/* Copyright 2013-2016 CS Systèmes d'Information * Licensed to CS Systèmes d'Information (CS) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * CS licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package fr.cs.exercises; import java.io.File; import java.util.ArrayList; import java.util.List; import java.util.Locale; import org.hipparchus.geometry.euclidean.threed.Rotation; import org.hipparchus.geometry.euclidean.threed.Vector3D; import org.hipparchus.util.FastMath; import org.orekit.bodies.GeodeticPoint; import org.orekit.bodies.OneAxisEllipsoid; import org.orekit.data.DataProvidersManager; import org.orekit.data.DirectoryCrawler; import org.orekit.errors.OrekitException; import org.orekit.frames.Frame; import org.orekit.frames.FramesFactory; import org.orekit.frames.Transform; import org.orekit.rugged.api.AlgorithmId; import org.orekit.rugged.api.BodyRotatingFrameId; import org.orekit.rugged.api.EllipsoidId; import org.orekit.rugged.api.InertialFrameId; import org.orekit.rugged.api.Rugged; import org.orekit.rugged.api.RuggedBuilder; import org.orekit.rugged.errors.RuggedException; import org.orekit.rugged.linesensor.LineSensor; import org.orekit.rugged.linesensor.LinearLineDatation; import org.orekit.rugged.linesensor.SensorPixel; import org.orekit.rugged.los.FixedRotation; import org.orekit.rugged.los.LOSBuilder; import org.orekit.rugged.los.TimeDependentLOS; import org.orekit.rugged.utils.RoughVisibilityEstimator; import org.orekit.time.AbsoluteDate; import org.orekit.time.TimeScale; import org.orekit.time.TimeScalesFactory; import org.orekit.utils.AngularDerivativesFilter; import org.orekit.utils.CartesianDerivativesFilter; import org.orekit.utils.IERSConventions; import org.orekit.utils.PVCoordinates; import org.orekit.utils.TimeStampedAngularCoordinates; import org.orekit.utils.TimeStampedPVCoordinates; public class InverseLocationToBeCompleted { public static void main(String[] args) { try { // Initialize Orekit, assuming an orekit-data folder is in user home directory File home = new File(System.getProperty("user.home")); File orekitData = new File(home, "orekit-data"); DataProvidersManager.getInstance().addProvider(new DirectoryCrawler(orekitData)); // Sensor's definition // =================== // Line of sight // ------------- // The raw viewing direction of pixel i with respect to the instrument is defined by the vector: List<Vector3D> rawDirs = new ArrayList<Vector3D>(); for (int i = 0; i < 2000; i++) { // 20° field of view, 2000 pixels rawDirs.add(new Vector3D(0d, i*FastMath.toRadians(20)/2000d, 1d)); } // The instrument is oriented 10° off nadir around the X-axis, we need to rotate the viewing // direction to obtain the line of sight in the satellite frame LOSBuilder losBuilder = new LOSBuilder(rawDirs); losBuilder.addTransform(new FixedRotation("10-degrees-rotation", Vector3D.PLUS_I, FastMath.toRadians(10))); TimeDependentLOS lineOfSight = losBuilder.build(); // Datation model // -------------- // We use Orekit for handling time and dates, and Rugged for defining the datation model: TimeScale gps = TimeScalesFactory.getGPS(); AbsoluteDate absDate = new AbsoluteDate("2009-12-11T16:59:30.0", gps); LinearLineDatation lineDatation = new LinearLineDatation(absDate, 1d, 20); // Line sensor // ----------- // With the LOS and the datation now defined , we can initialize a line sensor object in Rugged: String sensorName = "mySensor"; LineSensor lineSensor = new LineSensor(sensorName, lineDatation, Vector3D.ZERO, lineOfSight); // Satellite position, velocity and attitude // ========================================= // Reference frames // ---------------- // In our application, we simply need to know the name of the frames we are working with. Positions and // velocities are given in the ITRF terrestrial frame, while the quaternions are given in EME2000 // inertial frame. Frame eme2000 = FramesFactory.getEME2000(); boolean simpleEOP = true; // we don't want to compute tiny tidal effects at millimeter level Frame itrf = FramesFactory.getITRF(IERSConventions.IERS_2010, simpleEOP); // Satellite attitude // ------------------ ArrayList<TimeStampedAngularCoordinates> satelliteQList = new ArrayList<TimeStampedAngularCoordinates>(); addSatelliteQ(gps, satelliteQList, "2009-12-11T16:58:42.592937", -0.340236d, 0.333952d, -0.844012d, -0.245684d); addSatelliteQ(gps, satelliteQList, "2009-12-11T16:59:06.592937", -0.354773d, 0.329336d, -0.837871d, -0.252281d); addSatelliteQ(gps, satelliteQList, "2009-12-11T16:59:30.592937", -0.369237d, 0.324612d, -0.831445d, -0.258824d); addSatelliteQ(gps, satelliteQList, "2009-12-11T16:59:54.592937", -0.3836d, 0.319792d, -0.824743d, -0.265299d); addSatelliteQ(gps, satelliteQList, "2009-12-11T17:00:18.592937", -0.397834d, 0.314883d, -0.817777d, -0.271695d); addSatelliteQ(gps, satelliteQList, "2009-12-11T17:00:42.592937", -0.411912d, 0.309895d, -0.810561d, -0.278001d); addSatelliteQ(gps, satelliteQList, "2009-12-11T17:01:06.592937", -0.42581d, 0.304838d, -0.803111d, -0.284206d); addSatelliteQ(gps, satelliteQList, "2009-12-11T17:01:30.592937", -0.439505d, 0.299722d, -0.795442d, -0.290301d); addSatelliteQ(gps, satelliteQList, "2009-12-11T17:01:54.592937", -0.452976d, 0.294556d, -0.787571d, -0.296279d); addSatelliteQ(gps, satelliteQList, "2009-12-11T17:02:18.592937", -0.466207d, 0.28935d, -0.779516d, -0.302131d); // Positions and velocities // ------------------------ ArrayList<TimeStampedPVCoordinates> satellitePVList = new ArrayList<TimeStampedPVCoordinates>(); addSatellitePV(gps, eme2000, itrf, satellitePVList, "2009-12-11T16:58:42.592937", -726361.466d, -5411878.485d, 4637549.599d, -2463.635d, -4447.634d, -5576.736d); addSatellitePV(gps, eme2000, itrf, satellitePVList, "2009-12-11T16:59:04.192937", -779538.267d, -5506500.533d, 4515934.894d, -2459.848d, -4312.676d, -5683.906d); addSatellitePV(gps, eme2000, itrf, satellitePVList, "2009-12-11T16:59:25.792937", -832615.368d, -5598184.195d, 4392036.13d, -2454.395d, -4175.564d, -5788.201d); addSatellitePV(gps, eme2000, itrf, satellitePVList, "2009-12-11T16:59:47.392937", -885556.748d, -5686883.696d, 4265915.971d, -2447.273d, -4036.368d, -5889.568d); addSatellitePV(gps, eme2000, itrf, satellitePVList, "2009-12-11T17:00:08.992937", -938326.32d, -5772554.875d, 4137638.207d, -2438.478d, -3895.166d, -5987.957d); addSatellitePV(gps, eme2000, itrf, satellitePVList, "2009-12-11T17:00:30.592937", -990887.942d, -5855155.21d, 4007267.717d, -2428.011d, -3752.034d, -6083.317d); addSatellitePV(gps, eme2000, itrf, satellitePVList, "2009-12-11T17:00:52.192937", -1043205.448d, -5934643.836d, 3874870.441d, -2415.868d, -3607.05d, -6175.6d); addSatellitePV(gps, eme2000, itrf, satellitePVList, "2009-12-11T17:01:13.792937", -1095242.669d, -6010981.571d, 3740513.34d, -2402.051d, -3460.291d, -6264.76d); addSatellitePV(gps, eme2000, itrf, satellitePVList, "2009-12-11T17:01:35.392937", -1146963.457d, -6084130.93d, 3604264.372d, -2386.561d, -3311.835d, -6350.751d); addSatellitePV(gps, eme2000, itrf, satellitePVList, "2009-12-11T17:01:56.992937", -1198331.706d, -6154056.146d, 3466192.446d, -2369.401d, -3161.764d, -6433.531d); addSatellitePV(gps, eme2000, itrf, satellitePVList, "2009-12-11T17:02:18.592937", -1249311.381d, -6220723.191d, 3326367.397d, -2350.574d, -3010.159d, -6513.056d); // #################################################### // Construct first a RuggedBuilder here with the above informations: // * using the WGS84 ellipsoid (no DEM) // * setting the time spam to 60 s from the reference date with a tstep of 0.01 and an overshootTolerance of 1/4 lines // * using 4 points of interpolation for PV and quaternions; using only position and rotation for derivatives // #################################################### // RuggedBuilder initialization // --------------------- RuggedBuilder ruggedBuilder = null; // #################################################### // Create rugged instance // #################################################### Rugged rugged = null; // Inverse location of a Geodetic Point // ------------------------------------ // Point defined by its latitude, longitude and altitude double latitude = FastMath.toRadians(37.585); double longitude = FastMath.toRadians(-96.949); double altitude = 0.0d; // For a GeodeticPoint : angles are given in radians and altitude in meters GeodeticPoint gp = new GeodeticPoint(latitude, longitude, altitude); // Search the sensor pixel seeing point // .................................... // interval of lines where to search the point int minLine = 50; int maxLine = 100; // ###################################################################### // Compute the inverse location for the geodeticPoint gp // with the min / max lines given above // ###################################################################### SensorPixel sensorPixel = null; System.out.format(Locale.US, "Sensor Pixel found : line = %5.3f, pixel = %5.3f %n", sensorPixel.getLineNumber(), sensorPixel.getPixelNumber()); // Find the date at which the sensor sees the ground point // ....................................................... AbsoluteDate dateLine = rugged.dateLocation(sensorName, gp, minLine, maxLine); System.out.println("Date at which the sensor sees the ground point : " + dateLine); // How to find min and max lines ? with the RoughVisibilityEstimator // ------------------------------- // Create a RoughVisibilityEstimator for inverse location OneAxisEllipsoid oneAxisEllipsoid = ruggedBuilder.getEllipsoid(); Frame pvFrame = ruggedBuilder.getInertialFrame(); // ###################################################################### // Initialize the RoughVisibilityEstimator // ###################################################################### RoughVisibilityEstimator roughVisibilityEstimator = null; // ###################################################################### // Compute the approximated line with a rough estimator // ###################################################################### AbsoluteDate roughLineDate = null; double roughLine = lineSensor.getLine(roughLineDate); // Compute the min / max lines interval using a margin around the roughLine int sensorMinLine= 0; int sensorMaxLine = 1000; int margin = 100; int minLineRough = (int) FastMath.max(roughLine - margin, sensorMinLine); int maxLineRough = (int) FastMath.min(roughLine + margin, sensorMaxLine); SensorPixel sensorPixelRoughLine = rugged.inverseLocation(sensorName, gp, minLineRough, maxLineRough); System.out.format(Locale.US, "Rough line found = %5.1f; InverseLocation gives (margin of %d around rough line): line = %5.3f, pixel = %5.3f %n", roughLine, margin, sensorPixelRoughLine.getLineNumber(), sensorPixel.getPixelNumber()); } catch (OrekitException oe) { System.err.println(oe.getLocalizedMessage()); System.exit(1); } catch (RuggedException re) { System.err.println(re.getLocalizedMessage()); System.exit(1); } } private static void addSatellitePV(TimeScale gps, Frame eme2000, Frame itrf, ArrayList<TimeStampedPVCoordinates> satellitePVList, String absDate, double px, double py, double pz, double vx, double vy, double vz) throws OrekitException { AbsoluteDate ephemerisDate = new AbsoluteDate(absDate, gps); Vector3D position = new Vector3D(px, py, pz); // in ITRF, unit: m Vector3D velocity = new Vector3D(vx, vy, vz); // in ITRF, unit: m/s PVCoordinates pvITRF = new PVCoordinates(position, velocity); Transform transform = itrf.getTransformTo(eme2000, ephemerisDate); PVCoordinates pvEME2000 = transform.transformPVCoordinates(pvITRF); satellitePVList.add(new TimeStampedPVCoordinates(ephemerisDate, pvEME2000.getPosition(), pvEME2000.getVelocity(), Vector3D.ZERO)); } private static void addSatelliteQ(TimeScale gps, ArrayList<TimeStampedAngularCoordinates> satelliteQList, String absDate, double q0, double q1, double q2, double q3) { AbsoluteDate attitudeDate = new AbsoluteDate(absDate, gps); Rotation rotation = new Rotation(q0, q1, q2, q3, true); // q0 is the scalar term TimeStampedAngularCoordinates pair = new TimeStampedAngularCoordinates(attitudeDate, rotation, Vector3D.ZERO, Vector3D.ZERO); satelliteQList.add(pair); } }