Skip to content
Snippets Groups Projects
Commit 7802b2f9 authored by Luc Maisonobe's avatar Luc Maisonobe
Browse files

Tuned input parameter so OD converges.

parent 004d5622
No related branches found
No related tags found
No related merge requests found
......@@ -69,17 +69,17 @@ orbit.date = 2019-06-11T16:35:29.149
### Cartesian elements
## Position along X in inertial frame (m)
orbit.cartesian.px = -5423194
orbit.cartesian.px = -5273194
## Position along Y in inertial frame (m)
orbit.cartesian.py = -4550295
orbit.cartesian.py = -4450295
## Position along Z in inertial frame (m)
orbit.cartesian.pz = 250075
orbit.cartesian.pz = 110075
## Velocity along X in inertial frame (m/s)
orbit.cartesian.vx = -735
orbit.cartesian.vx = -585
## Velocity along Y in inertial frame (m/s)
orbit.cartesian.vy = 740
orbit.cartesian.vy = 790
## Velocity along Z in inertial frame (m/s)
orbit.cartesian.vz = 7760
orbit.cartesian.vz = 7610
## TLE parameters
#Line 1
......@@ -272,7 +272,7 @@ estimator.optimization.engine = Levenberg-Marquardt
# divided by estimator.orbital.parameters.position.scale. So if the initial guess
# is about 100km wrong and estimator.orbital.parameters.position.scale is set to 10.0,
# the initial step bound factor should be of the order of magnitude of 1.0e6
estimator.Levenberg.Marquardt.initial.step.bound.factor = 1.0e6
estimator.Levenberg.Marquardt.initial.step.bound.factor = 100.0
# convergence is reached when max|p(k+1) - p(k)| < ε for each
# normalized estimated parameters p and iterations k and k+1
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment