Package | Description |
---|---|
org.hipparchus |
Common classes used throughout the Hipparchus library.
|
org.hipparchus.analysis.differentiation |
This package holds the main interfaces and basic building block classes
dealing with differentiation.
|
org.hipparchus.analysis.interpolation |
Univariate real functions interpolation algorithms.
|
org.hipparchus.exception |
Specialized exceptions for algorithms errors.
|
org.hipparchus.linear |
Linear algebra support.
|
org.hipparchus.util |
Convenience routines and common data structures used throughout the Hipparchus library.
|
Modifier and Type | Method and Description |
---|---|
T |
FieldElement.divide(T a)
Compute this ÷ a.
|
T |
FieldElement.reciprocal()
Returns the multiplicative inverse of
this element. |
Modifier and Type | Method and Description |
---|---|
double |
DerivativeStructure.taylor(double... delta)
Evaluate Taylor expansion a derivative structure.
|
T |
FieldDerivativeStructure.taylor(double... delta)
Evaluate Taylor expansion of a derivative structure.
|
double |
DSCompiler.taylor(double[] ds,
int dsOffset,
double... delta)
Evaluate Taylor expansion of a derivative structure.
|
T |
FieldDerivativeStructure.taylor(T... delta)
Evaluate Taylor expansion of a derivative structure.
|
<T extends CalculusFieldElement<T>> |
DSCompiler.taylor(T[] ds,
int dsOffset,
double... delta)
Evaluate Taylor expansion of a derivative structure.
|
<T extends CalculusFieldElement<T>> |
DSCompiler.taylor(T[] ds,
int dsOffset,
T... delta)
Evaluate Taylor expansion of a derivative structure.
|
Modifier and Type | Method and Description |
---|---|
void |
HermiteInterpolator.addSamplePoint(double x,
double[]... value)
Add a sample point.
|
void |
FieldHermiteInterpolator.addSamplePoint(T x,
T[]... value)
Add a sample point.
|
Modifier and Type | Class and Description |
---|---|
class |
MathIllegalArgumentException
Base class for all preconditions violation exceptions.
|
class |
MathIllegalStateException
Base class for all exceptions that signal that the process
throwing the exception is in a state that does not comply with
the set of states that it is designed to be in.
|
Modifier and Type | Method and Description |
---|---|
static MathRuntimeException |
MathRuntimeException.createInternalError()
Create an exception for an internal error.
|
static MathRuntimeException |
MathRuntimeException.createInternalError(Throwable cause)
Create an exception for an internal error.
|
Modifier and Type | Method and Description |
---|---|
double |
RealVector.cosine(RealVector v)
Computes the cosine of the angle between this vector and the
argument.
|
ArrayFieldVector<T> |
ArrayFieldVector.ebeDivide(ArrayFieldVector<T> v)
Element-by-element division.
|
FieldVector<T> |
SparseFieldVector.ebeDivide(FieldVector<T> v)
Element-by-element division.
|
FieldVector<T> |
FieldVector.ebeDivide(FieldVector<T> v)
Element-by-element division.
|
FieldVector<T> |
ArrayFieldVector.ebeDivide(FieldVector<T> v)
Element-by-element division.
|
boolean |
RealVector.equals(Object other)
Test for the equality of two real vectors.
|
int |
RealVector.hashCode()
.
|
FieldVector<T> |
SparseFieldVector.mapDivide(T d)
Map a division operation to each entry.
|
FieldVector<T> |
FieldVector.mapDivide(T d)
Map a division operation to each entry.
|
FieldVector<T> |
ArrayFieldVector.mapDivide(T d)
Map a division operation to each entry.
|
FieldVector<T> |
SparseFieldVector.mapDivideToSelf(T d)
Map a division operation to each entry.
|
FieldVector<T> |
FieldVector.mapDivideToSelf(T d)
Map a division operation to each entry.
|
FieldVector<T> |
ArrayFieldVector.mapDivideToSelf(T d)
Map a division operation to each entry.
|
FieldVector<T> |
SparseFieldVector.mapInv()
Map the 1/x function to each entry.
|
FieldVector<T> |
FieldVector.mapInv()
Map the 1/x function to each entry.
|
FieldVector<T> |
ArrayFieldVector.mapInv()
Map the 1/x function to each entry.
|
FieldVector<T> |
SparseFieldVector.mapInvToSelf()
Map the 1/x function to each entry.
|
FieldVector<T> |
FieldVector.mapInvToSelf()
Map the 1/x function to each entry.
|
FieldVector<T> |
ArrayFieldVector.mapInvToSelf()
Map the 1/x function to each entry.
|
ArrayFieldVector<T> |
ArrayFieldVector.projection(ArrayFieldVector<T> v)
Find the orthogonal projection of this vector onto another vector.
|
FieldVector<T> |
SparseFieldVector.projection(FieldVector<T> v)
Find the orthogonal projection of this vector onto another vector.
|
FieldVector<T> |
FieldVector.projection(FieldVector<T> v)
Find the orthogonal projection of this vector onto another vector.
|
FieldVector<T> |
ArrayFieldVector.projection(FieldVector<T> v)
Find the orthogonal projection of this vector onto another vector.
|
RealVector |
RealVector.projection(RealVector v)
Find the orthogonal projection of this vector onto another vector.
|
void |
RealVector.SparseEntryIterator.remove() |
static void |
MatrixUtils.solveLowerTriangularSystem(RealMatrix rm,
RealVector b)
Solve a system of composed of a Lower Triangular Matrix
RealMatrix . |
static void |
MatrixUtils.solveUpperTriangularSystem(RealMatrix rm,
RealVector b)
Solver a system composed of an Upper Triangular Matrix
RealMatrix . |
void |
OpenMapRealVector.unitize()
Converts this vector into a unit vector.
|
void |
RealVector.unitize()
Converts this vector into a unit vector.
|
OpenMapRealVector |
OpenMapRealVector.unitVector()
Creates a unit vector pointing in the direction of this vector.
|
RealVector |
RealVector.unitVector()
Creates a unit vector pointing in the direction of this vector.
|
Constructor and Description |
---|
EigenDecomposition(RealMatrix matrix,
double epsilon)
Calculates the eigen decomposition of the given real matrix.
|
Modifier and Type | Method and Description |
---|---|
static int |
ArithmeticUtils.addAndCheck(int x,
int y)
Add two integers, checking for overflow.
|
static long |
ArithmeticUtils.addAndCheck(long a,
long b)
Add two long integers, checking for overflow.
|
static int |
FastMath.addExact(int a,
int b)
Add two numbers, detecting overflows.
|
static long |
FastMath.addExact(long a,
long b)
Add two numbers, detecting overflows.
|
static long |
CombinatoricsUtils.binomialCoefficient(int n,
int k)
Returns an exact representation of the Binomial
Coefficient, "
n choose k ", the number of
k -element subsets that can be selected from an
n -element set. |
static double |
CombinatoricsUtils.binomialCoefficientDouble(int n,
int k)
Returns a
double representation of the Binomial
Coefficient, "n choose k ", the number of
k -element subsets that can be selected from an
n -element set. |
static double |
CombinatoricsUtils.binomialCoefficientLog(int n,
int k)
Returns the natural
log of the Binomial
Coefficient, "n choose k ", the number of
k -element subsets that can be selected from an
n -element set. |
static byte |
MathUtils.copySign(byte magnitude,
byte sign)
Returns the first argument with the sign of the second argument.
|
static int |
MathUtils.copySign(int magnitude,
int sign)
Returns the first argument with the sign of the second argument.
|
static long |
MathUtils.copySign(long magnitude,
long sign)
Returns the first argument with the sign of the second argument.
|
static short |
MathUtils.copySign(short magnitude,
short sign)
Returns the first argument with the sign of the second argument.
|
static int |
FastMath.decrementExact(int n)
Decrement a number, detecting overflows.
|
static long |
FastMath.decrementExact(long n)
Decrement a number, detecting overflows.
|
BigReal |
BigReal.divide(BigReal a)
Compute this ÷ a.
|
static int |
FastMath.floorDiv(int a,
int b)
Finds q such that
a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0 . |
static long |
FastMath.floorDiv(long a,
int b)
Finds q such that
a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0 . |
static long |
FastMath.floorDiv(long a,
long b)
Finds q such that
a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0 . |
static int |
FastMath.floorMod(int a,
int b)
Finds r such that
a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0 . |
static int |
ArithmeticUtils.gcd(int p,
int q)
Computes the greatest common divisor of the absolute value of two
numbers, using a modified version of the "binary gcd" method.
|
static long |
ArithmeticUtils.gcd(long p,
long q)
Gets the greatest common divisor of the absolute value of two numbers,
using the "binary gcd" method which avoids division and modulo
operations.
|
static int |
FastMath.incrementExact(int n)
Increment a number, detecting overflows.
|
static long |
FastMath.incrementExact(long n)
Increment a number, detecting overflows.
|
static int |
ArithmeticUtils.lcm(int a,
int b)
Returns the least common multiple of the absolute value of two numbers,
using the formula
lcm(a,b) = (a / gcd(a,b)) * b . |
static long |
ArithmeticUtils.lcm(long a,
long b)
Returns the least common multiple of the absolute value of two numbers,
using the formula
lcm(a,b) = (a / gcd(a,b)) * b . |
static int |
ArithmeticUtils.mulAndCheck(int x,
int y)
Multiply two integers, checking for overflow.
|
static long |
ArithmeticUtils.mulAndCheck(long a,
long b)
Multiply two long integers, checking for overflow.
|
static double[] |
MathArrays.normalizeArray(double[] values,
double normalizedSum)
Normalizes an array to make it sum to a specified value.
|
static int |
ArithmeticUtils.pow(int k,
int e)
Raise an int to an int power.
|
static long |
ArithmeticUtils.pow(long k,
int e)
Raise a long to an int power.
|
BigReal |
BigReal.reciprocal()
Returns the multiplicative inverse of
this element. |
static float |
Precision.round(float x,
int scale,
int roundingMethod)
Rounds the given value to the specified number of decimal places.
|
static long |
CombinatoricsUtils.stirlingS2(int n,
int k)
Returns the
Stirling number of the second kind, "
S(n,k) ", the number of
ways of partitioning an n -element set into k non-empty
subsets. |
static int |
ArithmeticUtils.subAndCheck(int x,
int y)
Subtract two integers, checking for overflow.
|
static long |
ArithmeticUtils.subAndCheck(long a,
long b)
Subtract two long integers, checking for overflow.
|
static int |
FastMath.toIntExact(long n)
Convert a long to interger, detecting overflows
|
Copyright © 2016-2022 CS GROUP. All rights reserved.