/* Copyright 2013-2016 CS Systèmes d'Information * Licensed to CS Systèmes d'Information (CS) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * CS licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package AffinagePleiades; import org.orekit.rugged.api.SensorToGroundMapping; import org.orekit.rugged.api.Rugged; import org.orekit.rugged.linesensor.LineSensor; import org.orekit.rugged.linesensor.SensorPixel; import org.orekit.rugged.errors.RuggedException; import org.orekit.time.AbsoluteDate; import org.hipparchus.geometry.euclidean.threed.Vector3D; import org.hipparchus.random.UncorrelatedRandomVectorGenerator; import org.hipparchus.random.GaussianRandomGenerator; import org.hipparchus.random.Well19937a; import org.hipparchus.util.FastMath; import org.orekit.bodies.GeodeticPoint; /** class for measure generation * @author Jonathan Guinet */ public class MeasureGenerator { /** mapping */ private SensorToGroundMapping mapping; private Rugged rugged; private LineSensor sensor; private PleiadesViewingModel viewingModel; private int measureCount; /** Simple constructor. * <p> * * </p> */ public MeasureGenerator(PleiadesViewingModel viewingModel, Rugged rugged) throws RuggedException { // generate reference mapping String sensorName = viewingModel.getSensorName(); mapping = new SensorToGroundMapping(sensorName); this.rugged = rugged; this.viewingModel = viewingModel; sensor = rugged.getLineSensor(mapping.getSensorName()); measureCount = 0; } public SensorToGroundMapping getMapping() { return mapping; } public int getMeasureCount() { return measureCount; } public void CreateMeasure(final int lineSampling,final int pixelSampling) throws RuggedException { for (double line = 0; line < viewingModel.dimension; line += lineSampling) { AbsoluteDate date = sensor.getDate(line); for (int pixel = 0; pixel < sensor.getNbPixels(); pixel += pixelSampling) { GeodeticPoint gp2 = rugged.directLocation(date, sensor.getPosition(), sensor.getLOS(date, pixel)); mapping.addMapping(new SensorPixel(line, pixel), gp2); measureCount++; } } } public void CreateNoisyMeasure(final int lineSampling,final int pixelSampling, double [] pixErr,double [] altErr) throws RuggedException { Vector3D latLongError = estimateLatLongError(); double latErrorMean = pixErr[0]*latLongError.getX(); // in line: -0.000002 deg double lonErrorMean = pixErr[2]*latLongError.getY(); // in line: 0.000012 deg double latErrorStd = pixErr[1]*latLongError.getX(); // in line: -0.000002 deg double lonErrorStd = pixErr[3]*latLongError.getY(); // in line: 0.000012 deg System.out.format("Corresponding error estimation on ground: {lat mean: %1.10f rad , lat stddev: %1.10f rad} %n",latErrorMean,latErrorStd); System.out.format("Corresponding error estimation on ground: {lon mean: %1.10f rad, lat stddev: %1.10f rad } %n",lonErrorMean,lonErrorStd); System.out.format("Corresponding error estimation on ground: {alt mean: %1.3f m, alt stddev: %1.3f m } %n",altErr[0], altErr[0]); // Gaussian random generator // Build a null mean random uncorrelated vector generator with standard deviation corresponding to the estimated error on ground double mean[] = {latErrorMean,lonErrorMean,altErr[0]}; double std[] = {latErrorStd,lonErrorStd,altErr[1]}; System.out.format(" mean : %1.10f %1.10f %1.10f %n",mean[0],mean[1],mean[2]); System.out.format(" std : %1.10f %1.10f %1.10f %n",std[0],std[1],std[2]); GaussianRandomGenerator rng = new GaussianRandomGenerator(new Well19937a(0xefac03d9be4d24b9l)); UncorrelatedRandomVectorGenerator rvg = new UncorrelatedRandomVectorGenerator(mean, std, rng); System.out.format("Add a gaussian noise to measures without biais (null mean) and standard deviation corresponding to the estimated error on ground.%n"); for (double line = 0; line < viewingModel.dimension; line += lineSampling) { AbsoluteDate date = sensor.getDate(line); for (int pixel = 0; pixel < sensor.getNbPixels(); pixel += pixelSampling) { // Components of generated vector follow (independent) Gaussian distribution Vector3D vecRandom = new Vector3D(rvg.nextVector()); GeodeticPoint gp2 = rugged.directLocation(date, sensor.getPosition(), sensor.getLOS(date, pixel)); GeodeticPoint gpNoisy = new GeodeticPoint(gp2.getLatitude()+vecRandom.getX(), gp2.getLongitude()+vecRandom.getY(), gp2.getAltitude()+vecRandom.getZ()); //if(line == 0) { // System.out.format("Init gp: (%f,%d): %s %n",line,pixel,gp2.toString()); // System.out.format("Random: (%f,%d): %s %n",line,pixel,vecRandom.toString()); // System.out.format("Final gp: (%f,%d): %s %n",line,pixel,gpNoisy.toString()); //} mapping.addMapping(new SensorPixel(line, pixel), gpNoisy); measureCount++; } } } private Vector3D estimateLatLongError() throws RuggedException { System.out.format("Uncertainty in pixel (in line) for a real geometric refining: 1 pixel (assumption)%n"); final int pix =sensor.getNbPixels()/2; final int line= (int) FastMath.floor(pix); // assumption : same number of line and pixels; System.out.format(" pixel size estimated at position pix : %d line : %d %n", pix, line); final AbsoluteDate date = sensor.getDate(line); GeodeticPoint gp_pix0 = rugged.directLocation(date, sensor.getPosition(), sensor.getLOS(date, pix)); final AbsoluteDate date1 = sensor.getDate(line+1); GeodeticPoint gp_pix1 = rugged.directLocation(date1, sensor.getPosition(), sensor.getLOS(date1, pix+1)); double latErr=FastMath.abs(gp_pix0.getLatitude()-gp_pix1.getLatitude()); double lonErr=FastMath.abs(gp_pix0.getLongitude()-gp_pix1.getLongitude()); double dist = FastMath.sqrt(lonErr*lonErr + latErr*latErr)/FastMath.sqrt(2); final double distanceX = DistanceTools.computeDistanceRad(gp_pix0.getLongitude(), gp_pix0.getLatitude(),gp_pix1.getLongitude(), gp_pix0.getLatitude()); final double distanceY = DistanceTools.computeDistanceRad(gp_pix0.getLongitude(), gp_pix0.getLatitude(),gp_pix0.getLongitude(), gp_pix1.getLatitude()); System.out.format(" estimated distance %3.3f %3.3f %n",distanceX, distanceY); //System.out.format(" lat : %1.10f %1.10f %n", latErr, lonErr); return new Vector3D(latErr,lonErr,0.0); } }