Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
/* Copyright 2002-2019 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package fr.cs.examples;
import java.io.File;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Locale;
import java.util.SortedSet;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.linear.MatrixUtils;
import org.hipparchus.linear.RealMatrix;
import org.hipparchus.ode.ODEIntegrator;
import org.hipparchus.ode.nonstiff.DormandPrince853Integrator;
import org.hipparchus.random.CorrelatedRandomVectorGenerator;
import org.hipparchus.random.GaussianRandomGenerator;
import org.hipparchus.random.RandomGenerator;
import org.hipparchus.random.Well19937c;
import org.hipparchus.util.FastMath;
import org.orekit.bodies.CelestialBodyFactory;
import org.orekit.bodies.GeodeticPoint;
import org.orekit.bodies.OneAxisEllipsoid;
import org.orekit.data.DataProvidersManager;
import org.orekit.data.DirectoryCrawler;
import org.orekit.errors.OrekitException;
import org.orekit.estimation.measurements.GroundStation;
import org.orekit.estimation.measurements.ObservableSatellite;
import org.orekit.estimation.measurements.ObservedMeasurement;
import org.orekit.estimation.measurements.RangeRate;
import org.orekit.estimation.measurements.generation.EventBasedScheduler;
import org.orekit.estimation.measurements.generation.Generator;
import org.orekit.estimation.measurements.generation.RangeRateBuilder;
import org.orekit.estimation.measurements.generation.Scheduler;
import org.orekit.estimation.measurements.generation.SignSemantic;
import org.orekit.estimation.measurements.modifiers.Bias;
import org.orekit.estimation.measurements.modifiers.RangeRateTroposphericDelayModifier;
import org.orekit.forces.drag.DragForce;
import org.orekit.forces.drag.IsotropicDrag;
import org.orekit.forces.gravity.HolmesFeatherstoneAttractionModel;
import org.orekit.forces.gravity.ThirdBodyAttraction;
import org.orekit.forces.gravity.potential.GravityFieldFactory;
import org.orekit.forces.gravity.potential.NormalizedSphericalHarmonicsProvider;
import org.orekit.frames.Frame;
import org.orekit.frames.FramesFactory;
import org.orekit.frames.TopocentricFrame;
import org.orekit.models.AtmosphericRefractionModel;
import org.orekit.models.earth.EarthITU453AtmosphereRefraction;
import org.orekit.models.earth.atmosphere.Atmosphere;
import org.orekit.models.earth.atmosphere.DTM2000;
import org.orekit.models.earth.atmosphere.data.MarshallSolarActivityFutureEstimation;
import org.orekit.models.earth.troposphere.DiscreteTroposphericModel;
import org.orekit.models.earth.troposphere.ViennaModelCoefficientsLoader;
import org.orekit.models.earth.troposphere.ViennaModelType;
import org.orekit.models.earth.troposphere.ViennaThreeModel;
import org.orekit.orbits.CartesianOrbit;
import org.orekit.orbits.OrbitType;
import org.orekit.propagation.SpacecraftState;
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import org.orekit.propagation.analytical.tle.TLE;
import org.orekit.propagation.analytical.tle.TLEPropagator;
import org.orekit.propagation.events.ElevationDetector;
import org.orekit.propagation.events.EventDetector;
import org.orekit.propagation.events.handlers.ContinueOnEvent;
import org.orekit.propagation.numerical.NumericalPropagator;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.DateComponents;
import org.orekit.time.DatesSelector;
import org.orekit.time.FixedStepSelector;
import org.orekit.time.TimeScale;
import org.orekit.time.TimeScalesFactory;
import org.orekit.utils.Constants;
import org.orekit.utils.IERSConventions;
import org.orekit.utils.TimeStampedPVCoordinates;
/** Measurements generation for checking consistency of observed Doppler conversion.
* @author Luc Maisonobe
*/
public class MeasurementsGeneration {
/** Program entry point.
* @param args program arguments (unused here)
*/
public static void main(String[] args) {
try {
// configures Orekit
File home = new File(System.getProperty("user.home"));
File orekitData = new File(home, "orekit-data");
if (!orekitData.exists()) {
System.err.format(Locale.US, "Failed to find %s folder%n",
orekitData.getAbsolutePath());
System.err.format(Locale.US, "You need to download %s from %s, unzip it in %s and rename it 'orekit-data' for this tutorial to work%n",
"orekit-data-master.zip", "https://gitlab.orekit.org/orekit/orekit-data/-/archive/master/orekit-data-master.zip",
home.getAbsolutePath());
System.exit(1);
}
DataProvidersManager manager = DataProvidersManager.getInstance();
manager.addProvider(new DirectoryCrawler(orekitData));
/*
// beware TLE model is not suitable for propagation more than a few days
// we have to select the correct TLE for the dates we will generate measurements
final TLE tle20190611 = new TLE("1 42778U 17036P 19162.69113096 .00000749 00000-0 35781-4 0 9997",
"2 42778 97.3549 220.5119 0010756 245.3704 114.6412 15.21997549109170");
final TLE tle20190612 = new TLE("1 42778U 17036P 19163.74305518 .00000728 00000-0 34875-4 0 9996",
"2 42778 97.3548 221.5408 0010807 241.2329 118.7822 15.21999132109334");
final TLE tle20190617 = new TLE("1 42778U 17036P 19168.73968312 .00000624 00000-0 30313-4 0 9995",
"2 42778 97.3544 226.4276 0011195 221.3881 138.6508 15.22005879110094");
*/
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
// Imports the International Terrestrial Reference Frame (ITRF) which is defined by the IERS and
// defines the geodesic model of the Earth based on the ITRF files
final Frame itrf = FramesFactory.getITRF(IERSConventions.IERS_2010, true);
final OneAxisEllipsoid earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS,
Constants.WGS84_EARTH_FLATTENING,
itrf); //
// Input to define the location of the ground station and it's name
final GeodeticPoint location = new GeodeticPoint(FastMath.toRadians(52.834),
FastMath.toRadians(6.379),
10.0);
final GroundStation station = new GroundStation(new TopocentricFrame(earth, location, "39-CGBSAT-VHF"));
// measurements generation parameters
final double minElevation = FastMath.toRadians(1.0);
final double timeStep = 5.0;
final TimeScale utc = TimeScalesFactory.getUTC();
final AbsoluteDate t0 = new AbsoluteDate("2019-06-11T00:00:00.000", utc);
final double duration = Constants.JULIAN_DAY; // Sets the duration to be the length of a Julian day
// atmosphere model for drag
MarshallSolarActivityFutureEstimation msafe =
new MarshallSolarActivityFutureEstimation(MarshallSolarActivityFutureEstimation.DEFAULT_SUPPORTED_NAMES,
MarshallSolarActivityFutureEstimation.StrengthLevel.AVERAGE);
manager.feed(msafe.getSupportedNames(), msafe);
Atmosphere atmosphere = new DTM2000(msafe, CelestialBodyFactory.getSun(), earth);
// this orbit is a dummy one, close to the first results from orbit determination from Max Valier satellite
final NormalizedSphericalHarmonicsProvider gravity = GravityFieldFactory.getNormalizedProvider(12, 12);
final AbsoluteDate tOrb = new AbsoluteDate("2019-06-11T16:35:13.715", utc);
final TimeStampedPVCoordinates pvt = new TimeStampedPVCoordinates(tOrb,
new Vector3D(-5253194.0, -4400295.0, 80075.0),
new Vector3D(-559.0, 764.0, 7585.0));
final CartesianOrbit orbit = new CartesianOrbit(pvt, FramesFactory.getEME2000(), gravity.getMu());
final OrbitType type = OrbitType.CARTESIAN;
// set up numerical propagator
final double[][] tol = NumericalPropagator.tolerances(10.0, orbit, type);
final ODEIntegrator integrator = new DormandPrince853Integrator(0.001, 300.0, tol[0], tol[1]);
final NumericalPropagator propagator = new NumericalPropagator(integrator);
propagator.setOrbitType(type);
propagator.setInitialState(new SpacecraftState(orbit, 16.0)); // the second argument is the spacecraft mass
// add a few realistic force models
final double cd = 2.0;
final double area = 0.25;
propagator.addForceModel(new HolmesFeatherstoneAttractionModel(itrf, gravity));
propagator.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getSun()));
propagator.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getMoon()));
propagator.addForceModel(new DragForce(atmosphere, new IsotropicDrag(cd, area)));
// set up some correction models
// coefficients files for Vienna Model 3 can be found at
// http://vmf.geo.tuwien.ac.at/trop_products/GRID/1x1/VMF3/VMF3_OP/2019/
final ViennaModelCoefficientsLoader loader = new ViennaModelCoefficientsLoader(location.getLatitude(),
location.getLongitude(),
ViennaModelType.VIENNA_THREE);
loader.loadViennaCoefficients(t0.getComponents(utc));
final DiscreteTroposphericModel tropo = new ViennaThreeModel(loader.getA(),
loader.getZenithDelay(),
location.getLatitude(),
location.getLongitude());
final AtmosphericRefractionModel refraction = new EarthITU453AtmosphereRefraction(location.getAltitude());
// set up measurements generation, with realistic models
final Generator generator = new Generator();
//final ObservableSatellite os = generator.addPropagator(TLEPropagator.selectExtrapolator(tle20190611));
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
final ObservableSatellite os = generator.addPropagator(propagator);
/*
Range rate builder
*/
final double sigma = 15.0; // the value we will tune
final RealMatrix covariance = MatrixUtils.createRealDiagonalMatrix(new double[] { sigma * sigma });
final RandomGenerator random = new Well19937c(0x9e9409e2520c1fc3l); // you can change this seed as you like, it's just a seed
final CorrelatedRandomVectorGenerator crvg =
new CorrelatedRandomVectorGenerator(covariance,
1.0e-10,
new GaussianRandomGenerator(random));
final RangeRateBuilder builder = new RangeRateBuilder(crvg, station, false, sigma, 1.0, os);//*/
final double rangeRateBias = 375.0;
builder.addModifier(new Bias<RangeRate>(new String[] { station.getBaseFrame().getName() + "-range-rate-bias" },
new double[] { rangeRateBias },
new double[] { 1.0 },
new double[] { Double.NEGATIVE_INFINITY },
new double[] { Double.POSITIVE_INFINITY }));
builder.addModifier(new RangeRateTroposphericDelayModifier(tropo, false));
final DatesSelector selector = new FixedStepSelector(timeStep, utc);
final EventDetector detector = new ElevationDetector(station.getBaseFrame()).
withConstantElevation(minElevation).
withRefraction(refraction).
withHandler(new ContinueOnEvent<>());
final Scheduler<RangeRate> scheduler = new EventBasedScheduler<>(builder, selector, generator.getPropagator(os), detector,
SignSemantic.FEASIBLE_MEASUREMENT_WHEN_POSITIVE);
generator.addScheduler(scheduler);
// generate measurements
final SortedSet<ObservedMeasurement<?>> measurements = generator.generate(t0, t0.shiftedBy(duration));
System.out.println("generated " + measurements.size() + " measurements");
System.out.println("first measurement at " + measurements.first().getDate());
System.out.println("last measurement at " + measurements.last().getDate());
// save measurement in a file
AbsoluteDate mjdRefUTC = new AbsoluteDate(DateComponents.MODIFIED_JULIAN_EPOCH, utc);
try (PrintWriter out = new PrintWriter(new File(home, "generated-doppler-"+station.getBaseFrame().getName()+".dat"))) {
forEach(m -> out.format(Locale.US, "%s %s %s %12.6f%n", // Without MJD coloumn
m.getDate(),
"RANGE_RATE",
station.getBaseFrame().getName(),
m.getObservedValue()[0]));
// Uncomment to get mjd coloumn
/*forEach(m -> out.format(Locale.US, "%s %14.8f %s %s %12.6f%n",
m.getDate(),
m.getDate().offsetFrom(mjdRefUTC, utc) / Constants.JULIAN_DAY,
"RANGE-RATE",
station.getBaseFrame().getName(),
m.getObservedValue()[0]));*/
}
} catch (IOException ioe) {
System.err.println(ioe.getLocalizedMessage());
System.exit(1);
} catch (OrekitException oe) {
System.err.println(oe.getLocalizedMessage());
System.exit(1);
}
}
}