<p>The tests suite is the first place to look for getting help with Orekit
use. Several tutorials are also provided with the source code in order to
<h3>Maven site for the Java tutorials</h2>
<p>The technical documentation explains how to build, download and contribute to the Orekit tutorials. Please choose the Orekit tutorials release for which you
<p><spanclass="fa-li fa-lg fa fa-gears"></span><ahref="{{ site.url }}/site-orekit-tutorials-{{ site.data.orekit-tutorials.versions.first }}/tutorials/maneuvers.html">Maneuvers</a><br/>
This tutorial shows some elementary usages of the maneuvers. Both simple impulse maneuvers and more complex continuous thrust maneuvers are presented.</p>
</li>
<li>
<p><spanclass="fa-li fa-lg fa fa-gears"></span><ahref="{{ site.url }}/site-orekit-tutorials-{{ site.data.orekit-tutorials.versions.first }}/tutorials/propagation-in-non-inertial-frame.html">Propagation in non-inertial frame</a><br/>
This tutorial aims to introduce orbital integration using
...
...
@@ -59,17 +76,154 @@ layout: default_orekit
</li>
</ul>
<h3>Maven site for the Java tutorials</h2>
<h3>Pure Java tutorials</h3>
<p>You will find the source code of these tutorials on the dedicated <ahref="https://gitlab.orekit.org/orekit/orekit-tutorials/-/tree/master/src/main/java/org/orekit/tutorials?ref_type=heads">Orekit Tutorials</a> project on the forge:</p>
<p>The technical documentation explains how to build, download and contribute to the Orekit tutorials. Please choose the Orekit tutorials release for which you
want to consult the technical documentation:</p>
<ulclass="fa-ul">
<li>
<spanclass="fa-li fa-lg fa fa-gears"></span>
Attitude
<ul>
<li>EarthObservation: shows how to easily switch between day and night attitude modes</li>
<li>DEFile: reads a DEXXX binary file (JPL or IMCCE inpop ephemeris file) and writes a new one containing only the data asked by the user</li>
<li>Phasing: sets up a Sun-synchronous Earth-phased Low Earth Orbit</li>
</ul>
</li>
<p>
<li>
<spanclass="fa-li fa-lg fa fa-gears"></span>
Control / indirect
<ul>
<li>FixedBoundarySingleShooting: shows how to use the indirect (single) shooting method of Orekit. The study case is inspired by the Global Trajectory Optimization Competition 12</li>
</ul>
</li>
<p>
<li>
<spanclass="fa-li fa-lg fa fa-gears"></span>
Conversion
<ul>
<li>PropagatorConversion: helps understand how a propagator can be converted to another with a different model.<br>
Here we convert a numerical propagator into an analytical Keplerian propagator
</li>
<li>TLEConversion: shows how to get a numerical propagator from a TLE and back</li>
</ul>
</li>
<p>
<li>
<spanclass="fa-li fa-lg fa fa-gears"></span>
Data
<ul>
<li>Context: explains how to instantiate several data contexts</li>
</ul>
<p>
<li>
<spanclass="fa-li fa-lg fa fa-gears"></span>
Estimation: orbit determination (OD) example
<ul>
<li>DSSTOrbitDetermination: batch least-square OD with a DSST propagator for a MEO (GNSS) satellite with RINEX measurements</li>
<li>GNSSOrbitDetermination: same but with a numerical propagator instead</li>
<li>ExtendedSemianalyticalKalmanFilter: extended Kalman OD with a DSST propagator for a geodesy (LAGEOS 2) satellite with laser ranging measurements</li>
<li>KalmanNumericalOrbitDetermination: same but with a numerical propagator instead</li>
<li>LaserRangingOrbitDetermination: same but with a batch least-square OD instead</li>
<li>ManeuverEstimation: maneuvers parameters' estimation with simulated measurements</li>
<li>NumericalOrbitDetermination: batch least-square OD with a numerical propagator for a GTO satellite with range and AZEL measurements</li>
<li>SequentialBatchLeastSquares: an example of sequential batch least-square OD with a numerical propagator</li>
<li>TLEBasedOrbitDetermination: batch least-square OD with a SGP4 propagator (TLE) for a MEO (GNSS) satellite with precise ephemeris (PV measurements)</li>
<li>Performance / PerformanceTesting: simulates a large number of measurements on a large time slot to study Orekit OD performances</li>
</ul>
</li>
<p>
<li>
<spanclass="fa-li fa-lg fa fa-gears"></span>
Frames
<ul>
<li>Frames1-2-3: different examples of frame management</li>
</ul>
</li>
<p>
<li>
<spanclass="fa-li fa-lg fa fa-gears"></span>
Gnss
<ul>
<li>DOPComputation: shows a basic usage for computing the DOP over a geographic zone and for a period</li>
<li>RinexObservationFile: reading of Rinex observation files</li>
</ul>
</li>
<p>
<li>
<spanclass="fa-li fa-lg fa fa-gears"></span>
Maneuvers
<ul>
<li>ApogeeManeuver: large apogee maneuver with a long (~1h) constant thrust maneuver</li>
<li>ImpulseAtNode: shows how to perform a given impulse maneuver at node</li>
<li>StationKeeping: East-West GEO Station Keeping with impulse maneuvers using DSST propagator</li>
</ul>
</li>
<p>
<li>
<spanclass="fa-li fa-lg fa fa-gears"></span>
Models
<ul>
<li>TidalDisplacements: shows how to compute stations tidal displacements</li>
</ul>
<p>
<li>
<spanclass="fa-li fa-lg fa fa-gears"></span>
Propagation
<ul>
<li>CovariancePropagation: linear covariance propagation example, starting from a CCSDS OPM (Orbit Parameter Message)</li>
<li>DSSTPropagation: propagation with the DSST propagator</li>
<li>EphemerisMode: shows how to produce an ephemeris with Orekit</li>
<li>FieldPropagation: numerical propagation with Taylor-maps and a Monte Carlo sampling at the end</li>
<li>GNSSPropagation: propagation with a GNSS-adapted propagator, starting from a navigation message</li>
<li>GradientComputation: shows how to compute the Jacobian containing the partial derivatives of the acceleration with respect the the spacecraft coordinates</li>
<li>GroundTrack: graphical display of ground tracks</li>
<li>JupiterSwingBy: Swing-by trajectory about Jupiter compared in EME2000, ICRF and Jupiter-centered inertial reference frame</li>
<li>KeplerianPropagation: propagation with a basic Keplerian propagator</li>
<li>NumericalPropagation: propagation with a basic numerical propagator</li>
<li>PropagationInNonInertialFrame: introduction to orbital integration using SingleBodyAttraction and non-inertial frames</li>
<li>PropagationInRotatingFrame: Compared propagation of a LEO satellite in Earth-centered inertial and non-inertial frames: EME2000 and ITRF</li>
<li>PropagationInNonInertialFrame: introduction to orbital integration using SingleBodyAttraction and non-inertial frames</li>
<li>TrackCorridor: tutorial for track corridor display</li>
<li>VisibilityCheck: shows how to easily check for visibility between a satellite and a ground station</li>
<li>VisibilityCircle: computes visibility circles on ground as seen from a satellite</li>
<li>CR3BP: Circular Restricted 3-Body Problem
<ul>
<li>CR3BPSphereCrossingDetector: a detector for checking if a probe crashes on one of the two primary bodies in C3RBP</li>
<li>EarthMoonHaloOrbit: computation of a northern Halo Orbit around Earth-Moon L1</li>
<li>ManifoldTransfer: computation of a transfer from Earth-Moon L2 Halo Orbit to High Lunar Orbit using unstable manifolds</li>
<li>PropagationInCR3BP: example of propagation in the Circular Restricted 3-Body problem with Orekit</li>
<li>SunEarthMultipleShooter: correction of a trajectory using multiple shooting method in the Sun-Earth CR3BP</li>
<li>YZPlaneCrossingDetector: a detector for YZ Planes crossing within C3RBP</li>
</ul>
</li>
</ul>
</li>
<p>
<li>
<spanclass="fa-li fa-lg fa fa-gears"></span>
Time
<ul>
<li>Time1: tutorial for dates support</li>
</ul>
</ul>
<h2>Orekit Python Wrapper examples, by Petrus Hyvönen</h2>
To cite Orekit in a scientific paper, please use the <ahref="https://zenodo.org/records/13950582">Orekit Zenodo Digital Object Identifier</a>.<br/>
Hipparchus can also be cited with its own <ahref="https://zenodo.org/records/8418401">Hipparchus Zenodo DOI</a>.
<h1>Presentations</h1>
<h2>Orekit Days</h2>
<ulclass="fa-ul">
...
...
@@ -142,6 +147,11 @@ layout: default_orekit
<h1>Scientific publications using Orekit</h1>
These publications are not directly related to Orekit. The purpose here is to share scientific works that makes use of Orekit and highlight the diversity of Orekit usages.<br/>
So if you have used Orekit in your work and have published a paper on it, please consider sharing it here!<br/>
There is a <ahref="https://forum.orekit.org/t/scientific-documents-using-orekit/2780">dedicated thread on the forum</a> where you can contact us and share your references.
<p>
<ulclass="fa-ul">
<li>
<spanclass="fa-li fa-lg fa fa-gears"></span><ahref="https://dl.iafastro.directory/event/IAC-2024/paper/81010/">Informing Space Operations: A Broadcast Network for Cooperative Traffic Management and Zero-Gap Telemetry</a><br/>
<p><spanclass="fa-li fa-lg fa fa-gears"></span><ahref="https://arc.aiaa.org/doi/full/10.2514/1.A34171">Artificial Neural Network–Based Machine Learning Approach to Improve Orbit Prediction Accuracy</a><br/>
Peng H., Bai X.<br/>
September 2018 – Journal of Spacecraft and Rockets Vol. 55, No. 5, September–October 2018</p>
</li>
<li>
<p><spanclass="fa-li fa-lg fa fa-gears"></span><ahref="https://arc.aiaa.org/doi/abs/10.2514/1.I010616">Exploring Capability of Support Vector Machine for Improving Satellite Orbit Prediction Accuracy</a><br/>
Peng H., Bai X.<br/>
June 2018 – Journal of Aerospace Information Systems Vol. 15, No. 6, June 2018</p>
</li>
<li>
<p><spanclass="fa-li fa-lg fa fa-gears"></span><ahref="https://arc.aiaa.org/doi/pdf/10.2514/6.2018-2477">On-board terminal developments and operations of optical ground networks for small satellites</a><br/>
Hyvönen P., Vidmark A., Francou L., Baister G.<br/>