBWNj4yY1CVSiGJw7d465c+dSVFTE7t27nyqQALz88sts3bqVWbNmYWRkpFCld/+msLCQuLg43N3dm9y1oaurS8+ePWsyL5OSknB2dqZDhw4K8V7u3LnDmTNn2LVrl8ziycvLIysri8GDB8vkeM/Lhg0b6NChA2PHjpV3KI3GCyWSqKiosGLFCt544w1ef/11ua8waGtrY2FhQXh4uMwMfhSJgoICQkNDyc/Px97eHjMzsyadntW6dWvMzMwICgqiX79+CnFjri1Sqdip5tw5iI//+/kuXURxxMqqYbpyKKkfgiDgn+HP4YjD3Cu5B4CpnimTnSY3mu9IXZBIJJiYmKCvr09oaCg+Pj44OTlhZmbWpK4TEK+PHTsgNRUiIqB1axg/Ht5+u3bXiK2tLefPn2fPnj34+/ujr6+PgYEB+vr6mJmZYWdnp3D162VVZewO2Q3AEMshmLVWjDaDskQQYNcu0ZjaxUUUhOvL0qVLUVNTY+rUqTKL73n58ccfycjI4Ny5c0/drqKiQuE+f8+DIAgkJiYSHh5Ox44dGTRoULN6f0oah+LiYj777DN+/fVXvLy82LJlS63L0Vq3bo2GhgaxsbENHGX9EQSBoKAgzMzMmvSirL6+PgMGDCApKYnAwED09PRwdnaWu9/Qt99+i7m5OZMnT5bZMcPDw7GwsFCIBafi4mJWrVrFH3/80aTncXXlhRJJAF566SU6derE+vXr+fjjj+UdDjY2Nnh7e5Odnd0kMyweR0VFBZGRkSQlJWFubo6rq2uz8SpwcHDA19eXmJgYufWWrwvl5XD9Onh7i6UDAGpq0KePWFbTsaN841PyKLE5sRwMP0hCbgLwt+9IH5M+Ci84aGpq0qNHD7KysggKCiI1NZUuXbo0icyrsjI4cgR8fcUJ9d27oqGnhQW8+WbdRESJRMK0adOYNm1aQ4UrUw5HHCa3NBd9XX1esntJ3uE0CDduQHS0WEY4dWr9ReGLFy/y66+/8vPPPyuMkXd6ejqrVq3i3Xfffeb3Unl5ebP5Pi4sLCQoKIiSkhKFamWqpGkRGRnJyy+/TGpqKmvXruWtt96q9URw+/btzJs3j7Fjx7Jt27aGDfQ5iImJoaysjN69e8s7lOdGRUUFCwsLjI2NiYqK4uLFi5iZmWFvby+Xe1tcXBz79+9n7dq1MssGvXv3Lnl5eQpjx7B+/XrMzMwYPXq0vENpVF44kUQikbBixQpmzZrF/Pnz5W6aqqGhgY2NDWFhYQwYMEDhJ0FPQyqVkpSUREREBG3atFEYoyFZoqamRo8ePbh69Sr6+vq0adNG3iE9ltxc0Yz18mUoKRGf09UVjVgHDlR2qlFEsoqy+DPiT+5k3gFAU02ToVZDGWI5BE21prUy2qFDBwYNGkRERAQXL17E1tYWKysrhashfkBQEOzeDf/vlYqNjZhxoKoKM2aIRsbNldicWHwTfQGY0XkGGqrNYwL9T0pK4EE33NGjoX09K9WKi4uZN28e/fv355133pFdgM/JwoUL0dbWZvHixc/ctqKiosmLJNXV1cTFxREdHY2ZmRm9e/duEqaZShSTr776ioqKCgIDA7Gzs6v1fj///DMffPABr776Khs2bFDY77fc3Fyio6Pp169fs7pONDQ0cHFxwdzcnNDQULy9vXFwcGj0rPXvv/+edu3aMXfuXJkcTxAEwsPDsbGxUYh7dWFhId9++y07d+5s0nPU+tB8rpY6MHz4cKytrVm7di0LFy6UdzhYWloSHx9Penr6M+sfFZXs7GxCQkKQSqX06NGjWa/otGnTBltbW/z9/fH09FSYLx1BgIQEOH8eAgLEEhsQzVgHD4a+ff/uxqFEcSgsL+R49HEuJ11GKkiRSCT0N+3PS3Yv0Uqz6apZampqNd4AQUFBJCUl4ejoqFDGrnl5sG+feL2AeK1MmQKHDokCiZsbKEDXvQajsrqS7UHbAehn2g/79orRpUXWHD4MhYVgaChm0NWXL774gvT0dM6cOaMwKce3bt1i+/bt/Pbbb7VKo9fV1SUlJYXk5GRMTU0bPkAZ8sCYNTw8HDU1Nfr27Uvbtm3lHZaSJkxlZSUnTpzggw8+qJNAsmrVKhYtWsSnn37K6tWrFeY77d9UVVXh7++Pra2twi7qPS8tW7akd+/eZGVlERoaSkJCAi4uLo2SnZ+ZmcnWrVtZsmSJzMpi0tPTKS8vV5juQ2vXrsXW1pZhwxq3250i8EJ1t/kn3t7eTJ48mcTERLnXsgEkJSURExPDoEGDFGbwVRuKi4sJDQ3l3r172NnZYWlp2aTiry+CIHD16lVatGghd9fp6mpxkuftDYmJfz9vby+KI87OSjNWRaSiugLveG/OxJ6hvKocgM4dOjPeYTyGLQ3lHJ1sEQSB5ORkIiIi0NHRwdnZWa6TG0EQs6wOHRLLbFRURG+e0aPh+HHR3LNVK7H7SRNqwlVnjkYe5VTMKVpptmL5wOXoqMvXp6shutvEx8O334q/f/yxmCVUH65cuYKHhwc//PADH374oUxie14EQcDd3Z3CwkICAgJqJdjn5OTQrVs3jIyMuHjxokKsVNaGnJwcQkNDKSkpwcHBAVNTU4WdmCppOnh7ezNkyBACAwNrPZaLjY3F3t6eTz/9lG+++aZhA3xOAgMDKS4ubnI+evVFKpUSHx9PVFRUo3TS/OSTT9iwYQPJycky8XqRSqX4+PhgY2OD2ePa6DUy+fn5WFhYcODAAYUxkG1MFGMJXA4MHjwYZ2dn/vvf/7JkyRJ5h0OnTp2IjY0lKSkJCwsLeYfzTCorK4mJiSE+Ph4TExO8vLxeKLM0iURC9+7d8fX1xcDAACMjo0aPoahInOj5+v5dJqCmBr16waBBop+CEsVDKki5lnKNY1HHyCvLA8CstRkTHSdi207xfW7qg0QiwczMDGNjY2JjY/Hz86NDhw44Ojo2eivwlBSxtOaBgbG5OcycKV4v8fFi5ycQy2yas0CSWpDKmdgzAExzmSZ3gaQhkEpFs1YQM+nqK5CUlJQwb948evfuzXvvvSe7AJ+TvXv34ufnx/nz52ud0di2bVv2799P//79+fzzz/nxxx8bOMonU11dze7du8nLy8PZ2RkXFxfa/6sWqri4mPDwcLKysrC2tpZ7FyglzYsjR45gZmZGly5dar3P8uXL6dChQ63K2+RJeno6GRkZDBw48IUQSED0K7G2tqZTp05ERERw4cIFLC0tsbGxkXlb+YCAAH766SeWLFkiMzPcpKQkJBJJrU2DG5r//ve/uLi4MGjQIHmHIhde2EwSEA3YxowZQ0JCgkKkoaWnpxMcHIyXl5fCDgIEQSAlJYXw8HBatGiBs7Nzk3bKfl4e9EQfOHBgozlQp6aKwsj161BZKT7XqhV4eoKHR/P2T2jqhN0N41DEIdIK0gBop9OOsfZjcTNye2EGMSC264yMjCQ1NRULCwtsbW0bfEW7rAyOHQMfHzGTREsLxowRrxsVFfFaWrkSsrKgd2+QUXmxQiIVpKy+spqkvCS6GXZjvut8eYcEyD6TxNsbDhwQxa7ly+t/b/zoo4/49ddfCQoKqlNKfkNSXV2NhYUF3bt358iRI3Xe/5dffuH999/nzz//ZNy4cbIP8BkEBAQwf/58bt26hYaGBhUVFYDoZ+Ti4kLXrl0ZPnw4JSUlmJiYYG9vrxBdHpQ0HwRBoFOnTkycOJH//ve/tdonLCwMFxcX1q9fz/z58rtv3r17lz///JPk5OTHZrOUlpZy4cIFunTp0mTL+GVBXl4eoaGhFBUV4ejoSKdOnWQy1qqoqMDV1RVVVVVu3Lghk/FLVVUV3t7edO7cWS4Lr/8mNzcXc3Nzjh07xoABA+QdjlxQzJl4IzFgwAB69OjBjz/+qBC9zQ0NDYmNjSU+Pl4hO6fk5OQQEhJCeXk5nTt3xtDQ8IWa2D0OY2NjsrKyCAgIoG/fvg3296iqgsBAURz5Z5c5U1OxpMbVVcwiUaKYpOSncCjiEBHZEQDoqOswwmYEA80Hoq4q29WNpoC2tjbdunXD0tKSsLAwvL29sbOzw8LCQubleoIgXjv79v2dceXqCpMmie19H3DkiCiQtG4t+pI0Z87HnycpLwkddR1ecX5F3uE0CLm5oigGMGFC/QUSPz8/fvrpJ7777juFEUhAFJRSUlL4+uuv67X/u+++y6VLl5g7dy6dO3fGyspKxhE+noKCAhYvXsy6detwcnLiypUr9OrVi5iYGEJDQwkNDaWqqgoHBwfi4+OZPHkyenp6jRKbkhcLf39/0tLSGDt2bK33Wbp0KWZmZsybN6/B4pJKpWRmZmJgYPDQgml2djZ//vknBw4c4MKFC0ilUlq2bMnKlSsfMo0VBIGAgAA6duz4QgskILZn7tevH+np6YSFhdX4lTxvue/KlSuJiIjg9u3bMlvgiYuLQ0dHB0NDxSi3/uGHH3Bzc3thBRJ4wUUSgBUrVjBixAg++OAD2rVrJ9dYJBIJjo6O3LhxA3Nzc4WpFS4tLSU8PJyMjAxsbGywtrZWWBdveeDi4oKvry9xcXFYW1vL9Nh5eXDpklhWU1AgPqeiAt26iV1qrK3r38pSScOTW5rLkcgj3Ei7gSAIqKmo4WnuyUibkehqNONajlqip6dHnz59uHv3bs0AxtHRUWYCbHY27NkDYWHiY319mDYNHB0f3i4mRjQ8BrH0Rqf5VZ7UkF2czdGoowBMdJyInlbznIDu2ye2QLeyEktt6kNpaSnz5s2jZ8+eCuND8gBNTU0kEgllZWX12l8ikbB582Z69OjB5MmTuXr1KlpaWjKO8m8EQWD//v18+OGHFBQU8N133/Hee+/VZAzZ29ujp6dHmzZtKCsrY8mSJaxatUopkChpMI4cOULbtm1xd3ev1faBgYEcOnSIrVu3Nuj4/LfffuOdd95BRUUFY2NjzMzMUFVV5cqVKwiCwKBBg/j999/56quv6N+//yPj8djYWEpLS+nZs2eDxdiUkEgkGBsb07Fjx5pyX0NDQxwdHeuVnebv78+qVatYsmRJncq0nkZ5eTmxsbH06tVLIRaf7927x88//8xff/0l71DkygsvkvTr14++ffuyZs0aVq9eLe9waN++PW3btiU6OhpnZ2e5xlJdXU1sbCwxMTEYGhoyePBgZbrrY1BXV6dHjx74+fnRvn375y4/EgSIjhazRu7c+btLjZ4e9O8v/rzAFU5NguKKYv6K+wufBB8qq8WaKDdjN8baj6W9Tj37jzZTJBIJHTp0QF9fn+TkZIKDg4mLi8PJyaneqz1VVaK3yKlTYhmNmhoMHy7+/LuKo7wc/vc/8brr1080Om6uCILAzuCdVFZXYtfejr6d6qkeKDjBwWL2kIoKTJ9ePyFZEAS++OILEhMTCQwMVLiFAYlEgra2NiUPerzXAz09PQ4ePEjv3r356aefGqzbX2xsLG+//TZnz55l3Lhx/Pzzzw/V3Ofk5BAWFkZxcTEODg6sXLmSnJwchgwZ0iDxKFEilUo5ePAgo0ePrnV5e0ZGBgCXLl1i+vTpMve4APG+s2HDBgYPHsykSZNISkoiKSmJ4uJi1q9fz7hx49DX1ycyMpLk5GQmTZr00P55eXlERUXRt2/fBomvKaOqqoqdnR2mpqaEh4dz/vz5Oi/8lpeXM2fOHDp37izT+2VMTAzt2rV7xJNJXqxZswZ3d3f61neFoZnwwoskIGaTDBo0iP/85z8YGBjIOxwcHR25fPkylpaW6MhhSfNBm72wsDA0NTWVbfZqQdu2bbGxscHf358BAwbUy1OmrEz0GfH1hf//LgZEs0FPTzF7RMHG6Ur+RUV1Befjz/NX3F+UVpYCYNPOhomOEzFvbS7f4BQcFRUVzM3NHzJ37dixIw4ODnUyd42MFI1Zs7LEx/b2YvbIk7qSHz4sZpy0aSOW4DRnrqVeI/JeJOqq6szoPEMhVqxkTVmZ+P8PYrvf+mSbV1RU8Pbbb/PHH3/w448/4uDgINsgZYS2tjalpaXPdYyuXbsyatQoTp8+3SAiyaVLlxgxYgQGBgYcP36c0aNH17xWXFxMREQEmZmZWFtb06dPH0pKStizZw8LFy58ITrlKZEPhw8fJioqik2bNtV6n5EjR7Jjxw7mzp1LZmYmBw4ckLnxeEBAACEhIZw8eZKRI0c+cbuDBw/SokULhg4dWvPcg3a/NjY2yjH7U9DW1qZHjx41FgJJSUk4OTlhZGT0zO/EFStWEBUVxe3bt2UmQpWUlJCQkICHh4dMjve8ZGVlsW7dOi5cuCDvUOSOUiQBevbsycCBA/nuu+/4/vvv5R0Oenp6GBoaEhkZSffu3Rv13Pn5+YSEhMjc5OhFwMbGpqZsoLYpeIIAycliOc3Nm+KqNoCmptilxtOzfoN8JY1LtbSaqylXORF9gvyyfACMWhoxzmEcLgYuymuoDqirq+Pg4IC5uTmRkZH4+PjQqVMnbGxsnjogLSiAgwfhxg3xcatWMHmy6D/ypD9/ZCQ8GAfMng3NOVGuoLyAA2EHAHjZ7mUMdOW/INAQHD0q+pG0bw8vvVT3/bOyspgwYQK3bt1i69atzJkzR+YxygodHZ3nyiR5wKBBg/jwww8pKSmR6cLM1atXGTlyJL179+bYsWM1129RURGxsbGkpKRgYmLyUJbq7t27KSsrY25zdk5WIleqq6tZunQpQ4YMoX///nXad8aMGXTo0IHx48czcOBATp48ib6+vsxi27p1K4aGhg+JH4/jQRbMP7O7w8LC0NDQUEhPQ0Wkbdu2eHh4kJKSQkhICAkJCU9tRnH79m2+/fZbli5dSufOnWUWR2RkJEZGRgpTWvjdd98xePBgZbkWSpGkhuXLl+Pu7s5HH32kEKY59vb2+Pj4YG1tTatWrRr8fOXl5URERJCamoqlpSW9evVSpurVERUVFXr06MGFCxcwMDB46ueorEwURS5dEluSPqBDB9FrpHfv5j1hay4IgoB/hj9HI49yt/guIHasGWM3BjdjN1QkypXQ+vLA3NXKyoqYmBh8fHwwNDTE1tb2oXuiVCqKjIcPQ2mpKIgMGCB2rnnafK+sDLZvF3/38AAFTRaQGXtC9lBSWYJZazO8LL3kHU6DkJDwt+g1YwbU1TYgICCAsWPHUllZia+vL3369JF9kDJEFpkkAAMHDqSyspKrV6/KrMTl2rVrDB8+HDc3N44fP46Ojg75+fnExMSQkZGBsbExAwYMeOhaflBqMHr06BfecFJJw7F//37CwsLYvHlzvfYfMmQIa9asYcGCBfzvf//j448/rvW+4eHhvPbaa+Tm5tKpUyd69+7N0qVLUVVVpaysjN27d/PGG288NRs5KiqKoKAglixZUvNcRkYGqampL1S7X1kgkUgwNTXF0NCQ6Ohorly5gomJCQ4ODmhqatZs96DMpkuXLnz++ecyO39BQQFpaWkK02I3PT2d3377jatXr8o7FIVAKZL8P927d2f48OGsXr2an3/+Wd7hoKuri5mZGREREfTq1avBziOVSomPjycqKgp9fX0GDhwo8/TBFwkdHR26dOnCnTt3aNOmzUNGeIIASUmiMHLrFvx/x0PU1KBHD9FrRGnE2jQQBIGIexEcjjhMcn4yAC01WzLKZhT9zfqjpqK8tcqKVq1a0aNHD+zt7YmNjeXixYsYGBhgY2NDUVFbdu2CxERxWzMzsbTG3PzZxz14EO7fh3btxO4nzZk7mXcIyAhARaLCzM4zm6V4V10NO3aI99nevesueu3bt4+5c+fi7OzM4cOHm8QkXVaZJA4ODnTo0AEfHx+ZiCQ3btxg2LBhdOvWjRMnTlBWVkZwcDDZ2dmYmpoyePDgRzJWSktLWb16NXfu3OGrr7567hiUKHkcVVVVLFu2jFGjRtV7bH316lU+/vhjBg0axFtvvVWrfQRBYNu2bbz99ttYWFgwfPhwYmJiWLlyJZ6engwaNIgTJ06Qm5vLzJkzn3ic6OhoRo0ahaGhIcOHDwfEa+fOnTt06dJFLiX6zQF1dXWcnJwwNzcnNDS0puOepaUlKioqLF++nOjoaPz9/WW6gBwREYG5ubnCzLtWr17NiBEj6Natm7xDUQiUI/l/sGzZMnr16sUnn3yCiYmJvMPBzs6Oc+fOcf/+fZl33hEEgaysLEJDQ1FRUaFnz54yTRl8kTExMalpC9ynTx/KyiTcuCGudqem/r2doaEojPTuDQpyf1RSCxLzEvkz4k+i7kUBoKWmxRCrIXhZeqGl1nDdIV50dHV16dKlC3Z2doSHx/PttwlERVXQqpUerVtrMW6chAEDRLPOZxEeLl6PIJbZNGBTD7lTUlnC7hDRpGOY9TA66XV6xh5Nk7NnIS1NvJfWxVtGKpXy5ZdfsmrVKmbMmMHGjRubjEG5jo6OTDJJJBIJAwcOxMfH57mPdfv2bYYNG0bnzp3ZsWMHd+7cIS8vD3Nzc7p27fpIBx1BEDh06BAff/wx6enpLFy4kBEjRjx3HEqUPI5du3YRHR3Nnj176rW/n5/fIxlSz6KoqIgFCxawc+dOXn31VX755Rd0dHQQBAFra2t2797NoEGDaN++PaqqqqxZs4YtW7Y84slz6dIlxo4dS8eOHTl37lzNMQIDAzEwMFCIeUtTR1dXl169enH37l1CQ0NJTExEU1OTb7/9luXLl+Pi4iKzc92/f5/s7GyFMahOSUlh06ZN3Lx5U96hKAxKkeQfdO7cmZdffplvvvmG9evXyzscNDU1sba2Jjw8HHd3d5ml0BUWFhIaGkpubi729vaYm5srDdJkjItLZ3buvMnly9mkpBhQKTY4QU1N9Ejo319sTanMGmk6ZBZlcjTyKAEZAQCoqagxwHwAI6xH0FKzpZyjezEQBAgJ0eLAAUdycqrR1CykTZtYhg7Nx87OEonEEHj6RVVS8neZzcCBYGfX8HHLk/1h+8kvy6dDiw6Mshkl73AahLt34cQJ8ffJk6FFi9rtV1BQwPTp0zl16hRr1qzho48+alKp6s/b3eafDBw4kP3795Ofn1/v2viAgACGDh3KmDFjmD17NuHh4VhaWuLm5vZQy1RBEEhLS+PmzZusXbsWX19fRo8ezblz57CxsZHJ+1Gi5HEcP36cnj171svv7/r16wwfPpzu3btz4sQJdHR0iIyMpGXLlk80/QwKCmLy5Mmkp6ezc+dOpk+fXvOaRCJh2rRprF27lmnTpjFw4EB27NjB9OnT0dbWZv369TXH3LVrF/PmzcPd3Z1Dhw7V+GbEx8dTXFyMm5tb/f4gSh6LgYEBnp6exMbG4u/vz3fffce8efNkdnxBEAgPD8fGxuahsh558s033zBmzBiZCkFNHaVI8i+WLl1Kjx49+OyzzzAzM5N3OFhZWZGQkEBWVhYdO3Z8rmNVVFQQFRVFYmIiZmZm9OjRo0F7vb+I3L8Pfn5w7Zo6aWk9yMrKwtCwHHNzTfr3F81YlVkjTYt7Jfc4HnWcG2k3EAQBiURCH5M+jLYdTTsd2WZ4KXky6emwZ4/YHhvA0FCVjz5qjY1NC5KSkggJCSEiIgJbW1uMjY2fKPzu3SsaexoYwLhxjfgG5EBIVgjXUq4hkUiY03UO6qrNz2dKEGDnTrHts4ODeI+tDTExMYwZM4b09HROnDjRJLMXZJVJAqJ5q1Qq5eLFi7z88st13v/MmTOsW7eONWvWYGRkhJmZGWZmZjXeCqGhoRw7doybN29y8+bNmnaqjo6OnDp1qkn+/ZU0PVxcXLhw4ULNd3ltiYyMZNiwYXTp0oWTJ08SFBTEsmXLOHfuHCBOqrt3717z06NHD86cOcMHH3yAvb09/v7+jzVUnT9/PkePHmXw4MG0bNkSW1tbDAwM+P3339HW1uaHH35g5cqVLF26lDlz5rBhw4aacXt+fj4RERHKdr8NhIqKClu2bGHTpk0cPHiQK1euYG5ujp2d3XPPnTIzMykuLsbKykpG0T4fiYmJbN26lcDAQHmHolBIBEEQ5B2EojF9+nR0dHTq1BqsIYmPjycxMbHehkyCIJCYmEhkZCR6eno4Ozs3ihnsi0J5OQQGiuJIVNTfz2tpgbFxOkZGiUyd2gs1NWX/3qZEbmkuJ2NOcjX5KlJBCkCXjl0Yaz8Wo5ZGco7uxaG0VMwS8PERTVrV1WH4cBg2TPz9AdXV1aSmphITE4NUKsXGxgZTU1NU/9E3+/Zt2LRJzOD69FOwtJTDG2okSipLWO67nLyyPIZYDWGi40R5h/RMKisrOXXqFCNHjqz1oN/PD/73P/GzsGyZ2NXmWZw7d47JkydjYGDAsWPHsGui6URTpkwhJyenZqL2PAiCgKWlJUlJSZiZmeHo6IiDgwMODg54eXk9cdGorKyM3377jRYtWqCpqYmbmxu2trY1151UKuWnn37i888/R0dHh549e+Lm5lbzb1PwflHSfPjrr78YPnw40dHRdcpaunnzJoMGDaJdu3bY2tri7e2Ns7MzX375JZqamgQEBNT8PBAAAd566y1++OGHR8rM/okgCFy+fJnr168TFRVV81NeXs7SpUv5+OOPWbZsGUuWLKmZA1RVVXHhwgU6deqEvb19/f8gSp7IjRs36Nu3LytXrmTRokUUFBQQGhpKfn4+Dg4OmJmZ1XtOduHCBczNzbFUkEHIa6+9RllZGTt37pR3KAqFMpPkMTxo7/T5558rhMpnbm5OXFwcKSkpmJqa1mnf7OxsQkNDqa6upmvXrnTs2LFJpRMrKoIA8fFw9Sr4+4udMkCcfNnbQ58+0K0bqKl15MqVWMLDw2TaMkxJw1FQXsCZ2DNcTLxIlbQKACcDJ8bYjcGstfyzy14UBEFs53vokNjeF8RratIk0Wz136iqqmJmZkanTp1IT08nJiaGqKgoLCwsMDU1pbxcm127xG1HjmzeAgnAgbAD5JXl0aFFB8bYjZF3OA1CYSEcELsa8/LLtRNIrl+/zogRIxgyZAh79ux5YrvHpoCOjg4xMTF1XhV/HBKJhPPnz3Pp0iXCw8OJiIjg8OHD/Pjjj+jo6LBu3Tpmz55dc57S0lKCgoKIj49HRUWF6upqpk+f/pAomZ2dzezZszl9+jQff/wxX3/9tTJ7VYlcedDW9Pr163USSXr27EloaChvvfUW2dnZHDhwgPHjx9dkLI4dO7Zm24yMDAIDA9HV1WXAgAHPPLZEIsHDwwMPD4+Hnq+ursbf3x9VVVUqKysfusa3b99Odnb2Yxc8s7KyWLt2La+//rpCZMQ3RR6UYnbv3p1PP/0UEE3k+/TpQ2ZmJmFhYTUtg+vq55iSkkJ1dTXmtXGYbwRiY2PZuXMnISEh8g5F4VBmkjyBOXPmALBt2za5xvGAlJQUIiIiGDx48EODkCdRXFxMWFgY2dnZ2NraYmlpWav9lDydrCxx4nbzJmRn//18+/bQt69owvrvCVxxcTG+vr64urrSoUOHxg1YSa0prijmbNxZfBJ8qKgWWw/ZtLNhjN0YbNop6+Qbk5QUsbQmLk58bGAAU6eCk1Ptj/HAnDohIYG7d7Px9e3C/fv62Nlp8/nnEprz7TD0bihrb6xFIpHwSd9PsGorf7G/NtQ1k+SPP8ROYZ06waJFzzbtraqqws3NDVVVVa5fv/7UNptNgd27dzN9+nTeeust1q5d2yDeYgUFBXzwwQds3bqVadOm8dVXX3H37l0yMjIIDg7m5s2bLF68+JFOIT4+PsyYMYPKykq2b9+uLKdRojA4ODgwcOBAhfAerA1ff/01ixcv5sKFCwwYMIBdu3YhkUhYvHgxxsbGXLx4sUZAOXDgAAsWLOD+/ftYWlpy6dIlZbZWHREEgVdeeYVTp04RGBj42MXy6upq4uPjiY6ORl9fHycnp1p1qKmurub8+fM4OjoqjNHu7NmzUVFRYevWrfIOReFo2iOEBmTJkiU4OjqyaNGix9YRNjYmJibExsaSmJj41OyWqqoqYmJiiIuLw9jYmMGDBz81zU/JsykoEAfiN26ILXwfoKkptu7t0wdsbJ5swqqrq4uLiwuBgYF4enoq/z8UjLKqMrzjvTkXd46yKjElyLy1OWPtx2Lf3l6ZedWIlJTA0aNw8aKYSaKpCaNGweDBoulxXZBIJHTs2JGOHTty+nQZaWmllJVlY2WVQGysIaampk2mi0ldKKksYUfQDgAGWwxuMgJJXQkNFe/LEgnMnFm7rka//vorQUFB3Lhxo8kLJADTpk2jpKSEN954g8LCQrZs2SLz99WqVSt+/fVXRowYQUFBAZcvXyY9PZ2ffvoJT09Pdu3a9ZDRqyAIrF69mi+++AJPT0927tyJkZGyPFGJYlBYWEhBQQFlD9J/mwCff/45Z8+eZcaMGfz44481E/QH1+XRo0dxd3fnnXfeYd++fUycOJHPPvuM8ePH4+XlxcWLFzEwMJD322gybNq0iX379rFv374nzrdUVVWxsbGhU6dOREREcOHCBaysrLCxsXnqPTghIQENDQ2FEa6ioqLYt28f4eHh8g5FIVFmkjyF119/nZKSEnY9yNGWM1lZWfj7+zNkyJBHVtkEQSA1NZXw8HB0dHRwcXFp0mnE8qasDO7cEYWRiAhxwgbiQNzRUTQH7NJFnMTVBkEQ8Pf3p7Kykt69eysn3gpAeVU5vom+/BX3F8UVxQCYtDJhjP0YXAxclP9HjYggiKVrhw9DUZH4nKsrTJwIbdo837EzM+Grr6CyEiZPluLomEViYiLZ2dl06NABc3NzDAwMms3/9/ag7VxNvoqBrgGLByxGQ7XplDfUNpOkvByWLxeNsr28atfyNz09HXt7e2bMmNFkVpBry759+5gxYwajR49m7969MumWIAgCd+/eJTExkaysLPT19dHS0mLBggUEBwfzyy+/8Oqrrz503QiCwOLFi/n666/58ssvWbZsmTKDVYlC8eGHH7Jx40bCwsIUptyhNqSkpNClSxfeeecdWrVqxXvvvYe6ujpDhw4lOjqa8vJyKisr+fXXX5kyZQoSiYTY2Fg8PDzQ19fnwoULtG3bVt5vQ+EJDg6mV69ezJkzh99++61W+5SVlXHz5k0kEgklJSU1WSL/HlNUVlZy7tw5XF1dFUa0mjZtGi1atGDjxo3yDkUhUYokTyEpKanGldrR0VHe4SAIAn5+frRt2xYHB4ea53NycggNDaW0tBQnJyeMjY2bzYC/MamshPBwcXXyzh1q2vaC6F/Qs6c4cWtZz26vlZWV+Pr6Ko225ExFdQWXki5xJvYMheWFAHRs0ZGX7V6mu2F35bXTyCQmiqU1iYniY0NDsbRGFpdIdTV8+62YAeboCO+993fGV0lJCUlJSSQlJaGiooKZmVmTzy4JuxvGLzd+QSKR8HHfj7Fuay3vkOpEbUWSAwfA21ssbVy6tHZi9dSpU7lw4QKRkZG0eV7lTQE5efIkEydOxN3dnSNHjtQq9ftxlJaWkpycTFJSElKptKZLjY6ODiBmqxYUFDwy4RIEgc8++4w1a9awZs0aPv744+d+T0qUyBJ/f3969uzJ6tWr+eSTT+QdTp05fvw4+fn5jBw5sub6u3PnDj179mTEiBFs2LDhkS6Y4eHhDBgwAHNzc7y9vevd3vtFoKioCFdXVzQ1Nbl+/XqtxgKCIDBx4kT+/PNPvvzyS958803CwsLQ1tbG2dn5oftkeHg4ubm59O3bVyHGmWFhYbi6uhIVFVVnv8sXBaVI8gzeeust7t27x/79++UdCiAKIn5+fnh5edX02c7IyMDa2hpra+tmkULcmDwQRvz9ISjobwNWgA4dRGGkZ0/RE0EWPEhX7tatmzIFuZF5nDjSXqc9L9m9RE/jnqhIZF/Pr+TJFBXBkSNw5YqYSaKlBS+9BAMHIjO/kGPH4ORJ0NERJ9OPS66TSqVkZmaSlJTUpLNLSitLWX5xObmluQy2HMxkp8nyDqnO1EYkSUqCVavEz8y774Kz87OPe+7cOYYOHcr27duZOXOmjKNWHC5evMjo0aPR19dn6dKlTJ8+vVZjgsdljZiZmdGxY8da+ZwIgsCHH37Izz//zM8//8x7770ni7ejRInMqK6uplevXlRWVnL79u0m1zI3PT2dwMBA+vfv/4hZa25uLq1bt37i99WdO3cYOHAglZWVDB8+nLFjxzJq1KhmKRbXF0EQmD17Nn/++Sf+/v617nj2IGtOIpEwaNAgvL29qaqqIjY2ltjYWIyMjHBwcEAikeDt7U2/fv0U5u8+adIkDAwM+PXXX+UdisKinFE/g0WLFmFjY0NwcLBCdCdp2/b/2DvvsCjOrw3f9CoICooFBRVFUQERUFDsscQSe+9GTdQUf/aWqCmW9JhYYteoSWyxd0WlFwGxoIKKAgIKgtRddr4/5mMTIyptWcrc17UXy+yUs7A7M+/znvMccywsLPD39yc9PZ3atWvTpUsX5SyPxNt5kzBiZib6jLi6grX1631GiouJiQlOTk6EhIRgbGwstWIuA14njvRu0hv3eu5oaUrp4GWJQgGXL4sCSWamuMzdHQYOhNKc5IqOhuPHxeejRhUskABoampSp04d6tSpQ0ZGBg8ePCA0NFSZXVK/fv0KcX7968ZfpGSlYGFkwYBmA9QdjkrIy4OdO0WBpG3bwgkkIJoZNmrUiNGjR6s2QDXj5eVFQEAAixYtYvz48Xz11Vd89tlnDB06tECxIzMzk9jY2JeyRhwcHIqUhaJQKJg5cya//PILv/zyC9OnTy/NtyQhUSqsW7eOkJAQfHx8KpxA8vz5c0JCQmjTpk2B94xvG3Q7OjoSGhrKnj17OHToEGPGjEFLS0tZEichNunYuXMnO3fuLJRAkpuby9q1a1myZAnLli0jLi6Oa9euAaCtrU2zZs2wtrbmxo0bnDt3jmrVqmFhYVFuBJKwsDCOHTvGnTt31B1KuUbKJCkEH330EQ8fPuTgwYNqjUMQBOLj44mIiCA7OxtHR0epvVchyc0VvUXeJIy0aQM2NqUvjBTErVu3iI2NxcvLS2qJqCIkcaT8ce+eWFoTGyv+Xq8ejBgBjUu5KiQnB1asEDtQubnBxIlF2/6/2SWmpqZKIaW4ZQyq5EbSDX7w+wENDQ1mt5tdYbsxvS2T5PRpsSW0kZHoSVLY0sevvvqKr7/+mtTU1AqVHVQSgoODWbp0KcePH6dly5YsX76c/v37k5mZSVxcHHFxcTx//rzIWSP/xcfHBw8PD5YvX86SJUtU8E4kJEpGTk4ONWvWZPTo0YX2mSgv5OTk4O3tjbW1daGzG95GXFwcX3zxBZs2bSI6OrrcdFlRF7du3cLZ2ZkRI0awefPmt65/+fJlpk+fzq1bt5g9ezZfffUVc+fO5ejRo9y6deuV9R88eMC1a9fQ19enZcuWWFlZqf06NGDAABo2bMj333+v1jjKO1ImSSGYP38+trbN2LLlFhMnqsdL4vnz51y/fp309HTs7e2VM57W1tZq/7KVV9LTISJC9Be5ceNljxF1CCP/pmnTpqSlpREYGEi7du1U0rqxqpIvjpy6e4q0nDRAEkfUTUoKHDggts4Gsfylf3/o2LFwXUmKyp9/igKJmZnob1JU/p1dkpOTQ0JCAnFxcdy8eRMTExPla8bGxqUffBHJlmezI2wHAJ0bdq6wAsnbSE4Wy6dANPQtijdUixYtSEtL4/Hjx1VmQNCmTRuOHTuGr68vq1evZvfu3ejo6JCXl4eFhQUNGzbEysqqxCJ927ZtadKkCVevXi2lyCUkSheFQsGLFy/w8PBQdyhFQqFQEBQUhKmpaal22axTpw4dOnTgl19+ITExscqcEwsiNzeXUaNGYW1tzY8//vjGdWNjY5k7dy579+7F1dWVoKAgHB0dATFL/Pnz569sIwgC9+/fp0mTJhgZGREeHk5MTAwODg5q84cJDg7mzJkz3Lt3Ty3Hr0hIIkkhsLKyYvr0qXzxxXWaN2+Gu3vZHTsnJ4dbt27x8OFDbG1tcXV1RUdHB7lczuPHj7l//z42NjZlF1A5JzFRzBQJC4O7d//pSgNgbg5OTqL5qjqEkX+joaGBs7Mz3t7eREZG0rJlS/UFU0koSBypYViDPk36SOKImsjNFWf/T54URUoNDWjfHt57r/gGyG8jPFws5wEYP14UZEqCnp6e0rwyNzdXKZjcvn0bY2NjpWBSTVVv6C3kl9nUNKxZactsBEEss5HJoGlTse16UWjRogUgGtVVlQFBWloa8fHxZGdnM378eAIDA7GwsMDR0bFUsxd1dHT4+uuvGTRoEGfPnqVbt26ltm8JidJAX18fHR2dAgex5ZnIyEhyc3Nxc3Mr1cnQ7OxsFixYQJ8+fXB2di61/VZEli1bRnh4OH5+fq/NEs3JyWHt2rV8+eWXVKtWjS1btjBu3LiXJjfNzMx49uwZgiC89L+6f/8+ubm5NG3aFC0tLerUqUNUVJQyO6hZs2al0o2sKCxdupQPPvjgFZNfiVeRRJJCMn/+//j113GsXt2BhQtr4eKi2uMpFApiYmK4ffs2NWrUoHPnzi/NWmpra9OqVSuCgoKwsrJCX19ftQGVUxQKiIn5J2MkPv7l1+vXB0dHsV1vvXrqFUb+i7a2Nm5ubly6dAkTExOpdKqYZMuzuXT/EmeizyjLaiRxRL0IAgQFiaURKSnissaNYdgw0etHVaSnww4xqYJu3UqnQ86/0dXVxdraGmtra2QymVIwiYqKwsjI6CXBpCwy/G4m3eTyA1ERGuc4Dj3tsr3ZKiuuXIFbt0BHB8aMKfp53MbGBgMDAyIjI3nnnXdUE6SaEQSB9PR04uLiePz4MZmZmVhaWtK4cWPOnTunNBhURXnne++9R7t27Zg7dy5BQUEvDR4CAgJo0KABtWrVKvXjSkgUBg0NDUxNTSuUSPLgwQMePXpEx44dS70hw/fff8+jR484efJkqe63onHp0iVWrVrFl19+SZs2bQpcRxAExo8fz19//cXHH3/MkiVLCvSFyc3NRVNT8yWRJDs7mxs3btC2bVtlK3QdHR1atGhBgwYNiIyM5Ny5czRt2hQbG5syySj38/Pj0qVLbNu2TeXHqgxIIkkhsbS0ZNYsJ/744yKbNw9DLkdlGSWJiYlEREQAvLGfdq1atbC0tOT69eu4qFq1KUekpcH16xAZKZbR5Js/gpi6b2f3jzBS3tvCGxkZ0bZtW/z9/alWrZrUx74IZMoyOR9znnPR58iUiR+CGoY1lGU12prS6U0dPHgA+/aJ/iMgfgcHDRJL21SpGwgC7NolCiVWVjBggOqOBeLNTv369alfvz4ymYzExETi4uLw9vZGX19fKZiYmpqqRDB5qczGpjN2NUovHbs8kZICf/0lPh8wACwsir4PTU1N7O3tiYyMLNXY1I0gCDx//lzpMZKdnU2tWrVo1qwZlpaWSl+XmJgYlU6maGhosHr1ajp06ECzZs0YOnQoQ4cOJTs7G09PTwYOHMjevXtVcmwJicJQkUSSZ8+eERERgZubW6l7YMXHx/PFF18wY8aMUvM4qYikpqYyduxYOnTo8MZ20F9//TV79+7lzz//ZPDgwa9d7+LFi3h4eLwkdFy/fl05TvsvxsbGuLm5Kcd79+/fp2XLlq8d75UWS5cuZdasWVgU50JaBZFGEUVg7tzZrFvXnbi4jmzdakVCglhXX1r3vy9evOD69es8e/as0Mpiy5YtOXfuHImJiSr/cqkLhUIccEVGiuJIvuljPoaG0Ly5KIo4OJQ8vb6ssbCwwN7enoCAALy8vArVm70qk56Tztnos1y8f5FsuejAW8u4Fr0a98K1rquUOaIm0tLg4EHw9RUFC11d6NkTevQQMwBUja+vmE2mpQWTJpXNMfPR0dGhbt261K1bF7lcrhRMrly5gq6uLjVr1sTCwoKaNWuW2vd7/439PMt6Rk3DmrzX7L1S2Wd5I1/4ys4GW1vo0qX4+2rRokWlEEmysrJITk4mKSmJ5ORkcnNzqV27Ns2bN8fS0rLAWeeyKMv19PTk4sWLbN++nXXr1vHFF1+go6ODhoYGx48fJycnp8zTyiUk8qlevXqFEEmysrIICAigefPmKhnI5meTLV26tNT3XZH48MMPef78OTt27FBmefyXI0eOsGjRIpYsWfJGgUQul3Pp0iXmz5+vXJaYmMiTJ0/o2rXrG+OwtLSkc+fOxMTEEBQUhLm5OQ4ODirxO7t8+TJ+fn7s2bOn1PddWZFEkiJQo0YNPvnkXY4c+Y7atVdz4gTcvy/Wvb+uvWRhkMlk3L59m5iYGKytrenWrVuhU2L19fWxt7cnPDyczp07v/bLXpEQBLFs5tYtuH1bfGRlvbxOgwaiINKihegvUtF9T21tbUlLSyMgIABPT89K8X8sbVKzUzl97zTeD7yR5YkuvHVN6tK7SW+crZzR1KjgH4IKilwO586J7Xbzu0a5uYm+I2XV7S4pCfInqvv1E8vs1IW2trYyiyQvL4+nT5+SlJREdHS0svX3v0WT4pQ/3Ei6gfcDbwDGth5bactsAgJEYVxbG8aOLdl5vkWLFhw6dOiVmvHyTm5u7kuiyIsXL6hevTo1a9bE0dGRGjVqvPV6ERMTQ8OGDVUeq5eXF15eXqxfv56zZ89y5swZunfvTp8+fTh//jy9evVSeQwSEgVhampKamqqusN4I3l5eQQEBFCrVi2ViJohISFs3bqVn376qdy0olUHv//+O7///ju7d+9+bZn7jRs3GDVqFP37939rm+Tg4GDS09Pp8v8qfl5eHmFhYTRv3rxQ2Xuampo0atSIevXqcevWLS5cuICNjQ1NmzYt1XbVy5Yt45NPPqFGjRqlts/KjiSSFJFPP/2En36y4f33h3PjhjM3b4qtCIcNEwcGRbn3EgSBBw8eKDsmeHl5FVjr9jZsbGyIjY0lKioKe3v7Im+vbgRBNFzNF0Ru3xZT5v+NkZEoiDg4iFkjavJIVBkaGhq0atWKq1evEhYWhpOTU4W6kVclTzOfcvLuSXxifZAr5AA0qN6APk360KpWK+nvpCYEQTRI/vNPsfMIQMOG4rnQ1rbs4sjLg82bxba/jRuLmSvlBS0tLSwtLZVZfrm5uUrR5NatW6Snp2NqaqoUTGrUqPHW+vNMWSbbr20HxDKbpjUrZ8p0WppYtgXw7rtiCVVJaNGiBenp6cTGxmKtSmOcEiKXy5WfkeTkZJ4/f061atWwsLCgefPm1KxZs8g3zjExMXTs2FFFEb+Krq4uvXv3pnfv3giCQKNGjTh06JAkkkiojfJebiMIAteuXVPeC5b2fY0gCHzyySfY29szderUUt13RUAQBHJycrh//z4ffPABI0aMYOTIkQWu++LFCwYOHIi1tTU7dux4a0Z/UlISgFJwiYqKQldXt8jCtJ6eHq1bt8bGxoaIiAjOnj2Lvb09DRo0KPHn4cKFC4SGhnLgwIES7aeqIYkkRcTMzIzZs2ezd+/H/PHHJbZs0eDBA9i6Fby9xQFCYfw3k5OTuX79OjKZDEdHR2rXrl3sL4GGhgatW7fmypUr1KtXT21dFgqLQiFmity7J3aguX0b/ivw6+hAkyai8WLTpqLZY0XPFnkbWlpauLq6cunSJaKjo2nUqJG6Q1IrCS8SOHX3FH6P/FAICgAamzemj10f7GvaS+KIGnn8GP74Q8z2AjA1hYEDiy4UlwZHj4rmzQYGYplNeT5P6OrqYmVlhdX/j/izs7NJTk4mOTmZ8PBwsrKyMDMzU2aamJmZvZIlsPf6XlKzU7E0smSg/UB1vI0yYc8eyMgQs4JKQ/j6d4eb8iSS5OXlkZKSohRFUlJSMDAwwMLCgsaNG1OzZs0SeYnk5OTw+PFjtXXB09DQYMCAAezatYtff/1VancvoRZMTU1JSEhQdxhKBEEgJiaGq1ev4ubmhpaWFsnJyXh5eakkk/jAgQN4e3tz6tSpUjeCLW+kpqYyevRorl+/TmZmpvIh/H+7S2tra3755ZcCtxUEgenTp/Po0SOCg4MLNZ6q/v+lBM+fP8fY2Jh79+7h6elZ7HtUExMT2rdvT0JCAtevX+f+/fs4ODhQs2bNYu1PEASWLl3K7NmzlbFKFI7K/U1RER999BHfffcdERFnmTevO2fOiKnm9+7Bl19Cq1bQu7dYBvJfMjMziYyM5MmTJ9jZ2dGoUaNSOSFWr16dBg0aEBYWhoeHR7kaQGZni4OYe/fER3T0P2n5+Whri7PPTZuKwkjDhuKyqoa+vj6urq5cvXqVatWqVVqfmTcRkxLDqXunuJZwTXlRs7ewp0+TPjSp0UTN0VVtXryAv/8WBWFBEL+jPXqI3iPqsBuIioITJ8Tno0eXf6Pm/6Kvr0+9evWUbWkzMzOVg+WgoCDkcjnm5uZUr16d6tWrE5Mdg98jPzQ1NJngNAFdrdLvVFIeCA2FkBBR8Bo3TvSZKSkNGjTA0NCQyMhItWU0CIJAZmYmz58/JzU1ldTUVJ49e4a2tjYWFhZYW1vTpk0bDEvRWCs2NhZBENQmkgD07t2bb775hvDwcBwdHdUWh0TVxdTUFF9fX1auXEl2dnaBj5ycHMaMGcPQoUNVGsvu3buZN28ejx8/BsRuM40aNcLDw0Ml5srZ2dnMmTOHPn360KM8pVqqgPT0dHr27MmdO3eYNm0aRkZGGBoavvRo167da8WCrVu3smvXLnbt2lVoY9v8faWkpJCcnEzDhg1LLEZoaGhgZWWFpaUl9+7dw8/Pj1q1atGiRYsiXx/OnDnDjRs3OHbsWIliqopUwWFoyTExMWHOnDksXbqUbt260bOnBu7uommhvz+Eh4uPRo2gY8f8rg5y7ty5w71796hTpw7dunUr9ZNhs2bNOH/+vFrTiWUycZb54UPxERMj/v7/Y10lenqiKGJrK3ajadSobI0WyzNmZmbK9s5eXl6l7m5eHhEEgRtJNzh59yRRT6OUy1vXbk2vxr2wMVPfDb6E6Dty6ZKYtZHfTcrZWexaU8zJjRKTkQFbtojnFg8PVN6WvSwwNDSkQYMGNGjQAEEQePHiBcnJyaSmphJ6I5SNURvJFXLpWKcjmY8ziX0Ri6mpKcbGxpVmhj47W4t9+8T30rNn6fnLaGpq0rx58zIzb1UoFLx48YLnz58rH6mpqeTl5WFiYoKpqSlWVla0bNkSY2NjlU1sxMTEAJSJJ8nr8PDwwMDAgDNnzkgiiYRa+OCDD1i/fj0///wz+vr6BT5SU1MZNWoUVlZWdOjQQSVxbN++nQkTJtC3b19SUlJwcnKicePGtGzZUmU+Id9//z2xsbEcP35cJfsvL2RmZvLuu+9y8+ZNzp8//9q2vq8jMjKSGTNmMGnSJEaNGlXo7fJNVvMFb/dSbH2qpaWFnZ0d9evXV76vxo0b07hx40JlBOVnkcyZM6dYdg5VHQ1B+O/wVaIwvHjxAhsbG7Zv307v3r2Vy588gZMnwc9PLCsRBAGF4gWmpvdxcMjl3XdtsbBQnWFSXFwcYWFhdO3atViGgEUhMxPi4v4RRB4+FMtoFIpX161ZUxRCbG3Fn3Xrlu+0+PLA9evXSUxMpEOHDqVq3lSeUAgKguOCOXXvFLHPxbZFmhqauNdzp0ejHlhVK6ERgUSJEASxY8yBA6JvEEC9emJZoZ0aO84KAmzYIGYcWFrC4sXqyWQpKwRB4NegX7mWcA0LXQsm2k0kIz1DOfgWBAETExOqV6+OqakppqammJiYVDgDaJlMxuzZ18nKakXdulosXly6GYXjx4/n5s2b+Pv7l95OEUtm0tLSXhJD0tLS0NDQUP4//v1/KStBKzU1lZEjR3Lx4kWeP3+u0uvI2wxxe/XqRV5eHqdPn1ZZDBISJUEmk9GjRw9u3LhBcHCwMsPvbQiCQFJSEjExMdy/f5+YmBiSk5PR1tZGR0dH+TMlJYVvvvmGKVOmYGJiwoYNG9i7dy/W1tY4ODio5D15e3vzzjvvMHXqVL7//nuVHKO8MGTIEE6cOMHp06dp3759kbbNyMigbdu2aGlp4e/vX6RsjU8++YTdu3ezZcsW2rRpoyynVQUpKSlERESQlZVFixYtqFu37hvPu8eOHWPChAlER0erpGNOZUcSSUrA2rVr2bt3L4GBga98SJ8/h1On0jlyJIWnTzUwMzPDyMgIfX0N7OzEkpJmzaBOndIVCwRBICAgAF1dXZycnEphf6KJany8+EhI+Of56zywqlUTPUSsrUV/Fltb0bNAomgoFAr8/PyUXiXlqYSqpMjyZPjE+nD63mmSM0XXTz1tPTpYd6CbbTfMDKqu83p5ISZGNGW9d0/83cRE7Bzj4aF+gfPKFdi5U4xj/vzC+UBVZHxifdh+bTvamtos7LCQuiZ1la/lZ5z8e4D+/Plz5HI51apVUw7O/51uXF5F19BQGfPnP6ZBg/rMn69V6gbAa9asYfny5UoBo6jIZLKXatzz/+bp6eloa2tjamr6klClygyRtxEWFsagQYNITk5m165dvPvuuyo71qxZszhw4AA///wzAwYMKHCdb7/9lkWLFpGSkqKSkgIJidIgKSkJFxcXLC0tmTt37kulcf8+v/57WXJyMpn5KZaI5ReWlpbI5XLkcjkymQyZTIZcLmfcuHH07duXHj16sH37dmxtbXF3d1eJcBoQEEC3bt1o27Ytx44dq9TfO19fX9q3b8/OnTsZPXp0kbZNSUlh4MCBBAQEEBQUVKQGGBcvXqRz587s3LmTJk2a4ObmVtTQi4wgCDx69IgbN25gaGiIg4NDgVlIgiDg4uLCyJEjmT17tsrjqoxIIkkJyMzMxNbWlg0bNtC/f3/l8uzsbG7evPn/ZmmN0NBoQni4NqGhrxqU6un9IybUrQu1akHt2mI3l5LEdf78edq1a/fWVk+CILbXffYMnj4Vu1T8+/nTp/+k1xeEmdk/gkj+w9S07M0bKyu5ublcunSJ+vXr06xZM3WHU2IyZZlcun+JczHnSM8RWxgZ6xrTxaYLnRp2wki38pcWlXeSk8XSwaAg8XcdHXjnHdF7pDxkazx5AitXQm6uaBb7zjvqjki1PM18yvJLy8mWZzPQfiDvNH77GxYEgaysrJeyGvIH9nK5HF1dXQwMDAqs1zY0NFRLBkp2NixZkkd4eCzjx9djxIjSrwY+fvw4ffr04f79+wW2fszLy3tJBMl/ZGRkkJWVRW5uLtra2sq/07+zdwwMDMqNkL19+3amTZtGs2bN2L9/P7YqbDe1ZcsWJk2aRJs2bQgODmbw4MH89NNP1K5d+6X1rl+/TsuWLTlz5gzdunVTWTwSEiUlJCQELy8vXrx4gYaGhrI8Lt8b6t9iaPXq1alRowYNGzZUPt7kR5Genk7z5s0ZM2YMnTt3xsvLSyVZ3+Hh4XTq1Al7e3tOnTpV6bMIunfvTnx8POHh4Tx48IBJkybx3nvvMXPmzDdud//+fXr37s2TJ084dOhQkcqs0tPTadWqFe3bt2fEiBF06dKlVP2k3oZc/rKNw39bDh86dIjp06dz7969Mo2rMiF5kpQAQ0NDFixYwLJly+jbty+CIBAdHU1UVBSWlpYvfWGaNxdT1GNjxY4Qt26JnV1ycuDOHfHx8r6henVRhKheXZzFNTAQlxsYiAMXLS1RjNDSEmdUtbTEdpi5uYbk5bVi794YHBzMyMvTJCdHNF1MT//nkf+7XP7m96mhIZbLWFmJj9q1//lpYKCSP63E/6Orq4ubmxuXL1/GxMSEOnXqqDukYpGcmcz5mPNceXiFHHkOADUMa9Ddtjse1h6V1oCyIpGZKZqgnj8vnhM0NKBdO+jfXzwHlQfkcti0SRRImjUrX+1+VYEgCGwP2062PJtG5o3o3qh7obbT0NBQDuT/nforCMIr2RAZGRkkJCSQmZlJVlYWeXl56OnpvSSaGBkZYWBggI6OzkuP0pz93L9fnEQwNc2hX7/SnbtRKBTIZDIaN25Mo0aNiIiIAMQU63//LXJyctDS0lIKSAYGBpiZmVG3bt2XsnDKixhSED///DMzZ85kwoQJrFu3DgMVXqSDgoL44IMPeP/991m/fj379u1j1qxZNG/enG+//ZZx48ahoaGBXC5Xtje9fPmyJJJIlGucnZ1JSEhQZuOV5nkuKyuLJk2a4OzsjJubm0oEklu3btGtWzdsbGw4duxYpRdIvL29OXv2LH/99ReamprMmjULb29vfHx86N2792s7RQYGBvLuu+9ibGyMj49PoY1a8zl06BCPHj1izJgxNG7cuMyFCG1tbWWL4MjISM6dO4ednR22trZoaGiwbNkyFixYIAkkJUDKJCkh2dnZNGrUiC+//JK6deuipaVFy5YtC9WqSaEQy1cePBAfCQniIyWl5HEJgkB8fBxGRkaYmlZ/6/rVqkGNGmJ3iJo1X35uYSGZqqqb+Ph4QkJC6NChQ4UyX4pOiebMvTOEJoQqO9XUNanLO43ewaWOC1qaFcszoTKSb8p67Jhohgpgbw+DB4v+I+WJ/fvh9Gkx027p0vIj3qiKc9Hn+CPyD3S1dFnitQRLI9V2uxIEgZycnAKzKbKyspDJZOTm5iq/y1paWkrBRFdX96X6+4J+19bWLlBguHNHk3XrdFEoBNzcrjBsmNNrTekEQUAul5Obm6tMYc+Pq6DfZTIZeXl5gCgepaamYmBg8JLw8e+Hnp5eiUSQtLQ07t69i7Ozc7H3URI++OADzp8/z638/twqIikpSVl/7+3tjd7/p5k9ffqUTz75hJ07d9K9e3f69+/Pd999x7179+jTpw/ffvstduo0NJKQUCPPnz/n/PnzfP311yxevJi+ffuW6v5jYmLo0KEDpqamXLp0qdhtYysKgiDQqVMn0tPTCQoKQlNTE2dnZxwcHDh69CgzZ87k888/f2mbiIgINmzYwJYtW2jdujV///03FhYWRT72ggULSEpKYtSoUXh5eandPD05OZmIiAjy8vJ49OgRixcv5u7du5W6zErVSJkkJURfX5/FixezcuVKjh49ip2dXaFvsDQ1RU+SOnXEGdt8cnLEMpfU1H8eL16IM735j7w88aFQiD8FQfypqQm6uqCjo0HDhtWJjY2mRQsDqlXTw9hYFEPyH//+XcUerxIlxMrKisaNG+Pv76+y9MzSQiEoCEsI40z0Ge49u6dc3tyiOd0bdce+pn25nomtKhRkymplJYojLVqUv5K5mzdFgQTEtrCVXSBJeJHAwVsHARjSYojKBRIQRYT8Tg/mr+mnLJqRK5RCxL9r7v8tVGRlZZGWlqZ8LX/5f5HJNPn990akpenSosUz6tbNwN/f/43niHzh5b8CjZ6e3ku/54s0+b9ramri7u6Ovb0927ZtK60/m5K8vDz69+/PpUuX2L17NyNGjCj1Y7yNpk2bsnXrVhQKhUpv2idOnEh2djb79+9XCiQANWrUYMeOHYwcOZKpU6cyY8YMBg0axJ9//lkqPmkSEhWVnJwcAgICsLe3p2bNmkyZMoXr16+XmpDx+PFjunbtir6+PmfPnq30AgnAuXPn8Pb25siRI8rzXUpKCvXq1aNmzZps3ryZxMREvLy8yMrKYuPGjcp2up9++imLFi0qdradXC6nR48etG7dWu0CCUDNmjXp1KkTt2/fZvr06SxatEgSSEqIJJKUAlOmTGHr1q1s376dL7/8ssT709P7RzwpGUaEhSnIzAzB3d1dGphWcOzs7Hj+/Dn+/v60a9euUO2/ypIceQ4+sT6cizlHUkYSAFqaWrjVdaObbbeXzCYl1Et5NmUtiPR0sd0viG3VW7dWbzyqRiEo2Bq6FVmejBaWLehgrZp2lMVBQ0MDLS0ttLS0SuUG7I8/RB+rhg1h0SIrzp9/QPfu3VVmLtuiRQtluU1ps3LlSry9venSpQtjxozBwMDgtUamqsLOzo7s7GxiY2ML9F0pDQRB4MyZM3z55Zev7QDSs2dPbt68SWpqaoUtE5WQKC3kcjkBAQGYmprStGlTfvvtNxwcHPjwww/Zt29fifefmJhIt27dkMvlXL58WaUdVsoTX375Ja6urvTp0wcQSyufPHmCpaUlGzZsYN++fVy8eJH169ejoaFBjx492L9/P3379i3RNUYQBDw9PTlx4gQKhQI7Ozvs7e1VWt5YGDQ0NNi+fTvm5ua8//77ao2lMlC+RlkVFG1tbTZv3oybmxtDhgwpV7Ml9vb2nD9/nri4OOrWlQapFRkNDQ3atGmDr68vgYGBuLm5lQv1+nn2cy7cv8Cl+5fIlIkuv4Y6hng19KJzw86Y6kutjcoLyclw6BAEBoq/6+iIvh49ekB5nXAQBNixA9LSxEyXIUPUHZHqOXHnBPdT72OoY8jY1mMrrcAdHS164ACMGVM2n0EXFxd27tzJ8+fPMS3FtmuXLl1i+fLlLFmyhMWLFzNy5EiGDRvG4cOH6dmzZ6kd523kl7JERUWpTCRJTU0lJycHa2vrN66XX8IkIVGVUSgUyi6Ybdq0QUNDAysrK7766iumTZvGd999VyIh8e7duwwePJjU1FS8vb1V9r0vb9y9e5cLFy6wa9cu5TXy4cOHZGVl0bRpUzp37kznzp0BePLkCXK5vNTGQXFxcejq6nL8+HE2bNgAwOjRo9m5c2ep7L+4hISE8MMPPxAQEKAWA/bKhvpHWJWEli1bMmfOHCZOnIhMJlN3OEp0dXWVM2flKS6J4qGlpYWbmxs5OTmEhv7j86EO7qfeZ0voFhacW8CJOyfIlGViYWTBiJYj+Lrb1wxoNkASSMoJmZmin8eyZaJAoqEB7duLXWL69Su/AgmIfinh4aCtDZMnV/7SwIfPH3I06igAI1qOoLp+dfUGpCJkMti2TRTB2rUTS7zKgnfffRe5XM7JkydLbZ9JSUmMHDmSjh07smTJErS1tdm1axc9evTgvffe4+LFi6V2rLfRsGFDdHR0iIqKUtkx4uPjAV7pYCMhIfEygiAQEhJCTk4Obm5uLw1chwwZgpaWFgcOHCjyfnNzc/njjz/o1q0bTZo0ISEhgTNnztCkSZPSDL9cs2XLFkxNTRk4cKBy2c2bNwFeaeNbq1atUhNIZDIZERERtGzZkjt37hAWFgbw2hLVskImkzFp0iTmzp2Lg4ODWmOpLEgiSSmycOFCcnNzWbt2rbpDeYl69ephYmKiPHlIVGx0dHRo164dKSkpRERElKlQkqfII/BxIKuurOKry1/h/8ifPEUejcwbMb3tdJZ3Xk6nhp3Q0y4HvWIlkMlEH49Fi8SfcrnYFWbRoorh6xEXB3/9JT4fOLD8GcmWNrI8GVtDt6IQFDhbOdO2Tlt1h6QyDh0S2zlXrw5Dh5bdca2trWndujVHjhwplf0pFArGjRtHbm4uu3fvVg6CdHV1+fPPP/H09KRfv37ExcWVyvHehpaWFo0bN+b27dsqO0ZCQgJAlUnpl5AoDoIgEBERQWpqKu3atXulvMPMzIwWLVoQmJ/aWQhiYmKYN28e9erVY9iwYeTk5LBjxw5iYmKq1MBYLpezbds2Ro8e/VKJy61btzA0NHxrlltJuHnzJiYmJtStWxc9PT3WrVtHtWrVmDNnjsqOWRjWrFmDTCZjwYIFao2jMiGV25Qienp6bN68ma5du/Lee+/RrFkzdYcEiGUarVq14uLFi9SvXx8zMzN1hyRRQvT09Gjfvj2XL19GV1dX5Z+19Jx0Lj+8zKX7l0jNTgVEv5G2ddrSxaYLDapXjfTOioJCAX5+8Pff/3TLKs+mrAUhk4ntfmUycHCALl3UHZHq+fv238Slx2GiZ8KoVqMqbZnNnTtw7pz4fMwYsbV9WdK3b1/WrVuHXC4vsbfTt99+y4kTJzh+/PgrKfP6+vr8+eefNGnShAULFrB9+/YSHauw2NnZlUkmiSSSSEi8ntu3bxMfH0+HDh1eMjfOJysri5s3bzJx4sRC7e/QoUOMGjUKXV1dxo0bx5QpU2hRVil45YwTJ04QHx/PpEmTXlp+8+ZNmjZtqrJS9JSUFB4+fEinTp3Q0NDg0qVLbNy4kV9++eW1/kxlwa1bt1i5ciUXLlwo8LMmUTwkkaSUcXd3Z+rUqUyePBlvb+9y4RkBYGxsTJMmTQgLC6Njx47lJi6J4mNoaEi7du24cuUKurq62NralvoxYp/Hcj7mPAGPA5ArxM4UJnomeDX0omODjpjoVZx2xFUBQYCICDh4UMzCADAzE0tq3N3Lpynr6/jjD/E9VKsmZr1UUr1AyZ2ndzgTfQaAMa3HYKxrrOaIVENOzj9lNh4eogBW1vTt25eVK1fi4+NDx44di70ff39/FixYwJw5c+jVq1eB61SvXp2VK1cybdo0PvzwQ1xdXYt9vMLStGlT/vzzT5XtPz09XbqHkJB4A/fu3SM6OhpPT8/X+vL4+/uTm5uLl5fXG/clCAJr1qxh/vz5DBo0iG3btmFkZKSKsCsMmzdvxsnJ6RUPyJs3b6ps0lChUBAWFkaTJk0wNjZGLpfz/vvv4+npydSpU1VyzMLGNWnSJKZPn46bm5va4qiMSFc5FbBixQri4uL49ddf1R3KSzRu3Bi5XE5MTIy6Q5EoJUxMTHB3d+fGjRvExsaWyj7zFHmExIew1mctK71X4hPrg1whp2H1hkx0mshX3b7iXbt3JYGknHHvHqxdC+vWieKCoSEMGgQrVoj+IxVpTBMcDN7e4vOJE8XuO5WZTFkmm0M3IwgCHtYetKrVSt0hqYwDB0QDYTMz9Znwuri4ULt27RKV3KSmpjJ8+HDatGnDF1988cZ1J0+eTKtWrfj444/LpDzSzs6O+/fvk52drZL9d+/eHYVCwdGjR1WyfwmJikxsbCy3bt3C3d0dkzdcvFL+P83zhx9+IDMzs8B1cnNzmTRpEvPmzWPhwoXs27evygskCQkJHD169JUskry8PMLCwmjVSjXXz5iYGPLy8mjcuDEgZrNERUXx3XffqVU0/uWXX0hISGD58uVqi6GyImWSqAAjIyM2bdrEgAEDePfdd8uN07SWlhatW7fG39+fOnXqqL1VlUTpYG5ujqurKwEBAejo6BTbTC81O5XLDy5z5eEVZUmNpoYmbeq0oYtNF2yq21Ta9P+KTHy8mDny/95h6OhA167wzjtlX8ZQGiQni91sAHr1gubN1RtPWfB7xO+kZKVgaWTJsBbD1B2Oyrh1C/I9TMeNA3VdgjQ1NenTpw9HjhxhzZo1Rd5eEAQmT55MSkoKFy5ceGsrSS0tLb7//nu6dOnCnj17GDlyZHFDLxR2dnYIgsC9e/dUko7fqFEjXF1d+f333xlaloYyEhLlnISEBMLCwnB1dX2rked7773Htm3bmD59OoGBgUyePBk3NzecnJzQ09Pj6dOnDBw4ED8/P3bs2MGYMWPK6F2Ub7Zv3462tvYr59GIiAjS09Px8PAo9WPml0b923x306ZNODs74+LiUurHKyz3799nwYIFHD58uMqLZ6pAEklURNeuXRk2bBhTp07lxIkT5WZwaWFhgZWVFREREWWS9itRNlhaWuLk5ERQUBDt2rWjRo0ahdpOEARuP73NxfsXCUsIQyEoAKimV40O1h3wauhVabtrVHRSUuDIEfDxEUsXNDTE8oW+fcu/IevrkMth40bIzoZGjcQyocqO/yN/Ah8HoqmhyUSnieXa9Dg2NhYrK6ti+XhkZ0O+JUfHjvCf5gNlTt++fdm8eTN37twpckeI9evXs3//fv766y8aNmxYqG06d+7Me++9x9y5c+nfv79Kb2ibNm0KiJ4IqvIsGDlyJHPmzCElJUXyOZOQAJ4+fUpQUBDOzs5YWloWaptx48bh7OzMzJkzmTdvHjk5Oejq6uLo6EhiYiIvXrzg/PnzKhn4V0Ti4uL4+eefGTRo0CvnnatXr6Kjo6MS0SIiIoI6depgYWEBwKNHjzh27Bi//PJLqR+rsAiCwNSpUxk+fDhdqoJpmxqQRBIVsnbtWpo3b87OnTsZO3asusNR4uDgwLlz50hISJBa+FUi6tati0wmw8/PD09PT0xNX99+N1OWiW+sL5ceXOLJiyfK5U1qNMGrgRdOVk5oa0qnh/JIRgacOgXnz4umpgBOTtC/v2jOWpE5eBAePBAzYCZPrlglQsXhaeZTfo/4HYB37d7FxsxGzRG9nt27dzN69GiqVauGp6cnXl5eNGvWDC0tLdLT01962NravnLN+/NPePYMatYUDYTVTbdu3TA2NqZXr158+umnjB8//rXeAfnI5XIOHDjAJ598wgcffMCgQYOKdMy1a9dib2/P6tWr+fzzz0sS/huxsLDA1NRUpeatQ4cO5dNPP+XAgQOvpL1LSFQ1nj9/jr+/Pw4ODq8YOL+Nli1bcvHiRXJzcwkLC8Pf3x9/f39q167N999/j41N+b0ulCVJSUl069YNDQ0Nvvzyy1dev3r1Km3atCn1LPmEhASSk5Pp2rWrctnWrVvR19dnxIgRpXqsorBjxw6uX7/Ovn371BZDZUdDKMv+oVWQw4cPM2HCBG7cuFGuBIkHDx5w+/ZtOnfu/NZUYYmKRVRUFNHR0XTo0OGV2coHqQ+49OASAY8DkOWJI2x9bX3c67nj1dCLOtWKdnGXKDuys8WOIKdPi88BmjQRW+OqwLO3zAkPF/1UAD74AFq3Vm88qkYhKPjW91vuPL1DI/NG/K/9/9DUKJ+q0N27d3FycqJ79+64uLhw6dIlrl69SlZWFgqFmH2moaGBgYEBmZmZODs7ExwcrNw+MhJ+/FF8Pns22NkVfByZTMbx48fp3bt3mVyXrl27xpdffsn+/fsxNzfnww8/5MMPP1TOFuaTmprKb7/9xs8//8yDBw945513OHToEPr6+kU+5oIFC/j++++5ffu2SttUurq64uDgwJYtW1R2jO7duyOTybiYX0MlIVEFefHiBVeuXMHW1ha7153cJEpEamoqnTt3Jj4+Hm9v7wL/zg0aNGDIkCGsXbu21I6bm5vLxYsXadq0qdI6QaFQYGtrS9euXdm8eXOpHasoJCQk0Lx5c7Zt20a/qpByqyYkkaQMGDZsGAqFQqVu80VFEAT8/f3R1tamTZs25aYcSKLkCIJAZGQk8fHxeHp6oqGjQeDjQC4/vMyD1AfK9eqZ1MOroReudV3R1y76zb5E2SCTwaVLcOIEvHghLqtXT8wcadmycnR9SUkRDWYzMsRWv8Mqry2HkhN3TnDo1iH0tfVZ4rWEmoY11R1SgeTm5uLh4UFKSgqhoaFUq1YNEAWNJ0+eoKWlRbVq1TA0NGT58uWsXLmSq1evKl32MzPh888hNVX0ynmThUVZiyT5REdH891337FlyxYUCgXjx4/n008/RaFQ8OOPP7J9+3ZkMhnDhw/no48+wtnZudjHSk9Px87Ojk6dOrFnz55SfBcv06dPH7S0tPj7779Vdoy//vqLIUOGcPLkSd555x2VHUdCorySlZXFlStXsLKyokWLFtK9tAp48eIF3bt3JyoqiosXL9KyZctX1nn06BH169fnwIEDvPfee6VyXEEQCAoKIi8vDzc3N+X/Njc3F3Nzc2bOnMlXX31VKscqKoMHD0ZbW5u9e/eq5fhVBUkkKQOePHlC8+bN2bRpEwMHDlR3OEqys7O5cOECDg4O1K9fX93hSJQiCoWCo1eP4vPIh/Rq6cgFsX2vtqY2beq0wauBF7ZmttIFvRyTlyf6jRw9Kg4wASwtRXGkTZvKIY4AKBTw7bdw5w5YW8O8eVAMy4sKxf3U+6y6sgqFoGCC0wTc67mrO6TXMmfOHL7//nt8fX3fWOvt6+tLhw4dWLp0KUuXLlUu37oV/PzEz+6SJaCr+/pjqUskyefp06esX7+eH3/8kaSkJARBwNLSkunTpzNt2rQiZ4OmpKQwe/ZshgwZ8lKL4K1btzJx4kSuXLmiMq8BFxcXnJ2d2bhxo0r2D+IgomvXrjx69IiIiAj09Mqvn46ERGmTm5vLlStXMDMzw9HRUbqfUgFZWVn06dOH4OBgzp0799pr0L59+xg+fDgJCQnUqlWrVI798OFDbty4QadOnV7JGpw5cyZ79+4lKSmpVI5VFPbv38/UqVO5ceNGob1vJIpHJb8VLR/UqlWLH374gQ8//JDOnTuXG5MzfX19nJycCA4OxtzcXHJGrgRk5Gbg98iPKw+v8Dj9MUmZSeS9yKO1bWs6NuyIez13qulVU3eYEm9AECAwEP7+G/Kvv2ZmoiFru3aVz6fj6FFRINHXhylTKr9AkiPPYXPIZhSCApc6LrjVdVN3SK/l1KlTrF27ljVr1rxRIElPT2f06NG0bduWhQsXKpeHhYkCiYYGjB//ZoGkPFCjRg0WLVrE7Nmz2bdvH1paWgwZMqRYg/8bN27Qv39/7t69S15e3ksiybhx41i3bh2zZs3C19cXXRX8YeLi4ujTp0+p7/ffaGho8NNPP+Ho6Mg333zz0v9eovKQlpbGwIED6dy5MwsXLpTEAER/Ij8/P4yMjGjdurX0N1EBubm5DBo0CH9/f06dOvXGa1BgYCANGzYsNYEkIyODiIgIXFxcCiyrTE5OVmm55OtISUnhww8/5IcffpAEkjKgkt+Olh9GjRrF77//zuzZs1VaI1xUateuTf369QkODsbT01Otvb4likd+h5orD68QGh+KXCFmjehq6dLXqS+GyYZYG1jjbuMu/X/LMYIg+nIcOgRxceKyatWgd2+xG0hlFA9u3YLjx8Xno0eL2QaVnT9v/EliRiJmBmaMajWq3N5cJyQkMHbsWN555x0+/fTTN6778ccfk5iYyOnTp5WdbzIyYNcu8fXu3cVuRRUFfX19xo0bV+ztDx8+zOjRo2nYsCFdunTh7t27L72uqanJL7/8gqenJ3PmzOGHH34oacgvkZeXx5MnT4psIFkcWrRowccff8zKlSsZNWqUsm5fonIgl8sZNmwYV65c4dy5c9SqVYvJkyerOyy1olAoCAwMREtLCxcXF+m+SgXI5XJGjhzJuXPnOHbsGJ6enm9cPygoqNS62igUCoKDg6lfv36BosvTp085fvw4n3zySakcryh8+umntGnTRuVt5CVEpG92GaGhocH69ev566+/OHPmjLrDeYkWLVogl8tV6oQvUfo8zXzKsahjLD6/mO98vyPwcSByhRxrU2tGthzJmu5rmOg8kUGdB5Gbm0tISAhSdV35QxDg5k34+mv45RdRIDE0hAED4IsvRI+OyiiQpKXB5s3i+/f0hLZt1R2R6rmWcI3LDy6joaHBBMcJGOq8uZuKOpk/fz4A27dvf+Mg4MCBA2zZsoUff/yRRv9SQvbsEf/HVlZVo5VzPnv27GHAgAH06NEDX19fvLy8uHPnzivrubq68t133/Hjjz+WujdJUlISCoUCqzJqd7V06VLMzMzeKqZJVCwEQeCjjz7izJkzdO/eHaDKd1oRBIGQkBBycnJwdXVFS0tL3SFVOjIzMxk3bhyHDx/mr7/+olu3bm9cP1/UKC2RJCoqCrlc/tr26R9++CFaWlpMnTq1VI5XWE6fPs3+/ftZv359uZ1cqWxUwlvv8ou1tTVff/0177//PhERERgbG6s7JAC0tLRo06YNly9fxtLSEnNzc3WHJPEacuQ5hMSH4PvIl9vJt5XL9bX1cavnhqe1J9amL6cA6ujo0K5dOy5fvkx4eDitWrWSTrDlhKgoOHJE/AmgpyeaW3bvLgollRWFQhRI8gfRVcGo9Xn2c3aE7QCgu213mtZsquaIXk9WVhb79+9n7ty5b0xfjouLY8qUKQwcOJDx48cD4iAiNFSDwECxNGz8eKgqDdTS09P59NNPGTx4MPv27UNTU5PGjRuTlJREWloaJiYmL63/wQcf4Ovry+TJk2nVqtVrb8qLStz/p6KVlUhSrVo1Jk+ezPLlywkJCSmRsa1E+eGnn37il19+YdasWWzYsIGPPvropTaoVQ1BEAgPDyc1NZUOHTpInSFVwNGjR5k5cybx8fHs2rWLvn37vnWbqKgoXrx4USoiydOnT7l79y4dOnQoUADbt28f+/btY8+ePWV2fgXRvPb9999n1apVkodkGSKJJGXMtGnT2Lt3L4sXL+b7779XdzhKTE1Nsbe3Jzg4mE6dOkkn/3JEfjmNb6wvoQmh5MhzADE7qWmNprSr3w5nK2d0tV5f166np0f79u25fPkyurq62Nvbl1X4EgVw964ojty6Jf6urS2W1PTqBf8ZR1VKjh0T37uuLkydWv69KkqKIAhsD9tORm4G9U3r079Zf3WH9EZOnDjBixcvGPqGVjQKhYIJEybw7NkzjI2N6devH1FRUdy7lwh8ho6OGaamV/H19adatWr07duXuXPnlt2bKGPi4+P57LPPSE1N5ZtvvlFm34SHh2Nubl5gXbuGhgYbNmwgLCyMgQMHEhgY+IqQUtxYoGxEEkEQ+P7771m5ciW9evWiWbNmKj+mhOo5evQon3zyCTNnzuTixYs0btxYbZ08ygu3bt0iISGBDh06SCbFpUxsbCwfffQRBw8epEePHpw5c4bGjRsXatugoCCAEouzMpmM4OBg7O3tMTU1feX1+Ph4PvjgA4YOHcrw4cNLdKyismjRIho0aFDm2StVHUkkKWM0NTX57bffcHJyYujQobRv317dISmxtbXlyZMnhIeH06ZNG3WHU+VJzEjEN9YXv0d+PMt6plxuaWRJu/rtcK/njrlB4bN+DA0NadeuHVevXkVXV/el1HiJsiE6WjRkvXlT/F1LCzp0gJ49RXPWqsCNG6JIAqIPSRlOxqiNC/cvEJkYiY6WDpOcJqGtWb4vvX/88QetW7emadPXZ7vExMRw+vRptLS08PHxwc7Ojl69ehMf349Hj2piYPAMZ+dbZGR48Oeff6Kvr1/pRJILFy5w9OhRTp8+zfXr1wFYvXq10tAvLy+PXbt2MWLEiNeasxoZGXHgwAFcXFwYP348+/fvL1amX3Z2Nnfv3iUqKoq//voLDQ2NUjMxfNMxp06dyo4dO5g3bx5ffPGFVH5QCThy5AiDBw+mf//+aGtrc+vWLQICAjAwMFB3aGrj3r173L9/H09PTwwrc5pnGSOTyfjxxx9ZtmwZJiYm7N27l6FDhxbpHOjv70/jxo1L3BQjPDycatWqYWtr+8prgiDw/vvvo6Ojw7p160p0nKJy9epVfvvtN0JDQyX/mzKmfN+pVVLs7OxYunQpkyZNIjQ0tMAZJnWgoaGBs7MzFy5c4NGjR9SrV0/dIVU50nLSCI4LJuBxANEp0crlBjoGuNRxoV29diVq3WtiYoK7uzs+Pj5oaWnRsGHDUopc4k3cvy+KI5GR4u+amuDhIZqyVqXqttTUf3xIOnQAt/Lb2KXUiEuPY/+N/QAMbj4Yq2rlWxXKyMjgyJEjLF68+I3rNWrUiPj4eMzNzZUCgK8vbNsmfqYXLoT69b3Iy8tj9+7ddOzYsQyiLzuOHTvGu+++S926denRoweLFi2ia9euWFhYKNcJDg7m8ePHDBo06I37atKkCTt27GDAgAGsWbOm0GLSjh072L17N1FRUTx48EDpOWVqasqwYcNUmhH6+PFjBg4cSHh4OLt375aMBCsJf/31FyNGjKBfv35MmTKF3r17s2bNGlq3bq3u0NTG/fv3uXXrFu3bt6daNak7YGnh6+vLtGnTuH79Oh9++CErVqwoMIPjTYSEhLBp0yZmzJhRolhiY2NJTEykc+fOBd5f5wviBw4coGbNmiU6VlHIzs5m8uTJLFu2DDs7uzI7roSIhiA5OaoFuVyOm5sbvXv3ZsWKFeoO5yXi4+MJCQmhc+fOkmJeBmTJsghNCCXgcQC3km8pb3Q1NDRoYdGCdvXb0bpWa3S0Su+G9+nTp/j5+dGsWTMpo0SFPHggltVERIi/a2qKbXz79IEaNdQbW1mTlwfffiuWGtWvD/PmVX6vClmejK+ufMXjtMe0rNWSD9t+WO79gP7880+GDh3K3bt3i3RuSE6GFSsgO1s0Hc7veHvt2jWcnJy4ePEiXl5eb9yHTCbj+PHj9O7du9yXfHbt2pUXL17g5+f32v9pSkoKDRo0YNq0aaxevfqt+1y4cCGrVq3i7NmzdO7c+a3rN2jQADMzM3r27ImdnR12dnY0bdqUmjVrqvRz5ufnx8CBA9HS0uLQoUNS5mklYdeuXYwbN47hw4fz/fff4+TkhJ2dHWfPnq2yM9j37t3j1q1buLu7U6OqXbRVRF5eHnPmzOG7777DxcWF9evXF+sckpKSQps2bTAzM+Pq1avFnnDOyMjg4sWLODs7v7ZEceDAgURFRREREVGm1/DFixdz4sQJ/P39lZ3jJMoO6S+uJrS1tdm8eTPt27dn8ODB5Uqlt7Kyol69egQHB+Ph4VFlL46qRJYnIyIxgoDHAUQ8iVC27QVoWL0hrnVdcanjgql+0VT1wlKjRg3at2+Pr68vcrkcOzu7cj94q0jExoriSFiY+LuGhiiO9O4N/5porlIcPiwKJPr68P77lV8gATh46yCP0x5TTa8aY1uPrRDfsX379tGmTZsiCSQKhZhBkp0ttvp9551/XvP29kZXVxe3SpQ2FBkZyfnz5/n999/f+D81MzNjxowZfPvtt0RFReHu7k63bt1eazC4YsUKAgICGD58OHfu3HmjP0liYiIPHz5k7dq1DBkypMTvqbAkJibSqVMnXFxc2L9/v8pLeiTKhpMnTzJ27FgmTJjAxo0bGTlyJBkZGW/tblVZEQTh/z2W7tG+ffsSl3JIiMhkMsaNG8e+ffv49ttvmTVrVrFK9BQKBePGjSM1NZVz584VWyBRKBSEhIRQr1691wokDx8+5PDhw6xbt65Mr+HXrl3j22+/xdfXVxJI1IT0V1cjjo6OfPrpp0yaNAk/P79y9SVo0aIFly5d4s6dO2+sS5coPHKFnFvJtwh8HMi1hGtky7OVr1lVs8K1ritt67TFwqhsRtFmZmZ4enri4+ODXC6nefPmFWIQV5558ED02/i3OOLqKmaOVOWxRHg4nDolPh83Diwt1RtPWRD+JJxz0ecAGNd6HCZ65d+R98WLFxw7dozly5cXabszZ+DOHbE708SJYsZUPpcuXcLNza3clJWWBkeOHMHY2PitZTQgZodoa2tz9epVVq5cyaJFi8jJySnweq+pqcm2bdto1KgRv/zyi7INc0EEBwcDlFrby8KSkJBATk4O33zzjSSQVBIEQWDx4sV06NCBTZs2cfLkSf744w/Mzc159913yc3NRRAEtm3bhru7u7rDVTmCIHDjxg1iY2Px9PQsFTNlCbFr2pAhQzh9+jR//PFHoc6fr2P16tUcOXKEo0ePlqgt9Z07d8jNzX1jZ7G//voLhUJRpmU2crmcSZMmMXv27HI1iV7VKD+j8irK4sWL2b9/P99++225MrXT1tamTZs2XLlyBQsLC6ktcDGR5cm4mXyT4Lhgwp6EkSXLUr5mbmBO27ptca3rSt1qddUiUJiYmODp6cnVq1fJy8ujZcuWklBSDKKjRXHk/70b0dAAFxd4912oXVu9sambp09h61bxedeuUBW6g6Zmp7L92nYAutp2pWWtlmqOqHAEBgaSnZ1dJEPxR4/ELCEQWzn/+z5SEAS8vb2ZNm1aKUeqXi5duoSHh8drzVj/jbGxsVJ0mjlzJqdOnSpQIImMjGTGjBncv3+f3r17K2dZX1fyGhgYiLm5eZn7SikUCgDJoLUScfbsWYKDgzlz5gyamprY2NgwefJktLS00NXVJTc3lw0bNvDo0SN1h6pyBEEgIiKChIQEPD09MTY2VndIlYK0tDT69etHQEAAR44c4Z1/pxsWkfPnz7No0SIWLlxInz59ir2fZ8+ecefOHTw9Pd84ST169Gi+/PJLNm3axODBg4t9vKLwzTffkJmZ+VZvMAnVIokkakZfX5/ffvuNHj16MGDAgHJlzFO9enWaNm0qtQUuIrl5uUQmRhIcH0z4k3Bly14AEz0TnK2cca3rWiID1tLE2NiYDh064OPjQ2hoKE5OTuUirorAnTuiOJLfrSY/c6RXr6rRteVtyOWwcSNkZkLDhjBwoLojUj0KQcHW0K28yH1BfdP6DLSvOG/a3d0dKysr1q9fj4eHx1vXl8lEI968PGjdGv6rrWzbto3k5GS6d++uoojVQ2xsbJGMaH///XfCwsI4c+YM7dq1e+m1Z8+e8dlnn/HLL79Qv3597t+/j1wu59mzZ/z222/MmjWrwH0GBQXRpk2bUjtX5+Xl8fTpU5KSkkhOTiYpKQktLS369ev3kiCSnJwMIF0jKhFffvklLi4udO3aFQB7e3s2bdqkfD0iIoINGzZQt25ddYVYJigUCq5du8azZ8+kLjalSHJyMr169eLOnTucOXOmUNeW1/Ho0SOGDx9O586di5zx+G/y2/02a9aM6tWrv3Hd6Ohonj59WmZif1RUFMuXL+fMmTNSq2k1I4kk5QAPDw8mTZrElClTuHDhQrmq/2zcuDGJiYlERESUuAd5ZSZbns31xOsExwVzPfE6uXm5ytfMDMxwtnLG2coZWzNbNDXKz/83H0NDQzw8PPDx8VHefJenz2F5QhDg9m1RHImKEpdpaoK7uyiOVIVSksLy119iZx9DQ9GHpBxVFKqMU3dPcSv5FnraekxxnlLu2/3+GwMDAxYvXsyMGTNYsGABzZs3f+P6hw5BXBxUqwZjxogiYT63bt1ixowZTJgwodJ1tmnatClR+V/+t5Cens4HH3xAZmYmMpmMOXPmAGI69aZNm1iyZAm5ubl8/fXXzJo1i8ePH+Po6Ej9+vVZs2YN06ZNKzBjJSgoiPHjx5f4vTx69IjRo0fj7e1NQT7+P/zwA71792b//v389ddfBAUFYWRkhKV0oqsUXLhwgYsXL3LgwIHXCl/5GSSVueOhQqEgODiY9PR0PD09K1V5oDqJjo6mb9++JCUlcfHiRRwdHYu9r9zcXIYOHYqenh579uwpUTZbREQEhoaGhfLeWrVqFU2bNqV///7FPl5hUSgUTJ48mcmTJxcpo1NCNVScu7dKzpdffomDgwMbNmxg+vTp6g5Hyb/bAj9+/LjSzyQUhaeZTwl/Ek7YkzCinkaRp8hTvlbDsAZtrNrgbOVMw+oNK8Ssm4GBAZ6envj6+hIYGIiLi4uUUv0vBAFu3BDFkXv3xGVaWuLsec+eL5cZSEBwMFy4ID6fMKFqdPOJTonm79t/AzDcYTi1jCueZ8PkyZNZvXo1y5Yt488//3zterduwdmz4vOxY0WhJJ/s7GyGDRuGtbU1P/30k4ojLnvs7e3Zml9D9hY2b95MRkYGd+/eJSUlBQcHBy5cuMDHH39MeHg4EyZM4Msvv6T2/9fl2djYsH79emVL3R07djB58mRA9Iw5c+YMhw8fJj4+vsR+JOfOnWP48OHo6+uzbt06rKyssLCwUD4WLlzIp59+ykcffYSBgQG9e/dm9uzZ9OnTR2qFWgk4ePAgo0ePpl27dm8cAD5+/BgNDQ3lZ7SsyM3N5caNG1y7do3Hjx8zYsQIbG1tS/04eXl5ylJDDw8Pafa+BDx8+JBLly7h7e2t9DWsV68ely9fLrG/4f/+9z+CgoK4fPnyS63Wi8rjx49JSEh4bbvff3Pr1i0OHz7Mpk2bymTicP369cTGxnL8+HGVH0vi7UgiSTnB2NiYjRs3MnjwYHr17kXDBg3VHZISAwMDHB0duXbtGmZmZlU2BVEQBB48f0BYQhjhT8J5lPZyfW4t41rKjJH6JvUrhDDyX/T09PDw8MDX1xc/Pz/c3NzKlaGwOhAEsYXvsWNiVgSIGRGenqI4Ipnev0p8PGwXLTl45x1o1Uq98ZQFWbIsfgv5DYWgoG3dtrSr1+7tG5VDdHV1WbZsGRMnTiQqKqrAEtDMTLGbDUCHDq/+f//3v/9x+/ZtAgICMDIyUn3QZUzz5s2Ji4sjNTX1janacrmc77//nmHDhtGgQQMaNGjA5cuX6dKlC+7u7gQEBNC2bdtXths0aBAGBgY0atSIr7/+GplMxt9//8358+fJzc2lefPmLFmyhH79+hUrfoVCwapVq1i8eDFdu3Zl9+7dBQ46vvrqK4yMjGjXrh09e/aslP/LqoggCHz11VcsWrSIwYMHs23btjcOAB89ekStWrXKpOQ6JSWFr776ilOnTnHz5k1kMhkARkZGLFu2jHHjxrFo0aJSE0vkcjn+/v7k5eXh4eEhlZW/AUEQSEtLIzEx8aVHUlISd+7c4dKlSzx48AAQmz90796dFStW0KNHjxJ3B9qzZw8//fQT69atK1GntMzMTGVbegMDgzeum5OTw7hx47C2tmb06NHFPmZhefjwIfPnz2f//v2SF045oWqPfsoZPXr0YOCggfT8vCcHVx3E3sJe3SEpqVOnDomJiYSEhODh4VEhBYDikC3P5lbyLSKeRBD+JJy0nDTlaxoaGjQ2b0zrWq1pVatVhZw1LggdHR3at2+Pv78/vr6+uLu7V8kbB4VCzIY4eVI0pwSxba2XF3TvDm8pY62yZGfD+vWQkwNNm8KAAeqOSPUIgsCu8F08zXxKTcOajGo5qkKfI/MzFJ49e1bg63v3QkqK2M76v91nDxw4wLp16/jll19oVUnVsfwypJs3b77iMfJvDhw4wIMHDzh48KByWbNmzdDT06Nv374FCiQA/v7+ZGVlMX/+fEaPHs3MmTPx8vJi1apV9O3bt0jtmf9LamoqY8eO5ciRIyxZsoRly5a9NmOwevXqrF27ttjHkih/ZGVlMWnSJPbs2cOyZctYunTpW2fIHz9+rPJSG5lMxoYNG1i2bBm5ubkMHz6cqVOn4ujoSMuWLdHS0mLDhg2sWrWK7du3M27cOL7//vsSZTTJZDL8/PzQ1NSkffv2VX5CqCAyMjIYOnQo4eHhJCYmkpub+9LrmpqaWFhYUL9+fd577z06duxIhw4dSrUTzJ07d5g8eTKjRo0qUaa9IAiEhIRQt25d6tSp89b1Z8yYQVhYGFeuXFF5dpEgCEybNo3BgwdXOg+viox0RihnfPvNtzTp0ISZu2ayYvAK2tUvP7ORDg4OXLx4kTt37pQrg9nSRBAEHj5/SGRSJDeSbnDv2T0UgkL5ur62Pg6WDrSq1QoHSweMdCvnzJq2tjbu7u4EBgZy9epV2rVrV2VSUGUy8PUVW9b+v0chenqiONKjx8tlBRIvIwhiBklCgigiTZnycjvYyopPrA9BcUFoamgy2XkyBjpvnqEq76SliWJwQa0vg4LA31/0H5k4Ufxu5PPgwQMmTZrEoEGDKl1Hm3/TtGlTNDQ0uHHjxmtFEkEQ+Oabb+jcuTNOTk7K5RYWFowdO5affvqJ2bNnF3hePXv2LObm5gwfPpyWLVtSv379Es/EAoSFhTFw4EBSUlI4evRoiTpDSFQ8MjMz6dKlC2FhYezbt4+hQ4cWartHjx6VqNRaoVBw/fp1goODiYiIICoqitjYWCwsLNDT0yMrK4uYmBjl+WPFihUFlvZ88sknTJ06lQ0bNrBw4UIaN27MggULihVTTk4Ovr6+6Ovr07ZtW6m0+DV89dVXnDt3jjlz5lC7dm0sLCywtLRUPszNzVVahqJQKJgyZQq1a9dmw4YNJZp8uHPnDtnZ2YVqY71x40Z+++03tmzZUiZt1nfv3k1oaCg3btxQ+bEkCo8kkpQzzM3N2bRiE2N/GMuv9X4lNi2WgfYDy4X5X35b4KtXr2JhYVEqN23lgdTsVG4k3eBG0g1uJt3kRe6Ll163NLKkhWULWtdqTZMaTcrF/6Is0NLSwtXVlaCgIK5evUr79u0rtZlZdjZ4e4s+C8+fi8uMjMS2tZ06ic8l3sy5cxASInq1TJ1aNQSlhBcJ7L2+F4ABzQZgY2aj5ohKzvP//wKYmpq+tDw1FXbvFp/37g3/zXgfNWoU6enpDBkyhOjoaKytrStlFpqBgQE2NjbczG9rVQA+Pj4EBARw9OjRV177+OOP2bRpE/369WP58uWvpI+fO3eOLl26oKWlVWrZODt27GDq1KnY29tz9uxZbGwq/udUomisWrWK0NBQrly58tospv+SlJREaGgow4YNe+u6crmcn3/+mb///ptHjx6RnJzMixcvlCUz/0ZPTw8tLS0aNGiAiYkJdnZ2TJs27a3GnoaGhnzyyScEBwezfft25s+fX+SBc3Z2Nj4+PlSrVk0yqX8D0dHRrF27ljlz5rBixYpS339OTg4ZGRmYm5u/dp0tW7Zw6dIlzp49W6Jyv5SUFKKiovDw8HhrxpC/vz8zZszggw8+YMKECcU+ZmF58uQJH330Eb/99lulGVdVFqrGaK+CMXDgQHbu2Yn/ZX8M9A2IehrFRKeJ1Kn29vQwVWNmZoadnZ2yLXBFTE9Mz0nnzrM7RD2N4nbybeLS4156XV9bn2Y1m9HCsgXNLZpT07DqOnJqamri4uLCtWvXuHLlCu3bt690njQvXsD586LJaGamuMzMTCyp8fR8eaZc4vXcuQP794vPhw59dQBdGZHlydgUvIncvFzsLezp0aiHukMqFfIzSUxNTTl//jxbt27l11/Xs22bEZmZ0KAB/DcJQS6Xk5eXh4aGBsOHDwdQDoI++uij17ayrag0b96ciIiI174eFydeVwpKO2/evDn79+9n0aJFuLu706NHD5YuXYqHhwdpaWn4+fmxbt26UokzJyeHTz75hF9//ZUJEyawbt26t9biS1Q+Hjx4wOrVq5k9e3ahBZLs7GwGDBiAIAh88sknr13vxIkTfPHFF/j5+SnPAYaGhlSvXh1bW1saNmyInZ0drVu3xsXFBRsbmxILE2PGjGH37t1Kf4nCkpmZiY+PD+bm5jg6OkoCyRuYPXs2FhYWzJ8/v1T3m5qayvr16/nhhx9ITk7m888/Z+7cua+MJ+Li4vjf//7HhAkTlO2pi4NcLic4OJimTZu+VYQQBIGZM2fSqlUrvvvuu2IfsyjMmjWLLl268N5775XJ8SQKT8Ub4VYRfv3pV5o6NiWhWQIAKy6toHuj7vRp0gc9bfWO2po0aUJiYiLXr18vUTuvsuJtooiGhgbWpta0sBBFEVszW7Q0pdTLfDQ1NXFyciI8PFwplFQGU6mUFDhzBi5fhvwy21q1RDNWV9eq0a62tEhNhY0bRR8XNzexNKkqsP/mfh6lPaKaXjUmOE6o0D4k/+b58+doamoSFhZG3759yczMJCPDFQuLmejoiGU2/81O19bWxtfXF7lcTmxsLPfu3ePevXucPHmSuXPnMnjw4ELVgVcUevTowUcffcTFixfp1KnTK68PHDgQR0dHZsyYgZ+f3yvp/AMHDqR///7s37+fFStW4OnpSZcuXfD09CQvL69Eg4J8YmNjGTx4MNeuXWPjxo1Mnjy50nxGJYrGnDlzMDMzY+HChYVaXxAEJk6cSEhICBcvXqRhw4YvvX7nzh0WL17MsWPHyMjIAES/nVmzZjF16lSViw9hYWFoa2sXaeb9xYsX+Pj4UKtWLVq1aiV9F15DVlYWy5cv59ChQ+zZs6dUDZufPHmCg4MDaWlpjBs3jurVq7NkyRL8/f05fPjwS+vOnDkTPT29EvsiRUREYGBgQOPGjd+67t9//01gYCDnzp0rsPV6aXPo0CHOnDkjldmUUzQEQRDUHYREwWzbto0FyxYwe8ds7qTdAcBEz4ReTXrRwboDOlrqS2POysriwoULODo6lqsbX0EQSMxIJDolmuiUaO4+u/uKKAJQp1odmtZsil0NO+xq2GGsW/EH/apGEARu3LhBbGws7du3L9CvoCIQHw+nT4u+Cnn/37W5QQNRHHF0rBoeGqVJXh58843YFrluXZg3r2pk34TGh7I+aD0AM91m4mDpoOaISo81a9awcOFCjIyMaNWqFZ6eQ/jqKw3effc9Zs+uSwGawGt5/vw5DRs2ZPz48W+dmZPJZBw/fpzevXuX+zKdvLw8unTpQkxMDGFhYQUO1nx8fPDw8GDDhg28//77r92XQqHg0KFDrFixgmvXrtGgQQNiYmJKNIjLb+9rYGDA/v37C509IFH5uHTpEp06dWLHjh2MGTPmtes9ffqUiRMn0qpVK7S0tPj888/p2bMnXl5epKenKx+BgYFERkYCYGlpyahRo1i6dOkbOz2VJqmpqdja2jJs2DB+/fXXQm2TlpaGj48P9evXp3nz5pJA8hrOnz/P1KlTefjwIUuXLmXhwoWl+reaOXMmu3btIiIiQmkG/Msvv/Dhhx/y7NkzzMzM2Lx5M5GRkXz33XdF8s4piLi4OK5du0bnzp3fmkGnUChwdHSkZs2anD9/vtjHLCypqak0b96cr776inHjxqn8eBJFRxJJyjGCINCzZ0+sra2ZuXIm+67vIzlTdJKsrl+dzjad8ajvQTU99RT+P378mLCwsEKdfFRFpiyT+6n3laJITEoMmbLMV9ara1JXKYg0MW+itr9ZRUcQBG7fvk1MTAzt2rUrs5uikiIIYjnIqVNw/fo/y+3sRG+FZs1EI0qJovPHH6IXib4+LFoElpbqjkj1PM18ykrvlWTKMunRqAeDmg9Sd0hvJS8vj9DQUHR1dTExMVE+CiqZXLx4MV988QUuLi6cOnWOJUte8MsvRxgwwI4DBzoX+buybNky1qxZw/3797F8wwekIokkILZsbNWqFb179+b3338vcJ0JEyZw5MgREhIS3lqeKggCJ06cwNjYmI4dOxYrJkEQWL16NQsXLqRLly7s2bOnVDtNSFQs8vLyaNOmDQYGBly9evW1GR6RkZH069eP6OhoHB0defLkCfHx8ejq6lKtWrWXHvkdTVasWEGLFi3K+B2J56dvv/2Wu3fvFmqSLjU1FV9fX2xtbbGzs5MEkgJ4+vQpc+bMYevWrXTo0IGNGzfSrFmzUj+GlZUVn3/++UuGu/fu3aNx48bs2bMHPT09Bg4cCEC/fv04dOhQsf9f+ZO5rVu3LpTx8N69exkxYgQ+Pj5v7FpWWkyePJlHjx5x4sQJ6TNZTpFEknLO/fv3admyJYcOHcKrsxc+sT4cv3OclKwUALQ1tWlTpw2udV2xr2lf5mUiISEhZGVl0b59e5V/ydNz0olNiyX2eazy55OMJ/z3I6yjpUMD0wbYmtlia2ZLkxpNpEyRUubu3bvcvn2bdu3avdF0S90oFKKR6OnT8OCBuExDA5ycRM+RquCboUoCA+G338TnH3wArVurN56yQK6Qs+bqGu6n3sfWzJb/tf9fuS/Pu3nzJhMnTsTPz++V10aPHs3WrVtfGsD/+uuvbNmyhRMnTnDunCnTpx9CSyubyMhhWFoWPQX52bNnNGjQgA8++IBVq1a9dr2KJpIA7Nmzh5EjR752xjN/Fj88PJyWLVsWer8ZGRmMHTuWhw8f0r59e9q3b4+Hh8cbW7Hm5uYyevRo/vzzTxYuXMjy5culrh1VnMePH2Ntbc3kyZPZsGFDgescPXqUkSNH0rBhQzp06MDOnTtJSkoCKHdd7Z48eUKjRo2YMWMGX3/99VvXf/r0KX5+fjRt2rRQ5RZVlXbt2nHz5k3WrFnDpEmTVFIuld9K+vjx4/Tq1Uu5XBAE6tSpQ0JCgjKW/fv3Y2ZmVuxmAYIg4OPjg6GhYaE8a+RyOS1atKBJkyYFmm2XNufOnWPAgAFcv36dBg0aqPx4EsVDEkkqAD/99BPff/894eHhGBkZIVfICXgcwMX7F3mQ+kC5npGuEY61HWlh0QJ7C3sMdVRvsCmTybh48SINGjQotbbAuXm5PHnxhCcZT3iU9ojY57E8SntEanZqgevXNKxJI/NG2FS3wdbMlnom9cr9oKUyEBMTw40bN3B1dcXCwkLd4bxETg5cvSp2qnn6VFymowPt20O3blUj20HVxMXBV1+Jfi69esGAAeqOqGz4M/JPzkafxVDHkMUdF1PDsIa6Q3otcrmcNWvW8Nlnn9GwYUN++OEHzM3NSUtLIy0tjXv37rFw4UKGDBnCzp07XxlQ37wJI0f6Ex4ezu+/ezFsWPHP8QsWLOCnn37iwYMH1KhR8N+sIookAB07dsTc3JxDhw698lp6ejqmpqZs2LCBKVOmFGp/OTk59O3bFx8fH/r374+/vz/37t0DoH79+rRv3x5PT09GjRqlLPPJzc1l2LBhHD9+nD179ihnYyUkfvrpJ2bNmsXGjRtf+gzmZx0tWLCA/v37s2XLFiZMmMCZM2dITU0tl9/BWbNmsWPHDmJiYt7qR5KUlIS/vz8ODg6veKpI/EN2djbGxsasW7eOqVOnquw4WVlZGBoasnPnTkaPHv3Sa97e3jx8+BB7e3tatmxZYj+QqKgoHj58iJeXV6E+xz/88AMff/wxISEhRTICLg4ZGRm0bNmSTz/9lBkzZqj0WBIlQxJJKgB5eXl07NgRd3d3vvnmG+VyQRC4n3ofv0d+BMcHk56TrnxNQ0ODBqYNlOKBjZkNNQxqqCTbIzU1VdlSrlatWoXaRq6Qk5qdSlJGEk8ynpDwIoGEFwk8efGEZ1nPCtxGQ0MDSyNL6pvUp55JPeqb1qeBaQOpdEaNPHz4kPDwcJydncuFN01amtil5uLFfzrVGBtD586imWhVaElbFmRmigJJYiLY28OsWVXDyyUsIYxfAn8B4IO2H9C6dvlNnQkPD2fixImEhobyv//9j88++6zAssj9+/czbNgwRo4cydatW5VCyYsXsHw5/PDDNtq1k3HxYuEG+K8jKSmJhg0b8umnn762nWRFFUkWLlzI9u3befz4cYGvt27dmvDwcGrWrImNjQ22trbY2NjQpEkThg8f/lLHsNzcXIYOHcqpU6c4fvw4nTt3BiAhIQFfX1+uXr2Kj48PQUFBGBsbs3TpUiZPnsyYMWM4fvw4Bw4coM9/Ww9JVGkEQWDGjBls3LiRbdu2oaOjw+3bt7ly5QqnT59m8eLFLF68mBEjRnD06FH2799P37591R32K9y/fx87Ozs+++yztxrQPn78mNDQUFq3bk39+vXLKMKKSWhoKM7OzqVWZpKdnY2urm6B2SgGBgYMGjSIX3/9lWoquiFLSEggKCgIT0/PQpWE37x5E2dnZ6ZMmcKPP/6okpj+zaeffkpAQADe3t5Sd6VyjiSSVBBu3rxJmzZtuHDhAm5ubq+8rhAURD2NIvxJODeSbhCfHv/KOnraelgZW2FVzQpLI0vMDcyVD2NdY/S09Iotojx69Ihr167h7uGOpr4mGbkZvMh9QYYsg+fZz3mW9eylR3pu+itlMv/GSNeIWka1qFOtDvVN6yuFEXV39pF4lYSEBIKDg2ncuLHa6n3j48WsET8/kMvFZZaWYtZIu3ZQBiblVQaFAtatE71dzM1h4cKqIT7924ekq21XhrYovpmcKklOTmbZsmWsX7+eZs2asXXrVlxdXd+4zb59+xg5ciRjx45l8+bNaGho8uuvEBYGgYF/8+jRB8TE3C5xl4PZs2fz22+/8eDBgwJvXiuqSHLw4EEGDhzIo0ePCqx9f/DgAVevXiUmJobo6Giio6OJiYnhwYMHbN68mYkTJ5Kdnc2WLVtYtWoV8fHxHDp0iN69e7/2mPHx8Xz22Wf89ttv6OvrI5fLJYFE4rXI5XL69OnD6dOnAbE1ddOmTfnoo4/o37+/Mgtp//79vPvuu2qOtmDGjx/PyZMnuXfv3mvPRYIgEBUVxd27d2nTpg21a9cu4ygrHps3b2by5MmkpaWVSLjIzc1l7dq1LF++HGtra+bNm8ekSZNeWmfNmjXMnTsXgFWrVimflxbp6el4e3vTunXrN5Ym5iOTyWjfvj3p6emEhIS8JFirAj8/P7p06UJISEipe75IlD6SSFKB+PLLL9m9ezchISFvrRNNyUrhzrM7SjPT2LRY8hR5b9xGW1MbQx1DjHSN0NbURkdTBy1NLbQ1tdHW1EZLQ4s8IQ9Zngy5Qq58yBQycuQ5PHzykPQX6VhZWRVKHdXR0sHcwJzaxrWpZVSL2sa1xefGtSQPkQrG8+fP8ff3p0aNGjg6OpZJHbwgQGSkaBr67+5ptrbQo4fojyGJ9KXP4cNw/LhYvjR3Llhbqzsi1ZOnyGOtz1qiU6JpWL0hczzmoK1ZvnpE5+bmsm7dOj7//HMEQWDp0qXMmDGj0J4Cu3btYuzYsUyePJkRI9azd68m2towalQsXl62WFtb06dPH3r27EmnTp2KdTMZHx+PjY0NixYtYsmSJa+8XlFFkvxa+4MHDzKgCHVndnZ2dOrUiWbNmrFmzRoSExMZNmwYixYtKrQh5o0bN1i9ejUjRozgnXfeKeY7kKgK5ObmEhkZSYMGDZReYrm5uQwZMoSTJ09y8ODBNwpz6mTv3r2MGjWKH3744bUlCnl5eVy7do2nT5/i5uaGqalpGUdZ8QgNDaVr1644Oztz9uzZYu/H39+fyZMnc/PmTWbMmMHDhw85ePAgwcHBODo6cuTIEb7++mv8/f2VE6QaGhrI5fJSy6aQyWRcunSJOnXq0Lx580Jts3z5cpYvX46Pj89bJxNKSk5ODs7OzowePfol41qJ8oskklQgZDIZbdu2ZcCAAXz22WdF2jZPkUdSZhJx6XHEp8eTnJmszOpIyU5BlicrcXwCAomJiWhpaGFTz4ZqutUw0jXCRM/kpawVM30zZfaK5OhcecjOziYgIAAAV1fXYhtuvY2cHDFj5Nw5ePJEXKahIbbv7d4dGjVSyWElgNBQWC92vWXiRCggqa1Ssv/Gfk7fO42BjgGLOy6mpmH56RYiCAJHjhzhf//7H/fu3WPq1Kl8/vnnxfIJ2rZtGxMmLMLJ6Q/atvVg6FDo2hWuXLnC7t27OXHiBA8ePEBPTw8vLy969uzJe++9V6R6/5kzZ/L7779z//79V2YtK6pIAqLgYWNjw8mTJwt9XRs4cCAHDx5EW1ubsWPHMn/+fJo0aaLiSCUkRHJychgyZAinT5/m0KFD9OzZU90hvUJKSgoffvghe/bsYdiwYezYsaNAv4qyuv+oTISHh9O5c2caNWrEmTNniiUqpaens2jRIn7++WecnZ3ZtGkTTk5OyGQy5YSprq4ujx8/pmPHjsrywqZNm+Ls7Fxi75F8BEHAz88PDQ0N3NzcCnUOvnv3Li1atGD27Nl8+eWXpRLHm1i2bBl///03AQEBFe76VlWRRJIKRkhICJ6envj7+xfJKf9NCIJAbl4uGbIMMnIzyJRlvpQpIlfIyRPykCvkaGmImSU6WjrKDBNtTW30tPQw1jVGV0MXvyt+1K1bt9BKrkTlQZUzOSkpot/I5cv/+I3o64Onp+g5InW5VC1xcfD116JI1bUrFNDIo1IS8SSCnwN+BmCayzScrFRr6lYUwsPD+fTTTzl37hzdu3fn22+/xcHBodj7i41NwM5uG3XquPDRR92YOfPl1tj5LcBPnDjByZMnuXTpEjo6Oly7do1GhVQnY2NjadSoEe+99x6zZ8+mbdu2yhvaiiySHD9+nD59+hRoSvg6zp07x6lTp/jwww+lDgcSxSInJ4e7d+9Sq1YtatQomu/c+++/z44dOzh8+HC5zEI6e/Ys48eP58WLF/zyyy+MGDGiwPenjkzWik5kZCSdOnWiVq1aXLx4sUhtwv39/ZkzZw5xcXEkJiaSl5fHypUrmTlz5ktd0k6cOIG3tzcymYwBAwbg6empircCiO8nISGBjh07FuraIQgCffr04caNG9y4cUPlZTbh4eG4u7tz5coVnJ2dVXosiVJEkKhwzJs3T2jbtq0gk8nUHUqBpKWlCUePHhViY2PVHYqEGlAoFMKtW7eEo0ePCvHx8SXe3717grBxoyBMmyYI778vPhYuFIRz5wQhK6sUApZ4KxkZgrB4sfi3/+YbQcjLU3dEZcOzzGfCJyc/Ed7/+31hT8QedYejJDc3V5g+fbqgqakp2NnZCUePHhUUCkWJ9qlQKITWrb8S9PW3C9OnZwjPn799m5SUFMHGxkZo3769IJfLC32sdevWCbVq1RIAwdbWVli0aJGQkZEh5ObmCocOHRJyc3NL8E7Ux9ChQ4UaNWoIL168UHcoEpWchw8fCgsXLhQsLCwEQAAEIyMjITAwsFDbnz9/XgCEX3/9VcWRFp3s7Gzho48+EgChS5cuwsOHD1+7bnx8vHD06FHh1q1bJT4HViW8vLyUnxt9fX3h9u3bb91GLpcLK1asELS0tAQXFxdh3rx5whdffCHExMSoPuA3EBsbKxw9elRIS0sr9DaHDh0SAOHgwYOqC+z/kclkgouLizB//nyVH0uidJEySSogWVlZODo68v777zN79mx1h1MgRXWXlqh85LvLN2vWjEaNGhVphksuh5AQOH8eYmL+WW5nJ5qxtmwp+Y2UFVXVqDVPkcc3vt9w79k9GlRvwFyPueXGhyQuLo66desyY8YMvvnmm1JJWV64cA9ffZVGz569WLvWmkJaYnD16lU6duzIypUri1RnnZeXx6VLl9i7dy/bt29nyZIlzJs3r8JmkmRlZdGuXTuys7MJDw8vtTRyiaqHXC5HJpO90o1KEAQuXbrETz/9xOHDhzE0NGTChAn07duXcePGIQgCYWFhby21y8rKolWrVlhZWXHx4sVy1WHj3x4pq1atYtasWQXGJwgC9+7d49atW+Wmu15FIiYmhsjISF68eMHYsWNxcHDA3t4ec3NzzMzMMDExQUdHB21tbXR0dNDR0WHLli34+PgoPaXKwzm6ON01MzMzad68Oc2bN+fYsWMqL/tfu3YtmzZtIiwsTCoDq2CUjzs+iSJhYGDAb7/9Rs+ePenfvz+NGzdWd0ivULt2bezs7AgICMDLy6vQ5oESlYe6detiaGiIv78/6enptG7d+q03Yykp4O0tltSk/39Ha21tcHWFLl1A6uRX9vz9tyiQ6OjA9OlVQyABOHTrEPee3UNfW58pzlPKjUACYGVlRc2aNTE3Ny+Vwbi//y1Wr06kefM2TJhQeIEEwMPDg7lz57Js2TJ69uyJk1PhypG0tLTo0qULXbp0QS6Xs3nzZubMmVPMd6B+PvnkE27fvo2/v78kkEgUm5iYGAYMGEB6ejo+Pj7Url2bFy9esGvXLn7++WciIyOxt7fnxx9/ZMyYMVSrVo1Fixbx5MkTzp8/XygvouXLl/Pw4UOOHj1argQSmUzG8OHDOXnyJIcOHaJXr14FrqdQKAgLCyMxMREPDw/MzMzKONKKj42NDTY2NgA8efIEb29v4uLiuH79Ok+fPiU9PV0p1slkMuU2ly5dUmnZTFHIzs7G39+fpk2bFlogAfj666+Jj4/n7NmzKhdI7t69y7Jlyzh16pQkkFRApEySCsyHH37IjRs3OH/+fLk0QBUEgeDgYLKzs2nfvn25uhhLlB1ZWVn4+/ujra2Nq6vrKwMIQYCoKLh4Ea5dEzMXAKpXhw4doGNHMDEp66glQMzm2bBBfF6VjFqvJVzj18BfAZjqMhVnq/JXQ9y7d280NDQ4duxYifYjCNCmzXbu3dPlo48Gs3SpDtpF1INyc3NxdXVFJpMRHBxc5JtBHx8fPDw8OH36NJmZmeU2k+TFixcEBgbi6+uLr68vfn5+tG/fnsGDBzN27Fg2btzIlClT1B2mRAXlwoULDBkyBFNTU3JycrC0tKRjx45s3bqVFy9e0L9/f2bMmEHnzp2V93zHjh3j3Xff5euvv2bevHlvPca1a9dwcXHh888/Z9GiRap+S4VGLpczcuRIDh06xIEDB17bhjgnJ4fAwEDkcjlubm6vZNtIqIa8vDw0NTXLzVhDoVBw9epVDAwMaNOmTaHjysjIoEaNGsyePZsvvvhC5TF26dIFBwcHfv75Z5UeS0I1SCJJBSYtLQ0HBwfmzp372pZo6kYul3PlyhXMzMxo3bq1usORUBNyuZyQkBDS0tJwc3OjWrVqZGeLXWouXoT4+H/WtbODTp3EbjWS/5r6+LdRa7duMGSIuiMqG5Iykvji8hdkybLoZtuNIS3K5xtfunQpGzZsICEhoUQ3rmfOCPTosREnp5YcO9YeK6vi7Sc4OBgXFxf27dvH0CK6+gqCQIsWLXB2dmbIkCHlUiTx8/OjS5cuZGVlYWJigpubGy1btuSnn35CJpMxcuRIdu3aVW4GERIVB0EQ+PXXX5k1axadOnVi3759xMXF0aFDB3R0dJgyZQrTpk3D+j/91h88eICTkxMeHh4cPnxYORGVm5vL/fv3sbOze2l9uVyOu7s7OTk5BAcHl5uMJ7lczpgxY/jrr7/4888/X9tGOz09HT8/P0xNTXF2dn7JJFSiahEWFkZKSgqenp5F+hxER0fTqFEjzp49S9euXVUYIfz888+sXr2ayMjIVzq5SVQMpDNMBcbExISdO3fSu3dvHB0dy00K3L/Jzx64dOkSJiYmyvQ+iaqFtrY2bdu25ebNmxw65E9GRltu3jQlO1t8XU9PzFLo3Bmk0mL1k5Eh+pDk5ECzZjBokLojKhtkeTI2BG8gS5ZFI/NGDLQfqO6QXouLiwsrVqzg0aNH1C9mHVpsLBw8qIG+vj5t2tzDyqp9sePJ/P+WU8VpYauhocGUKVP4/PPPGVJO1Li8vDyeP3/Os2fPSElJYc6cOTRu3Jjdu3fTvHlzZQcNZ2dndu7cyfr16yWBRKLIyOVyPvzwQzZu3MisWbP45ptv0NbWpkaNGty9exdjY+MCM7MUCgXDhg3DxMSE7du3k5OTw+nTp9m/fz9HjhwhNTWV8PDwl7og/vjjj4SEhODr61tuBJK8vDwmTJjAn3/+yb59+14rkCQmJhIYGIitrS3NmjWTvmtVmJiYGOLi4vDy8iqyUJb+/3Xc+dcrVXH58mXmzZvHiRMnJIGkAiPVP1RwvLy8WL16NYMGDSI2Nlbd4RSIoaEhbdu2JTIykqdPn6o7HAk1IJdDUJAGJ0405+RJdw4dSiUxMY1atWD4cFi1CkaNkgSS8kBenlhik5wMNWrAlClVxyR3X+Q+Yp/HYqxrzBTnKWhplt9UJhcXFwCCgoKKtX1ODmzaJP6/q1WLpnr1iDeun5ub+8bXvb29MTExoVWrVsWKZ8yYMag7sVUQBA4fPoyjoyM6OjrUqFGDJk2a4Orqiq+vL6tWraJly5YvtRgdNWoUJ0+elG6EJYrFhQsX2LhxI7/++is//PDDS4O+mjVrvrZ0LSYmBn9/f3r06MH06dOxsLBgwIABBAcHM3XqVACuX7+uXD86OprFixcza9Ys3MpJ3WRaWhoTJ07k999/5/fff2fQa9T46OhoAgICaNWqFfb29pJAUoVJTk4mMjISV1fXYrXttbOzw9jYmD179qggOpHY2FgGDx7MmjVr6Nixo8qOI6F6pEySSsAHH3xAaGgo7733HpcvXy6XNZo1a9akRYsWSiNXVfcklygfPHkimrD6+IjZCQDVqhnj5KRBtWrBuLtXp2VLB8mvphzxxx9w+7aY3fPhh2BsrO6IygbfWF8uP7iMhoYGk50nY2ZQvs0A69Spg5WVFcHBwbz33ntF3v6PP8TvZ/XqUK/eeZ4/t3/tuhcuXKBLly5YWlpiZ2eHnZ0dTZs2VT5v1KgRly9fxsPD4yUBoSjUrFlT6UOgDrHk/PnzLFy4EH9/f7p06cKGDRswNzdXdnuoXbs2tWvXLvO4JCo3KSkpAIwYMaJI2929exeATZs24ezszMKFCxk4cCDNmjUDYMuWLdy4cQMfHx8uXbrE7t27sbCwYOXKlaX7BopBbGwsP/74Ixs3biQrK4udO3cWWKKnUCiIiIggPj6e9u3bY25uroZoJcoLmZmZBAYG4uDgQI0aNYq1j19//ZXMzEyVdQbNyspiwIAB9OvXj+nTp6vkGBJlhySSVAI0NDRYt24dnTt35v3332fHjh3lUmm3sbEhLS2NgICAItcRSlQc5HIIDRW71ERF/bPczAw8PcHDA8zMjMjMdMHPzw8/Pz/atm1b7jwIqiLe3qJHjIYGTJoEdeuqO6Ky4VHaI3ZH7Aagr11f7C1eLxiUJ1xcXIqVSRIcDFeuiP/niRMhJESf1NTU166/d+9erK2tmTRpErdv3yY8PJw///xTmbqsqamJIAh8+eWXxX0rAIwbN46srCwCAwPx8PAo0b4KS0BAAAsXLuTcuXO4urqWSa26hEQ++Wn/RZ048vDwYMeOHXh6ehZYxty4cWNWrlzJypUrMTY2xtPTk88++wxjNare165d45tvvmHv3r0YGRkxffp0Zs6cSd0CLjQymYzAwECys7Pp2LGjNLFWxZHL5QQEBFCnTh0aNmxYrH3ExsaydOlSPvzwQ9q0aVO6ASKK+1OmTEFfX5+ff/65XI7DJIqGNEqtJOjp6bF//35cXFz49ttvVaaSlpSWLVty9epVrl27ViRHaonyT0FZIxoa0LKl2KXGweHlsg1DQ0M6dOhAcHAw3t7euLm5qfUGrqoTFQX5Gaj9+0NV8VnOlmezIWgDsjwZLSxb0LtJb3WHVCgSEhK4du0aLYrSrxexjGrHDvF5z55gaZnCnTt3cHd3L3B9hULBkSNHGDFiBEuXLlUuFwSBJ0+eEBUVxe3bt3n48CHjx48v7tsBxPLRkydPsnXrVpWLJJGRkSxevJhDhw7RokULDh06RL9+/aRrkkSZkpmZiba2dpEnCYyNjRkzZsxrX1+5ciUhISF4eXnh5OSktkkpQRA4c+YMa9as4ezZs1hbW7NmzRomTZr02hK1Fy9e4O/vj5GRkdK8VqLqIggC165dQ1tb+yWPnaLy0UcfYWJiwooVK0oxun/45ptvuHjxIkFBQejp6ankGBJliySSVCKsrKw4ePAgnTt3pmXLlvTo0UPdIb2CpqYmbdu2xdvbm7t37xbL5E+i/JCTI2aNXL36pqyR12+vo6ODm5sbkZGReHt74+rqSs2aNVUfuMRLJCfD+vVi++W2bcXBc1VAEAS2X9tOYkYiZgZmTHSaWCEGyZmZmfTr14+8vDw2bdpU6O3kcti4EbKzoVEj6N1bzrvvDiM9Pf21WSDBwcHEx8fTr1+/l5ZraGgoS1BKq+46v+xu3759zJ49G3t71WT03LlzB2dnZ+rWrcvOnTsZMWJEscuEJCRKwosXL1SSJdGlSxe6dOlS6vstLDk5Oezbt4+1a9cSERGBs7Mze/bsYfDgwW8UbJKTkwkICMDa2poWLVpUiPOxhGq5e/cuz549w8vLq9il2UeOHOHgwYPs27cPU1PTUo4QTp06xbJly7h48aJUllmJkESSSoarqyu//vorw4cPJyAggMaNG6s7pFfQ19fH1dWVK1euYGJiQq1atdQdkkQREASIjhYzRoKCUHaoeVPWyJvQ0NDAwcEBY2Nj/Pz8aNmyJQ0aNFDdG5B4iexssZNNRgY0aADjxon/y6rA+ZjzhMSHoKWpxftt3sdYt/xnMikUCsaMGUNkZCSXL1+mXr16hd724EF48AAMDWHyZJg/fy7nz5/n9OnT2NraFrjN33//jbm5eZmVvwDUrVuX+fPnc/jwYZXsf9u2bRgaGhIZGVkuPbwkqg7+/v44ODioO4xSIT4+nuPHj3P8+HHOnDlDeno6ffr04ccff8TLy+utgseDBw+IiIiQ7gEklDx58oTbt2/j6elZ7OyMjIwMZs6cyTvvvKOS7ml3795l+PDh/Prrr7Rt27bU9y+hPiSRpBIyduxYQkND6d+/P35+fuXSdb969eo4OjoSFBREx44dy2WMEi+Tmgp+fqI48uTJP8tr1hQzRtq1e3PWyNto2LAhRkZGBAYGkpqaioODgzS7q2IEAbZsgbg4MDWFDz6AqpLZHJ0SzV83/gJgSPMh2JoVLBKUNxYsWMDBgwc5dOgQzs7Ohd4uPBzOnhWfjx8PR45s57vvvuPHH39844zz9evXqVWrVpnO6C5btoyRI0cyZMgQ2rRpg6OjI46OjqUyQ5eXl8eOHTsYPny4JJBIqBWZTMbZs2eZM2eOukMpFnl5eQQGBnLs2DGOHTtGaGgoGhoauLu7M2/ePAYNGqQ0kn3bfq5fv87jx49xc3PDwsKiDKKXKO+kp6cTFBSEo6Mj1atXL/Z+VqxYQUJCAufOnSv161h6ejr9+/dnwoQJjB07tlT3LaF+NAR199yTUAlyuZyePXtSrVo19u/fX267h0RGRpKQkEDHjh2lutNyiFwuDq6uXoXISHFQDaCrC23aQPv20KRJ6WYeZGZmEhQURF5eHi4uLpKApkIOHYITJ0BbG+bMgWL6oVU40nLS+ML7C1KzU3Gp48Jk58kVIq37t99+Y8qUKXz77bd88sknhd4uJQVWrBCzhbp2BWtrP7y8vBgzZgybNm1643v38fHB09OTtWvX8umnn5bG23gtMpmM48eP07NnT77++mvOnTvHtWvXlAaxtWrVwsnJibZt2zJv3jyMjIyKfIyzZ8/SvXt3fH19X+vDIiFRFly+fJmOHTsSGBiobOld3nn27BmnTp3i+PHjnDx5kuTkZMzNzenZsye9e/fmnXfeKVLJbP5AWEtLCxcXF8mgVQIQrwWXLl2iTp06NG/evNj7uX79Ok5OTixbtozFixeXYoRiVufAgQPJyMjgxIkTUjOKSogkklRinj59Stu2bRk3bhzLli1TdzgFIggCfn5+aGho4ObmViEGKpUdQYCYGPD3h8DAf0xYQfQx8PAQBRJ9fdXFoFAouHnzJjExMbRq1Yr69etLn41SJjAQfvtNfD5xIri5qTeesiJPkcd3ft9x5+kdrKpZMd9zPvraKvwwlxLnzp2jZ8+eTJkyhXXr1hX6+6BQwDffwN27YG0No0c/xt3dBVtbW86fP1+oFOZPPvmE9evXEx4erlIfqXyRpHfv3krRXKFQcP/+fa5du8a1a9e4fPkyFy9e5OrVq7Rv377IxxgzZgwBAQHcunVLOqdIqJVFixaxceNGnjx5Um4nskBsa7pu3ToOHz6Mj48PCoWC1q1b06dPH3r37o2bm1uRB4iCIPDw4UMiIiKwsbHB3t6+XP8NJMoOQRDw9/cHKNG4IDc3Fzc3N3JycggNDS11M9XPPvuMnTt3EhAQUOyWxBLlG0kkqeRERETQvn17duzYwXvvvafucAqktBRjiZKRmCgKI/7+kJT0z/Lq1cVSmnbtoKztYxITEwkODsbS0pJWrVpJ2UalRHS0OHCWy+Gdd2DgQHVHVHb8EfkH56LPoa+tz8IOC6llXP49kWJiYnBycqJhw4YEBASgq6tb6G0PHRL4/fdUEhLuo6OzGl/fw9SoUYPAwMBCl69kZGTQqlUr6taty8WLF1U2mClIJPkvp06domfPnty/f7/IvgXp6enUrl2bRYsWsXDhwtIIWUKi2LRp0wZ7e3t27dql7lBeS2hoKKNGjeLevXv06tWLPn360KtXryJ5If0XmUxGeHg4SUlJODs7Y2lpWYoRS1R0bty4QXx8fIkzzOfPn8+3336Ln59fkUpTC8OBAwcYP348Pj4+lcZTSOJVpNygSk7Lli3Ztm0b48aNw87OrsjtIsuC/A4n3t7emJqaUrduXXWHVGVITxfNV/39xeyRfHR1wclJzC6wty+8CWtpY2lpSefOnQkODubSpUu4uLiUqDZVAp4+hV9+EQWS1q1hwAB1R1R2BD4O5Fz0OQAmOE2oEAIJQEpKCjo6OoSFhWFtbU3fvn3p168fXbt2LTA9/dmzZ5w7d459+8I5ebIpGRkZ6OjswMvLkM8//5wRI0YUWiBJTEzk5MmTWFhYcPnyZY4dO0bfvn1L+y0WmocPH6KpqUmdOnWKvO1ff/1FVlbWG1unSkiUBU+ePCEkJKRIZXNlSV5eHmvWrGHp0qW0aNGC0NDQUpnESk1NJSgoCAMDAzp16oS+KlNSJSocjx49IiYmpsQCycWLF1m9ejVfffVVqQsk169fZ/z48Wzbtk0SSCo5kkhSBRg0aBBhYWH079+fgIAAzM3N1R3SK1SrVo02bdoQFBSEkZGRNBBWITk5os+Inx/cuCGm44PoK9K8uSiMODpCeWnzrq+vT/v27YmKiuLKlSvY29tja2srpcoXg6ws+PlnURyrXx8mTVKfAFbWPEp7xPaw7QD0atILx9qO6g2oCDg7O5OQkICvry9///03hw8f5rfffsPAwIDu3bvTr18/GjduzLlz5zh9+jSBgYEoFEbUqPE9Nja29OplxGefjSl0vf+1a9c4dOgQx48fJygoCEEQaNu2LcuWLcPLy0vF7/bNPHz4kDp16hTrBnrbtm106dKF+vXrqyAyCYnCk19O0KpVKzVH8ir3799n7NixXLlyhblz57J8+fIiZa8VhCAIREdHc/PmTezs7GjSpIl0DZd4idTUVK5du0bbtm1L5EWXmprK2LFj6dixI//73/9KMUJxAqJ///588sknDKxKKbhVFKncpoqgUCh47733yMrK4vjx4+XWYCgqKor79+/j5eVV6vWDVZncXLh+HYKDRYEkN/ef1xo0EIWRtm3BxER9MRaGp0+fEhwcjKmpKU5OTiW+catKKBTw00+iMFa9OsyfX7JuRBWJTFkmX17+kqSMJJpbNGem20w0NSq2OnT79m3+/vtv/v77b6VPgLm5Od26daNHj3d4+PA9EhLMqFMHFiwQs8MKQ3JyMpaWllSrVo2ePXvSp08f3nnnnTJp1f62cpu8vDz69u1LWloaV65cKdK+Y2JisLW1ZefOnYwePbq0QpaQKBbPnj3DwcEBJycnjh07pu5wAFHI2LlzJzNmzMDc3JwdO3bQsWPHEu83NzeX0NBQnj9/Tps2bST/BolXyMnJ4dKlS9jY2JTY92rkyJEcP36c8PBwrK2tX3k9ODiY1atXs2jRoiKJlHK5nF69emFkZMSBAwckD50qQPkcKUuUOpqamuzcuRN3d3fmz5/P2rVr1R1SgTRp0oS0tDQCAgJo165duRVzKgIymdiRJihIFEZycv55rWZNcHUVxZFS6KpZZtSoUYNOnToRGhrKhQsXcHFxkW64CoEgwL59okCiqyu2+q0qAokgCGwN3UpSRhI1DGsw2XlyhRdIAJo2bcqcOXOYM2cOSUlJPH78mJYtW6KlpcWJExAQILZzfv/9wgskIH7HXFxcMDExYd++fap7A0UkOTmZUaNGcebMGTZt2lTk7Xfs2IGxsXG59eaSqFro6elRvXp14uLi1B0KIE5ATJs2jb/++ouxY8fy448/YmpqWir7DQoKonr16nTq1Ema2JB4Bblcrsxyb9y4cYn29fvvv7Nnzx52795doEASHx9Pv379iIuLQyaTceDAgULve968eTx+/Bg/Pz9JIKkiSCPQKoSJiQmHDx/G1dUVJycnRo0ape6QXkFDQwMnJyd8fX0JCgrC1dVVOhkVAblcHAgHBUFYGGRn//OauTm4uIidaRo0KN22vWWJrq4urq6uxMTE4OvrS5MmTbCzs5NSd9/AhQtw8aL4P580Sfz/VxWO3TlG+JNwdLR0mOYyDSPdoreNLe9YWFhgYWEBQFQUHD4sLh8xAqysirYvDQ0NPv30U0aMGMG1a9dwdHQs3WCLQUREBH369CE7O5vTp0/TrVu3Im2vUCjYvn07Q4YMKVbbYAmJ0mbmzJk8ePCAwMBAdYfC6dOnGT9+PNnZ2fzxxx8MGTKkxPsUBIGoqCju3LlD8+bNsbGxka7REq+gUCgICgpS3vuX5DPy4MEDPvjgA0aOHMnIkSNfeT0nJ0dZIjN9+nQ2b97MwYMHCyWc79y5ky1bthAQEIBJeU+5lig1JJGkitGkSRP27NnD4MGDadq0KS4uLuoO6RW0tLRwc3PjypUrhIaG4uzsLF1c30BOjpgxcu2amDGSlfXPa2Zmoiji4gING1ZcYeS/aGhoYGtri7m5OUFBQSQnJ+Ps7IyBgYG6Qyt3RETAH3+IzwcOFP1mqgrXE69zNOooAKNajsLa9NWZpcpEWhps2iRmDrm7QzE65AIwePBgFixYgKurK61bt8bV1ZW2bdvi6upK06ZN0dLSKt3A38KpU6eIjY3l3LlzdOnSpcjb79y5k5iYGLZu3aqC6CQkCkdSUhL79u3j8uXL/PHHH2zbtk2tHf0EQeCzzz5j+fLldO/ena1bt5aKcX5WVhYhISFkZWXRoUOHUslIkah8CIJAaGgoWVlZeHp6lui6kpeXx9ixYzExMWHdunUFrrNgwQJCQkLw9vamSZMmbNy4kbCwsLeKJEFBQUyfPp39+/eXuBRIomIheZJUUVavXs1PP/1EUFBQmdSaF4fs7GyuXLlCrVq1cHBwkISSf5GeLgoi166JmSNy+T+vVa8uCiNt2oCtbeURRl5HfjvBxMREnJ2dy+3nWR08egSrV4tCmocHjBlT+T8P+SRlJPHl5S/JlGXi1dCLkS1fnVmqTCgU8P33cPs21Kkjes6UxNYpNjaWI0eOEBAQQEBAALdu3UIQBKXJtqurK66urvTo0aNEJnv/5nWeJJmZmbRq1Yo6deoUqQVxbm4u8+bN4/vvv2fEiBHs2rVLykyUUBtLlixh5cqVuLq6MnjwYObMmaO2WARBYMmSJXzxxRd88cUXzJ8/v1S+G/ldeywtLWndurVUMi1RIIIgEBERQWJiIp6eniXucrRq1SoWLFjAhQsXCjQXj4iIwMnJiS+++IJ58+axfft2xo8fT3R0NDY2Nq/db0JCAi4uLnz00Udq/b5KqAdJJKmiCILAqFGjePjwIefPny+3daIZGRlcvnwZGxsbmjZtqu5w1EpysiiKhIbCvXvibHE+NWuKLXsdHaFRo6ozEP43Dx8+JDw8HBsbG+zt7av8YOj5c/jqK0hJgaZNYdYsqCr3qznyHFZdXcXjtMfYmtkyu/1stDUr95s/fBiOHxeFkQULil5m8zaePXvG5s2b+emnn4iNjVUu//jjj/nuu+9K5RhvMm69cOECXbp0Yf369UydOvWN+5HL5Zw9e5bPP/+c4OBgvvnmG2bMmCEJ7RJq5ciRI/Tr14+7d+/SqFEjtcUhCALLli1jxYoVrFmzplQ6gCgUCm7evElMTAytWrUq0A9CQiKf27dvc//+fTp06FDormuvIyQkBHd3dz799FO+/vrrV14XBAEvLy+SkpIICwtDV1eXjz/+mFOnTnHz5s3X7jc3N5cuXbpgbW3N7t27petHFaRy3zVKvBYNDQ1+++03PD09mTVrFuvXr1d3SAViZGRE+/btuXLlCrq6um9UfCsbeXkQHS2WS0REwH/93ayt/xFGrKyqpjDyb6ytrTEzM1OW37i4uFRZ/4GcHFi3ThRIatWCadOqjkAiCALbrm3jcdpjTPRMmOoytdILJJGRokACMHp06Qskf/75J9OmTePZs2fo6uri4eFB+/bt8fDwKLI/SHHp3LkzI0eOZO7cuQwZMuSVVvb5qds7d+5kz549PHnyhBYtWuDt7Y27u3uZxCgh8SY6deqEtrY2p0+fZvr06WqL4/PPP2fFihWsWrWqVASSjIwMgoKCUCgUeHl5lVpmmUTlJDo6mnv37uHp6VligSQzM5NRo0bh4ODA8uXLC1zn999/5/Lly5w5c0Y5Ifz48WPq1av32v0KgsCMGTPIysrit99+kwSSKkrlvnOUeCOGhoYcOnQIFxcXHB0dmTZtmrpDKhATExPc3d3x+T/2zjssiqvtwzdN6aAgigUUBFFQsIEFW+xGo1hiiUaT2GssMcXEaPIm9hgTW+wlllhisJfYsNEFwYKISpPee9vz/bGfmxAb6sJS5r6uudjdmTnnGXZ2Zs7vPOX6dbS0tF56YavopKfLS/UGB8vDaP6dX0RdHWxt5aKIo6M8EatEcQwMDOjcuTO3b9/m0qVLODk5KSXGuiIhk8GWLRAeDnp6MH06vOVzSIXi1INT+Mf4o6GuweQ2kzHWNla1SaVKSgps3Sp/3bmzvGqVssjOzubTTz9l8+bNDB06lNmzZ9O6desyL88uhGDHjh0cOXIEKysrRey6EIJbt25x+PBhDh06xN27dzEzM2PkyJGMGTNGymclUa4wMDCgQ4cOKhVJFi9ezOLFi1m6dCnz589/6/aio6MJCAigQYMG2Nvbl3m+IomKRVRUFHfu3KFDhw5KSYD6+eef8/jxY/z9/Z/rER8ZGcmnn37K0KFDiwn60dHRL80vsnHjRv766y98fX3fWsiRqLhIIkkVx8LCgkOHDtG3b1/q13fk3Xfbl0uPhJo1a+Ls7Iy3tzdaWlqVJu+ETAaPH/8jjISHF1+vpwcODvLF3l7+XuLlaGho0KJFC0xNTQkICCAxMREHB4cq8fAmBOzfL89Xo6UlF0jMzFRtVdlxK+4W7vfkpV1GNR+FdU3VubSXBUVF8kStWVlyz7L331de20FBQYwYMYJHjx6xadMmxo8frxLBITMzk6lTp7J7924+/vhjfv31Vx4/fsySJUs4dOgQYWFhGBkZ8d5777FixQp69er1TKiOhER5oVevXixbtoyCgoIyP0+///57Fi1axI8//sjnn3/+Vm0VFhYSHBzMkydPaNmyJXXr1lWSlRKVlbi4OAICAnB2dn7GE/BNCAgIYN26daxatYqmTZs+sz4/P59hw4ahq6vLhg0bFJ+npKTg5+fH0KFDn9uuh4cH8+bN4/Tp01LYWBVHEkkk6Ny5MytWrGTkyP189VUTZs2qWS5nns3MzGjZsiU+Pj506NBBKRfZskYIiImBe/fg7l15uc5/l+kFeXnW5s3lwoilpdyDROL1qVu3LsbGxvj6+nL58mXatGlT6Uu3nTsHly/LQ68+/lieuLeqEJMRw1Z/uUtF14ZdcbVwVbFFpc+RI/L8RDo6MGmSXBh7W4QQbNy4kTlz5mBjY4Ovr6/KKnAEBQXx/vvvExkZye7duxk9ejSZmZm4uLhQvXp1Bg0axNq1a3nnnXfKbV4tCYl/06tXL77++mu8vLxwdS27a9TGjRtZuHAh//vf//jyyy/fqq20tDT8/PzQ0tKia9eu0ky7xCtJSkrCx8eHli1bYqaEmRshBHPnzsXW1pbp06c/d5s5c+Zw8+ZNrl69iqmpqeLzAwcOUFhYyMiRI5/ZJyIigqFDh7Jq1So6der01nZKVGwkkUQCgClTJuPrO41ffjlIcvLHjBunhb29qq16lnr16pGfn4+npycdO3asEKXlkpLkosjTJT29+HpdXWjW7B9vkUo+ji9TdHV1cXV1JSQkBA8PD6ytrbG1ta2UXiW+vnD4sPz1sGHQqpVq7SlLsguyWe+zntzCXGxMbHjfXokuFeWUgAC5KAYwdqw8efPbkpyczPjx4zly5AhTp05l5cqVJSqrfenSJTZt2sTs2bNp27btc7eJj4/nzp073L59W7GEh4ejpqaGhoYGGhoa6OjosHjxYjp27EhhYSF3795VCDV2dnYAXL58mczMTHx9fat8Mm+JikerVq2oWbMmZ8+eLTORJDw8nHnz5jFp0iQWLFjwxu0UFRVx//59wsLCsLa2pkmTJlU+QbrEq0lLS8PLywsHBwelhT8fO3aMCxcucOzYsed6ZO3Zs4d169axYcOGZ+5JO3fupHfv3pj/J3lXdnY2gwYNws3NrdymH5AoW6TqNhIK8vPzcXUdSHr6TDp37oOzsxpDh8pLypY3QkJCePToEZ06dSpXyTmFgPh4ePBAvoSGQkJC8W20tKBxY2jaFOzsoEEDyVukLEhNTSUgIICioiKcnJwwMTFRtUlKIzRUXv61sBC6d1du2EV5RyZkrPNeR3B8MDV0arCg0wIMqlfuxIGJifC//8lzFvXoIRfF3parV68yatQoMjMz2bp1K25ubq/cRyaTsWzZMr7++msMDAxIS0tj7NixjB49mvv37xcTRBITEwHQ0tKiSZMm2Nvb06hRI9TU1JDJZBQVFQHg6urKxYsXyc/Px9zcnHnz5hUTambNmoW7uzuPHj2S8o1IVEhGjBjB48eP8fT0LPW+hBD07dtX8Tt8U2/KpKQkAgIC0NDQoGXLlhVigkpC9TytUGllZYWtra1S2szPz8fBwQFLS0vOnj37zH3g7t27tGnThiFDhrBz585i60NDQ7G1tWX//v0MHz5c8XlFqfgpUbZIniQSCqpVq8bRo9tp2bIvQUHmqKk5ERAA3bpB796gr69qC//B1taW/Px8rl+/TqdOnd66xvqbUlgIERFyl/enwkhmZvFt1NWhYUO5INK0qTwEoqpUGilPGBsb07lzZx4+fMiNGzdo0KABzZo1q/D5C2JjYf16+bnYsiW8IMy20uJ+z53g+GC0NLSY2nZqpRdICgrgt9/kAomVFQwe/HbtFRUV8eOPP7Jo0SI6dOjAnj17FHHYPj4+LF++HB0dHdq1a0f79u1p3rw5mpqaJCcn8+GHH3LixAkWLFjAwoUL2b59OwsWLGDnzp1oaWlha2uLvb0977zzDs2aNcPe3p7GjRu/8Df3tATwihUrXrjN2bNn6dWrlySQSFRYtLS0SEpKKpO+fv/9d86cOcPx48ffSCApKCjgzp07REZGYmdnh5WVleQ9IlEicnNzuX79OvXr139pktTXZcOGDYSFhXHo0KFn7gPZ2dm8//77WFpasmHDhmfWb968WZHD6t+sXLmSK1eu4OvrKwkkEgokTxKJZ/D19aVLlwGMHHkJDQ25O3O1atCuHbzzjvLLS74pQgj8/f1JT0+nY8eOpX5he+ol8vixPMHq06WgoPh2WlrQqJHcW6RxY7C2BhVpOBIvICsri4CAADIzM3F0dKROnTqqNumNSE+HpUvlIV1WVjBnjnLyUlQUfJ/4stlvMwDjW42nbb3nh3pUJnbvhqtX5Umcv/kGatR4u/aOHDnC4MGDsbGxwcvLixo1anD//n0WLFjAoUOHsLOzw8DAgJs3b1JYWIiuri5t27bl0aNHZGZmsnv3bvr166doLz09nSdPnmBtbf3aAuRTkaRfv37P3TciIgJLS0sOHTrEkCFD3u7AJSRUQFRUFI0aNWLZsmXMmTOnVPuKj4+nadOm9O7dm7179772/rGxsQQGBqKvr4+Tk1O58tqVKN/k5+dz7do1jIyMaNmypdJE7eTkZBo3bszQoUPZtGnTM+snTJjAnj178Pb2xsHBodi61NRULCwsmDp1KkuXLlV8fvr0aYYOHcqlS5do06aNUuyUqBxI89kSz9CmTRs2blzOjBnt2Ls3kJs3LYiIAA8P+WJjAy4u8pwHqrxnqqmpKRK5enl50b59ezSV5KIhk8ld2iMi5ELI48fy1/9Nsgry/8FTQaRxY3mVCclTpHyjp6dHhw4diIiIwN/fHzMzM5o3b17mpU3fhrw8WLtWLpCYmcHUqVVLIIlMi2RHwA4Aeln3qhICybVrcoFETQ0mTHh7gQSgX79+LFy4kOXLl9O0aVPeeecdDhw4QN26ddm+fTtjxoxBQ0ODnJwc/Pz8uHHjBp6enhgbG7NmzRosLS2LtWdoaFhqCZLPnj2Luro677zzTqm0LyFR2qxZswY9PT0mTJhQ6n3NmjULNTU11qxZ81r75ebmEhwcTHx8PPb29lhYWEieWxIlprCwEC8vL3R1dXFyclLqubN48WIKCwv5/vvvn1m3Y8cOtmzZwtatW58RSEDugZKfn8+sWbMUn4WGhjJy5Eg2btwoCSQSzyB5kki8kLlz53L69Glu3PAkNtaA8+chMFDuUQGgoQG2tvKEo82bywdqqriPFhUVcePGDTQ0NHBxcXktV1AhICUFnjyRL9HR8r8xMc96iIB8ENqggTx8xtJS/rd2bdUct4RyyM3NJSgoiISEBBwcHGjQoEG5fyAsKoINGyAoSB4G9/nnVavUb3peOkuuLCE5Jxl7M3umO09HXa1yu4CHh8Py5fKwqoED4V/OG0ohIiKCL774guvXrzNz5kymTp1a5mGMz/MkkclknD9/nk2bNvHXX3/RuXNnzp8/X6Z2SUgog7S0NBo0aPDMTHZpcPz4cQYMGKCoClUShBBERkYSHBxMrVq1aN68ucpCmSUqJjKZDC8vL4qKimjfvr1Sk+QfP36c9957j2XLlvHZZ58VW+fh4UGPHj0YO3YsmzZteuYZLicnh4YNG+Lm5sbGjRsBuddju3bt6NevHytXrlSanRKVB0kkkXghhYWF9OvXD11dXf7880/U1dVJSQEfH/Dygqio4tsbGspDS556U9SrV3aeJgUFBVy7dg0DAwNatWpV7AIpk0FqqjyBamKi/O/TJS7u+d4hIBdE6tb9RwyxtJS/l8JxKycxMTEEBgZiaGiIo6NjuXUtFgJ27oQbN+Tn6Jw5VavUb6GskJ9u/ERYchhmemZ82elLdLUqdwnKrCz44Qe511CLFnKvoXKu470R/xZJkpKS2L59O5s3b+bRo0fY29szceJExo4dKyWNlKiQnDlzhj59+hASEqK0JJbPIz09HXt7e5o3b86JEydKJPpnZWURGBhIRkYGLVq0eKbyh4TEqxBC4OfnR2ZmJh07dlRqvrfg4GDat29Pjx49OHz4cLHJ0AcPHuDi4oKjoyOnT59+buj9hg0bmD59Ovfv38fa2hqZTIabmxs5OTmcPHlSaV7oEpULSSSReCnJycm0bduW0aNHs3jx4mLr4uIgOFg+mx0aKp/h/C/GxvIcJqamYGIiX4yN5bPfBgZyEeVNRIfCQrm4kZsrT2CYng4JCXncuHEHTc2aGBlZkJ6uRloaJCc/37anqKtDnTpyAaRePbm99erJbZYEkarFv5PUNW3aFCsrq3LnVXLkCJw+LT83p0yRD5qrCkIIdgTswDPKE10tXb5w/YLa+rVVbVapIpPJw6pu34ZateCrr+RlwysC169f58cff2TBggW0b9/+ldvn5eVx+vRp9u3bx+HDh9HU1GT48OFMnDiR9u3bl7vfooTE6/DUuyM2NpbatZV/3RJCcO7cORYsWMC9e/cIDg5+JhzuefuEhYVx7969SpPMXKLsEUIQFBREfHw8nTp1UmrockJCAs7OzhgaGnLt2jX0/1VFIjk5mfbt2yOEwNPTk5o1az6zf35+PnZ2dri4uLBv3z4AFi5cyJ49e/Dx8XnuPhISIOUkkXgFNWvWxN3dnQ4dOuDo6Mjgf5VSqF1bvnTvLg9NCQ+XV3kJC5N7mSQlyT04UlNf3L6amjwpbLVqUL26/O+/eSrhCSHvIzdXnovh+aJHdQoLHYiJicXAIBVj438C9jU05AJNrVr/LKam8hAFMzMph4iEHC0tLRwdHalXrx4BAQFERUXh5ORUbmauL1yQCyQAo0dXLYEE4GzYWTyjPFFXU2di64mVXiABOHFCLpBoacHkyRVHIAG5d9aJEyc4ceIEI0aMYOnSpc8dtMXExLB9+3Z27drFsmXLePDgAatXr+aDDz6ghjISr0hIlAMK/j+GV9mz1kII/v77bxYtWsT169dxcXHh5MmTrxRI0tLSCAgIoKCggHbt2mFqaqpUu14Hb29vwsPDGaaMeuYSZU5ISAgxMTFKF0iSk5Pp3bs32dnZXLp0qZhAkpeXh5ubG0lJSS8USAB+/vlnIiIiOHbsGAB//vknP//8M9evX5cEEomXIg0NJV6Jg4MDO3bsYNy4cdjY2NC8efNnttHS+idx6VNyc+X5PWJj5YLJ0yUtTV4mNytLLn7k5cmXjIzXt61aNXnlGAMDMDICQ0MttLRMiIgIolmzejRrVh8TE3mCQ8krRKKkmJqa0q1bN0JCQrhy5QrW1tbY2toqNb72dfHxgQMH5K8HDYKOHVVmikoIjA3kyL0jALxv/z5NazVVsUWlT1AQHD8ufz16NNSvr1p7Xpe2beXJdEeOHMnFixexs7Njzpw5fPHFF+jq6nLu3Dk2bdrE0aNHqVatGh988AEg90CRyjBKVDYK/392R1kiiRCCCxcusGjRIq5evUrbtm05efIkffr0eanXVVFREffv3ycsLAwrKyuaNGmi0nvboUOHGD16NO3atZNEkgpIWFgYDx8+xNXVFV0lqvipqan06tWLiIgILly4UEz0E0IwYcIEPD09uXDhAo3/Pfj4F9HR0Xz33XdMnz4de3t7goKCGDt2LLt27XpuclcJiX8jiSQSJWLw4MEEBgYyaNCgErunaWvLcyW8KF+CTCYXSp56h+Tnyxch/om3V1P757WmprxNHR2514m29ouED12Sk224fv06OjoCE5MGb3TMElUbDQ0NmjVrRr169bh58yZPnjzByckJExOTMrfl7l3Yvl3+2+jWDfr0KXMTVEp0ejRbb25FCEFny850bdhV1SaVOomJsG2b/HXXrvIS7BWNBg0aULt2baytrdm0aRPLli1j5cqVbN26FW1tbcLDw2nevDlr1qzhgw8+QE9Pj5MnT0phNRKVEmWKJBcvXuTbb7/lypUrtGnThuPHj9OvX79X/naSkpIICAhAQ0ODTp06qdxLcu3atcycORMhBP3791epLRKvT2RkJPfu3aN9+/ZKr2o2bdo0wsLCuHTpEi3+4za7ZMkSdu/ezd69e+n4khmjzz77DD09PRYtWkRSUhIDBw5k7ty5uLm5KdVWicqJlJNEosTIZDIGDx5MVlYWp06dKveJjuLj4/H29qZNmzbUqVNH1eZIVGBkMhkPHz5USdx2RASsXCkXElu3hvHjq5ZXVEZeBkuuLiEpOwk7UztmusxEQ111s55lQUEBLFsGkZHQqBHMm1dxQwIHDBhAfn4+Z86cAeRVdL7//nvFTKCzs7NiYPe86jYSEpWFkydP8u677zJmzBiWLVv2RslRL1++zLfffsvly5dp1aoVixYton///q8UR/6db8vOzg4rK6vXqgSobFJTU/n+++/56aefaNq0KXfv3iU4OBh7e3uV2STxesTGxuLr64uzszNmSi6vd+rUKfr168fOnTv58MMPi627cuUKXbt25auvvnpuKeCnXL58ma5du7J9+3ZGjx5Nnz59MDAweCbxq4TEi5BEEonXIj09nfbt29OnTx9WrVqlanNeSXR0NDdv3qR9+/Yq8QCQqFxkZWUREBBAZmYmjo6OpS6+JSTIB8sZGWBnBzNmVNzB8pvw30o2X7h+gV618ll1SFn8u3qRgQEsWCAPF6yofP/996xevZqkpKQSDeQkkUSisiKTydiyZQsLFiwgNzeXb775hlmzZpUoh8OVK1f49ttvuXjxIi1btmTRokUMGDCgRF5XMTEx3Lp1CwMDA5VXbrt//z6//PILO3bsID8/n2XLlhEXF8eyZcsAqFGjBvXr1+enn36iR48eKrNT4uUkJSVx48YNWrVqRd26dZXadmZmJg4ODtjY2HD27Nli53hKSgqOjo40bNiQCxcuvHCytrCwkFatWqGnp8e1a9eYN28eZ8+e5caNGxgYGCjVXonKSxV63JZQBoaGhri7u9O2bVucnJwYM2aMqk16KfXq1aOgoABPT09cXV1V7loqUbHR09OjQ4cORERE4O/vT61atWjevDna2tpK7ys9HdaskQskDRrIK9lUJYFECMGeW3sISw5DR0uHac7TKr1AAuDhIRdI1NTkXkOqFEiKioqIiYkhPDz8uUtMTAyNGzemXbt2tGvXjvbt29OoUaNiD7Vt27YlJSWFsLCwF8aNS0hUBdTV1Zk4cSLDhg1j0aJFfPXVVxw8eJCTJ09Sq1YtxXb5+fncvXuXwMBAjI2NuXv3Ll988QWOjo4cOXKEgQMHlkgcyc3NJSgoiISEBBwcHGjQoIFKQtmeVt1Zs2aN4ljnzp3LlClTqFOnDjk5OfTq1Yvo6GiePHnCwoUL8fHxkUSSckpaWhqenp44ODgoXSAB+Pbbb4mPj+f8+fPFzteioiLGjBlDZmYmv//++0u92Tds2EBwcDA+Pj78/vvv7NixA29vb0kgkXgtJE8SiTfizJkzDB48mEuXLimS85Vn7t+/r0gs9e/s2BISb0pubi7BwcHExsZiY2ODtbW10kLQsrNh1Sp5lShTU/j8c1ByuG+552zYWQ7fOYyamhozXWbSrFYzVZtU6jx4IP/eZTIYPBh691adLTExMdjZ2ZGenq74rEaNGlhaWiqWOnXqcO/ePTw9Pbl//z4AtWrVUogm7dq1w8rKikaNGrF3715Gjhz50j4lTxKJqoS/vz/9+vXD2NiYCRMmcOvWLQIDA7lz546iEk6jRo1o1qwZubm5nD17tkRhAoWFhYSFhREaGkqdOnVwcHAoFSG/JAgh6NGjBxcuXMDR0ZFPP/2UESNGvNAeIQRaWlqsXbuWyZMnl7G1Eq8iMzOTq1evYmVlha2trdLb9/T0pGPHjixZsoT58+crPhdCMHPmTDZs2MCJEyfo/ZKbY0xMDE2bNmX48OF88skndOvWjSNHjtCrVy+l2ytRualC85ISyqR3794sXrwYNzc3fH19y33ODxsbGwoKCrh27RodOnSQ1GSJt0ZbW5s2bdqQlJREcHAwjx8/pmnTpm89W5eXB2vXygUSQ0OYNavqCSQBsQH8efdPQF7JpioIJCkp8NtvcoGkTRtQ9fNcamoq6enpLF++nL59+2JpafnS62ZSUhJeXl54enri6enJsmXLSE9PVwzqfHx8XimSSEhUJVq1asXVq1fp27cv33zzDc2bN8fZ2ZkJEyZgb2/P7NmzsbCwICkpCWtr61cKJEIIIiMjuXv3Ljo6OuUizPjcuXNcuHCBPXv2MHLkyFfeG7OzsykqKiIzM7OMLJQoKRkZGVy/fp0GDRpgY2Oj9PZjYmIYMmQILi4uzJ49u9i6NWvWsHbtWn777beXCiQymYyxY8eio6PDzJkz6d27N999950kkEi8EZInicQbI4RgzJgxPHr0iAsXLii1NnppIITg7t27RERE0L59eyn0RkJpCCGIjo7mzp07VKtWDXt7+2Lu0yWlsBDWrYM7d0BXF+bOrXhlX9+W8NRwVl5fSX5RPp0tOzOq+ahKX+2koECenPfxY/n3PX++vIKXKomIiMDS0pJTp07R5w3KKclkMoWXiZeXF25ubq9sR/IkkaiKyGQyhBCKMrznzp1j5syZ3L9/n99//50ffviB7t27s2bNmhe2kZCQwO3btykoKKBZs2bUrVu3XFw3+/btS2xsLP7+/iW254MPPuDAgQPs3btXKglcTkhLS+P69etYWlrStGlTpZ9beXl5dOvWjfDwcHx9fYslNT569CiDBg1i3rx5LF++/KXt/PTTT8ydO5djx46xZMkSrKys2LVrV7n4LUhUPCRPEok3Rk1Njc2bN+Pq6sqMGTP47bffyvWFSE1NjWbNmqGpqcm1a9do3749NSpyRkSJcoOamhr169fH3Nychw8f4u3tjYmJCc2aNStxWTyZDLZulQsk1arJk7RWNYEkOSeZtd5ryS/Kx97MnpHNXz3zWNERAvbtkwskurry3DOqFkgARXLHrKysN9pfXV2dZs2a0axZMz7++GNlmiYhUal46iHy+PFj5syZw5EjR+jcuTP79+/H0dGR+fPnY2xs/Nx909PTuXPnDklJSTRp0oRGjRopxBZVc/fuXU6fPs3OnTtf6zq+c+dO1NXVGTFiBHl5eYwePboUrZR4FcnJyXh6etK4ceNSCbEBmDlzJn5+fnh4eBQTSG7fvs0HH3yAm5sbS5cufWkbAQEBfPnll8yePRt3d3fy8vLYtGlTpX+GkCg9JJFE4q3Q0dHhyJEjtG3blpYtWzJlyhRVm/RKbG1t0dDQ4Pr167i4uGBqaqpqkyQqCRoaGtjY2GBhYUFISAiXL1/GwsKCJk2avDQmXAj4/Xfw95cnZ506FaysytDwckBuYS5rvdeSnpdOPcN6TGw9EXW1yl+m7/JluHZNnqh14kR5DprywNPcTW8qkkhISJSMnJwcli1bxrJlyzAxMWHfvn0MHz4cNTU1ioqKSElJeUYkyc3NJSQkhIiICBo2bEjLli3LnTfvzz//TJ06dRgxYsRr7aepqcmOHTvQ0NBgzJgxNG3alNatW5eSlRIvIzExES8vL+zs7LC2ti6VPn777Tc2bdrE1q1bcXFxUXyenJzMwIEDadSokUI4exHZ2dmMHDmSZs2a0bBhQ3744Qd8fX3R0dEpFZslqgaV/wlUotSxsLDg0KFDzJs3Dw8PD1WbUyKsra1xcHDA09OT+Ph4VZsjUcmoXr06LVq0oFu3buTl5XH+/HlCQkIoLCx8Zlsh4NChfwbK48dD06YqMFqFyISMTX6biE6PxrC6IdOdp6OtqZpEg2VJaCj88Yf89eDB5et7r1atGhoaGuzdu5dLly5RVFSkapMkJCodf/31F02bNmXJkiXMnj2be/fuMWLECNTU1Lhw4QJt2rQhKyuL5s2bA/KkrCEhIfz999+KEIXmzZuXO4EkMTGRXbt2MX36dKpVq6b4PCMjo0T7a2hoMGfOHEA+AJYoe+Lj4xVVbEpLIDl58iTTp09n2rRpxTwOCwsLGTlyJCkpKbi7u7+y4MLcuXMJDw9n9uzZfPnllxw+fJgGDRqUis0SVQdJJJFQCp06dWLVqlUMGTKEO3fuqNqcEmFpaYmTkxPe3t7ExMSo2hyJSoi+vj7Ozs64uLgQGxvL+fPniYiI4N+poE6dgr//lr/+8ENo2VJFxqoIIQT7gvZxO/42WhpaTHeeTk2dmqo2q9T5d6LWtm2hZ09VW1QcNTU1lixZwr179+jWrRsWFhbMmTMHX19fpFRmEhJvz/nz53Fzc8Pe3p7g4GB+/PFH9PX1CQkJYeDAgXTv3h1tbW2uX79O9+7diYiI4Pz588TGxtK+fXucnZ3LZbW+4OBgunTpgpaWFpMmTVJ83rdvXwwNDUlISChRO0FBQQC0aNGiVOyUeDFPnjzB29sbJycnLC0tS6WPq1evMmTIEPr168fPP/9cbN2XX37J+fPnOXDgAI0aNXppO+7u7mzcuJHPPvuMuXPn8tNPP+Hq6loqNktULSSRREJpTJ48malTp9KtW7cKI5TUr1+f1q1b4+fnR1RUlKrNkaikmJqa0rlzZ+zt7bl37x6XL18mISGBixfB3V2+zfvvQ4cOqrVTFZx/dB6PcA/U1NQY32o8lsal80BWnigogI0bISNDnndmzBi5F1F547PPPuPRo0dcv36dwYMHs2fPHtq2bYutrS0LFy7k7t27qjZRQqJCUlBQwIwZM3B1deX48ePY2NiQlJTEzJkzcXBw4NatW+zfv5/r16/TuHFjLl++zL1797C3t6dz584qr1rzPIQQbN68mbZt26KmpsaNGzcU4cybN2/m9OnTACUOcQ4MDMTS0lJKsl/GREZG4u/vT+vWralfSonRAgIC6N+/P+3ateOPP/5AU/Of7A979uxh5cqVrFy5ku7du7+0nYcPH/LRRx/RrVs3Nm7cyNSpU4sJcxISb4NU3aoJzYsAAKmgSURBVEZCqQghWLRoERs3buTixYs0a1YxSnfGx8fj7e1N8+bNS001l5AAKCoq4uHDh7i7J3DtmjU1atRg8OBq9O+vasvKnoDYADb6bkQIwTD7YfSw6qFqk0odIWDXLrh+HfT04Kuvyk8ekldRWFjIxYsX2bt3L3/++Sfp6ek4OjoyadIkJk+e/NYJ8qTqNhJVhZ9//pm5c+fi5+dH06ZNWbt2Lf/73/+QyWQsWLCAmTNnUlBQwO3bt0lKSsLW1hYrK6tyk5T1v6SlpTFp0iT++OMPJk6cyOrVq9HV1QXkIRXvvvsuAKGhoTRu3LhEbfbp04dq1apx9OjRUrNbojiPHz8mODgYZ2dnzMzMSqWP0NBQXF1dadCgARcuXCiW3N7Pzw9XV1eGDx/O9u3bX3pPycrKon379qSmppKbm8uUKVNYtGiRlKhVQmlIniQSSkVNTY1FixYxefLkCuVRYmZmRvv27QkODiYsLEzV5khUYjQ0NEhJsSEkxAUNDU1q1bpF/fqB5OXlqdq0MiU8NZwt/lsQQtClYRe6N3r5jFFl4dIluUCipgYTJlQcgQTkCRV79uzJ9u3biYuL488//6Rx48ZMnTqV4cOHS0leJSRKQHh4OAsXLmTixImEhYXRrFkzPv/8c0aOHEloaCizZs0iJCSES5cuoaurS48ePbCxsSm3AomPjw+tWrXi1KlT7N+/n99++00hkFy7dk0hkHz77bclFkgAbt26haOjY6nYLPEsYWFh3L59m/bt25eaQBIdHU3Pnj2pUaMGp06dKiaQPHz4kAEDBtC8eXM2btz4UrFDCMHHH3/MgwcPyMnJkQQSiVJBEkkklE5FFUpMTEzo0KEDISEhhISEqNociUqKvz9s3w7q6hoMHmzCggVNyMvL5e+//+b+/ftVIkFmUnYSa73XUlBUgL2ZPSMcRlSJh5t79+DAAfnr8pao9XXR1tbGzc2NQ4cOcejQIU6cOIGrqyvh4eGqNk1Cotwik8n46KOPMDY2Jj8/n6FDh2JnZ8etW7f49ddfSU1N5e+//yY3N5euXbvSokWLcpeU9SkymYxVq1bRoUMHTExMuHnzJsOHD1esv3XrFv369QPkOeC+/PLLErddUFBATEzMK/NRSLw9QgjFc+/T77I0SE5OplevXshkMs6dO0etWrUU62JjY+nVqxd6enocO3bspdUAAZYvX86BAwfQ1tZm6tSpkkAiUSpIJYAlSoWnQglAt27dKkzoTY0aNejYsSM3btygqKiIpk2bShdeCaURGAibN8uTdXboACNHgpqaAS4uLiQmJhIcHMzjx49p2rQp9evXr5TnXlZ+Fr94/VLlSv3Gx/+TqLVdu/KXqPVtGDJkCDY2NgwcOJC2bdty+PBhOnXqpGqzJJCH9504cYLY2FgyMjLIyMggOTkZHx8f1q1bR6tWrVRtYqUkISGB7OzsZ8J3f/31Vy5evMjmzZuZMmUK33//PQsWLCAqKorz589TrVo1XFxcSpy3Q1UkJCQwbtw4Tp48ybx58/jhhx+KVbFxd3dn4sSJ1KhRg/T0dPLz87l06RK9e/cuUfuampqoqak9tyKchPIQQnDnzh0iIyNxdXUt5tmhTHJzcxk4cCBxcXFcu3atWOWZ1NRU+vTpQ05ODteuXaN27dovbev06dN88cUXGBoaMmPGDEkgkSg1JJFEotSoqEKJkZERHTt25Pr16xQWFtK8eXPpAizx1ty+DZs2yQfJzs7PJus0NTWlS5cuREVFcffuXcLCwmjatClmZmaV5vwrKCpgnc86YjNjqaFTgxnOM6pEqd+cHFi/HrKzwcoKRo8un4la34YWLVrg4+PD0KFD6d69O3v37mXo0KGqNqtKExsby6hRo7h48SJqamoYGBgAkJ6eDshd3yWRRLkEBASwZs0a9u3bh6GhIZGRkQpPkHv37vHFF18wY8YMPDw8qFWrFmPHjuXy5cvk5+eXW3FcJpMRHx9PdHQ00dHRhIeHs3TpUvLz8zlx4oTCWwQgJiaGGTNmcPjwYd599122b9/OgQMHmD59Ot7e3iUWSdTU1NDR0SE3N7e0DqvKI4QgKCiImJgYXF1dS7VS0tSpU/H19eXChQs0adJE8Xl2djYDBgwgIiKCK1eu0LBhw5e28+DBA95//3309PSYNWuWJJBIlC5CQqKUkclkYuHChcLMzEzcvn1b1eaUmKysLHH27Fnh7+8vZDKZqs2RqMDcvSvEtGlCTJwoxMaNQhQVvXz7wsJCcf/+fXHy5Elx8eJFER0dXeHPQZlMJjb6bBQTj04Us07NEtHp0ao2qUwoKhLil1/k3/38+UKkpqraotIlPz9fjBw5UlSrVk14eHi89r5//fWXyM/PLyXrqg7nzp0TZmZmwtzcXJw/f15x/Th//rwAxL59+4QQQkRHR4v27dsLe3t7YWdnJxo3biysrKzEpk2bVGl+hSImJkZs27ZNdOnSRQCiQYMGYv78+UJNTU106NBBnDhxQuTn54u2bdsKW1tb4e3tLTp06CAOHDggTp48Ke7fvy8KCwtVfRgKCgoKxNq1a0WHDh2EhYWF0NLSEoBi0dTUFL179xbR0f9cw4uKisSmTZuEkZGRMDMzE/v37xcymUzcvHlT6Ovri3fffVcUFBS8lh01a9YUS5cuVfbhSQj5/djPz0+cPXtWZGVllWpfPj4+AhAbN24s9nl+fr549913hZ6enrhx48Yr28nIyBDW1tZCR0dHfPPNNxX+mUii/CN5kkiUOhXVo0RXVxdXV1euX7+On58frVq1Ql298ocFSCiX0FBYt05e9rVFC/jkE3jVaaShoYGNjQ2NGjUiPDyc4OBg7t69i42NDfXr16+Q5+HBOwfxj/FHU12TqW2nUtegrqpNKhOOHIHgYNDSgqlTobJXs9TS0mLHjh3ExsYycOBArl27RtOKnHylglFYWMjixYv54Ycf6NmzJ7t37y6WhPHpLK6Ojg4gL81669Ytxo8fj4aGBhoaGly6dImff/6ZCRMmqOQYKgKZmZmsXr0ad3d3/Pz8UFNTo1OnThw4cAA3Nzc0NTXp1q0bixcv5t1338Xc3JykpCROnz7N3bt3mTBhAo6OjlhZWRUrf6pqzp49y+zZs7l79y5ubm507dqVevXqFVvMzMyeSSL7+++/M3HiRD7++GNWrFhBzZo1iYyM5N1336VJkybs37//tY+zevXqkidJKSCTyfDz8yM9PR1XV1fFtaA0yM7OZsqUKdjb2/PJJ58Us+Gjjz7i7NmzHD9+nHbt2r20HSEEgwcPJioqivnz57N48WLJg0Si9FG1SiNRdaioHiW5ubni4sWLwtPTs1zN9kiUf8LChJgxQ+5FsGaNEK85kaagqKhIPH78WJw7d06cOXNGhIWFvfasnCo5F3ZOTDw6UUw8OlF4R3mr2pwy48YN+Xc/caIQPj6qtqZsSUlJEfb29qJhw4YiJiamRPtIniRvz4gRI4S6urr44YcfRNFzXNZkMpmoV6+esLOzE97e3sLCwkKMHz++2Dbu7u4CENu2bZPuec/hxo0bonHjxkJHR0eMGDFC7N69WyQkJDx3W5lMJi5cuCA+//xzcfDgQXH8+HHxzjvviO3bt5et0a8gJCRE9O/fXwCiU6dOws/P77X2d3R0FL169VK8T01NFQ4ODsLS0rLEv/9/k5eXJ9TV1cXy5ctfe1+JF1NYWCg8PT3FxYsXRW5ubqn35ebmJnR1dYXPv26AMplMzJgxQ6ipqYk//vijRG3NnDlTVKtWTfIgkShTJJFEokypqEJJXl6euHz5srh27VqFGpxKqI6wMCFmzpQPkFetEkIZ4z6ZTCaioqLExYsXxcmTJ0VISEi5H1D6RPsoBJIzD86o2pwyIyxMiKlT5d//X3+p2hrVEBERIerWrStat24tMjIyXrm9JJK8PYMGDRKtW7d+6Ta3b98WrVq1EmpqagIQnp6exdbn5eUJNzc3AYhmzZqJgwcPPldwqWrk5+eLb775RqirqwsXFxdx//79V24fEhJSLGyyX79+okmTJuXmOSIlJUXMmTNHaGlpCUtLS3HgwIHXGoQWFhaK7777Tqirq4u1a9cKIeTnT/fu3YWxsfEbP+c9evRIAOLMmapzzyhtCgoKxNWrV8Xly5fL5Bq7efNmoaamJo4ePVrs8++///654TcvYtmyZaJatWri66+/lgQSiTJFEkkkypyKKpTk5+eLq1evCg8PD+khXuKl/FsgWbFCCGVP2MhkMhEbGys8PDzE8ePHxe3bt0t9VuhNuJ94X0w9PlVMPDpR7AvaV2UecJKThZg3T/79r18vRBU57OfyNCdBv379XjkwlESSt2fv3r0CEI8ePXrpdnl5eeKbb74RH3zwwQt/l56enqJHjx4CEP379y8FaysOd+/eFa1btxYaGhriu+++e+m5nJubK27fvi2OHz8urly5ImJjY4VMJhNXr14VQIlnz0ubGzduCFNTU6Gnpyd++OEHkZOT81r7h4eHi06dOgl1dXXxzTffiIKCApGeni5Gjx4ttLS0xKVLl97YttDQUAGI06dPv3EbEv+Qn58vPDw8xNWrV8tEoEtKShLW1tZi8ODBxT7ftGmTAMT3339fonZu374tjIyMJIFEQiVIIomESqioQklhYaG4fv26uHjxosjLy1O1ORLlkAcP/hFIVq5UvkDyXxITE8X169fFsWPHxK1bt0R2dnbpdlhCotOjxaenPhUTj04UG3w2iCJZ1ZiJzssT4ocf5N//4sWl//1XBM6cOSM0NTXFxIkTX/qgK4kkb09GRobQ1tZWWpjC0qVLBSDatWsn0tPTldJmRaKoqEj8+uuvQltbWzRp0kR4e784XDArK0sEBgaKY8eOievXr4vExETFOplMJrp06SKsra1FSkpKuRjwzZw5U9SvX79YAtaS8vDhQ2FkZCTU1NTEzp07xa1bt8SUKVOEvr6+0NDQEHv27Hkr24qKioSRkZH43//+91btSPwTMn7jxo0yCZ+Lj48XLVq0EKampuLu3buKz93d3YW6urqYNm1aic7/27dvCzMzM7Fw4cJy8XuRqHpUvOx/EpWCp8lcJ0+eTLdu3bhz546qTSoRGhoaODs7o6ury9WrV6WkYhLFCAuDNWsgNxeaNIHp0+H/qz+WGiYmJrRv3x5XV1dyc3P5+++/uXnzJhkZGaXb8UtIyUnhF69fyC7IxrqmNZ+0/AR1tcp/uxECdu6E8HDQ14dp00r/+68I9OrVi02bNrFp0yZWrFihanMqNXp6ehgZGSnt9//BBx/w4Ycf4uvrS4MGDfj888958uSJUtou72RkZNC3b19mzJhBv3798Pf3p23bts/d7ubNm5w/f568vDxcXV1p3749JiYmim3S0tK4evUqYWFh1KhRAx0dHSwtLXF2dubw4cNleVgKIiMjadasGXXrvn4SbUNDQ7p160b16tUZO3YsLVq04MiRI8yePZtHjx4xatSot7JNXV2dtm3b4u3t/VbtVHVyc3O5du0aurq6ODs7P5NwV9nExMTQtWtX4uPjuXz5MnZ2dgBcu3aN4cOH4+bmxpo1a16ZdPXOnTt069aNyZMnS2V+JVSGmhBCqNoIiaqLEIJFixaxcePGClP1BuSZuW/evElKSgodOnRAV1dX1SZJqJjQUPj1V8jLAzs7+QC5WrWytyMjI4MHDx4QFRVFnTp1sLGxwdjYuMz6z8rPYsX1FcRkxFBbvzafd/wcvWp6Zda/KnF3h5MnQUMDZs8GGxtVW1S+GD16ND4+PoSEhDx3fUFBASdPnqRfv35oaWmVsXWVg5iYGOrWrcu+ffsYMWKE0tqNioril19+4bfffiMnJ4cPPviAuXPn4uDgoLQ+yht37tyhS5cuJCYmAnJB2snJCScnJ7p370779u0JDQ0lNjaW+vXr07hxYwwMDF7YXnh4OA8fPiQ+Pp64uDji4uJYvnw5c+fOZenSpWV1WAAkJSXh7OxMt27d2LJlyxu3k5mZyZkzZ1BXV6d///5K/d0uWLCArVu3EhMTIw2S34Ds7GyuX79OjRo1aNmyZalXxYuNjaVLly5kZWVx4cIFbG1tAbh9+zadOnWiRYsWnD59Gm1t7Ze2IwkkEuUFSSSRUDkVVSgRQnDr1i3i4uLo0KED+vr6qjZJQkX8WyBp2lRe6lUVAsm/yc7O5sGDB0RERGBiYoKtrW2xmc3SIK8wj589f+ZhykOMtY2Z33E+Jrql22d5wdMTtm+Xvx47Fjp0UK095ZFRo0bx5MkTLl269Nz1kkjy9uTk5GBnZ4eGhgYXLlygYcOGSm0/LS2NzZs38/PPPxMdHY2xsbGidLC6urrita6uLm3btqVDhw506NABe3v7Up/FLg2EEERGRhIQEEBAQADu7u7k5uYyZswYHBwcsLS0xNra+o0mSp4KWgcPHmTo0KGlYP3z8fLy4v333yczM5OTJ0/i4uJSZn2/Dps3b2bSpEnk5eVJ14PXJDMzk+vXr1O7dm1atGhR6kJDTk4O3bp1IyIigqtXr2JlZQXIxdX27dtTo0YNPDw8XjlhIwkkEuWJ8lOcXaLK8jT0BqBbt24VRihRU1OjRYsW3L59m6tXr9KhQwcMDQ1VbZZEGXP/Pqxd+49AMm0alIfnOV1dXVq0aEGTJk0ICwvD09MTQ0NDbG1tMTMzU/rDR5GsiN/8fuNhykN0tXSZ1W5WlRFIHjyA3bvlr/v0kQSSFxEREaF4eJYoHXR0dPDw8OCdd96hS5cuXLhwAWtra6W1b2RkxLx585g5cyZHjhwhPDycoqIiZDJZsb+pqal4eXmxb98+CgsLMTQ0xNLSEm1tbXR0dBTL0/dGRkbUrFkTExMTWrduXW4G7mpqalhYWNCgQQMAtLW1sbS0xMLCglatWlH9LeLp/Pz8AGjTpo1SbH0VQgh++eUXPvvsM1q3bs2BAwcUx1UeCQ8Pp169epJA8pqkp6dz/fp16tevj729fakLDTKZjI8++ohbt27h4eGhuManpKTQp08f1NXVOXXqlCSQSFQ4JJFEolxQkYUSe3t7NDU1uXr1Ks7OzpiamqraLIky4t49WLcO8vOhWTO5B0l5e56rXr06zZo1w8bGhkePHuHv74+Ojg42NjaYm5srxQVXCMHOwJ3cjr+NloYWM1xmUNfg9ePcKyIJCbB+PRQWQqtWMGiQqi0qv0RERNC1a1dVm1HpsbS0VAglLi4uDBw4kG7dutGtWzfq1aunlD6qVavG8OHDX7lddnY2Pj4+XL9+ndjYWHJycootaWlpir/JyckkJydTUFBA3759WbRoEVZWVujr67/SRf9t+eWXX/D19aVfv3707t2bGjVqAFBUVMTly5cJDw9HQ0ODzMxMevXqpVj/Nvj6+mJiYoKlpeVbt/VfZDIZcXFxPH78WLFcvnyZM2fOMGfOHJYsWUI1Vbs7voKQkBCioqIoLCxEU1MarpSEhIQEfHx8sLKyokmTJqUuNBQUFDB27FgOHjzIgQMHFIJfUlISPXv2JCYmhqtXr77yuiMJJBLlESncRqJcUVFDb0A+6xEUFETz5s1L5aFHonxx6xb89pt8cGxvD1OmlD+B5HkUFhYSERFBWFgYRUVFWFhY0LBhwzfOqyOE4OCdg5x/eB51NXWmOU/Dwazy5in4N9nZsGwZxMaCpSXMm6f6MKvySkFBAdra2mzcuJEJEya8cBsp3EZ5xMbGsmTJEi5cuEBwcDAANjY2CsGke/fu1KpVS8VWFkcmk3Ho0CEWLlyoyF2jr6/P8OHDWb169UtzfrwpaWlp1K1bF319feLj49HQ0KBPnz70798fAwMDsrKyuHHjBu3bt2f8+PFKy+3Qv39/CgsLOX369Fu3lZSUxE8//YSvry+PHz8mPDycvLw8xfqaNWtiZWXFV199hZub21v3VxbUrl2b+Ph4wsLCJA+0EvD48WOCg4Nf+xk0OTmZ3NxcRULhkpKdnc2wYcM4d+4ce/fuVYSMxcfH06NHD2JiYjh//jwtWrR4aTuSQCJRXpFEEolyR0UWShITE/H29sbCwqJM3BwlVIOvL2zdCjIZtGwJ48dDRZvoEkIQHx/P48ePiYuLo1atWlhaWlKnTp3XGgScCj3FX/f+AuDjlh/jUr98uMmXNkVF8Msvcm+iGjXgyy/ByEjVVpVfwsPDadiwIadPn6Z3797P3UYSSUqPp9UmLl68yMWLF7l37x46Ojr8+eef9OnTR9XmPUNhYSHnz58nJyeH8+fPs3btWry8vHB2dlZ6X7t37+bDDz/k3Llz1K5dm7t376KpqYm/vz+xsbG4ubnRt29fpSe+tLW1JTQ0FAMDA2rUqEHNmjUVf52cnJg0adIrRazc3Fx+/fVXfvjhB2QyGT169KBRo0Y0bNhQsVhaWlbIUOChQ4cSHBzM3bt3pWeplyCE4Pbt20RERJTIm/nx48doa2uTkJDAjz/+yIEDB5DJZOjq6vLFF1/w9ddfv/L/nZqayoABA7h58yZHjhyhZ8+egFyY7d69O0lJSZw/fx57e/uXtiMJJBLlGUkkkSiXVGShJDMzEy8vL/T09GjdurX0sF/JuH4ddu2Sl3t1cYFx46CUk8aXOjk5OURERBAeHo5MJsPS0hJLS8tXepdcjbjK7kB5Mo5h9sPoYdWjLMxVOULAnj1w5Yq8xO/8+VC/vqqtKt9cuXKFzp07c+fOHZo2bfrcbaqKSBIaGsqqVavYv38/jRo1ol27drRr1w4XFxdsbW1LvQoFyJOGTp48mVOnTrFnzx6GDRtW6n2+KUePHmXgwIE8efIEc3NzpbcfFRXF6tWradGiBSYmJtjY2GBhYfFas+pvwtNksE/DjFJSUkhOTiYpKYlr164hk8kYN24cc+bMweY/pbJkMhn79u1jwYIFREVFMXnyZBYuXIiZmVmp2lxWREVFYW1tzdKlS5k9e7aqzSm3FBQU4OfnR1ZWFi4uLi8tIBAbG8vXX3/Ntm3beDr0s7S0ZO7cuVhZWfHDDz/g6+vLgwcPsLCwUOyXmZnJ+fPn6dq1K0ZGRsTFxdGnTx/Cw8M5efIk7dq1A+DUqVOMHz8egAsXLtCkSZOX2i4JJBLlnQo29ylRVaioOUpA7hrcqVMnfH19uXr1Ki4uLlKJ4ErCxYuwf7/8dadOMGpUxRdIQJ7ssUmTJtja2iq8S/7++++XepfcjLnJ77d+B6BP4z5VRiABOH9eLpCoqcm9iCSB5NVEREQAFHv4rmqkp6czYcIEDh48SK1atZg8eTLx8fF4eHjw22+/IYTA2NiYFi1aYGxsjL6+PsbGxsyZM0epyVcBzM3NOXToEOPGjWPEiBFkZGTw8ccfK7UPZZGVlQWgVNFCJpMRGxtLeHg4CQkJDB48mA0bNnD06FF27dpVJuEdT8sJP4+kpCQ2bNjAr7/+ym+//cagQYP47LPPaN++PRcvXuSzzz7Dz8+PQYMGcebMmVcOSCsSubm5DBkyBDMzM8aOHatqc8ot2dnZeHp6oq2tTefOnV8oLOfk5LB69WpFHpqff/4ZExMTNDQ0GDJkiGK/vXv3cuPGDSwtLWnSpAmZmZloaWkRFxdHTk4OXbt2xcDAgPPnz2NkZISHhwcODg6kp6czZ84ctm7dSu/evdmyZQv1X3FTlAQSiYqAJJJIlFsqslBSrVo12rVrR1BQEB4eHjg7O1OzZk1VmyXxFpw+DUeOyF937w7DhskHyZUJNTU1ateuTe3atRXeJcHBwdy6dauYd8ndhLts8d+CEIKOFh0ZZDdI1aaXGYGBcOiQ/PXQofCKcGuJ/yc8PBwTExP09PRUbYpKyMrK4t133+XWrVts2LCBsWPHFktGmpaWho+PD15eXty+fZuMjAyePHnC2bNnCQoK4vLly0ofSGhpabF7924MDQ355JNPSE9P59NPP1VqH8rgaU6DgICAt078m52dTXh4OOHh4airq2NpaYmTkxM6Ojo4OTmRkJCAm5sbenp6dOrUie7du9OrV69X5lVQNiYmJnz99dfMmzeP3bt3s2rVKjp06ICVlRUPHz7E2dkZDw8POnXqVKZ2lTZCCKZNm0ZgYCBXr16VnpteQHJyMl5eXtStW5fmzZsXm8QQQvDo0SMuXbrEpUuXOHv2LElJSUyfPp2FCxe+MOmwk5MTe/fuBaBDhw5YWFhQUFBAzZo1UVNTY+7cuQDUqVMHX19fNDU1WblyJb/88gspKSls2rSJ8ePHv/I6JQkkEhUFKdxGotxTkUNvAB4+fMidO3dwdHQs1+X2JJ6PEHD0KJw8KX//7rswYEDlE0hexH9zl+Tp5XEq5RSa1TVpZd6Kia0noq5WCdxpSkB4OKxcKa9m1Lmz3JOoqpwHb8vkyZPx9vbG39//hdtU1nCbnJwc+vfvj7e3N2fPnqV9+/Yl3vf06dP07dsXd3d33nvvvVKxTwjBl19+ybJlyxg1ahRjx47lnXfeKTcVRYqKijA0NOS7775TDNReh/96jdSuXZuGDRs+txS6TCbD39+fCxcucP78eS5dukR+fj6hoaE0btxYWYf02shkMo4fP84ff/zBe++9x/vvv1/pBpcymYzly5fz5ZdfsnPnTj788MNX7iOEqHT/h1cRGRlJQEAAubm5bN26lZiYGEUuG01NTTw9PYmMjERdXZ2WLVvStWtXJk6ciK2t7UvbvXXrFmfOnGHSpEnP5LD5448/mDt3LtHR0QAsWrSIZcuWIZPJGDx4MD/++CMNGzZ8pe2SQCJRkZBEEokKQUUXSuLj4xVl2ezs7KQbQwVBCPjjD3mYDcDgwfCCnJNVgtC4UP534X8kpibSQKcB09pOw7qRdZUIJ0tMhKVLISNDXs1o2jTQ0FCNLfn5+aipqVUoIaFfv35Uq1aNv/7664XbVEaRJC8vj0GDBnH58mVOnz5N586dX2t/IQS9evUiKiqKoKCgUhUu1q9fz+rVq3nw4AGmpqYMHTqU4cOH06lTJzRecLILIbh79y76+vqlGkrVsWNHLC0tFTPdJeF5XiOvk2vkypUr9OzZEzc3N/bs2VMmuWKqKv7+/kyfPp0bN27wxRdfsGTJklfuExkZSfPmzZk5cybfffddGVipWmQyGRcvXiQlJYWff/6Za9eu4erqiqOjIykpKaSkpJCdnU2bNm3o2rUrrq6uGBsbv1WfKSkpTJs2jX379tGyZUtu3rypWDd+/HiWLVtWYm8fSSCRqGhIIolEhaGiCyXp6el4eXlhbGxMy5Yty80sncTzKSyEHTvAx0f+fuRIeEtP7wpNTEYMK6+vJDM/E+ua1oxoNIKYyBhFZZyGDRtSu3btSjmQ+Hep3/r14bPP4F+REmVCYmIix48fx93dnbNnz6Kmpka3bt3o3bs3vXr1wsbGplw/dNrb29O9e3d++eWXF25TWUQSmUzGiRMnOHLkCMePHyc9PZ3jx4/To8eb5e25efMmrVu3Zv369UyePFnJ1hZHCMHNmzfZv38/f/zxBxEREZibmzNs2DCGDx9Ou3btyMrK4u+//+bUqVOcPn2ayMhI1NTUGDBgAD/88AMODsovAT537lx2797N/fv3Xzrwk8lkxMXF8fjx41d6jbyM/Px8zM3NSU5O5tNPP6Vt27Y4Ojpia2tboc/N8kZKSgpff/01GzdupGnTpqxdu7bEIVVr165lxowZ6OjokJ2dXbqGvgZPq83cvHkTDQ0NxaKpqYmGhgb6+vp06dKlxPfKoqIitm7dSmJiIiYmJmzatInevXszbty4V3qHvA3nz59n3LhxZGRk8N133zFr1izFut9//50PPvigxG1JAolEhURISFQgZDKZWLhwoTAzMxO3b99WtTmvTW5urrhy5Yq4ePGiyM7OVrU5Ei8gN1eIn38WYuJEISZPFsLbW9UWqZaErAQx/+x8MfHoRPGDxw8iO/+fczc7O1vcu3dPnDlzRpw+fVrcuXNHZGVlqdBa5VJQIMSKFfJz4fPPhUhJKbu+Q0JCxIoVK4Srq6tQV1cXampqon379mLJkiViyZIlomvXrkJLS0sAwtLSUkycOFEcOnRIJCcnl52RJUAmkwl9fX2xcuXKl26Xn58v/vrrL5Gfn19GlimfxMRE0adPHwGIJk2aiM8//1zcunXrrdsdM2aMMDMzE+np6UqwsmTIZDJx48YNMWvWLGFubi4AUadOHcU5Z2trK2bNmiVOnz4tPv30UwGITz/9tFRsiYqKEvr6+mLatGnPXZ+VlSXu3LkjTp06Jc6cOSPu3bv3VvfYwsJCsWLFCtG/f3/RoEEDASgWLS0toaurK4yMjISjo6OIi4t7436qKvn5+WLz5s3C1NRUGBgYiJ9++um1f/e9e/dWfCd5eXmlZGnJkMlkws/PT3z55ZfC1ta22PnyvGXRokUlajcwMFB0795drFq1Svz222/ixIkTorCwsFSP5cGDB2LUqFECEN26dRPBwcEKu2vUqCHu37//Wu3dvn1bmJmZiYULFwqZTFZKVktIKB/Jk0SiwiEquEeJTCYjMDCQ+Ph4XFxc3todUkK5ZGbCr7/C48fy8q6TJsnDK6oqqbmprLi2gsTsRMwNzJnXYR761Z4tMyj+k7ukVq1aNGjQgNq1a1fYmVchYOtWuTeRtra81G+9eqXXX1FREV5eXri7u3P06FHu3buHjo4OPXv25L333qN///7Url272D6ZmZlcvnyZM2fOcPbsWUJCQlBXV8fOzo569epRr1496tat+8xSp06dMvtedu3axdixYzl27Bj9+/d/4XYV3ZPE29ubYcOGkZmZye+//07fvn2V1nZERAS2traMHDmS1atXl/l9o6ioiKtXr3L8+HEaNmxI3759FRVgkpOTcXBwICYmhk8++YR69ephaGiIoaEhRkZGGBgYoKenh76+Pvr6+ujp6WFgYICBgcFrzSivXr2auXPnMmHCBKytrWnUqBG1a9dGQ0ODpKSkN/YaKQnJyckEBQURGhpKXl4eBQUFFBQU8N133zFt2jSWLl2q1P4qK1FRUWzevJnNmzcTExPD6NGjWb58+RuVdjY2NqZr1664u7tz+vRpeis5FjYrK4vk5GRMTExeGlL6999/8+WXX+Lr60vNmjUZOHAgQ4YMUXiLFBUVUVhYSFFREUVFRSxZsoTNmzcTFBT03CpKGRkZBAYGKu4DCxYswMzMjF69epWqp2ZMTAz/+9//2LRpE2ZmZnz77beMHz8eNzc3jh49Sq9evTh+/PhrXZslDxKJiowkkkhUSCq6UCKE4MGDB4SEhNCqVSvq1q2rapMkgKQkWLMG4uJATw9mzoQS5CKrtGTmZ7Ly+kpiMmIw1TXls46fYaxt/Mr9nlbGefLkCZmZmZiZmZX5wFwZHDkir2qkrg6zZoGdXen216ZNG/z8/KhVqxYDBgxg4MCB9OjR47VyvoSHhysqojx58qTYUlBQoNhOTU0NCwsLXF1d6dy5M507d6ZJkyZKf4g9fPgw77//Ph9//DGbNm16afsVVSQRQrBhwwY+/fRTWrZsycGDB187P4cQgi1btnDmzBn279//3HDMDRs2MHfuXKpXr868efOYOXMmBgYGyjqMNyYxMZHx48cTHx9PWloa6enppKenk5GRwcseMU1MTLC3t8fe3h4HBwfFa1NT0+duX1hYyOzZs0lLS6Nhw4Y0b96cJ0+e8ODBA5YsWYK+/rPibWnzxRdfsG7dOh4/foyJiUmZ918REEJw4cIF1q9fj7u7Ozo6Onz44YdMmTLlrUKzbGxsGDhwIGfOnMHJyYndu3cTExPDN998Q2xsrKLvp38LCgrIyclRLLm5ueTk5KCtrY2FhYViMTIy4tKlS1y4cIG8vDwAtLW16d69O8ePH1f07+Pjw5dffsn58+dp164dCxcupEePHq+8dqWmptK8eXMSExOZOXMmXbt2JSAggICAAG7evMmDBw8QQtClSxdmzpxJs2bNSuXa/JSkpCSWLVvG2rVr0dbW5vPPP2fGjBmK+86dO3dITEx87XxKkkAiUdGRRBKJCktFF0pArtz7+/vTuHFjbG1tpZuICnnyRC6QpKZCzZryQXGdOqq2SnXkFOSw2nM14anhGGsb81nHzzDVff7g5WVkZGQQExPDkydPyMjIoFatWgrBpFq1aqVguXLw8IA9e+SvP/oI2rUr/T4/+eQTdu/eTUBAgNKvZzKZjKSkpGKiye3bt7ly5Qo3b96kqKiIWrVq0alTJzp37kzr1q2pXr066urqaGhooK6ujrq6Ojo6OtSoUQMjI6MXJvN8ysmTJxk0aBDDhg1j165dr9xeVSKJEIJ79+7x8OFDtLW10dHRQVtb+4XLv2dzMzMzmThxIvv27WPGjBmsXLnytc/rnJwcpkyZws6dOwFeWskmJiaGpUuXsnHjRgwMDPj888+ZNm1auUyeLJPJyMzMJD09naysLLKyssjMzFR8FhoaSnBwMLdv3yYkJITCwkIA6tevz/r16xkwYAAgzw8SExNDTEwM8fHxGBoaYm5ujq6uLv7+/gwaNAgDAwOGDBnCtm3bSvU+KpPJCAsLw9/fH39/fzw8PPD09OTXX39l+vTppdZvRSUuLo7u3btz+/Zt7O3tmTZtGqNHj1aKuNezZ0+MjY0xNDQkKCiIr776ivHjx6OpqVmsgtTT80FLSwsdHZ1ii7a2NtnZ2URGRhIREaGogNSuXTsGDBiAnZ0dycnJXLhwgW3btlG/fn2qVauGhoYGoaGhNGvWjB9//JH33nvvtc679PR0Vq5cyU8//URWVhaGhoY4OTnh5OREy5YtadSoERkZGbRu3fqNvGxKasPq1atZtWoVQghmz57NnDlzlOKlJgkkEpUBSSSRqNBUBqEkLS0NLy8vTExMcHJyeuVAQkL5hIXB2rXyBJ3m5nKBpEYNVVulOnILc/nF6xfCksPQr6bPZx0/o47+2ytGmZmZCsEkLS2tmGBSvXp1JViuHIKD5eeDEPJyzy+JEFEqmZmZtGnTBm1tbTw9PdEuo+ywGRkZ3LhxAw8PD65cuYKXl5diBvVFqKmpYWRkRI0aNZ67VK9eneXLl9O3b18OHDhQItGjLEWStLQ0zp8/z+nTpzlz5gwREREl3ldLS0shmOTn51NYWMiWLVsYMWLEa9sRFhbGkCFDuH//Pr/99hu//PILtWvXLjZj/TyioqL44Ycf2Lp1K0ZGRnz44Yd88sknFfIeKISgsLBQIZrs3LmTK1eucPbsWWQyGYmJiRgZGSlCxfT09Irtv3fvXgIDA1m+fDkLFizg888/V7qHzb59+9i4cSM3b94kIyMDAAsLC1q1akXLli2ZOHEidaqyqv7/FBQU4OHhQZMmTahfvz4//fQTX331FWfPnqVTp05KHSxPmDCBgIAABgwYwOLFi5HJZAwcOJDNmzdTq1YtpfUDckFhw4YNZGVlUVBQQH5+Pk5OTowaNeqtntmSk5NJTU2lYcOGitCcgIAAkpKScHFxwcjISIlHIScjI4O1a9eycuVKsrKymDZtGl988YXS/meSQCJRWZBEEokKT2UQSnJzc/H29gbA2dm5zAZHEuDvD9u2QUEBWFnB9OnyUJuqSl5hHr96/0poUii6WrrMaT+HBkYNlN5Pdna2wqMhNTUVExMT6tati7m5uUrP//BwWLUK8vKgQwf48EMoy2e8gIAA2rVrx7x58/jf//5Xdh3/i9zcXMLCwhQx9DKZDJlMRlFREdnZ2Ypyk0+X5OTkZz5LSUmhW7du7Nmzp8QCWGmKJDKZjJs3b3LmzBlOnz7N9evXKSoqokmTJvTp04fevXvTokUL8vPzyc3NVbjiP3393+XpuoKCAkaOHEmTJk1e26bIyEhcXFzQ09Pj8OHDtGjRgs2bNzN58mQeP35Mgwav/t09fvyYX375hd27d5OYmIiLiwsff/wxI0aMwNDQ8E3+VaVCQUEBAQEBhIaGEhoayoMHDxSvc3Jy6NWrF25ubrRq1Yr79+8DUKNGDSwsLKhbt26JPGW++eYbfvzxR3R1dRk5ciQTJkygTZs2Shmk/fDDD3z99deAPMRmzpw5Sh+IV2SysrLYunUrq1atUgiOzZs3Jy0tjRYtWnDs2DGl9/npp59y6tQp1qxZw/Dhw1m1ahWffPJJhR2Ul/ZzYFZWFuvWrWPFihWkp6czceJEvvjiC+opMdGWJJBIVCYkkUSiUlAZhJKioiJu3rxJcnIy7dq1K1cPuJURIeDvv+HwYfnrFi1gwgQoxxEgpU5+UT5rvdcSkhiCtqY2s9vPpqFxw1LvNycnRyGYpKSkULNmTYVgoqOjU+r9PyUxUV7qNz0dmjaFGTNAFY5dzZs3x8XFhS1btpR95yqkNESSyMhIvvrqK86cOUNCQgL6+vr06NGD3r1707t3bxo1aqSUft6E999/nyNHjpCQkKBwcc/IyMDc3JzPPvuMb7/9tsRt5efnc+zYMbZt28bp06epXr06w4YNY9y4cbi6uqo8x8uYMWP4/fffATAzM6Nx48bY2NhgZ2eHsbExBQUF1K1bl/v37xMYGEhUVBRXr1597X4iIyPZtm0bW7duJTIyEkdHRyZNmqSUEA8fHx+mTZuGj48PCxYsUJmIWZ5ISkpi3bp1/PLLL6SmpjJy5EimT5/O48ePOXXqFJcvX+bnn39m4MCBSu+7Z8+e6Ovrc+TIEYQQFXpA/tSjuGbNmrRs2VKpHsVFRUVs376dBQsWkJKSwieffMJXX31VIhH2dZAEEolKRxlU0JGQKBMqenlgIeTHcO/ePXH8+HERExOjanMqLUVFQuzdKy/rOnGiEPv2yT+ryuQX5ovVN1aLiUcnipknZ4qw5DCV2JGdnS3CwsLElStXhLu7u/Dw8BAPHjwo9ZLZ6elCfP21/Hz47jshcnJKtbsXkpSUJNTU1MSOHTtUY4AKKY0SwMuWLRPVq1cXX3zxhbh06ZLKS4U+JSYmRmhqaoo1a9Y8s27ChAmifv36b1wuMzIyUvzvf/8TVlZWAhB6enqib9++YsWKFcLf318U/etil5OTI4KCgsTBgwfFTz/9JEJDQ9/4mF5EbGys0NTUFIsXLxapqakiOztbPHjwQHh4eAh3d3dx9epVERYWJsLDw8XmzZvFe++9JzZu3PhWfRYWFoqTJ0+KgQMHCnV1daGvry8mT54sgoKC3ri9TZs2CVNTU6Gnpyd+//33t7LvVeSo6gJUQgoLC8VPP/0k9PT0hLa2tpg+fbp49OhRiffPzc1963KwtWvXFt98881btVEeiImJEcePHxf37t1TeolcDw8P0bJlSwGI0aNHi8ePHyu1/adIZX4lKiOSSCJRqagMQokQQkRFRYljx46J0NBQ6YajZHJzhVi7Vj4YnjRJiHPnhKjq/+KCogKxxnONmHh0ophxcoZ4kPRA1SYJIeQDhYcPH4qrV68Kd3d3cfnyZREaGiqysrKU3I8QP/wgPye+/FKI1FSlNv9aHD16VAAiLEw1IpUqKQ2R5OOPPxZt2rRRWnvK4o8//hCACA4OfmbdokWLhKGhYTEx400oKioS3t7eYsmSJaJnz55CR0dHAKJmzZqiW7duwsrKSqipqQlAAEJLS0uoq6uL999/X/j5+b1V3/9m5cqVol69eiIwMFBcvnxZIYw8evSoTMSAyMhIsXDhQmFubi7U1dXFiRMnXmv/gIAAxUBzzJgxIjo6upQsFSIvL08sWLBAAOKPP/4otX7ehvv374uOHTsKNTU1MWPGDBEXF/da+z969EgAwtLSUkycOFEcPnxYpKSkvFYbly5dEoD466+/Xmu/8oRMJhOhoaHi2LFjIioqSqltP378WLz//vsCEM7OzuLGjRtKbf/fSAKJRGVFCreRqHSIShB6A5CSkoKXlxd16tShRYsWxSoqSLwZ6enyhJzh4aClBZ98Ai1bqtoq1VIoK+Q339+4FXcLLQ0tZrrMxNbEVtVmPUNeXh6xsbE8efKEhIQEjIyMMDc3p3bt2hgaGr6xa29hofycuHsX9PVh/nyoXVvJxr8G8+fPZ8+ePURFRVU5d+XSCLdxdXWlYcOGilCP8kJ6ejqNGzemT58+7Nq1q9i6du3aYWFhwYEDB5TaZ15eHp6enly4cIHg4GCsrKyws7PDzs6OJk2aoKenx86dO1mxYgUPHz6kSZMmimSST3PTvPfeeyxduvSV+RKEEKSnpxMXF8e5c+cwNzfH3NxcpYmaCwoKGDJkCJcuXeLGjRvY29uXaL+ZM2fy66+/MnHiRDZu3KjU36UQAi8vL7Zs2UJqaiqPHj3C398fgOXLl/PZZ58pra+3RSaT8euvv/Lll19ibm7O9u3bX7ssLMDGjRuZMmVKsc80NDRwcXFRhMG1adNGEXIihCAtLY0nT54oqtD88MMPWFhYcPHixQqZ7F4mkxEYGEhcXBwuLi7UUFKm+KysLJYvX87y5cupUaMGS5cuZfTo0aX2/CiF2EhUZiSRRKJSUlmEkpycHLy8vNDS0qJt27blumRqeScmBn79FZKS5IPhadPkiVqrMkWyIjb7b+ZmzE20NLSY7jwdO1M7VZv1SvLz8xWCSWJiIhoaGpiammJqakqtWrXQ09Mr0cOaELB9O3h5QfXqMGcONGxY+va/jH79+qGpqcnRo0dVa4gKKA2RxMzMjOnTp7Nw4UKltKdMNm3axKRJk/D29qZt27YAJCQkULt2bbZt28a4ceNUYldhYSGHDh3i+vXraGhoKJacnBw2bdpE06ZN2b9/f7FktUIIsrKySEhIIDExkcTERIqKitDU1GTFihU4ODjw7rvvUr9+ferXr6+ynFsZGRl07NiRzMxMvL29MTV9dVnz3Nxc5s6dy/r16xk1ahS//fYb+vr6b2VHcnIyu3fvZsuWLQQHBz+zXl1dHQ8PDzp27PhW/SiLsLAwPv74Yzw8PJgxYwZLlix5pspQSSkqKuLEiROsX7+eM2fOAGBgYECjRo0IDw8nLS2NGjVqYGtrS1xcHLGxseTm5ir2V1dXx87OjmPHjmFVAW/i+fn5eHt7U1hYiIuLi1Lybgkh2L9/P/Pnzyc+Pp65c+fy5ZdfKr3K07+RBBKJyo4kkkhUWiqLUFJYWIifnx8ZGRk4OztLCV3fgOBg2LwZcnPBzAxmzoSqXphAJmRs8d+C3xM/NNU1meY8jWa1Kt5vRCaTkZqaqhicJScnU61aNWrVqqUQTV70EHroEJw7B+rq8qpGJZxYLlV69uxJjRo1lO5FUBEoDZHE1NSUWbNm8c033yilPWVSVFREy5YtMTQ05OTJkxgaGrJ7924+/PBDYmNjqa1Kl6YXEBAQwPDhwwkPD6dx48ZYW1vTtGlT2rRpQ/Xq1alZs6bid2dsbMyNGzcYOnQosbGxxdoxMDDgxx9/ZPr06WV+DOHh4bRt2xZzc3MOHjyIrW3JPOf27dvHhAkTaNCgAYcOHSqxJ8q/efDgAf/73//Yv38/RUVFDBo0iPHjxxMdHc0nn3wCwNChQ/n++++xsysfgrWPjw/dunXDzMyMbdu20bVrV6W1/eDBA3777Te2bdtGcnIypqampKamUlhYCICtrS2dO3fG1dUVKysrRbUjVSciflPS09Px9vbG0NCQVq1aoamp+dZt+vr6MmvWLK5fv87gwYNZsWJFqYtHkkAiURWQRBKJSk1lEUqEENy7d4+wsDCaN2+OhYWFdFMqAULIB8F//il/bWMDU6ZU7RK/IPcg2eK/Bf8YfzTVNZnSdgoOZg6qNkspFBUVkZycrBBNUlNT0dXVpVatWtSqVQsTExOqV6/OuXNykQTg44/BxUW1dj+lf//+ZGRkcPnyZVWbUuZUpXCbp1y4cIGePXsihKB58+bk5ORgZGSEj4+Pqk17hry8PBITE4mJieHRo0doaWkpKlPt2rULe3t7Nm3a9Fwvi7y8PJ48eUJ0dDRRUVF88803tGvXjt27d6vgSCAoKIihQ4fy5MkTNm/ezIgRI0q03/nz5+nduzfVq1fn4cOHJRayoqOj+f7779m6dStmZmZ8+umnjB07lsDAQL766it8fX3p1asXP/74I61bt36bQ1MqKSkptGzZktq1a3P+/Pm39qB5ETk5ORw/fpzg4GBCQ0O5f/8+oaGhpKenA/JwnBYtWtC+fXvFYmVlVWGeg4QQREREEBQUhLW1NXZ2dm9t+1PB7elvb82aNbzzzjtKsvjFSAKJRFXh7SVMCYlyjJqaGosWLQKgW7duFVYoUVNTo2nTppiYmODn50diYiItWrSosLMpZUFhIfz+O9y4IX/fqROMGAFKmLip0BTKCtniv4WbMTfRVNdkUptJlUYgAfnD9FNBBOQD76SkJBISEggJCSE9PZ3o6PpcvNgIbW1tRo6shotL+TkpRo4cyejRo7lz506FvFaVN+zs7AgICFC1GS/knXfeISQkBA8PD27cuMHFixfp37+/qs0C/vntJCYmkpCQQHp6OoaGhpiamtKpUydMTEwU96CGDRsybtw42rdvz4EDB2jatGmxtqpXr06jRo0UJZe3bt1KXl5emR/TU5o3b46vry+TJk1i5MiRXL58mdWrV78w14qXlxc///wzBw8eRFdXl0mTJpUoVCchIYGlS5eybt069PX1Wbx4MbNnzyYwMJARI0Zw8eJF2rVrx8WLF5XqoaEMhBCMHTuW9PR0Ll++XGoCCYCOjg7Dhg1j2LBhxfpPSEggNDSU27dvc+PGDc6fP8/69esBeShdu3btFKKJk5MTOjo6aGlpvXLgnpmZSXR0tEK4e/LkCQUFBXzxxRcvzXGSnp7O8ePH+fvvv7l58yYmJia4urri6upKu3btnvs/Kigo4NatWyQkJODs7IyZmdkb/pfkBAcHs2TJEvbv34+pqSlr165l4sSJSvFKeRWSQCJRlZA8SSSqBE89StavX8/hw4ffKNlYeSE3Nxc/Pz9ycnJo06YNxsbGqjap3JGeDhs2wMOH8lCK99+Hrl2hqt/P/52ktbJ5kJSUmzfzWb06n+zsXJo2fULbto8xNjZWhOfUrFlTpYkA8/PzadiwIUOGDOHXX39VmR2qQNmeJCkpKQwdOpSAgACSkpKUYGHpUVBQwFdffcXKlSupVq0aK1euZPr06WU6CHnqhfVUFHnqhfU0fMbU1PSlCVfv3LnDkCFDePToEUuXLmXmzJnPTRgZFRXFu+++S8OGDXF3dy/NQ3olQgi2bNnCzJkzMTIywsjISJGk9unfgoIC4uLisLa2ZubMmYwbN+65Ya/Tp09n//79CHnlSEWeloKCAqpXr06DBg148OABtWrVIiEhAQcHB3744QcGDBhQ7gabMpmM2bNn88svv3Ds2LFyI9yBPJ+Lp6cnN27c4MaNG3h5eZGZmVlsG01NTfT19TEzM6N27drUqlWL1NRUhSiSkZHxTLuGhoZER0c/I3SkpaVx9OhRDh06xJkzZ8jLy8PJyYnWrVsTHx/PtWvXSE5ORkNDg08//ZSVK1cq9k1NTcXX1xddXV1atWr1QhEuPz+f6OhoIiIiii0xMTEYGhpSp04dateuzbVr13B3d8fCwoL58+fz8ccfKyWnSUm4fPkyQ4cOZerUqZJAIlElKD/TZxISpYiamhqLFy+mbt269O3bl5UrVzJ58uQKeZHX1tamQ4cOhIaGcvXqVZo2bVqh3E5Lm8hIWLcOUlJAVxcmToT/TGpWSQqKCtjou5Hg+GC0NLSY2nZqhcxB8jaEhcG2bdXQ0alGly76fPyxKTk5jRWhOX5+fhQUFFCzZk3FoNDY2LhMK0tVq1YNW1tbkpOTy6zPysi5c+f46KOPyMzMZOPGjao256VER0czYsQIPD09WbFiBVFRUcycOZO///6bbdu2YWJiUir9Ps3n81QUSU5ORktLi1q1atGwYUNMTU3R1dUtcXvNmjXD39+fL7/8ktmzZ3P06FF27NiBhYUFABEREXz22WccPnwYXV1dZsyYUSrH9TqoqakxYcIEReiPEAINDQ3U1dUVCWvV1dVp2bIl/fr1e6mAevz4cZycnOjZsyc3b97kyJEjFBQUAPJBu5OTEw8ePABg9+7djBw5slxWZiksLGTChAns3LmT9evXlyuBBKBmzZr069ePfv36AXJxLzg4mLt375Kfn09+fj4FBQVkZGQQFxdHXFwcCQkJmJqa0qJFC+rVq0e9evWoW7cu9erVIyMjg1atWjFz5kyFQJKamoq7uzuHDh3i7Nmz5Ofn0759e5YsWcKQIUMU5zTIf0fbt29n/Pjxiio1QggePnzI3bt3sbW1xcbG5rnPaKGhoSxbtoxdu3YpzhWAWrVqYWFhgbm5OZGRkfj4+BATE0P9+vXZvn07H3zwQZl5Egsh2LBhA5999hk//fQTkyZNKpN+JSRUjeRJIlHluHr1KkOGDGHgwIGsXbu2QleMSUpKws/PDyMjI1q2bFmhj0UZ+PnBjh2Qny8v4zptmmrLuZYX8ovyWe+znrsJdytUFRtlEhUFq1ZBdrY8QevUqc+GXgkhyMzMVAwaExMTEUJQo0YNjI2NFTPNJa2e86bY2dnx7rvvsmrVqlLrozyiDE+SrKwsPv/8c9atW0ePHj3Ytm0bDRo0ULKlb8d3333HmTNnSElJITk5mbi4OOrVq8eBAwfo0KEDAMeOHeOjjz5CW1ubPXv20KVLl7fq86lXQ1paGqmpqaSlpZGSkoKamloxTxF9fX2lnNsXLlzg/fffx9jYWCEMDB06lKtXr7JgwQLGjh1bqZKQ5+fno6Ojo/AuCA8Pp2bNmrz33nsMHjyYHj16oKOjQ05ODlpaWmUSGvEm5OXl8cEHH/DXX3+xc+dOPvjgA1WbVOoUFBTw7rvv4uXlxaJFizh37hx///03hYWFdOzYkaFDhzJkyBDq16//wjZGjx7Nnj172Lx5M6NHjyYgIID09HTatGlDzZo1n9k+KCiIH3/8kQMHDmBmZsasWbNo06YNFhYW1K9f/7XEydIkLy+P6dOnc/ToUQ4fPoyrq6uqTZKQKDPK51VaQqIUcXV1xdfXl0GDBtGtWzcOHz5MnTp1VG3WG2FiYkLXrl25efMmFy9epE2bNqU261iekcnkyVnPnZO/t7eH8ePlniRVnbzCPNb5rCMkMYTqmtWZ7jwdW5OSVXOoLMTHw5o1coHE2homT35+bho1NTUMDAwU5SiFEIrBZFpaGqGhoWRkZKCurq4QTJ4uBgYGSvE4iY6O5vHjx8VmKiVKhqenJx9++CFRUVGsXbuWKVOmlKkXUEkJCgri+vXrfPTRRzRq1Ah7e3u6deummIUGGDBgAIGBgXzwwQe88847HD58mEGDBpWofZlMRkZGBmlpacUWmUyGgYEBxsbGmJub06xZM4yMjEpF8DMwMCAtLY2JEycCEBsbi7u7Oz/99FO58CBRNtnZ2aipqREdHY2bmxuDBw+mc+fOz4ghZRUa8SZkZWUxePBgLl++zJEjRxgwYICqTSoTtLS0OHz4MN26dWPu3Ll06tSJVatWMWTIEOrWrVuiNn766ScARV6bmjVr0rFjR4yMjIpt5+XlxY8//sjRo0extLRk7dq1CjG0vBETE8PQoUPJy8vD19e33InNEhKljeRJIlFlycnJYcKECVy6dIkjR47Qtm1bVZv0xgghePToEXfu3MHGxgZbW9sqE36Tni4v73v/vvx9r17g5ibPRVLVyS3MZa33WkKTQqmuWZ2ZLjNpXLOxqs0qU1JTYflySEqC+vVh7ty3E8+eDkCfzsY/XYQQGBoaFhNODA0NX3vGeMSIEVy6dIl79+5VuXxDr+tJkpOTw7179wgODub69ets2rSJtm3bsmvXrhKXdVUFkZGR2NvbM3z4cDZv3vzSbYuKirC1tWXgwIGKgdi/KSwsJD09vdi5mJ6ejpqaWrFz0djYWGlCXkkYM2YMvr6+3Lp1Cy0tLZYsWcJ3331HTExMpT2vk5OTyzw8TxkkJCRw7Ngx1q9fz7179zh69GiZVEkpb2RnZ5OZmflGiVWFENy/f5979+7x559/smvXLtTV1WnWrBmtW7emefPmnDx5kgsXLtCkSRO++OKLMg2ZeV28vb1xc3PjnXfeYdOmTeVa3JOQKC0kTxKJKouOjg67d+9m1apVdO3alQ0bNvDhhx+q2qw3Qk1NDSsrK0xMTPDx8SExMZFWrVpV+htbWBj89hukpYG2NowbBy1bqtqq8kF2QTZrvdcSlhyGtqY2s9rNwqqGlarNKlMyM+Hnn+UCiZkZzJr19t5F//Yiecp/QxliYmK4d+8e+fn5GBgYFBuoGhkZvfDB+Pz58/zxxx/s2rWr0g4k34T8/Hzu379PcHAwt2/fVvwNCwtDJpMBYGFhwXfffcfnn39ebkMZntKgQQNWrlzJpEmTGD58OD169HjhthoaGtSoUUORAPS/4lxGRgbVqlVTnGONGzcuk5CwVxEUFETnzp3R0tJCJpOxefNmhg8fXqnP6+eFVZRXHj16xJEjRzhy5AjXr19HCEHHjh25cOECzs7OqjZPJejq6r5RmEtOTg7+/v7k5OTQtWtX+vXrx6xZs/Dz81Ms+/btw97enoMHD+Lm5lYuc9E8ZdeuXUyZMoXvvvuOOXPmVJkJNwmJ/yJ5kkhIAGfOnGHEiBF89NFHLF++vNw/ZL+MwsJCbt26RVxcHK1ataJ2JUzKIQRcugQHDshDbczNYcoUKf/IUzLyMljjtYbItEh0tXSZ1W4WDY0bqtqsMiU3F1avhsePwdgY5s+HsoxEE0KQm5v7zKA2JycHXV3dZ4STatWq4eDggImJCR4eHlXywfR5niRFRUU4Ojpy+/ZtAMzNzXFwcMDe3l7xt1mzZhUuv4UQgtatW2NjY8Mff/zxzPrc3FyF6Hbs2DHMzc3R19dHR0fnGQ8RbW3tcnW+FBYWoqenx8qVK5kxYwbnzp2jV69eXLt2TZFzRaJsEUJw584d/vzzT/78808CAgKoXr06PXv2xM3Njf79+791adqqSFxcHP7+/tSuXZsWLVq88NlRJpOVew+jwsJCPvvsM3bu3Mn+/fvp1auXqk2SkFApFXckKCGhRHr37o2Pjw8DBw4kKCiIP/74o0LNCv0bTU1NWrVqRUREBD4+PjRs2JBmzZqV+xt0ScnLg99/B29v+fs2beDDD+EllSmrFCk5Kaz2XE1cZhwG1Q34tN2n1Dd8ccK5ykhBAaxfLxdI9PXh00/LViABuXeXjo4OOjo6mJubKz7Py8srJppERkaSlZWFmpoaH3zwAa1atSIkJEQxq6mnp1fuBsFliY+PD7dv32bHjh0MGDCgwl6Xn0ePHj24desWERERZGdnK5bMzEzy8vLQ09PD2NiYpKQkHj58yOrVq19aglfVPH78mF27dvHkyRPy8/OxtbUlJSWFFStW4ODgQPv27VVtYpVCCIGvr69CGLl//z76+vr079+fr776ir59+z5T7laiZMhkMu7cucPjx49xdHR8Zb6O8v78lZSUxPDhw4mJicHb25vGjatWWK6ExPOQPEkkJP5FRkYGY8aMISgoCHd3dxwcHFRt0luRkZGBr68v6urqtGnTBj09PVWb9FZERsrzj8TFyXOODB0K77wDVXT8+AzxWfGsvrGa5JxkaujUYHa72dTWr1ruNUVF8hCswEB5CNacOWBpqWqrXk5ubi6zZs0iIyODb775hpycHMWAOScnBzU1NYVo8rylevXqlUJE+a8nSVZWFiNHjuTatWvEx8eXaxf1/yKEIC8vr5j48d9FJpORkJCAra0tBgYGxYQxIyMjxaz0+++/T0pKCueeZqYuR2RkZHDw4EF27drF5cuXAWjYsCExMTG0bNmSoKAgCgoK2L17N++//76Kra38FBQUcPnyZf766y/++usvoqOjMTExYeDAgQwePJju3buXyyShFYmsrCx8fX0RQtCmTZsKLzQFBQUxcOBAHB0d2bVrFwYGBqo2SUKiXCB5kkhI/AsDAwP+/PNPFi9eTIcOHdixYweDBw9WtVlvjIGBAZ07d+b27dtcunQJJycn6tWrp2qzXpun4TWHDkFhoTx8Yvx4sLFRtWXlh+j0aH72/Jn0vHTM9MyY3X42NXUqz6x7SZDJYOdOuUCiqSkvAV2eBRKZTMbBgwf55ptvCA0NZfPmzTRt2vSZbXJycsjKylL8TU9PJzY2luzsbPLy8tDQ0EBHR6fYIPvfIoqWllaFE1FCQ0MZPHgwDx8+ZPfu3eVOIBFCUFBQoBA8srKyniuCVK9eXfGd6OjoUKNGDcX3cv/+fdzc3Lh27RqtWrV6YV96enpERUWV4dG9nPz8fM6cOcPevXtxd3cnNzeX7t27s2vXLhYsWEDv3r2Jjo7mxo0bzJkzh2nTplXKsM/yQlZWFmfOnOHIkSMcP36c1NRULCwsGDJkCIMGDaJTp04VOoS4PBEdHU1AQAANGjTA3t6+3F2XXpc///yTsWPHMnfuXBYuXFjuPV4kJMoS6aopIfEf1NXVWbx4MY6OjowbN47AwEC+/fbbCnvz0NDQoEWLFtSqVYubN2+SkJCAg4NDhXloysr6Z+AL0KKFPEFrBXeKUSqPUh7xi9cvZBdkU9+wPrPazcKwesXK0fC2CCEPw/LyknsZTZoE5bjACXl5eXTt2hVPT0/69evHgQMHcHJyemY7dXV19PT0XugFVlRU9MzgPCUlhejoaLKzs8nPz0dTU/MZzxMtLa0XLqp+8D9x4gRjx46lTp06eHt7Y29vXyb9FhUVUVBQ8MLlv54hhYWFVKtWrdj/tk6dOsXev+x/aW9vj5aWFgEBAS/N1aGnp0dWVlZpHHKJKSoq4uLFi+zfv5/Dhw+TmpqKvb09Cxcu5IMPPqBBgwZEREQQGRlJz549FeVjq1WrplK7KzMBAQEsWbKEo0ePkpubi4ODAzNmzGDQoEG0bNmywgmj5ZnCwkKCg4N58uQJrVq1KhZCWRGRyWQsWrSIn3/+mV27duHm5qZqkyQkyh0VY5QkIaECBg8erCi9GBAQwO7duytccsB/Y25ujpGREX5+fnh4eNCmTZtyfzyhobB1K6SkyD0DhgyBbt2k8Jp/E5IYwjqfdeQV5mFVw4oZLjPQ1XrLEi4VDCFg/364dk1+bowfLxfTyjPnzp3D09OTEydO0K9fvzduR0NDAwMDgxe6SBcUFCg8UJ4O7jMyMp4rAhQVFQFyYeZlIsqrlrcVlEeNGkXfvn3Zvn37a12jZDLZS0WOVy1PK+VoaGg897iqVauGqalpMc+QtynhWa1aNZo1a8bNmzefOY6ffvoJHx8f0tPTCQoKKvNKZUII4uPjuXXrFkePHuXgwYPExcVhZWXFtGnTGDFixDPhqOfOnUNdXZ133nlHEkdKET8/P7777juOHj2KtbU133//PYMGDZLySJQS6enp+Pr6oqWlRdeuXd+oAk55Ij09nTFjxnD79m1u3LhRZiK0hERFQ8pJIiHxCpKTkxkxYgRRUVG4u7tjU8FjPGQyGffu3ePhw4c0b94cCwuLcjfjVFQEJ0/CiRPyAXDt2jBhArwiN1qV42bMTbb4b6FQVoidqR1T206lumb5TexYGggBhw/DuXNygeSjj8DFRdVWvZpx48bh5eXFnTt3ys3vT9kiw+uKJbm5uchkMvLy8qhRo8Zr211eRJ7X4aOPPuLmzZv4+vqiqalJQUEBn3zyCb///jtdu3bF2NgYQ0NDOnfuzMcff1wqNiQnJxcrrfz0b2JiIgD16tVj+PDhjBgxgjZt2rzwfB05ciQhISH4+/uXip1VHW9vb7777jtOnDiBjY0NX3/9NaNGjaowXqEVDSEE4eHhBAcHY21tTZMmTSqsR/FTQkNDGThwIPXr12f//v2VKhG2hISyka6sEhKvoGbNmpw8eZLPP/8cZ2dn9u/fT+/evVVt1hujrq5Os2bNMDU1xd/fn4SEBBwdHd9qRlSZxMTA9u0QHi5/3749jBwpVa/5Lx7hHuwN2osQAsc6jkxoNQEtjfLxHZYlR4/KBRKA0aMrhkBSUFDA0aNHmTp1arkRSEB+bahevfobV1D5b7jKU9GkJMhkMmbMmMGoUaNwdXV9LU+E/4oiqg4Xeh169erFjh07sLCwYOzYsQQHB3P69Gn27t3LiBEjSrXvK1euMGLECJ48eQLIK6PZ2tri4ODAO++8oyixbGNjU6LBoZ2dHfv37+enn35izpw5pWp7VeLGjRt89913nD59Gjs7O/bs2cPw4cMr1Hle0SgoKCAwMJDExERcXFyoVauWqk16a06fPs3IkSP55JNPWLp0qSSuSUi8AukXIiFRAjQ1NVm1ahVOTk4MHjyYRYsWMW/evHI1wHldzMzM6Nq1K/7+/ly6dIk2bdq81uytshECzp+HI0fkyVl1deXiiLOzykwqlwghOH7/OMfvHwegk2UnRjUfhbpaxZ7hehNOnZJ7HAGMGAGurqq1p6QEBgaSkpJC586dVW2KUtHQ0EBDQ+ONqmds376dY8eOMWrUKGrVqlVuRNvSZsSIETRp0oRt27axceNG8vPzOXbsGH369Cn1vi9cuEB2djb79+/H3t4eW1vbtwqTWbhwIXFxccydO5ePPvpIpfeTikZRURGXLl3ijz/+wMjIiB49elC9enV++OEH/v77b+zt7dm/fz9Dhw6VxJFSJiUlBV9fX/T19enatWuFrwYkhGDlypUsWrSI3377jdGjR6vaJAmJCoEUbiMh8Zr4+Pjg5uZGly5d2LJlS5nHiisbIQQPHjwgJCQEOzs7rK2ty1z8SUyEHTvkOUgA7O3hww/lVWwk/kEmZOwN2suV8CsA9LftT3/b/hVarHtT/v4bDh6Uvx4yBHr1Uq09r0Nubi52dna0bNmSI0eOqNoclZORkYGtrS09evRg6NChihLAVY3c3FwKCgrKrATnxx9/zO3bt/Hy8lJam99++y3r1q0jISGhSl6XXpe7d++ye/dudu/eTVRUFNbW1uTk5Ci8e1q0aMHChQtxc3Or8KEe5R0hBGFhYdy7d48mTZrQuHHjCn8OZ2dnM378eK5cucKRI0do06aNqk2SkKgwSJ4kEhKvSdu2bfH19WXIkCG4urpy5MgRLCwsVG3WG6OmpoaNjQ0mJib4+vqSmJhIy5Yt39jl/nUQAq5elQ928/LkITXDhsk9Air4s4nSKSgqYLP/ZgJjA1FTU2NU81F0tqxcnggl5dKlfwSS996rWAIJgLa2Nj/++CMffPABa9asYcyYMVU6NnzFihWkpqayePFigoKCVG2OytDW1i7TWevIyEgePXrEsGHDFGWjn1ZS+u97XV1d0tPTiY+PJy4ujuTkZGrUqIG5uTl16tTB3Nwcc3NzLl26hKura4UfXJYmiYmJ7N+/n127duHj40ONGjUYMWIEH374IS7/Hy9479494uPj6dSpkySOlAF5eXncvHmTjIwMOnToUCmuxxEREQwaNAhdXV18fHyoU6eOqk2SkKhQSCKJhMQbUKdOHS5cuMCMGTNo06YNhw8fplOnTqo2662oWbMm3bp1IyAggPPnz+Pg4ECDBg1K7WE3Lg727IGQEPl7Gxt5aV9T01LprkKTlZ/FOp91hCWHoamuyfhW42lp3lLVZqmEK1dg3z7567594S0Kw6iUESNG4O7uzuzZs5k3bx7du3fn66+/xrWixAwpEQ0NDfLz8wl5ejGQKBNGjx6Nvr4+6enpxMTEkJWVpViys7PJysqioKCg2D7a2trUrl2bmjVrkpqaSkxMDLm5ucW2WbVqVVkeRrkgLy+Py5cvc/XqVRwdHenVqxcGBgYIITh//jzbtm3jwYMHxMXFER0djZqaGv369ePQoUP079//mUmJpk2b0rRpUxUdTdVBCEFkZCTBwcGKEOTK4MXm4eHB0KFDcXNz49dff5WqTUlIvAFSuI2ExFsghGDjxo3MmzePVatWMXnyZFWbpBRiYmIIDAzE0NAQR0dH9PT0lNZ2YSGcPSuvXFNYCFpaMGgQdO8ueY88j+ScZH7x+oWYjBh0tHSY1nYaNiYVu8LSm3LlCvz+u/x1jx4wdGjFP2diYmI4cuQIP/74I+3atePQoUOqNqnMKSoqYtCgQXh7e7Np06YqG25THikoKFCIJgYGBujr6xcTzoUQpKWlERsbS0xMDElJSfTp0wd9fX0VWl02xMfHc/LkSY4fP86ZM2fIzMzE2NiY1NRUqlWrRpcuXYiMjOTevXs4ODjg4uJCnTp1sLS0ZODAgZiZman6EKo0WVlZBAYGkpGRQYsWLTA3N1e1SW9NZX0mlZBQBZJIIiGhBCqjal9QUMDt27eJioqiadOmWFlZvbVXyYMH8kFuTIz8vb09jBoleY+8iPDUcNZ6ryU9Lx1jbWNmusyknmE9VZulEv4tkHTvLg/LqugCyb8ZPHgwubm5nHyaibaKkZGRQbdu3fjmm29wdnauFAMWicqFEILg4GCOHTvG8ePH8fT0BMDZ2ZkBAwYwYMAAmjdvzqNHjzh+/DgnT57EyMiIadOm0alTJykEqZwghODhw4fcvXuXBg0a0KxZs0ohyubn5zN9+nT++uuvSuHdLCGhaiSRREJCSURERODm5oaOjg6HDx+mdu3aqjZJKSQmJhIQEICWlhZOTk4YGRm9dhvZ2fDnn/KBLoCBAQwfDm3aVK6BrjIJjA1ki/8W8ovyqWtQlxkuM6ipU/HjpN8EDw95aBZUHg+S/zJ69GgiIyO5fPmyqk1RCSkpKcyYMYNhw4aRmJjIJ598omqTJCQAuHPnDuvXr+f48eOEh4ejr69Pr1696N+/P/369as09/qqQFpaGgEBARQUFODk5IRpJZmhiY2NZciQIeTm5lb4PHkSEuUFKSeJhISSsLCw4MqVK4wfP542bdpUmkzipqamdOvWjZCQEK5cuYK1tTW2trYlKkMok8kHuEePQlaW/LOOHeXVSJQYwVOpEEJw4dEFDt45iBCCZrWaManNJLQ1K3YZwjelKggkIC8znpOTo2ozyhwhBL///jvz5s1DCMGwYcMYNWqUqs0qd2RmZhIXF1csb0hWVhb29vY0btxYsV1RURG7d+/m7t27/Pjjj1K52LcgOjqab7/9lu3bt2Nubo6bmxv9+/ena9euZZLYXEJ5FBUVcf/+fcLCwrCysqJJkyaV5rfh6+vLoEGD6NKlC5s3b0ZXV1fVJklIVAokkURCQono6uqyZ88eVq5cSZcuXSpNTXoNDQ2aNWtGvXr1uHnzJk+ePMHJyQkTE5MX7nPnDhw48E9oTd268tAam6qZTqNEyISMP4L/4NLjSwB0tuzMCIcRaKhXjoe516WqCCQ5OTkcP368UlwrXoesrCwGDBjAxYsXGTFiBMuXL8ff3x9NTenR5ClhYWH89NNPbN++/bkiWseOHbl69SpCCE6fPs38+fMJDg4GoFatWsybN6+sTa7wpKWlsWzZMn7++Wf09PRYvXo1kydPrhRhtFWRpKQkAgIC0NDQoFOnTm/kDVte2b17N5MnT2bx4sXMnTtXCumSkFAi0pOIhISSUVNT47PPPqN58+aMHDmSgIAAli5dWike/I2MjOjcuTMPHz7kxo0bz43njYuDQ4fg1i35ez09eZnWzp1BqmT4YnILc9nst5ng+GDU1NQY0nQIPax6VNmHnsuXYe9e+euePeXeR5X1X7Fv3z6Sk5OZPn26qk0pU3bs2IGHhwdnzpyhV69ez1RSqcr4+PiwYsUKDh8+jImJCV9++SWurq7FSvP+8ssvHD58GD8/P+bPn8+FCxfo3LkzQ4YM4fDhwxgbG6v6MCocFy9eZNiwYeTk5DB37lw+++wzDA0NVW2WxBtQUFDAnTt3iIyMxM7ODisrq0pTTrmwsJDPP/+cbdu28eeff9K7d29VmyQhUemQcpJISJQioaGhDBw4kPr167N//35q1qw8OSWysrIICAggMzMTR0dHtLXrcOqUfPZfJpMLIt26Qf/+IHl/vpyUnBTWeq8lKj0KLQ0tPmn5SZUt8QvFBZJevWDw4MorkAghaNmyJQ0aNODYsWOqNqfMkMlk2NnZ0bJlS/744w9APqg5efJkla1uI4Tg1KlTrFixgkuXLtG4cWPmzZvHhx9+iI6OzjPbr1+/nmnTpgHQrFkzli1bRnR0NJMnT+abb77hu+++K+tDqNC4u7szfPhwunTpwo4dO6TkwRWY2NhYAgMD0dfXx8nJSakV+lRNcnIyI0aMICoqCnd3d2wk91wJiVKh4k9tS0iUY2xsbPD09GT06NE4Ozvz119/4eDgoGqzlIKenh4dOnTgzp1I1qx5QliYOoaGNdHQ0KR5c3loRJ06qray/BOWHMZG342k56VjWN2Qac7TaGjcUNVmqYy//4aDB+WvK7tAAnDjxg0CAwORyWS89957yGQyatasybBhw+jdu7fCxV8Igbe3N48ePaJDhw4VPjHfqVOnCA0NZceOHao2pdQoLCwkKiqKx48fExERgYWFBR06dCgWtpGRkYGfnx9eXl78/vvvBAcH4+LiwuHDhxk4cOBL8yZ07NgRJycnpk2bxrhx4zh8+DBTpkxhxowZLF68uCwOsdKwa9cuPv74YwYPHszvv/8uhdZUUHJzcwkKCiIhIQF7e3ssLCwqlTdmcHAwAwcOxMHBAU9PT8nLSUKiFJE8SSQkygCZTMaiRYv4+eef2blzJ25ubqo26a3JyoJz5+DCBcjOLiQ5ORlj42TGjDGka1fzSvVgUlpcjbjK3qC9FMmKqG9Yn6ltp2Ki++I8L5WdkyfB3V3+undvcHOr3AIJyL3N5s2bR1FREerq6qirqxMWFkZwcLBCLNHT0+PQoUNEREQo9rOysqJr165069aNrl27Ur9+fRUexcsRQhAeHk5gYKBiuXLlCg0bNsTLy0txraioniRFRUWcPHkSPz8/Hj9+rFiioqIoKioqtq2+vj49evTA2NgYHx8f7ty5gxACPT09unfvzrx583B1dX2j62ezZs2wtLTkxIkTlSasoCxYs2YNn376KRMmTGDDhg2VJqFnVUIIQWRkJMHBwdSqVYvmzZujrV25kp3/+eefjBs3jtmzZ/Ptt99Kv3EJiVJGEkkkJMqQP//8k7FjxzJ37lwWLlxYIW9yKSlyYcTDA3Jz5Z9ZWsLAgVCjRgxBQbcwMDDA0dGxUrm4KpMiWREH7xzk4qOLALQyb8U4p3FU16yaFROEkIsjp07J3w8cCH37Vn6B5GUEBQWxd+9e9u3bR15eHoMHD2bYsGE0a9aMa9eucenSJS5evEhQUBAA1tbWfPrpp+Uqr4lMJmPJkiWsWLGCtLQ0AExMTHB0dMTR0ZHJkydja2ur2L6iiSTJycls3bqVdevWER4eTp06dWjUqBENGzZ8Zqlfvz4hISGcOnWK06dPk5WVhbOzM23btsXZ2ZmmTZu+9eC8V69e6OnpceTIESUdYeVnxYoVzJ8/n/nz57N06VJJ3K+AZGVlERgYSEZGBi1atKh0YVIymYzFixezevVqduzYweDBg1VtkoRElUASSSQkypigoCAGDhyIo6Mju3btwsDAQNUmlYiICLnniK+vPOcIQP368qSsLVr8M6D9b7I0a2tr6cHzX2TmZ7LJbxMhiSEAvNfkPfrZ9Kuy/yMh5FWQLlyQvx82TF7JRqJkJCYm4uHhwd69e3F3d+fevXtYW1ur2iySk5MZM2YMp06dYubMmfTq1QtHR0fq1q37wnO9oogkwcHB/Prrr+zevZuioiJGjhzJjBkzaN26tUrtmj17Nrt372bhwoUMGDCARo0aqdSe8k5MTAyNGjVi2rRprFq1StXmSLwmMpmMhw8fcu/evecmka8MZGRkMGbMGIKCgvjrr79o3ry5qk2SkKgySCKJhIQKSEpKYvjw4cTGxvLXX3/RuHFjVZv0XGQyCAqC8+chJOSfz5s0kQ9kmzd/8Wx/YmIiAQEBaGlp4eTkVKnK7r0p0enRrPNZR1J2EtU1q/NJy09wrOOoarNUhkwmT9B65Yr8/ahR0KWLam2qqOTk5GBtbU3Pnj3ZuXOnSm3x9fVl6NChZGRksHfv3hJXXihLkUQIQVpaGtHR0URFRREdHf3c17m5uVhaWmJlZUWjRo0IDg7mwoUL1K1bl6lTpzJhwgTMzMxK1daS8uDBA6ZOncqlS5coKChgypQprF+/XtVmlVvmzZvHli1bCA8Pl+5PFYy0tDQCAgIoKCjAyckJU1NTVZukdB48eMDAgQOpW7cuf/zxR6VK/C8hURGQRBIJCRVRWFjI/Pnz2bFjB/v376dXr16qNklBQgJcuwbXr8P/e8mjrg5t28rFkZLmjCwqKiIkJISHDx9ibW2Nra1tlY339nvix87AneQV5mGqa8o052nUNairarNUhkwGO3aAl5dcaBs7Fv6vvTsPi7pe/z/+ZN/3RfZdFnE3TUvF3ay03E6amQlmdfK0f1ssNamsNE95Mm0RzKxjVi5tnkpNPbZYmlqKCsgqArLvMAvz+f0xP+aI+wLMAPfjuj4XMMDMPQjjfF5zv+/3oEHGrqp9W7lyJY8++igpKSlER0df0fcoisKhQ4fYvHkzubm5eHp64u3tjZeXl+Hw9vbG3d0dBwcHrKysLtoJoigK7733Ho8++ii9e/fm888/v6oBsy0ZktTV1ZGbm0tubi45OTmGt00hSF5eHnV1dc2+x9vbG39/fwICAvD398ff3x9bW1uys7PJysoiKysLT09PHn74YSZNmmSyr1pXV1czefJkNBoNu3btMnY5JqmkpITg4GCeeOIJXnrpJWOXI67Q2c8pwsLCiIqK6pDPKb7//numTZvG7NmzWbp0KZaWss+GEG1NQhIhjOyjjz7ioYceYsaMdTz++GSio82MMouhqgr++AP274eMjP9d7uQEN92k387Xze3arruyspJDhw7R2NhI79698fDoPMNJtTotm45t4scs/XqSaM9o5vabi4N1553XotVCUhIcPKgP3xIS4IYbjF1V+6dSqYiKisLGxoZvvvnmoltD6nQ6fvvtNzZt2sTmzZvJysrCzc2NmJgYSktLKSoqory8/ILfa2Fhgb29Pfb29jg4OBjet7e3R6VS8euvvxqWL9jYXN2MnasJSWpqajhx4kSzAOTsUKSkpMTwtebm5vj5+REUFERgYOB5QYi/vz9+fn4dakeTqVOnUlVVxffff2/sUkxSWloaPXv2ZPjw4WzevPmCWywL09LUnWppaUmfPn06ZPePoigsX76cRYsWsXr1au69915jlyREpyUhiRAm4Pfff+f225/Bw+MZ7rlnJOPHW9G9u/4EsrUoChQW6pfTHDkC6en6y0D/yn63bjB4sH7eSEu8iNEZ1g+fq7y+nPf/eJ/M8kwAxkaM5c7oOzE3a38De1uKSgXvvgvHjul/rx54QP87JlrGyZMnGT9+PGfOnOHzzz9n5MiRzT6/f/9+5s2bx++//463tzcTJ05k8uTJDBs2rNnfo0ajobS0lOLiYoqLiykrK6Ours5w1NbWnvdxQ0MD06ZN429/+9s11X6pkKS2tpZffvmFXbt2sXv3bvbv349WqwXAzs6O4OBggoKCLvjW39+/wz/WnOvOO++ksbGRr7/+2tilmKydO3cyYcIE+vfvz9dff91u5oN1NufOOQsLC2uXQ+8vp76+nvvvv5/du3ezZcsW+vfvb+yShOjUJCQRwkQUFBQwYcIcTp++g+HD7yYgwJEbb4TevSEk5PoDE0XRL6NJT4eTJ/UzRkpLm39NaKh+SU2/fuDqen23dzG1tbUcPnyYmpqaDjmJvsnx4uOsObiGGnUNdlZ2zO49u1PPHwH9ttFvvw1ZWWBjAw89BDExxq6q46moqGDatGl8//33hIeHM2jQIAYNGsShQ4dISkqiR48eLFu2jJEjR5pUq/rZIYmlpSX79u1j27Zt7Nq1i99//x2NRoO3tzfDhg1j2LBh9O/fn5CQEDw8PDrt4OOLufXWW7G1tWXz5s3GLsWk/fLLL9x6661ER0ezd+/eThemmbqCggL++qvj75iXm5vLxIkTsbW1ZdOmTfj4+Bi7JCE6PQlJhDAhKpWKv//9UT7/3Jbhw5/Bx0cfINjZQUSEfjcZf3/w8AAXF3B01L8ab26uD0FUKv22vNXVUFamP86cgdOnIS8P6uub356lJURG6gew9uwJbTX7TFEUcnNzSUlJwcPDg27dunWYV/EURWFb+ja+TvsaRVEIdAnkgX4P4OXgZezSjKq8HFasgIICcHCAf/xDH8qJlqcoCq+++iorVqygqKio2edeeeUVnn76aZNc494UklhZWbFkyRJ+/vlnPD09GTZsGMOHD2fYsGHExMRIIHIZBw8e5NZbb2XcuHGsXbvW2OWYtNraWgYPHkxxcTHp6emy7MZEVFdXc+zYMUpLS+nevTuBgYEd9u9+7969TJkyhTvuuIO33377qpcpCiFah4QkQpgYRVFYtWo1//d/y5kwYQ0+PsOor2+ZJweWlhAcrA9GIiKga1f9K/rGolKpOHHiBLm5uQQFBREdHd2unyBUq6r58PCHHC06CsDgoMFM6z4NK4vO/erkmTPw1lv60M7NDR59FDpoA5FJeO6553jttdfo0aMHhYWFFBcXGz5nZWXFU089xQsvvIC9vb0Rq2xOp9OxZcsWLC0tmT59Or169eL555/n1ltv7ZCt9a1l3bp1PPjgg3Tv3p3NmzcTGBho7JJMlk6nY8qUKfzwww/s3buXPn36GLukTu/s5wTBwcGGGUsdkU6nY9WqVTzzzDO88cYbPPjggx02CBKiPZKQRAgTtWfPHmbOnElYWASLFiVjZhZCXh7k50NFhX7Xmf+/JL8Zc3P9K/UeHuDuru8OaepA8fFpmfkiLa3pVaOSkhK6du1KeHi4SS0DuBLHi4+z9vBaKhsqsbKw4u4ed3NT4E3GLsvocnLgX/+Cmhro0gUee0z/eylax8qVK/nHP/7B8uXLeeKJJwD9iUdhYSH5+fl89913vP766/j6+rJy5Upuu+22NqmrsLCQ9PR0w/a6+fn5zd7Pz8/HzMyMDRs24OjoyIgRI+SE4Sqo1Woef/xxVq1aRUJCAitXrsTW1tbYZZm0p59+mjfeeIMvv/yS8ePHG7ucTq2xsZGMjAzS09Px9PTsUN2lF3Ly5Enuv/9+MjMzWb9+PUOHDjV2SUKIc0hIIoQJq66u5rnnnmPt2rUsXryYxx57zNAm37S8prFRf5iZga2tPgRpr+cWxcXFpKSkoFariYmJISAgwORPlLQ6LV+e+JIfMn4AwNfJlzl95xDgHGDkyozvxAlYtUr/exocrF9i04Gf9xrdhg0bmDFjBo8//jjLly+/6Nelp6fz8MMPs337diZOnGjYzvbsw9raGisrK7y9venates1dXPU1NSwefNm1q1bx65du2h6uuHg4HDezjL+/v4MGDCAM2fOtMgWwJ1JTU0NY8eOZf/+/axcuZK5c+cauySTVltby7x58/jwww958803eeyxx4xdUqelKAp5eXkcP34ca2trYmNj8fLquEtTtVotb731FosWLWL27Nm8+uqrHToMEqI9k5BEiHZg7969JCQk4Orqahi82FE1PWk6duwYNjY2dO/eHc+2GpZylYpqi1hzcA05FTkADA0eytTYqVhbdJytRK/VwYP6bX61WoiO1g9plRe2W4eiKLz++us899xzzJw5kw8//PCyoYaiKHz22Wc88cQT5OfnX/JrnZ2d6devH/379zccQUFBFwwwdTode/bsYd26dXzxxRfU1tYybNgw7r33XgYOHIi/vz/Ozs4XvJ2r2QJY/E9ubi6RkZHccccdbNy40djlmLSUlBT+9re/kZ2dzapVq5g1a5axS+q0SkpKOHr0aLt6UeR6/PXXXyQkJFBVVcWaNWsYMmSIsUsSQlyChCRCtBP19fUkJiayYsUK/u///o/58+d32LW6YNrtt4qisC9vHxuObkClVWFvZc+9ve6lj6+saQfYuRM+/1zf7dSnD8yZY5rLvDoCtVrNgw8+yNq1a3nhhRdYvHjxVXV96HQ6VCoVGo3mgkdeXh779+83HKdOnQLAy8uL/v37ExERgYuLCy4uLpSWlvLJJ5+Qm5tLeHg4s2bNYubMmYSEhFxRLRKSXLv333+fBx54gOTkZPr168exY8c4duwYNTU1PP/883h4eLTI7Wi1WgoKCjh9+jR5eXnk5eVRUlJCbW3tZY+6ujpuvfVW3n777RYNvmtra8nJyeH06dNUVlZSVVV13tF0+Z49ewgPD+ezzz4jRrbWMoqOsLz2aqhUKpYsWcKyZct47LHHWLhwoSyFE6IdkJBEiHbm4MGDJCQkoNFoSEpK4sYbbzR2Sa2qoaGB1NRUkxnkVqOuYcORDRzIPwBApEck8X3icbNzM1pNpkJR9OHIzp36j+PiYNq069++WlxYWVkZkydP5pdffmHNmjXMnDmz1W+zsLDwvNCksrKSyspKLCwsmDp1KrNmzeKmm2666leFJSS5doqiMGvWLNavX2+4zNfXl7q6Ory8vPj222+JjIy86us9ffo069ev56uvviInJ4fCwkJ0Op3h83Z2dnh5eeHg4HDZA2DFihVYWlrywQcfMGHChCuqoaGhgZycHLKyssjOziY7O9vwflZWVrPBxE0cHBxwdnY2HC4uLjg7OxMTE8P8+fNNamhxZ6FSqUhNTSUnJ6dDDGq/Evv27SMhIQFra2uSkpLo27evsUsSQlwhCUmEaIc0Gg3Lli3j5Zdf5sEHH+Sll14yPAntqKqqqgxbAkZGRhIWFtbmrz4dLjzMx399TLWqGnMzc8ZHjeeWiFswN5MUQKOB5GT9MhuASZNgzJj2Ox/H1KWnp3P77bdTWlrKli1bOkTrtoQk16ehoYFt27bh4+NDTEwMbm5uZGZmctttt3HmzBnuu+8+3NzccHV1xdLSErVajVqtRqPRGN4/+8jMzGTnzp1YW1szfvx4w5KIgIAA/P39CQgIwM3N7arCsIKCAubOncs333zDrFmzeOutt3B1dUWtVpORkUFqaqrhSEtLIyMjg8LCQsP3W1hYEBQUREhICKGhoYSEhBjeDwgIwNXVFUdHR5Pc4rqzamxsJDMzk7S0NDw8PIiNjTWZrtDWUltby4IFC3j33XdZsGABTz31lDymCdHOSEgiRDt24sQJEhISKCgo4IMPPmDkyJHGLqnVnT3ctVu3bvj7+7f6OuZadS0bUzbyW95vgH446+zeswl2DW7V220vamr0A1ozMvTLau67D/r3N3ZVHU9NTQ379u1j7969rFy5Ek9PT7799lsiIiKMXVqLkJCkdVRUVPD3v/+dQ4cOUV5eTnl5OTqdDmtr6wseTYN7PTw8mDp1KlOnTsXFxaXF6lEUhXXr1vHoo49ib2+Pk5MTmZmZNDY2AuDk5ERUVBRRUVFEREQ0C0T8/f0lAGknFEXh9OnTHDt2rFMMZW2yc+dO7r//fnx9fUlKSiI6OtrYJQkhroGEJEK0czqdjlWrVvHcc88xbdo0li1bhqurq7HLalWKonDq1CmOHz+Ora0t3bt3b7E19+f668xfrP9zPVWqKszMzBgbPpbxUeOxNJcn6gDFxfotfouKwN5eP6D1Grr6xTm0Wi3Z2dn8+eef/PTTT/z0008cOnSIxsZG3N3dueWWW1i5ciVubh1nmZeEJJ1Lbm4uS5Yswd7e3hCKREVF4ePj06EHeHYGpaWlHD16lIaGBmJiYggMDOzw/6YVFRU89dRTbNy4kVdffZW///3v17QrmBDCNEhIIkQHkZ2dzQMPPMCRI0dYvXo1d9xxh7FLanVardYw3NXb25tu3brh6OjYItddo67h85TP2Ze3DwAfRx/u630foW6hLXL9HUF2NqxcCdXV4OGh3+LX19fYVbUfiqJQXFxMWlpasyUGqampZGRkoNFoAAgNDWXw4MGGIzo6ukM++ZaQRIj2raamhmPHjlFUVGQYytoZOn++/PJLHnroIXr27Ml7771HcLB0mQrR3klIIkQHoigKH330EY8//jhjxozhX//6F97e3sYuq9WdPdw1JCSEqKgorK2vbRteRVH4Ne9Xvjj2BbXqWszMzBgdNpoJUROwspATtyYHDsCHH+pnkQQFwbx50IId+R2aTqdjy5YtvPbaaxw4oB8AbGZmZhhM3HRERkbSrVs3/Pz8jFxx25CQRIj2SaVSkZaWRnZ2NkFBQURFRXWKHVzOnDnDI488wvbt23nzzTe59957O3zHjBCdhYQkQnRAhYWFzJs3j127drFixQpmzJjRKf7jPnu4a1RUFKGhoVc13LWguoBPjnxCemk6AP7O/tzT8x7C3MJaq+R2R1Hgm2/0B0CPHnD//dDBNyloEWq1mo8//pilS5eSmprK8OHDmTt3Lt27dyciIqJTnFRcioQkQrQv5w5l7datG87OzsYuq9UpisLHH3/MY489xogRI3j77bfx8fExdllCiBYkIYkQHdimTZt4+OGH6du3L++++y5BQUHGLqlNFBUVkZKSglarJSYm5rLDXdWNaralb+P7k9+jU3RYW1gzPmo8I0NHYmHetjvomDKNRt898v+bHxg9Wr+LTQdc+dGiFEVh1apVvPbaa+Tl5XHHHXfw7LPPMnDgQGOXZlIkJBGifWgaynr8+HEsLS2JjY3tFF2roJ+l8+CDD3Lo0CHeeecdJk2aZOyShBCtoOMvFBSiE5s8eTIjRozgySefpHv37rz++us88MADHXKewdm8vb3x8vIiNzeXlJQUMjMziY2NPW+4q6IoHC48zBfHvqCkrgSAXj69uCv2LjzsW2cQbHtVUQGrV+vnkFhYwIwZcPPNxq6qffj3v//NvHnzmDlzJs8++yzdunUzdklCCHFNOuNQVtAvk3z33Xd59tlnmTJlCseOHetQg7OFEM1JJ4kQncQPP/zA3LlzCQoKYs2aNUR2ki1Izh3uGhMTg5OTEzkVOXx+7HPD0ho3Ozemd59OL59eRq7Y9OTmwjvv6IMSBwd48EHZweZKVVRUEB0dzdChQ/nss8+MXY5Jk04SIUxXdXU1x48f73RDWQHS0tKYM2cOp06d4v3332f06NHGLkkI0co6x6ObEIIxY8Zw9OhRnn/+efr06cOiRYt44oknOvyTHEtLS6KioggODubEiRN8s+MbjivHyVVysbG2wcrCitFho7kl4hZsLGWwxrkOHoTkZP1SG19f/YBWT09jV9U+aLVa5s6dS21tLW+++aaxyxFCiKtWUVFBeno6hYWFBAYGMmrUqE4zP0mr1bJ8+XISExOZM2cO27Zta7Ed9IQQpq1jnx0JIZpxdHRkxYoV3HXXXSQkJLBx40aSk5Pp1asTdE9Ywim7U+yx2ENpeSnVNdX069KP+EHxhPuHG7s6k6PTwZdfwnff6T+OjdUPaLWzM25d7YVWq2XmzJls3ryZjRs34u/vb+yShBDiipWWlpKWlkZpaSnBwcGMGjUKu070H8Dhw4dJSEigrq6O7du3c9NNNxm7JCFEG5KQRIhO6KabbuLQoUO8/PLLDBo0iCeeeIIXXnihQ7461KBtYFfWLrZnbqdWXQtmMCBiABMiJtBY2siJwyfIz8wnMjISb2/vTrG2+nJqa+GDD+D4cf3Ho0bB5MkyoPVKaTQaZsyYwZYtW9i4cSOTJ082dklCCHFZiqJQVFREWloaVVVVhIWF0bdvX2w60fZlDQ0NvPTSS7z55ps8+eSTvPDCC53q/gsh9GQmiRCd3NmvliQlJXWYV0vOC0eALo5duDP6Tvr49DGEIRqNhqysLDIyMrCzs6Nr1674+fl12rDk1Cn9gNbSUrC2hnvvhf79jV1V+6HVapk+fTpbt27ls88+Y+LEicYuqd2QmSRCGIeiKOTn55Oenk59fT3h4eGEhoZ2ur/DX375hYSEBBwcHEhKSuocXbZCiAuSkEQIcd6621deeaXdrrut09SxJ3vPeeHI7ZG3c4PfDZibXbgdQqvVkpuby8mTJzE3N6dr164EBgZ2+J2AzrZvH3z8sX7+iJeXfkBrQICxq2pf9u7dy9ChQ/n444+ZMWOGsctpVyQkEaJt6XQ6Tp06RXp6OjqdjoiICIKCgjr8rLJz1dTUMH/+fJKSkjrNvDYhxKXJI4AQAktLS5555hkmTpzInDlz6NGjR7ub4H6m5gw7s3by66lfUTeqAX04clvX2+jv3/+i4UgTS0tLwsLCCAkJIS8vj/T0dE6cOEFERATBwcEd+gmTVgtffAG7duk/7t4dEhLA3t64dbVHPj4+gH4baiGEMEVarZacnBxOnjyJpaUlkZGRBAQEdKoXBZo07fwXHBzMoUOHOs3Of0KIS+u4z/qFEFctMjKS3bt389577zF58mSmTJnC8uXLcXNzM3ZpF6QoCidKTrAjcwdHi44aLg9wDmB0+GgG+A+4bDhyLnNzc4KCgggMDKSgoIC0tDTS0tI6bPtxWRmsWQMZGfqPb79df3TS1UbXLTQ0FGtra44fP96uQkYhRMen0WjIzMwkMzMTOzs7evToga+vb6dcXlpWVsaTTz7Jpk2bWLp0KXPnzu2UIZEQ4sIkJBFCNGNubs5DDz3EbbfdxoMPPki3bt145513mDRpkrFLM6hoqGBf3j5+OfULZ2rOAGBmZkbPLj0ZGTqSSI/I637SZ2Zmhp+fH76+vhQXF5OWlkZ6ejqhoaGEh4d3iEFuf/0Fa9dCXR3Y2kJ8PMgS7OvT9Krs8aapt0IIYWQNDQ1kZmaSlZWFi4sL/fr1w8vLq1OGIwCbNm3i4Ycfpm/fvqSkpBAYGGjskoQQJkZCEiHEBQUFBfHtt9/yySefcP/99/Pvf/+blStXGpYTtLU6TR1/nfmL/af3k1KcQtM4JRtLG24KvIkRoSPwdmj5JQ5mZmZ4e3vj7e1NaWkp6enpbN++naCgICIiIrBvh2tStFrYsgV27NB/HBwMc+eCp6dx6+ooYmJiJCQRQhhdXV0dJ0+eJDc3F09PTwYOHIiHh4exyzKawsJC5s2bx+7du1mxYgV33313pw2KhBCXJiGJEOKizMzMuOeeexgzZgyPPPII3bp1480332TGPTOwtGj9h4/y+nKOFR/jcOFhUopTaNQ1Gj4X4R7BTYE30c+vH7aWbbN1sYeHBx4eHlRUVJCens7OnTvx9/ena9euODk5tUkN16ukRL+9b3a2/uORI2HSJOjAI1faXExMDHv27DF2GUKITqq6upr09HROnz6Nj48PQ4YMwcXFxdhlGY2iKKxbt44nnniCsWPHcuzYMZkbJYS4JNndRghxxb788ksefOhBnG5xYtZdsxjTfQzdvLrhYO3QItdf2VBJZnkmJ8tOcqz4GPnV+c0+7+vkSz/ffgzwH0AXxy4tcpvXo6amhvT0dPLy8vDx8aFr1664uroau6yLOnQI1q2D+nr9UNb77pPlNS3p1KlTbNiwgaSkJNLS0qivr8fWtm0CvI5AdrcR4vo0BfiFhYUEBATQtWvXdrtTXUvJzs7mgQce4OjRo6xevZoJEyYYuyQhRDsgIYkQ4qpUVFTw+P89zoY/N3DDpBuIjY0lzC2MENcQgl2D6eLQBTc7N1xsXC7YxqrVaalsqKSioYLS+lLyq/PJr84nryqP0rrSZl9rZmZGqGsosd6x9PPth6+Tb1vdzatSX1/PyZMnycnJwcPDg8jISJNqaVap9LvX/Pe/+o/DwmDOHDChEtutsrIyvvjiCz755BP++9//Ymtry4QJE0hISGDMmDHGLq9dkZBEiKunKIphKWhpaSnBwcFERERgZ2dn7NKMSqfT8c477zB//nymT5/O0qVLTfpFDCGEaZGQRAhxTXbu3Ml9j90HfeGmUTed9+TD3MwcawtrrCyssDS3RN2oRt2oRtOoueh1mpmZ4efkR7hbOJEekS3apdIWVCqVYecAZ2dnIiMj8fb2Nuqa56wsSE6GoiL9x2PGwJ13goWF0UpqlzQaDYWFheTn51NQUMDp06fZvn0727Zto7GxkVGjRnH33XczceJEnJ2djV1uuyQhiRBXTlEUioqKSEtLo6qqirCwMMLCwjrEUPHrdfz4cebMmUNhYSEffPABI0aMMHZJQoh2RkISIcQ1q62tZcHCBaz6ZBUT502kd1xvylXlVDRUcKmHFktzS1xtXXGzc8PX0Rc/Jz98nXwJdgnGzqr9v/ql0WjIysoiIyMDW1tbIiIi8PPzw6INk4nGRti2TX/odODmpl9eEx3dZiWYjJqaGk6cOMHx48dRq9VERkYSFRV1yd0d6urq2LdvH7t372bPnj3s27cPtVpt+LylpSV9+vRhxowZ3HXXXUYbaNyRSEgixOU1NjaSn5/PyZMnUalUhIWFdcjt6a+FRqNh2bJlvPzyyzz00EMkJibi4NB+XmgRQpgOCUmEENftt99+Iz4+Hmtra5KTk+nVuxdVqipD90ijrhFrC2usLayxtbTF3sq+U0yU12q15ObmkpWVhUqlIjAwkODg4FbvNDhzBpKSICdH//GAATB9un4OSWeg0+nYunUrH3zwAUePHiUvL8/wOTMzM0OA5+LiYghMIiMjCQ0N5cSJE+zZs4fffvsNjUaDu7s7Q4cOJS4ujqioKMO20J6enpibmxvrLnZIEpIIcXFVVVXk5ORw6tQpbGxsCA0NJTg4uE3Dd1N28OBBEhIS0Gg0JCUlceONNxq7JCFEOyYhiRCiRahUKl599VWWLl3Ko48+yqJFi2Ro5f+nKAplZWVkZ2eTn5+Pq6srISEhLd5doiiwezds2gQajT4Uuftu6N+/xW7CpDU2NvLFF1/w8ssvc/ToUQYPHszgwYOJiYkhJiaG6OhorKysOHnyJGlpaaSlpZGammp4v6SkBE9PT+Li4oiLi2PYsGHExsZKGNJGJCQRormmrpHs7GwqKirw8/MjJCQEd3f3TvFCw5Wor68nMTGRFStW8PTTTzN//nysra2NXZYQop2TkEQI0aKOHDlCfHw8VVVVvPLKK0yaNElOMs+iVqs5deoU2dnZLdpdUlgI69fDyZP6j2Ni9MtrOsOcOq1Wy4YNG3jllVdITU1l7NixLFiwgJtvvvmqrqeqqgonJyc5+TASCUmE0Du3ayQkJITAwEA5+T+LTqdj06ZNPP/887i6upKUlESPHj2MXZYQooOQkEQI0eK0Wi0ffPABr7zyCp6enixevJgJEybIyedZWqq7pLERvv8evv0WtFqwsYFJkyAuDjrSj/vgwYNs2LCB2tpaNBoNarUajUaDRqPh0KFDZGRkcPvtt7NgwQIGDBhg7HLFNZCQRHRm0jVyZRRF4csvv2TRokWUlpby/PPPM3fuXFl2JIRoURKSCCFaTUNDA++//z5LliwhICCAxMRExo0bJ0/4znGh7pKQkBCcnJwu+X05OfDRR9A0cqN7d5gxA9zd26DoNqAoCrt37+a1117jhx9+wNfXFx8fH6ysrJodvr6+PPbYY/Tp08fYJYvrICGJ6Iyka+TKKIrCtm3bWLhwIfn5+Tz33HPMnTtXlvUKIVqFhCRCiFZXV1fH6tWree211wgPDycxMZHRo0dLWHKOc7tL3NzcCA4OPq+7RKWCr7+GHTv0c0gcHOCuu/QDWjvSj3T69Ol8+umn9OrVi2effZYpU6ZgaWlp7LJEK5GQRHQW0jVy5RRFYfv27SxcuJDMzEyeeeYZHnroIew7yyRyIYRRSEgihGgzNTU1rFy5kmXLltGtWzcSExMZPny4scsySReeXRJCaqoTX3wBFRX6r+vfXx+QXKbppN3JyMggIiKCf/7znzz22GNy4tAJSEgiOrrq6mqys7Ola+QK7dq1i4ULF3Ls2DGefvppHn74YRwdHY1dlhCiE5CQRAjR5qqqqlixYgXLly+nb9++JCYmMnjwYGOXZZIURaG0tJTff8/niy8sKC11x9HRiaAge+6+25yOOKeupKSEuXPnsmPHDgoLC+UVw05CQhLRETV1jeTk5FBeXi5dI1fgp59+YuHChRw6dIgnn3ySRx555LqHmwshxNWQvmUhRJtzdnZmwYIF/OMf/+DNN9/k1ltvZdCgQSQmJnLjjTcauzyTUl9vxo4dnuze7Ym5eSPOzjVER5+kR48CIIDq6svPLjFVKpWKo0ePkp6ejp2dHU5OThw9epRFixYBsHr1aglIhBDt0oW6RgYMGCBdI5ewb98+Fi5cyL59+3j88cfZvHkzrp1hizYhhMmRThIhhNGVlpayfPly/vWvfzFs2DAWL15Mv379jF2WUWm1sHevftea6mr9ZX37wpQp4O6u7y7Jycm55OwSU5OXl8e3337LH3/8wR9//MGRI0fQaDTNvsbMzIyEhASWLFmCl5eXkSoVxiCdJKK9u1DXSHBwMB4eHtI1cgkHDhxg0aJF7Nmzh0ceeYSnnnoK944ygVwI0S5JSCKEMBlFRUUsXbqUVatWMWbMGBYvXkyvXr2MXVabUhT4/Xf46isoKdFf5uurnzsSE3P+16vVanJzc8nJyUGlUhEUFERwcLBJdZekpaXx+uuvs379enQ6HbGxsfTr189wxMTEoFKpqK6uxtramsDAQGOXLIxAQhLRXsmskWvz559/smjRIrZv387f//53nn76aQnHhRAmQUISIYTJKSgo4PXXX+e9997j9ttv58UXXyQ2NtbYZbUqRYGUFNiy5X9b+jo7w/jxcPPNcLkGkabZJWd3lwQEBODr64uNjU3r34ELUKlUzJ49m08//RQfHx+efPJJ5s6da1IBjjAdEpKI9kSlUlFQUEBeXp50jVyllJQUXnzxRb799lvmzp3Ls88+i4+Pj7HLEkIIAwlJhBAmKy8vj1dffZXk5GQmTpzIokWLiIqKMnZZLUpR4MQJ/bKa9HT9ZXZ2MHYsjBgB15JvqFQq8vLyOH36NBUVFXh4eODn54evry+2trYtewcuIT8/H39/fx5//HGWLFnSprct2h8JSYSpa2hooKCggPz8fEpLS3F1dcXf31+6Rq5QamoqixcvZsuWLcTHxzN//nz8/f2NXZYQQpxHBrcKIUxWQEAA77zzDk8//TSvvPIKvXr14q677mLhwoWEh4cbu7zrotPB4cPw3XeQk6O/zNJSH4zccgs4OFz7ddvY2BAeHk54eDj19fXk5+eTl5fHkSNHcHd3NwQmdnZ2LXJfCgsL+fXXX7GwsMDCwoKamhq+++47vvnmGwD69+8vAYkQol2qr683BCNlZWW4ubnh5+dH3759W+wxtKM7efIkL730Ehs3bmTWrFmkpqYSFBRk7LKEEOKipJNECNFuZGZm8tJLL7FhwwbuueceFixYQHBwsLHLuipaLfz2G3z/PZw5o7/MygqGDIExY8DNrfVu+2JP9v38/K75yX5dXR3du3cnKyur2eXdunVjwoQJjB8/nkGDBkn7ubgs6SQRpqIpXM7Pz6e8vBwPDw98fX1bNFzuDLKzs3n55Zf5+OOPufvuu3nhhRcICwszdllCCHFZ0kkihGg3wsLCWLt2Lc899xyJiYlERUUxe/Zsnn/+eQICAoxd3iVVVOh3q9m7Fyor9ZfZ28OwYfrukbYY02FnZ0dYWBhhYWHN2sZTUlJwdXU1dJg4XEUby5IlSzh9+jQHDx7E39+fxsZGLCws8Pb2bsV7IoQQLau2ttbwmNi0TDEgIEA64a7BqVOnWLJkCR9++CFTpkzhyJEjdO3a1dhlCSHEFZNOEiFEu3Xs2DEWL17MV199xf33389zzz2Hr6+vscsy0OkgNVUfjBw6pP8Y9ANZR4+GoUPBFJ57q1QqCgsLyc/Pp7i4GGdnZ0OHiaOj40W/LyMjg5iYGJ588kleffXVNqxYdETSSSLaWk1NjaFjpKqqCi8vL/z8/PDx8THawOv2rKCggCVLlrBmzRruuOMOFi1aRMyFtmUTQggTJ50kQoh2q1u3bmzcuJEjR46waNEiwsPDeeihh3jmmWeM2slQUAD79umX1ZSX/+/yiAh950ifPvr5I6bCxsaG4OBggoODUavVhsAkNTUVJycnfH198fPzO29XmsbGRlxdXVmzZg39+vVjypQpRroHQghxZaqrqw3BSE1NDV5eXoSFheHj4yPDV6/RmTNneP3113n33XcZN24cv//+Oz169DB2WUIIcc2kk0QI0WEcPHiQF198kR9//JF58+bx1FNP4enp2eq3qyj6bXsPHtR3jBQU/O9z9vbQv7++a8TEVwSdR6PRGAKToqIiHBwcDB0mTk5OmJmZUVRUxEMPPcTmzZuZNm0aK1euxMPDw9ili3ZIOklEa1AUpVkwUltbi7e3t6FjRH7Xrl1JSQnLli1j5cqVjBw5ksWLF9OnTx9jlyWEENdNQhIhRIfz+++/s2jRIn7++WceffRRnnjiCdxaeCJqRYV+Kc2xY/otfCsq/vc5CwuIjYVBg6BnT9PqGrlWGo2GM2fOkJ+fz5kzZ7C3t28WmHz66afMmzcPOzs7fv75Z0JCQoxdsmhnJCQRLUVRFKqqqgzBSH19vSEY6dKli/x+Xafy8nKWL1/OihUrGDx4MImJifTv39/YZQkhRIuRkEQI0WH9/PPPLFq0iAMHDjBmzBpuv30csbEOBAeDuzuYm1/+OhoboaQECgv1HSLZ2ZCV1TwUAf0ONd2765fS9Oih7yDpqLRabbPAxNbWFj8/P6ysrBg7dixOTk78/PPPl5xnIsS5JCQR10NRFCorKw3BSENDA126dDEEI5YdIa02ssrKSt566y3++c9/0r9/fxITE7npppuMXZYQQrQ4CUmEEB3enj17eOaZ5Rw5Ekxs7Gy6d++BjY0V7u76Iao2Nv8boKrVgkYDNTVQVQXV1frlNOcyM9Mvn+nWDWJi9PNGOuN5nVarpaioiIKCAgoLCwHYunUrXl5eJCYmyomJuGISkoirpdVqKS0tpbi4mIKCAtRqNT4+Pvj6+uLt7S2PPy2kurqat99+mzfeeIMePXqQmJhIXFycscsSQohWIyGJEKJTUBSFnTt38uyzb5CaGk1s7GxiY7thaXn5kzFra/DxgS5dIDAQQkMhOFgfroj/aWxsZM2aNRw5coS4uDhsbGxwc3PDy8sLT09P3NzcsLCwMHaZwkRJSCIup7GxkfLycoqLiykpKaG8vBw7Ozs8PT3x9fXFy8tLHmNaUG1tLatWrWLp0qV07dqVl156iREjRmBmZmbs0oQQolVJSCKE6FQUReH777/nhRdeJCenjlmznmH8+Mkoii3m5vp5IpaW4Oio7zJpOuQ54ZUZPHgwlpaW7N69m9raWkpKSigpKaG4uBitVou7uzuenp54eXnh6uoqT7aFgYQk4lyKolBRUWEIRcrKyrC0tDQEr56enjg4OBi7zA6nvr6e9957j1dffZXg4GASExMZO3asPF4LIToNCUmEEJ2Soih88803LFy4kKKiIubPn8+cOXOwkfaQ6/Lyyy/z/vvvk5GR0exEt2mHiabApLS0FEVRDCc6Xl5ehh1zROckIYloepxoCkVKSkowMzPDw8PDEIzI40TrUalUrFmzhiVLluDt7U1iYiK33367/LyFEJ2OhCRCiE5Np9OxdetWFi1aRGVlJS+88AL33Xcf1tbWxi6tXfr666+ZMGECWVlZl9zhpukV4qbQpOkV4qbARF4h7nwkJOl8FEWhrq6uWSii1Wrx8PAwBKjScdb61Go1H374IS+//DIuLi4sXryYO++8E/MrmW4uhBAdkIQkQgiBPiz5/PPPefHFF2loaGDhwoXMnDlTBv9dpV9++YWbb76ZlJQUunXrdsXf1zRroOlEqayszDBroCk4sW2aris6JAlJOoeGhgZDKFJcXExDQ0OzZXhubm5yct5GtFotH330ES+99BK2tra8+OKLTJ06VX7+QohOT0ISIYQ4S2NjIxs2bGDx4sUALFq0iGnTpklYcoUOHjxIv3792L9/PzfccMM1X49Wq6WsrIzi4mKKi4uprKzE0dGx2SwC6fbpWCQk6ZjUanWz2UQ1NTW4uLjg5eWFl5cX7u7u8vjaxrRaLRs2bCAxMRHQ/z83ffp0GXorhBD/n4QkQghxAVqtlvXr1/PSSy9RX1/PrFmziI+PJzIy0tilmSydTseUKVPYsWMH6enpdOnSpcWuW060Oj4JSTqGpm15m/5WJeA0Hampqaxdu5Z169ZhZ2fHggULpGNSCCEuQEISIYS4hMbGRnbs2EFycjJbt25lwIABxMfHM3XqVBwdHY1dnskoLCzkrbfe4vXXX+fLL79kwoQJrXp7F2vZ9/DwwNXVFVdXV2xtbWWWQTsiIUn7oygKDQ0NVFRUGGYMlZeXY2trawgwPT09ZamcEdXU1PD555+TlJTE/v37ufPOO4mPj2fUqFHSOSKEEBchIYkQQlyh0tJSPvnkE5KSksjMzOSuu+4iPj6eQYMGddqT8bfeeos333yT3NxcQL+7zfPPP9+mNTQNf2zqNKmsrKS6uhpra2tcXFxwcXHB1dUVFxcXHBwcOu2/lamTkMS0KYpCbW0tFRUVVFZWGg61Wo2TkxMuLi6yLa+JUBSFX375heTkZDZu3EhERAQJCQncfffdeHh4GLs8IYQweRKSCCHEVVIUhUOHDpGUlMS///1vunTpQnx8PPfeey8+Pj7GLq9NTZkyhV9//ZUVK1YwYMAAgoKCjF0SoG/5r6qqanYyV1VVhZmZ2XnBiZOTkwwqNAESkpgOnU5HdXX1eYGIoig4Ozsb/oZcXFxwdnaW5RomorCwkI8++ojk5GTOnDnDjBkziI+Pp0+fPhIOCyHEVZCQRAghrkN9fT1bt24lOTmZPXv2MG7cOOLj49v1id7WrVuZOHEiAQEBPPnkk/Tp0wcfHx/D0pbi4mLOnDnDvn372LVrF25ubuTl5Rm77MtqOvE7+6SvsrISnU6Hk5OTITSREz/jkJDEOM4NFCsqKqiursbc3LxZGCKBomlq+rtJSkriu+++Iy4ujvj4eCZOnCjLnIQQ4hpJSCKEEC0kOzubDz/8kLVr16JSqbj33nuZPXs2MTExxi7tqqSlpREVFXXRz5uZmeHu7k7Pnj0ZPXo0EydOJDo6ug0rbDlNSwiaTg7PXkLg6OjYLDhxcXGRgZOtSEKS1qdWq5sFhBUVFdTU1BiWpp39+y5L00zb8ePHSU5O5qOPPsLOzo7Zs2cza9YsQkJCjF2aEEK0exKSCCFEC9PpdPz4448kJSWxZcsW+vbtS3x8PHfddRdOTk7GLu+KKIrC1q1befbZZ0lLS8Pf358tW7YQEhKCu7t7hx741zSM8uwTycrKSurr67G3t28WmjQNiBXXT0KSltU0UPXsUKSurg47O7vzAhEZctw+VFVV8dlnn5GcnMzBgweZNGkS8fHxjBgxQjp8hBCiBUlIIoQQraisrIwNGzaQnJzMiRMn+Nvf/kZ8fDyDBw9uFycljY2NfPTRRzzyyCPExsbyzTff4OnpaeyyjEKtVp930llTU4ONjU2z5Qj29vbY29vLiedVkpDk6jUFenV1ddTV1TVbTqZSqXB0dDxvBo90Q7UviqLw008/kZSUxOeff050dDTx8fHcfffduLm5Gbs8IYTokCQkEUKINnL48GGSk5P5+OOP8fT0NAx79fPzM3Zpl/XHH38wbtw43N3d+f777wkODjZ2SSahaZ5DU3hSU1NDXV0dDQ0NmJubY2dnh4ODgyE4OfuwtraWEOUsEpKcT1EU1Gq1IQQ5+6itraW+vh6dToetrS329vaGUMTV1VXm6rRzp0+fNgxhLSsr45577mH27Nn07t3b2KUJIUSHJyGJEEK0sYaGBr766iuSkpLYtWsXY8aMIT4+nttvv92kX+X9+uuvmTBhAl27diU1NVVO8C+hsbGR+vr6Zie0Z5/gqtVqLCwsLhieNIUqnS0o6KwhiUajueDvSNPR2NiItbW14Xfj3ODNzs6uQy9/60zUajXffPMNycnJ/PDDD4wYMYL4+HgmTJggy/qEEKINSUgihBBGlJuby7p160hOTqa2tpaZM2cSHx9PbGyssUs7z9SpU9myZQvvvvsuc+bMMXY57ZpWq73gCXHTodFosLKyumCI0nR0tC6BjhqSyL+1uJyUlBSSk5NZv349jo6OhiGsprKluhBCdDYSkgghhAnQ6XTs3r2b5ORkNm3aRM+ePUlISOCuu+7CxcXF2OUB8MMPPzB27Fi2bdvGuHHjjF1Oh3at3QU2NjZYWVk1OywtLdtF1097CkkURUGr1aLRaJodKpXKsAym6d/uQl1D53aEmPr9FS2vsrKSTz/9lOTkZP766y8mT55MQkICcXFxMoRVCCGMTEISIYQwMRUVFXz66ackJSWRkpLClClTiI+PJy4uzqgnu4qiMHToUHJycli2bBmTJ0+WV7iN4FJzKlQqVbOT9ibnBidXc1hYWLTJ711bhiSKotDY2HheyHE1R5Ozf1Y2NjYyf0ZclE6n47///S/Jycl88cUXdO/enfj4eKZNm4arq6uxyxNCCPH/SUgihBAm7K+//mLt2rWsX78eV1dXQxt2QECAUerJzc0lISGBHTt2EBgYyOrVq7ntttuMUou4tIt1O1zpodVqATAzM7uqQOVaabVaDh48SN++fa85fLua4KPp6Y+lpeU1B0jtpUtHGFdeXp5hWWVlZaVhWWWPHj2MXZoQQogLkJBECCHaAZVKxddff01ycjI7duxg5MiRJCQkMH78eGxsbNq8nj/++IMbbrgBgOXLl/PAAw/g4ODQ5nWI1qPT6ZqFLGq1+ryPm8KUpvd1Ot01356iKFRVVeHs7HzNwYO5uTlWVlZYW1sbwg9ra+tmoca5H8vSBtEaVCoVX331FcnJyezcuZNRo0YZHrNNeUC3EEIICUmEEKLdycvLM2wNWVFRwT333EN8fDw9e/Zs0zrKyspYsGAB7777LtbW1owdO5ZJkyYxfvx43Nzc2rQW0f61p5kkQlzMX3/9Zdjq3dXV1bDVu7G6/4QQQlw9eflECCHamYCAAObPn09aWhqbNm2ivLycgQMH0r9/f1avXk1FRUWb1OHu7s4777xDeno6iYmJFBUVMWvWLHx8fJgzZw7Hjh1rkzqEEMKYKioqWL16NTfccAMDBw6kvLycTZs2kZ6ezvz58yUgEUKIdkY6SYQQogOorKxk48aNJCcn8+effzJp0iQSEhIYNmxYmy4nOH36NB9//DH/+te/yM/PZ9y4cTz55JOMGDFCZjeIS5JOEtGe6HQ6du3aRXJyMps3b6ZXr16GHcmcnZ2NXZ4QQojrIJ0kQgjRAbi4uDB37lz27dvHgQMH8PX1Zdq0aYSHh5OYmEhubm6b1OHv788zzzxDVlYWH330EadPn2bUqFH06NGDN998k5KSkjapQwghWkNubi6JiYmEh4czffp0fH19OXDgAPv27eP++++XgEQIIToACUmEEKKDiY2N5Y033iAvL49//vOf7N+/n4iICMaOHcvGjRtpaGho9Rqsra2ZOXMmhw8fZseOHcTGxvLMM88QEBDAwoULUalUrV6DEEK0hIaGBjZu3MiYMWOIiIhg//79/POf/yQvL4833niD2NhYY5cohBCiBclyGyGE6ATy8/MNw16LiooYOXIko0ePZtSoUYSHh7fJUpiSkhLeeustli5dytSpU0lKSsLW1rbVb1e0D7LcRpgKRVHIyMhgx44dbN++nZ07d+Lt7W0Ywurn52fsEoUQQrQiCUmEEKITURSFAwcOsH37drZv387PP/+Mv7+/ITAZOXIkHh4erVrDxo0bmT59Oh4eHiQkJDBr1ixiYmJa9TaF6ZOQRBhTSUkJP/74I9u3b2fHjh2cPn2am2++mdGjRzN69GhuuOEGmaskhBCdhIQkQgjRidXW1rJ3717DicHRo0fp3bu3ITQZPHhwq3R7pKam8u6777J27VoqKyvp3bs38fHx3HfffTg5ObX47QnTJyGJaEsNDQ389NNPhm6Rw4cP0717d0aNGsXo0aMZMmQIDg4Oxi5TCCGEEUhIIoQQwqCwsJCdO3caThxKS0sZMmSI4cShV69eLbpbTkNDA//5z3/45JNP2Lp1K46OjsyZM4d58+YREhLSYrcjTJ+EJKI16XQ6/vzzT0MX3U8//YSHh4ehU2TkyJF06dLF2GUKIYQwARKSCCGEuCBFUUhNTTWcVOzevRsbG5tm80yCg4Nb7PZOnTrFO++8w/vvv09VVRUzZszgueeeIzo6usVuQ5guCUlES8vJyTF0ye3cuROVSsXw4cMNoW9UVJQsoRFCCHEeCUmEEEJcEY1Gw++//27oMvntt98IDQ01nHAMHz4cV1fX676d2tpa1qxZw7Jly8jPz2fq1Km8/PLLdO3a9frvhDBZEpKI61VRUcGuXbsMwUhWVhY33nijoVukf//+8rslhBDisiQkEUIIcU2qqqrYs2eP4YQkLS2NG264wdBlMmjQIKytra/5+lUqFevWrWPJkiUA/PXXXzg7O7dU+cLESEgirpZarebXX381BLcHDhwgMjLS8BgUFxcnjxlCCCGumoQkQgghWkReXh47duwwHDU1NcTFxRk6TWJjY6+ptT07O5uePXsSEhLC0qVLGTt2rLTId0ASkojLURSFo0ePGkKRPXv24OTkZHiMGTlyJAEBAcYuUwghRDsnIYkQQogW13Qy09RlsmfPHpydnZudzPj7+1/x9R08eJB//OMf/PLLL4SGhjJr1izuvfdeQkNDW/FeiLYkIYm4kNOnTzcLX6uqqpqFr927d5fQVAghRIuSkEQIIUSrU6lU57XFR0dHG0504uLiLrv1r6Io7N27l3Xr1vHZZ59RU1PD0KFDmTZtGuPGjZPdcNo5CUkEQHV1tWEZ3/bt20lNTTUs4xs9ejQDBw7ExsbG2GUKIYTowCQkEUII0ebKy8ubDVjMzs5m4MCBhlkCAwYMwNLS8qLfX1tby5YtW1i3bh27du2isbGRmJgYbr31VsaNG8eQIUOuax6KaHsSknROGo2G/fv3Gx4L9u3bR0hIiOGxYPjw4bi5uRm7TCGEEJ2IhCRCCCGMLjs729BlsnPnTjQaDcOGDTO8ehwZGXnRlvrKykp27NjBtm3b+M9//kNBQQGOjo6MGDGCYcOGMWTIEPr06YOFhUUb3ytxNSQk6RyathZv+nvftWsX1tbWzbYWl64wIYQQxiQhiRBCCJOi0+k4fPiw4ZXlvXv34u3tzahRowyHt7f3Bb9XURT+/PNP/vOf//D999/z22+/0dDQgKenJ+PHj+fOO+9k9OjR2NnZtfG9EpcjIUnHVVRUZJgpsn37doqLixkyZIhhuV3v3r0xNzc3dplCCCEEICGJEEIIE1dfX89PP/1kOMH6888/6dGjh+EEa8iQIdjb21/we1UqFfv37+fbb79l69atnDhxAjs7O8aOHcudd97JLbfcQpcuXdr4HokLkZCk46irq2Pv3r2GuSJHjx6ld+/ehr/Zm2++WYJKIYQQJktCEiGEEO1KcXExP/74o+EErLCwkJtvvplRo0YxcOBAYmJi8PHxueDynNTUVL788ku2bt3Kvn37UBSFmJgYhg8fzrBhw4iLi7tol4poXRKStE+KolBYWMjx48fZt28fO3bs4Oeff8bX19ewfGbkyJF4enoau1QhhBDiikhIIoQQot1SFIWTJ08aukwOHTpEdnY2Li4uREdHExMT0+xtWFiYYSDsmTNn2LVrF7t27WL37t2kpaUBEBsby7Bhwxg2bBhDhw6V0KSNSEhi2rRaLZmZmZw4cYLjx49z/PhxTpw4wYkTJ6isrCQkJIQ+ffoYgpGIiAjZmlcIIUS7JCGJEEKIDqWuro7U1FTDyVzT27S0NBRFoWvXrsTExDQLUKKioqioqGDPnj3s3r2bXbt2cfLkSQC6detGXFwcQ4cOJS4uDl9fXyPfw45JQhLTUFtbawg/zv77SU9Px8zMjMjIyGZ/OzExMURGRl50yZsQQgjR3khIIoQQolNobGwkKyvrvJO/48ePU1FRQVBQULOuEw8PD0pKSjh06BB79uwxdJp07dqVuLg44uLiGDRoEKGhoTJ0sgVISNK6VCoVxcXFlJeXU1ZWRnZ2NoGBgaSlpTX7m8jNzcXV1fW8IDE6OprQ0FDZJUoIIUSHJyGJEEKITk1RFIqKipoFJ01vT506hZubG9HR0YSEhGBubk5ZWRnp6emGThNnZ2d69epF7969DUdsbCw2NjZGvmfti4QkV0+r1ZKRkUFKSgoHDhwgOjqa/Px81Go1Op2O3Nxcjh07RkZGBiUlJVhaWmJjY4NGo0GtVhMQEEC3bt2adYVER0fj7e0tS2WEEEJ0WhKSCCGEEBdRU1NDamrqeQFKeno65ubmBAYG4ujoiEajoaysjIKCAgAsLS2JiYmhd+/e9OzZk65duxIeHk5YWJgsS7gICUkurqkLKiUlhZSUFI4ePUpKSgqpqamoVKpmX2tra4uNjQ2KolBXVwdASEgIsbGxxMbGGkKRqKgoHB0djXF3hBBCCJMmIYkQQghxlTQaDVlZWRfsPqmursbb2xtHR0fq6uooLS1FrVYbvtff3x9/f398fHwueXS2LVI7e0jS2NhIZmYmKSkppKWlkZubS25uLjk5OaSlpdHQ0ACAo6MjXbp0MYRtpaWlFBQU4OTkdN7ymJiYGEJDQzvlz1MIIYS4VhKSCCGEEC1EURQKCgouOPckPz8fFxcXPD09DSetGo2G6upqSkpK0Ol0za7LwcEBDw8P3N3dm7318PDA09MTT09PvLy8DO97enpib2/fbpdJmFJIolKpKCsrO++orKzEwsICS0tLLC0tm73v5OREQEAAAQEBeHh4AKDT6VAUxdDVcfr0afLy8sjLy2v2/qlTp0hPTzd0hTg4OBj+Pc3NzdFoNBQVFVFRUYG/v/95Qciltr0WQgghxNWxNHYBQgghREdhZmaGn58ffn5+jBgxotnnqqqqDEt3zg5QSktLsba2JiIigsDAQDw9PXFycsLOzg5LS0sqKyspLS01zEIpLS2ltLTUsJTibLa2ts0ClKZQ5UKHt7c3Xbp0wdbWtq1+PK1OrVZTXV1NVVXVeUdlZeUFL7/QUVtbe8Hrt7OzQ1EUGhsb0Wg011ynmZmZ4d/HwcEBOzs7evToQWVlJadOnaKhoQFbW1uioqLO24XJ2dn5mm9XCCGEEJcnnSRCCCGEEanVajIyMs7rPjlx4gS1tbWEhoYaTpC9vLxwcnLC2dkZa2trdDodWq0WlUqFSqWitraW6upqSktLKSkpoaSkxBCqlJSUnDe/AvSDZ7t06WI43N3dDbfR9Nbd3d1wuLm54e7ufl1dK2q1mtraWmpra6mrqzPUXV5ejk6nO+9z575fU1NDVVXVeYHIhe5fE3Nzc1xcXHBycsLFxQVnZ+dm9/Hso6lz59z7fW6HS9PPX61Wk5+fz8mTJ8nMzKSwsJCGhgbDv0tDQwNarRadTkdJSQlZWVlkZWXh4OBwXldIdHQ04eHhWFtbX9PPVgghhBDXR0ISIYQQwgQpisLp06cNgUlqaiplZWWGYKC6urrZ+/X19YC+S8HR0fG8oMPJyQl7e3vDMhFFUdBqtWg0Gurr66mrq6O6utoQSNTV1VFTU0NNTc0F67O2tsbd3R1XV9dm28Je6GnFuaGIVqs972vs7OzYsGED06dPp76+HjMzMxwcHHBwcMDe3r7Z++fet3Pv59khSNNxbqij0+moqam56M/z3LeX+lxNTY3hftvZ2TWr5ez33d3diYqKMgQi/v7+skRGCCGEMDESkgghhBAdgFarvexJ/ZVedvZSnqbAxd7eHjs7O6ytrbGyssLMzAxFUdDpdFhZWWFtbX3Rw8HBAVdXVxwdHS8YfDg4OGBjY0NGRgYDBw7E2dkZW1vb8wKEpmDjWoKMcy87O/y5UPBysaDjcpdZWspKZiGEEKI9k5BECCGEEM1otdor6rK4ksvOnu/h4OBwySCisrISMzOziwYhl7uuawk4HB0dJdgQQgghhIGEJEIIIYRoNY2NjdTW1l5RwAJcUdDh4ODQbImPEEIIIURLkZBECCGEEEIIIYQQAjA3dgFCCCGEEEIIIYQQpkBCEiGEEEIIIYQQQggkJBFCCCGEEEIIIYQAJCQRQgghhBBCCCGEACQkEUIIIYQQQgghhAAkJBFCCCGEEEIIIYQAJCQRQgghhBBCCCGEACQkEUIIIYQQQgghhADg/wEIt1+z01kFNQAAAABJRU5ErkJggg==",
-      "text/plain": [
-       "<Figure size 1400x1400 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "fig = plt.figure(figsize=(14,14))\n",
     "ax = plt.axes(projection=ccrs.Orthographic(central_longitude=0.0, central_latitude=90.0, globe=None))\n",
@@ -495,7 +540,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.11.6"
+   "version": "3.12.2"
   },
   "vscode": {
    "interpreter": {