diff --git a/src/main/java/org/orekit/rugged/core/Sensor.java b/src/main/java/org/orekit/rugged/core/Sensor.java index e1364c1570a8da3737a1c59f74de85d03a0532fc..72f7f122dc60cdcfe76a178375a70313c03006bf 100644 --- a/src/main/java/org/orekit/rugged/core/Sensor.java +++ b/src/main/java/org/orekit/rugged/core/Sensor.java @@ -19,9 +19,14 @@ package org.orekit.rugged.core; import java.util.List; import org.apache.commons.math3.geometry.euclidean.threed.Vector3D; +import org.apache.commons.math3.linear.MatrixUtils; +import org.apache.commons.math3.linear.RealMatrix; +import org.apache.commons.math3.linear.SingularValueDecomposition; import org.orekit.rugged.api.LineDatation; import org.orekit.time.AbsoluteDate; +import com.sun.org.apache.bcel.internal.generic.GETSTATIC; + /** Container for sensor data. * <p> * Instances of this class are guaranteed to be immutable. @@ -45,6 +50,12 @@ public class Sensor { /** Datation model. */ private final LineDatation datationModel; + /** Mean plane normal. */ + private final Vector3D normal; + + /** Mean plane reference point. */ + private final Vector3D referencePoint; + /** Simple constructor. * @param name name of the sensor * @param referenceDate reference date @@ -55,11 +66,51 @@ public class Sensor { public Sensor(final String name, final AbsoluteDate referenceDate, final LineDatation datationModel, final List<Vector3D> positions, final List<Vector3D> los) { + this.name = name; this.referenceDate = referenceDate; this.positions = positions; this.los = los; this.datationModel = datationModel; + + // we consider the viewing directions as a point cloud + // and want to find the plane that best fits it + + // start by finding the centroid + // (which will also be our plane reference point) + double centroidX = 0; + double centroidY = 0; + double centroidZ = 0; + for (int i = 0; i < los.size(); ++i) { + final Vector3D p = positions.get(i); + final Vector3D l = los.get(i); + centroidX += p.getX() + l.getX(); + centroidY += p.getY() + l.getY(); + centroidZ += p.getZ() + l.getZ(); + } + centroidX /= los.size(); + centroidY /= los.size(); + centroidZ /= los.size(); + referencePoint = new Vector3D(centroidX, centroidY, centroidZ); + + // build a centered data matrix + RealMatrix matrix = MatrixUtils.createRealMatrix(3, los.size()); + for (int i = 0; i < los.size(); ++i) { + final Vector3D p = positions.get(i); + final Vector3D l = los.get(i); + matrix.setEntry(0, i, p.getX() + l.getX() - centroidX); + matrix.setEntry(1, i, p.getY() + l.getY() - centroidY); + matrix.setEntry(2, i, p.getZ() + l.getZ() - centroidZ); + } + + // compute Singular Value Decomposition + final SingularValueDecomposition svd = new SingularValueDecomposition(matrix); + + // extract the left singular vector corresponding to least singular value + // (i.e. last vector since Apache Commons Math returns the values + // in non-increasing order) + normal = new Vector3D(svd.getU().getColumn(2)).normalize(); + } /** Get the name of the sensor. @@ -108,4 +159,18 @@ public class Sensor { return datationModel.getLine(date.durationFrom(referenceDate)); } + /** Get the mean plane normal. + * @return mean plane normal + */ + public Vector3D getMeanPlaneNormal() { + return normal; + } + + /** Get the mean plane reference point. + * @return mean plane reference point + */ + public Vector3D getMeanPlaneReferencePoint() { + return referencePoint; + } + } diff --git a/src/test/java/org/orekit/rugged/core/SensorTest.java b/src/test/java/org/orekit/rugged/core/SensorTest.java new file mode 100644 index 0000000000000000000000000000000000000000..9a5c3eae4072a921cfb88e71898102a8870439f3 --- /dev/null +++ b/src/test/java/org/orekit/rugged/core/SensorTest.java @@ -0,0 +1,93 @@ +/* Copyright 2013-2014 CS Systèmes d'Information + * Licensed to CS Systèmes d'Information (CS) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * CS licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.orekit.rugged.core; + +import java.util.ArrayList; +import java.util.List; + +import org.apache.commons.math3.geometry.euclidean.threed.Vector3D; +import org.apache.commons.math3.random.RandomGenerator; +import org.apache.commons.math3.random.Well19937a; +import org.apache.commons.math3.util.FastMath; +import org.junit.Assert; +import org.junit.Test; +import org.orekit.rugged.api.LinearLineDatation; +import org.orekit.time.AbsoluteDate; + +public class SensorTest { + + @Test + public void testPerfectLine() { + + final Vector3D center = new Vector3D(1.5, Vector3D.PLUS_I); + final Vector3D normal = Vector3D.PLUS_I; + final Vector3D fovCenter = Vector3D.PLUS_K; + final Vector3D cross = Vector3D.crossProduct(normal, fovCenter); + + // build lists of pixels regularly spread on a perfect plane + final List<Vector3D> positions = new ArrayList<Vector3D>(); + final List<Vector3D> los = new ArrayList<Vector3D>(); + for (int i = -1000; i <= 1000; ++i) { + positions.add(center); + final double alpha = i * 0.17 / 1000; + los.add(new Vector3D(FastMath.cos(alpha), fovCenter, FastMath.sin(alpha), cross)); + } + + final Sensor sensor = new Sensor("perfect line", AbsoluteDate.J2000_EPOCH, + new LinearLineDatation(0.0, 1.0 / 1.5e-3), positions, los); + + Assert.assertEquals("perfect line", sensor.getName()); + Assert.assertEquals(AbsoluteDate.J2000_EPOCH, sensor.getDate(0.0)); + Assert.assertEquals(0.0, Vector3D.dotProduct(normal, center.subtract(sensor.getMeanPlaneReferencePoint())), 1.0e-15); + Assert.assertEquals(0.0, FastMath.sin(Vector3D.angle(normal, sensor.getMeanPlaneNormal())), 1.0e-15); + + } + + @Test + public void testNoisyLine() { + + final RandomGenerator random = new Well19937a(0xf3ddb33785e12bdal); + final Vector3D center = new Vector3D(1.5, Vector3D.PLUS_I); + final Vector3D normal = Vector3D.PLUS_I; + final Vector3D fovCenter = Vector3D.PLUS_K; + final Vector3D cross = Vector3D.crossProduct(normal, fovCenter); + + // build lists of pixels regularly spread on a perfect plane + final List<Vector3D> positions = new ArrayList<Vector3D>(); + final List<Vector3D> los = new ArrayList<Vector3D>(); + for (int i = -1000; i <= 1000; ++i) { + positions.add(center); + final double alpha = i * 0.17 / 10 + 1.0e-5 * random.nextDouble(); + final double delta = 1.0e-5 * random.nextDouble(); + final double cA = FastMath.cos(alpha); + final double sA = FastMath.sin(alpha); + final double cD = FastMath.cos(delta); + final double sD = FastMath.sin(delta); + los.add(new Vector3D(cA * cD, fovCenter, sA * cD, cross, sD, normal)); + } + + final Sensor sensor = new Sensor("noisy line", AbsoluteDate.J2000_EPOCH, + new LinearLineDatation(0.0, 1.0 / 1.5e-3), positions, los); + + Assert.assertEquals("noisy line", sensor.getName()); + Assert.assertEquals(AbsoluteDate.J2000_EPOCH, sensor.getDate(0.0)); + Assert.assertEquals(0.0, Vector3D.dotProduct(normal, center.subtract(sensor.getMeanPlaneReferencePoint())), 1.0e-5); + Assert.assertEquals(0.0, FastMath.sin(Vector3D.angle(normal, sensor.getMeanPlaneNormal())), 3.0e-7); + + } + +}